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The accumulation of an Organic Rich Layer (ORL) during the last deglaciation in the Alboran Sea (western
Mediterranean Sea) and its link to changes in deep and intermediate water circulation are here inves-
tigated. Benthic foraminiferal assemblages and the shallow infaunal foraminifer Uvigerina peregrina 5'>C
record support the establishment of sustained high organic matter fluxes, and thus eutrophic conditions
at the sea floor, during the late phase of the ORL (Younger Dryas to early Holocene periods). Since organic
matter fluxes were lower (mesotrophic conditions) during the Bglling-Allerad period, they cannot be
solely responsible for the ORL initiation. Geochemical, sedimentological and micropalaeontological
proxies support a major weakening of the deep-water convection in the Gulf of Lion as the main driver
for the development of poorly-ventilated conditions from intermediate depths (946 m) to the deep
western Mediterranean basin that promoted the beginning of the ORL deposition. Nevertheless, a better
ventilation at intermediate depths was established during the late ORL, while the deep basin remained
poorly ventilated. We propose that our data reflect the arrival of a new better-ventilated intermediate
water mass analogue to the current Levantine Intermediate Water (LIW) and/or a new intermediate
water mass from the Gulf of Lion. The ultimate source of this water mass needs to be further explored but
chronologies of the changes recorded here indicate that intermediate and deep ventilation phases were
decoupled between the western and eastern Mediterranean basins during the deglaciation and early-

middle Holocene.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

layers with organic carbon higher than 0.8%, have been recorded in
the Alboran Sea during the last 3 Ma (Murat, 1999). Western

The most important events related to fluctuations in dissolved
oxygen content and organic matter fluxes in the Alboran Sea and
other western Mediterranean Sea regions are the depositions of the
Organic Rich Layers (ORLs). Several ORLs, defined as dark sediment
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Mediterranean ORLs deposition might be originated by hydrologi-
cal and productivity changes related to the Atlantic inflow and
wind-driven meso-scale gyres (Murat, 1999). Eastern Mediterra-
nean sapropels are also organic rich layers, but their organic matter
content is higher (>2%) (Kidd et al, 1978), and their driving
mechanisms are water column stratification due to high riverine
discharge, and high organic matter fluxes (Emeis et al., 2000). The
deposition of the most recent Organic Rich Layer (ORL) in the
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Alboran Sea took place during the deglaciation and early Holocene
(14.35—8.9 ka) (Cacho et al., 2002; Martinez-Ruiz et al., 2015). The
enhanced organic matter accumulation and preservation that
formed this ORL on the deep-sea floor has been attributed to a
weakening in bottom water circulation in the western Mediterra-
nean, probably caused by surface water stratification during
deglacial sea level rise (Rogerson et al., 2008). Changes in bottom
water oxygen content and organic matter fluxes across the most
recent ORL have been investigated in deep sites from the Alboran
Sea (e.g., Barcena et al., 2001; Cacho et al., 2002; Rogerson et al.,
2008; Rodrigo-Gamiz et al., 2011; Martinez-Ruiz et al., 2015).
However, studies focusing on intermediate waters are still scarce
(Ausin et al., 2015a, 2015b) and consequently little is known about
the impact of the described ORL-related changes in circulation and
organic matter fluxes at intermediate depths.

A powerful tool to unravel deep water oxygen content and
organic matter fluxes to the sea floor are benthic microorganisms
(foraminifera) and macrobenthic trace makers (burrowing organ-
isms) due to their sensitivity to both variations in bottom water
oxygen levels and organic matter supply (e.g., Murray, 2006;
Jorissen et al., 2007; Aguirre et al., 2010; Quiroz et al., 2010;
Rodriguez-Tovar and Dorador, 2014; Rodriguez-Tovar et al., 2015a,
2015b). Ichnological properties such as ichnodiversity, abundance
of bioturbation, size of traces or depth of burrow penetration, are
narrowly related with availability of organic matter, oxygen flux
into the sediment and sedimentation rate in deep-marine settings
(e.g., Uchman and Wetzel, 2011; Wetzel and Uchman, 2012). Dis-
solved oxygen content and organic matter supply are intimately
related due to the remineralisation of organic matter, which con-
sumes oxygen (Jorissen et al., 1995; Mojtahid et al., 2009). These
trophic and oxygen conditions control benthic foraminiferal
microhabitat preferences, that is their living depth within the
sediment (Jorissen et al., 1995). In eutrophic environments, deep
infaunal benthic foraminifera dominate. In mesotrophic environ-
ments, all microhabitats (deep infaunal to epifaunal) are well-
represented. Oligotrophic environments are characterised by a
dominance of epifaunal benthic foraminifera (Jorissen et al., 1995).
Foraminiferal stable oxygen (3'80) and carbon (3'3C) isotopes are
also useful proxies to investigate productivity and organic matter
fluxes (planktic and benthic stable 3'3C isotopes), bottom water
ventilation (benthic stable 3!3C isotopes) and glacial-deglacial
changes (foraminiferal stable 3'80 isotopes) (Rohling and Cooke,
1999; Mackensen, 2008).

The governing mechanisms for changes in oxygen content and
organic matter fluxes are diverse. Firstly, deep water convection
ventilates bottom waters supplying dissolved oxygen to the bottom
of the basin (Murray, 2006; Pemberton et al., 2001; Jorissen et al.,
2007). Secondly, fluxes of organic matter reaching the sea floor
are mainly controlled by surface ocean primary productivity, up-
welling events, lateral advection of organic particles, the input of
terrestrial organic carbon transported to the sea by rivers, and
organic matter remineralisation along the water column (Gardner
et al., 1985; Bakun, 1990; Asper et al., 1992; Takahashi et al., 1993;
Hedges et al., 1997; Thunell et al., 2007). The Alboran Sea, located in
the westernmost Mediterranean Sea, is affected by deep and in-
termediate water currents, upwelling, riverine discharge, and
lateral advection processes, which control bottom water dissolved
oxygen and organic matter inputs to the sea floor (Garcia-Gorriz
and Carr, 1999; Millot, 1999, 2009; Sarhan et al., 2000). The main
goal of this study is to disentangle changes in bottom water oxygen
and organic matter fluxes at intermediate depths of the Alboran Sea
in relation to western Mediterranean deep basin conditions across
the most recent ORL deposition. We present results from benthic
foraminifera and trace fossil assemblages (benthic micro- and
macrofauna), as well as planktic and benthic foraminiferal stable

oxygen (3'80) and carbon (8'3C) isotopes and Total Organic Carbon
(TOC) contents, measured at the intermediate depth (946 m)
gravity core HER-GC-UB6 from the Alboran Sea (Fig. 1). This infor-
mation is analysed in comparison with benthic foraminifera,
benthic foraminiferal stable carbon (8'3C) isotopes, TOC contents,
alkenones and grain size data from the nearby deep site MD95-
2043 (1841 m) in the Alboran Sea, and the deep site MD99-2343
(2391 m) from the Minorca Rise (Fig. 1), which most of them
form part of previous published studies (Cacho et al., 2002;
Reguera, 2004; Frigola et al., 2008).

2. Study area and oceanographic setting

The Mediterranean Sea circulation forms a thermohaline sys-
tem, which is driven by its negative hydrologic budget (concen-
tration basin) due to excess of evaporation over freshwater input
(river runoff + rainfall) (Béthoux, 1980). This deficit is balanced
through anti-estuarine water exchange across the Strait of Gibraltar
where lower salinity Atlantic surface waters flow eastward into the
Mediterranean and more saline Mediterranean deep and inter-
mediate waters enter the Atlantic as a bottom current (Mediterra-
nean Outflow Water, MOW) (Wiist, 1961; Pinardi and Masetti,
2000; Malanotte-Rizzoli et al., 2014).

The Alboran Sea is located in the westernmost Mediterranean
Sea and it is connected to the Atlantic Ocean through the Strait of
Gibraltar (Fig. 1A). It is the first Mediterranean basin receiving the
Atlantic Water (AW) influx, the so-called Atlantic Jet, which forms
two semi-permanent anticyclonic gyres (the Western and Eastern
Anticyclonic Gyres) (La Violette, 1986; Heburn and La Violette,
1990). At the northern margin of these anticyclonic gyres, there is
a frontal system generating quasi-permanent areas of upwelling
(Garcia-Gorriz and Carr, 1999). The Alboran Sea basin is filled by
three different water masses (Fig. 1B). The upper water layer is the
Modified Atlantic Water (MAW) (0—220 m), which is formed from
the AW that gradually increases its temperature and salinity while
flowing eastwards (Gascard and Richez, 1985; Parrilla et al., 1986).
The AW has high dissolved oxygen concentration and low nutrient
concentration (Garcia-Martinez et al., 2019). The middle water
layer is the Levantine Intermediate Water (LIW) (220—600 m), a
saline and warm water mass that is formed by winter convection in
the eastern Mediterranean (Wiist, 1961; Marshall and Schott, 1999;
Millot, 1999, 2009; Schroeder et al., 2012). The LIW is characterised
by a nutrient maximum and a dissolved oxygen minimum (Garcia-
Martinez et al., 2019). The lower water layer is the Western Medi-
terranean Deep Water (WMDW) (>600 m), which is produced in
the Gulf of Lion due to intense north-westerly winds during severe
winters causing cooling and evaporation of surface waters (MEDOC
Group, 1970; Bryden and Stommel, 1984; Lacombe et al., 1985). The
WMDW formation also depends on the amount and depth of the
LIW arriving at the Gulf of Lion prior to WMDW formation events
(Pinardi and Masetti, 2000). The WMDW shows higher dissolved
oxygen concentration and lower nutrient concentration than LIW
(Garcia-Martinez et al., 2019).

3. Material and methods

The studied material is the gravity core HER-GC-UB6
(36°14'23.78"N, 3°59'21.17"W) recovered at 946 m water depth in
the Alboran Sea during the HERMESIONE oceanographic cruise
onboard the BIO Hespérides vessel (October 2009) (Fig. 1). This core
is 255 cm-long and it was divided into three core sections from top
to bottom: HER-GC-UB06-S1 (94 cm), HER-GC-UB06-S2 (100 cm)
and HER-GC-UB06-S3 (61 cm). The core is mostly composed by
homogeneous greyish clays very rich in foraminifera. Additionally,
data of benthic foraminifera, benthic foraminiferal stable carbon
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Fig. 1. Simplified modern hydrography of the western Mediterranean Sea including the Alboran Sea (Millot, 1999). (a) Location of the studied core (HER-GC-UB6) and the com-
plementary cores (MD95-2043, MD99-2343). Surficial water masses (solid lines), intermediate and deep water masses (dashed lines) and WMDW formation area (grey ellipse) are
indicated. Western Anticyclonic Gyre (WAG) and Eastern Anticyclonic Gyre (EAG) are also shown. (b) Vertical distribution of the water masses in the western Mediterranean derived
from salinity data (Schlitzer, 2009). Abbreviations are: MAW, Modified Atlantic Water; LIW, Levantine Intermediate Water; WMDW, Western Mediterranean Deep Water; EMDW,

Eastern Mediterranean Deep Water.

(313C) isotopes and TOC contents from the piston cores MD95-2043
(western Alboran Sea, 1841 m water depth) and MD99-2343
(Minorca Rise, 2391 m water depth) (Fig. 1) were used for com-
parison (Cacho et al., 2002, 2006; Reguera, 2004; Frigola et al.,
2008).

3.1. Age model

The age model for the core HER-GC-UB6 is based on eleven C
accelerator mass spectrometry (AMS) radiocarbon ages measured
in planktic foraminifera picked from the size fraction >250 pm
(Fig. 2; Table 1). Eight of the radiocarbon dates were obtained from
monospecific samples of Globoconella inflata, two radiocarbon
dates were measured on monospecific samples of Neo-
globoquadrina pachyderma, and one radiocarbon date is based on a
multispecific sample of G. inflata and N. pachyderma (Table 1). The
eleven radiocarbon ages were calibrated by using the regional
average marine reservoir correction (AR) for the western

Mediterranean Sea (—22.0 + 35.0) and the Calib 7.10 software
(Stuiver and Reimer, 1993) and the MARINE13 calibration curve
(Reimer et al., 2013). Age uncertainties are expressed as 2¢ errors
(Table 1). The age model was constructed with the Bayesian sta-
tistics software Bacon v2.2 (Blaauw and Christen, 2011) with the
statistical package RStudio v1.1.463. Before performing the Bayesian
accumulation model, sedimentation rates derived from the eleven
radiocarbon dates were calculated in order to detect abrupt
changes. Since a sharp increase in sedimentation rate was recorded
at 7.5 ka (135 cm core depth), it was decided to apply the Bayesian
accumulation model for the upper (0—135 cm) and lower
(135—255 cm) parts of the core, separately. This approached
resulted in a better fit for the Bayesian accumulation model.

3.2. Benthic foraminiferal analysis

3.2.1. Core HER-GC-UB6
Forty-four freeze-dried 1-cm-thick samples (5—10 g) were
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Table 1

Age model tie points for the core HER-GC-UB6. Dating method, tie point core depth (cm), '“C calendar age (yr BP), calendar year and age uncertainties (2c errors) are shown.

Dating method Core depth (cm)

14C age (yr BP)

Calendar years

Cal BP age ranges (20)

AMS "4C/G. inflata 3
AMS 4C/G. inflata 14
AMS 4C/G. inflata 31
AMS '4C/G. inflata 66
AMS '4C/G. inflata 117
AMS 4C/G. inflata 135
AMS 4C/G. inflata 143
AMS 'C/G. inflata + N. pachyderma 165
AMS “C/N. pachyderma 189
AMS 4C/G. inflata 204
AMS "C/N. pachyderma 223

631 (+28) 303 222-425

1560 (+30) 1144 1031-1257
2540 (+25) 2233 2121-2330
4184 (+27) 4301 4151-4414
6251 (+31) 6726 6614—6859
6991 (+38) 7505 7415-7590
8191 (+40) 8726 85708932
9310 (+40) 10,173 9994-10,291
11,557 (+46) 13,059 12,880—13,219
12,613 (+91) 14,165 13,875—14,662
15,758 (+70) 18,649 18,464—18,811

washed through a 63 um sieve and then oven dried at 40 °C.
Average resolution per sample is 0.5 ka. Samples were divided into
equal splits with a microsplitter in order to generate sub-samples of
at least 300 benthic foraminifera. In these sub-samples of the
>63 pum size fraction, benthic foraminifera were identified at spe-
cies level and counted. Taxonomic identifications were made using
Cimerman and Langer (1991), Sgarrella and Moncharmont Zei
(1993), Milker and Schmiedl (2012), and Holbourn et al. (2013).
Relative abundances (%) were obtained from census data. Benthic
foraminiferal assemblages were established considering only spe-
cies reaching >10% of relative abundance in at least one sample.

Furthermore, benthic foraminifera were divided into three
different microhabitats (Table 2): 1) epifauna (0—0.7 cm below the
water-sediment interface; BWSI), 2) infauna (>0.7 cm BWSI), and 5)
deep infauna (>3 cm BWSI) (Schmiedl et al., 2000).

Finally, the oxygen index (O, index) of Schmiedl et al. (2003)
was calculated to analyse changes in oxygen content of bottom

waters: [HO/(HO + LO) + Div] x 0.5, where HO is the relative
abundance of high-oxygen indicators (epifauna and miliolids), LO is
the relative abundance of low-oxygen indicators (deep infauna)
(Table 2), and Div is the normalised Shannon-Wiener index (H)
(Hill, 1973):

H= - pilnp;

where pj is the proportion of the ith species and In is the natural
logarithm.

3.3. Stable isotope measurements

For 8'80 and '3C stable isotope analyses in core HER-GC-UB6,
~10 individuals of the planktic foraminifer Globigerina bulloides
from 67 samples, ~2 individuals of the epifaunal-shallow infaunal
Cibicidoides pachyderma from 83 samples, and ~4 individuals of the
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Microhabitat preferences of benthic foraminifera from the HER-GC-UB core: epifauna (0—0.7 cm below the water-sediment interface; BWSI), infauna (>0.7 cm BWSI), and deep

infauna (>3 cm BWSI).

Microhabitat

Epifauna

Infauna

Deep infauna

Alabaminella weddellensis
Ammonia sp.
Anomalinoides minimus
Anomalinoides sp.
Articulina tubulosa
Asterigerinata sp.
Cassidulina laevigata
Cassidulina obtusa
Cibicides refulgens
Cibicides sp.
Cibicidoides pachyderma
Cibicidoides wuellerstorfi
Cibicidoides sp.
Connemarella rudis
Cornuspira sp.
Discorbinella sp.
Elphidium aculeatum
Elphidium sp.

Favulina hexagona
Fissurina sp.
Gavelinopsis praegeri
Globocassidulina subglobosa
Gyroidina altiformis
Gyroidina orbicularis
Gyroidina umbonata
Gyroidina sp.
Hansenisca soldanii
Hanzawaia boueana
Hanzawaia sp.
Hoeglundina elegans
Hyalinea balthica
Karrerotextularia flintii
Lagena sp.

Lenticulina sp.
Miliolinella sp.
Neolenticulina variabilis
Planulina ariminensis
Pyrgo depressa

Pyrgo oblonga

Pyrgo williamsoni

Pyrgo sp.
Quinqueloculina padana
Quinqueloculina seminula
Quinqueloculina sp.
Rosalina sp.

Siphonina reticulata

Amphicoryna scalaris
Astrononion stelligerum
Bigenerina nodosaria
Bolivina alata

Bolivina difformis
Bolivina dilatata
Bolivina plicatella
Bolivina pseudoplicata
Bolivina spathulata
Bolivina striatula
Bolivina variabilis
Bolivina sp.

Bolivinella seminuda
Brizalina subspinescens
Bulimina aculeata
Bulimina marginata
Bulimina striata
Bulimina sp.

Cancris auricula
Chilostomella oolina
Dentalina sp.
Evolvocassidulina bradyi
Fursenkoina complanata
Fursenkoina subacuta
Globobulimina affinis
Haynesina sp.
Marginulina sp.
Martinottiella communis
Melonis affinis
Nodosaria sp.

Nonion sp.

Nonionella iridea
Nonionella sp.
Nonionoides turgidus
Pseudoclavulina crustata
Pullenia quadriloba
Robertina translucens
Siphouvigerina proboscidea
Stainforthia fusiformis
Trifarina angulosa
Trifarina bradyi
Uvigerina auberiana
Uvigerina bononiensis
Uvigerina mediterranea
Uvigerina peregrina
Uvigerina sp.

Chilostomella oolina
Evolvocassidulina bradyi
Fursenkoina complanata
Fursenkoina subacuta
Globobulimina affinis
Stainforthia fusiformis

Sphaeroidina bulloides
Spiroloculina sp.
Spiroplectinella wrightii
Textularia sp.
Triloculina tricarinata
Triloculina sp.

shallow infaunal Uvigerina peregrina from 85 samples, were picked
from the fraction >212 um. Samples were crushed using two glass
slides under the stereo microscope to open foraminiferal chambers
and to clean the inner parts of shells. Cleaning consisted of clay
removal with 500 pl of methanol in an ultrasonic bath during 30 s.
The residual methanol was extracted and samples dried before
analyses. The analyses were carried out by isotope-ratio mass
spectrometry (IRMS) in a Finnigan-MAT 252 mass spectrometer
linked online to a single acid bath Carbon Kiel-II carbonate prepa-
ration device at the Scientific and Technological Centres of the
University of Barcelona (CCiT-UB). The analytical precision of lab-
oratory standards was better than 0.08%. for 8'%0, and 0.03%o for
313C. Calibration to Vienna Pee Dee Belemnite (VPDB) was per-
formed by means of NBS-19 standards (Coplen, 1996).

The 380 values of C. pachyderma from core HER-GC-UB6 were
corrected by adding 0.5%o in order to adjust them to the Uvigerina
values (Shackleton, 1974). Following a similar approach than
Hoogakker et al. (2014), we calculated a 8!3C gradient between
C. pachyderma and U. peregrina C stable records from core HER-GC-
UB6. This gradient might be related to oxygen changes, as it has
been shown for the 3'3C gradient between epifauna (Cibicidoides
wuellerstorfi) and deep infauna (Globobulimina spp.). High
C. wuellerstorfi-Globobulimina spp. 83C gradient values indicate
higher oxygen content (Hoogakker et al., 2014). Although any
calibration exists for the use of the C. pachyderma-U. peregrina 5'3C
gradient (A3'3Cy) as oxygen proxy and U. peregrina has a variable
microhabitat (Mojtahid et al., 2010), similar trends between both
the A3'3C, and the oxygen index based on benthic foraminifera
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validate the application of this gradient as ventilation proxy in the
present work (see discussion section 5.2).

3.4. Ichnological analysis of core HER-GC-UB6

Ichnological analysis was conducted on high resolution images
of the core sections, previously treated according to the method
developed by Dorador and Rodriguez-Tovar (2014) (Fig. S2). Trace
fossils identification in cores is not an easy matter, being especially
harder in modern marine cores. In this sense, the applied method,
based on high resolution image treatment by adjustments modifi-
cation (levels, brightness and vibrance), facilitates the visualization
and identification of trace fossils in this kind of sediments as pre-
viously tested in cores from IODP Expedition 339 (e.g., Dorador and
Rodriguez-Tovar, 2015, 2018 for a recent review; Rodriguez-Tovar
and Dorador, 2015).

3.5. Total Organic Carbon (TOC)

Fifty-three sediment samples from the core HER-GC-UB6 and 26
samples from core MD99-2343 were first freeze-dried and ho-
mogenized. Then, the carbonate fraction was removed by attacking
with HCI. Total Organic Carbon (TOC) content was analysed at the
CCiT-UB. Analytical measurements were performed using an
elemental organic analyser Thermo EA Flash 1112 (Thermo Scien-
tific) working in standard conditions. The reproducibility of the TOC
% measurements was better than 10% based in measurements on
sample replicates.

3.6. Additional cores MD95-2043 and MD99-2343

For core MD95-2043, the age of the studied interval is reliably
well constrained by the previously established age model (Cacho
et al., 1999) based on 21 C ages reporting average sedimentation
rates of 51.5 cm/ka for the studied interval (Fig. S1). The age model
of core MD99-2343 for the studied interval is based on a recently
updated version that added 9 extra C ages (Catala et al., 2019) to
the previously established age model based on 10 C ages (Frigola
et al., 2008). The average sedimentation rate of this core for the
studied interval is of 38.2 cm/ka (Fig. S1).

Some benthic foraminiferal data of the size fraction >150 um
from Reguera (2004) were used: 93 samples from core MD95-2043
with a resolution per sample of 0.25 ka, and 80 samples from core
MD99-2343 with a resolution per sample of 0.3 ka. In some of these
samples, the whole >150 pm size fraction contained less than 100
benthic foraminifera due to the scarce benthic foraminiferal con-
tent of these samples. On average, core MD95-2043 contains 5.96
benthic foraminifera per gram of dry sediment (N/g), and core
MD99-2343 contains 4.44 N/g (Figs. S1b and S1c). Since some of the
relative abundances (%) from these cores were based on less than
100 benthic foraminifera, which is the minimum number of counts
to obtain reliable relative abundances (Fatela and Taborda, 2002),
they were used only for interpreting major changes in benthic
foraminiferal fauna. Furthermore, benthic foraminiferal assem-
blages from the size fraction >150 pm do not contain small species,
which are commonly related to organic carbon fluxes. Therefore,
the comparison between the assemblages of the >63 pm fraction
from core HER-GC-UB6 with the assemblages of the size fraction
>150 um from the additional cores was done very carefully,
comparing only large temporal intervals (pre-ORL, ORL and post
ORL) in a qualitative way.

The benthic C. pachyderma §'3C records of deep cores MD95-
2043 and MD99-2343 were used as additional data. The TOC data
from 47 samples from core MD95-2043 were also used in this
study.

4. Results

The results of this study have been described and discussed in 4
intervals: 1) the pre-ORL interval (Last Glacial Maximum (LGM) and
Heinrich Stadial 1 (HS1)), 2) the early ORL interval (Bglling-Allerad
(B/A)), 3) the late ORL interval (Younger Dryas (Y/D) and early
Holocene (EH)), and 4) the post-ORL interval (latest EH, middle
Holocene (MH) and late Holocene (LH)) (Fig. 2).

4.1. Chronology of core HER-GC-UB6

According to the generated age model, the studied core en-
compasses the last 24 ka including the Last Glacial Maximum
(LGM), the deglaciation (Heinrich Stadial 1, Bglling-Allered,
Younger Dryas) and the Holocene (Fig. 2). The lower part of the
studied core (7.5—24 ka) presents the lowest average sedimenta-
tion rate (8.8 cm/ka). In the upper part of the core (0—-7.5 ka),
sedimentation rates increase with average values of 17.2 cm/ka.

4.2. Sediment colour and trace fossils assemblages of core HER-GC-
UB6

Some differences in the ichnological pattern and sediment
colour can be observed in the studied core sections, with differ-
entiation of three Ichnological Intervals before, during and after the
ORL (Fig. S2).

- Ichnological Interval I (pre-ORL, 255 to 205 cm core depth): It
presents dominance of light sediments, with some alternations of
dark grey coloured sediments. Mottled background is dominant. In
several cases, some discrete trace fossils are visible on this mottled
background, but it is difficult to provide a conclusive ichnotax-
onomical assignation. A significant feature is that all the differen-
tiated discrete traces show convoluted and deformed shapes. Some
traces of Palaeophycus, Planolites, Thalassinoides, ?Asterosoma, and
smaller traces can be differentiated.

- Ichnological Interval II (ORL, 205 to 146 cm core depth): This
interval is characterised by darker coloured sediments and a sig-
nificant change in the appearance, with the disappearance of the
“convolute” look. The lower part of this interval (B/A) reveals
dominance of mottled background. From this, in the rest of the
interval (Y/D, EH), mottled background is not so evident and is
characterised by the presence of very small and scarce discrete
traces (small Palaeophycus, and ?Chondrites).

- Ichnological Interval III (post-ORL, 146 to O core depth): The
lower part of the Interval III (early MH) shows lighter coloured
sediments, and is characterised by the increase in the size of traces,
new ichnotaxa as Thalassinoides, and the mottled appearance. Then,
the rest of the Interval III (late MH, LH) shows continuity with light
coloured sediments. The lower part shows a more or less mottled
appearance in which some discrete traces can be observed,
including Palaeophycus, Planolites and Thalassinoides.

4.3. Benthic foraminiferal assemblages, microhabitats and oxygen
index of core HER-GC-UB6

All studied samples contained more than 300 benthic forami-
nifera due to the high benthic foraminiferal abundance in this core
with on average 524 N/g (Fig. S1a).

Relative abundances (%) of the dominant species (>10% in at
least one sample) are shown in Fig. 3 Some of these dominant
species are depicted in Fig. 4. During the pre-ORL and early ORL
intervals, Cibicidoides pachyderma and Nonionella iridea alternate
(Fig. 3a). Nonionoides turgidus shows relatively low and stable
abundances with a maximum at the HS1 (Fig. 3a). In addition,
Cassidulina laevigata, Bolivina dilatata and Uvigerina peregrina have
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relatively high abundances throughout the pre-ORL interval
(Fig. 3b—d). Furthermore, during the early ORL interval, Bolivina
spathulata shows its highest values (Fig. 3c). During the late ORL
and post-ORL intervals, high abundances of B. marginata,
U. peregrina, Uvigerina mediterranea, Cassidulina obtusa, Brizalina
subspinescens, Melonis affinis and Alabaminella weddellensis are
recorded (Fig. 3b, d, e and f).

The distribution of the three microhabitats (epifauna, infauna,
deep infauna) (Table 2) is shown in Fig. 5. The epifauna and infauna,
which are the most relevant microhabitats (20—80%), show and
opposite pattern through the core (Fig. 5a and b). The infauna
shows increasing values from the pre-ORL interval to the early ORL
interval (Fig. 5b), while higher values of the epifauna are recorded
at the middle of the LGM, the MH and LH (Fig. 5a). In addition, there
is an important increase in the abundance of deep infauna during
the early ORL marking the onset of the ORL (Fig. 5c).

The benthic foraminiferal-derived oxygen index exhibits rela-
tive high values during the LGM, which are followed by an
important reduction initiated during the HS1, leading to minimum
values at the B/A (Fig. 5d). During the ORL interval, a two-step
increment of the oxygen index is observed, recuperating relative
well-ventilated conditions at the end of the EH. Well-ventilated
conditions maintained relatively stable through the MH and early
LH. Finally, an important decrease in the oxygen index takes place
over the last 2 ka.

4.4. Stable isotope records

4.4.1. Core HER-GC-UB6

The 3'30 records from the planktic foraminifer G. bulloides, and
the benthic foraminifera C. pachyderma and U. peregrina have very
similar trends showing the heaviest values during the LGM (3%o for
G. bulloides and 5%o for C. pachyderma and U. peregrina), an isotopic
depletion during the last deglaciation (HS1, B/A, Y/D, EH), and
stable (for C. pachyderma and U. peregrina, 2%o) or gradually heavier
(for G. bulloides, 0—1%o) values during the MH and LH (Fig. 6a and
b).

In this study, the 3'3C of the upwelling-related planktic fora-
minifer G. bulloides is used as a proxy for upwelling intensity since
this record uses to decrease during upwelling events (Thunnel and
Sautter, 1992; Lebreiro et al., 1997; Schiebel and Hemleben, 2017).
This is the result of the combined effect of upwelled 5'3C-depleted
and nutrient-rich subsurface waters, with the vital effect of
G. bulloides that calcifies faster implying higher respiration and
more respired '?C-enriched CO, during the upwelling season
(Naidu and Niitsuma, 2004). The planktic G. bulloides 3'3C record
(Fig. 6a) shows relatively stable values (around —1%o) during the
pre-ORL and early ORL intervals. Then, it shows a marked decrease
during the late ORL. Finally, this record shows a relatively rapid
increase during the MH until reaching stable values around —0.5%o
during the LH.

The benthic foraminiferal 8'3C signal is influenced by several
mechanisms, mainly the global C cycle (0.3—0.5%0 changes), the
residence time of the water mass, species-specific vital effects
(metabolism) and local processes such as remineralisation of
organic matter (Rohling and Cooke, 1999; Schmiedl and
Mackensen, 2006; Mackensen, 2008).

The §'3C of C. pachyderma is widely used to reconstruct past
changes in bottom water ventilation, with high values being
interpreted as indicative of young, well-ventilated bottom waters
(Sierro et al., 2005). Well-ventilated conditions are observed during
the LGM, which are followed by a continuous reduction in the
C. pachyderma §'3C record from the HS1 until the EH, where min-
imum values are recorded (0.75%o) (Fig. 6¢). Afterwards, a slight
increase of C. pachyderma 5'3C suggests a relative recovery of well-
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Fig. 3. Relative abundance (%) of dominant and secondary taxa of core HER-GC-UB6
derived from the benthic foraminiferal assemblages: (a) N. turgidus (neon red),
N. iridea (light violet) and C. pachyderma (purple); (b) B. marginata (sand) and
C. laevigata (orange); (c) B. dilatata (red brown) and B. spathulata (dark brown); (d)
U. peregrina (cyan) and U. mediterranea (blue); (e) C. obtusa (green) and B. subspinescens
(forest green); (f) M. affinis (pink) and A. weddellensis (red). Light yellow vertical bar
corresponds to the early ORL interval and dark yellow vertical bar is the late ORL in-
terval. (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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Fig. 4. Most representative benthic foraminiferal species from the core HER-GC-UB6. a) Cassidulina obtusa, apertural side; b) Cassidulina obtusa, peripheral view; c) Brizalina
subspinescens, lateral view; d) Uvigerina mediterranea, lateral view; e) Cibicidoides pachyderma, spiral side; f) Melonis affinis, side view; g) Melonis affinis, peripheral view; h) Uvigerina
peregrina, lateral view; i) Bolivina dilatata, lateral view; j) Cassidulina laevigata, apertural side; k) Nonionella iridea, side view; 1) Nonionella iridea, face view; m) Alabaminella
weddellensis, spiral side; n) Alabaminella weddellensis, peripheral view; o) Alabaminella weddellensis, umbilical side. Scale bars = 100 um.

ventilated bottom water conditions during the post-ORL interval.
The benthic 8'3C record of U. peregrina (Fig. 6¢) has lower values
compared to the C. pachyderma §'3C record since the shallow
infaunal U. peregrina 3'>C reflects the signal of remineralised
organic matter in pore waters (McCorkle et al., 1990). This species
might be also affected by a negative metabolic effect (vital effect),
additionally decreasing 8'3C values (Schmiedl et al, 2004). The

U. peregrina 3'3C presents relatively high values (—0.5%o) during the
pre-ORL and early ORL intervals. A sharp decrease from —0.25
to —0.75%o is observed at the beginning of the late ORL maintaining
lower values (—0.75%o) during the post-ORL interval.

The highest A3'3Cy, gradient values (2%o) observed during the
LGM show elevated ventilation conditions (Fig. 6d), coincident with
high oxygen index (Fig. 7a). A significant decrease of A3'3Cy
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referred to the Web version of this article.)

gradient and oxygen index from HS1 to the early ORL interval
indicate a progressive ventilation deterioration (Fig. 7a). Finally,
similar to the oxygen index, the A3'3C}, gradient shows a two-step
increase during the late ORL interval, and maintains relatively
constant values around 1.6%o during the post-ORL interval (Fig. 7a).

4.5. Ecological benthic foraminiferal groups

In order to reconstruct bottom water ventilation at different
depths, new benthic foraminiferal data from intermediate core
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Fig. 6. Foraminiferal 3'%0 and 5'C stable isotope records from core HER-GC-UB6: (a)
G. bulloides 3'®0 (forest green) and G. bulloides '3C (spring green) records; (b)
C. pachyderma (purple) and U. peregrina (magenta) 5'30 records; (c) C. pachyderma
(blue) and U. peregrina (sky blue) 3'3C records; (d) 3'*C C. pachyderma-U. peregrina
gradient (electric blue). Light yellow vertical bar corresponds to the early ORL interval
and dark yellow vertical bar is the late ORL interval. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the Web version of this
article.)

HER-GC-UB6 (946 m) (this work), and published benthic forami-
niferal data from deep cores, MD95-2043 (1841 m) and MD99-2343
(2391 m) (Reguera, 2004), are presented into three ecological
groups recording different oxygen conditions (Schmiedl et al.,
2003): 1) high oxygen taxa (epifaunal taxa + miliolids + other
oxic species), 2) low oxygen taxa (deep infaunal taxa), and 3)
reventilation events (opportunistic taxa Gyroidina spp. (Schmiedl
et al., 2003)) (Fig. 7e—g). The first ecological group (high oxygen
taxa) diminishes along the pre-ORL interval in both intermediate
and deep levels (Fig. 7e). Subsequently, during the early ORL in-
terval, the second group (low oxygen taxa) increases in both in-
termediate and deep cores (Fig. 7f). During the late ORL interval,
low oxygen taxa values decrease in the intermediate core while
remaining relatively high in the deep Alboran core (MD95-2043)
(Fig. 7f). The third group (Gyroidina spp.) is dominant during the
post-ORL interval, showing similar trends for all three cores
(Fig. 7g). This group abundance sharply increases after the ORL, and
diminishes gradually afterwards.
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4.6. Total Organic Carbon (TOC) contents

The Total Organic Carbon (TOC) content in marine sediments
records the percentage of accumulated organic carbon, which
mainly depends on organic matter fluxes and preservation of
deposited organic matter (Cacho et al., 2000). The new TOC record
from core HER-GC-UB6 highly reproduces, with slightly higher
values, the same trend described by the published TOC record
(Cacho et al., 2002) of deeper core MD95-2043 (Figs. 5e and 7c).
Both records from the Alboran Sea mark the deposition of the ORL,
and maximum values are coincident with higher values of pub-
lished alkenones concentration data (Cacho et al., 2002) in the
deepest core between 14.35 and 8.9 ka (Fig. 7d). However, the in-
crease in TOC content is much more gradual in both cores, begin-
ning during the HS1, than the increase shown by alkenones. In the
deep core MD99-2343 from the Minorca Rise, a new TOC record
shows stable low values around 0.4% indicating that the ORL for-
mation was apparently exclusive of the Alboran Sea and not a
general feature of the western Mediterranean Sea (Figs. 5e and 7c).
The TOC records of both cores HER-GC-UB6 and MD95-2043 show
an opposite trend to the oxygen index (Fig. 7a and c). This result
suggests that organic matter accumulation in the Alboran Sea is
principally controlled by preservation/oxidation of organic matter.

5. Discussion

5.1. Organic matter fluxes to the sea floor at intermediate depths in
the Alboran Sea

Changes in the organic matter input to the sea floor is one of the
key environmental factors governing benthic foraminiferal species
distribution and abundance, and together with organic matter
oxidation, control the accumulation of organic matter at the sea
floor (Jorissen et al., 2007). The 3"3C record of shallow infaunal
foraminiferal species such as U. peregrina reflects changes in the
remineralisation rates of organic matter within pore waters. In
addition, this species could be also recording a metabolic effect
(vital effect) decreasing 8'3C values. The higher remineralisation
rates, the lower shallow infauna foraminiferal 3'3C values
(McCorkle et al., 1990). Our results from benthic foraminiferal as-
semblages and U. peregrina 3'3C record from core HER-GC-UB6
suggest changes in organic matter fluxes and oxidation/reminer-
alisation of organic matter at intermediate depths in the Alboran
Sea at times of deposition of the ORL with an increase in organic
fluxes during the late ORL (see below).

The dominance of infaunal and opportunistic taxa able to feed
from both fresh and degraded organic matter (B. dilatata, N. iridea,
B. spathulata, U. peregrina) in the pre-ORL and early ORL intervals
supports the development of a mesotrophic environment with
episodic (seasonal) organic matter fluxes to the sea floor (Schmiedl
et al,, 2003, 2010; Diz and Francés, 2008; Duchemin et al., 2008;
Koho et al., 2008; Goineau et al., 2012; Pérez-Asensio et al., 2014;
Duffield et al., 2015) (Figs. 3 and 5b). The epifaunal-shallow
infaunal and opportunistic C. laevigata, showing its highest abun-
dances in this interval (Fig. 3b), also inhabits mesotrophic settings
with significant seasonal inputs of fresh organic carbon (De Rijk
et al., 2000; Morigi et al., 2001; Jones, 2011). This species is also
common during glacial times (Schmiedl et al., 1998; Almogi-Labin
et al., 2000). These overall mesotrophic conditions along the pre-
ORL and early ORL intervals experienced moderate oscillations in
the organic matter supply, as is suggested by the alternation of

N. iridea and C. pachyderma (Fig. 3a). Since C. pachyderma inhabits
oligotrophic environments (Schmiedl et al., 2000, 2003; Pérez-
Asensio et al., 2012, 2017), the alternating and opposite trends
between N. iridea and C. pachyderma, might record subtle oscilla-
tions between higher and lower organic matter fluxes, respectively
(Fig. 3a).

Furthermore, during the pre-ORL (LGM, HS1), but also the early
ORL (B/A) intervals, relatively high values of the U. peregrina 3'>C
record points to lower remineralisation of the organic matter
(McCorkle et al., 1990) and, thus, relatively low organic matter
fluxes compared to the eutrophic late ORL and post-ORL intervals
(Fig. 6¢). All these results suggest that organic matter fluxes to the
sea floor at the Alboran Sea were episodic (seasonal) and moderate
during the 24—13 ka time-interval, i.e. the pre-ORL and the early-
ORL (Fig. 8a and b). These observations are consistent with the
relatively low concentrations of TOC during the pre-ORL interval
but appear contradictory with the observed early ORL high TOC
contents. Furthermore, the early ORL record of U. peregrina 3'3C
maintains relatively high values and N. iridea shows high concen-
trations comparable to the pre-ORL interval. This situation supports
the prevalence of mesotrophic conditions thus questioning an
enhancement of organic matter flux as the main driver of the initial
ORL formation.

During the late ORL interval (Y/D, EH), the U. peregrina 3'3C re-
cord shows relatively low values (Fig. 6¢), suggesting enhanced
remineralisation of organic matter in the pore waters (McCorkle
et al., 1990), which would imply an increase in organic matter
fluxes and/or higher oxygen content. This situation is consistent
with the increase in benthic species blooming with high organic
matter inputs such as B. dilatata, B. spathulata, and B. marginata (De
Rijk et al., 2000; Schmied] et al., 2000, 2003; Mojtahid et al., 2009;
Pérez-Asensio and Aguirre, 2010; Goineau et al., 2012) (Fig. 3), and
the increase in the values of the oxygen index and the
C. pachyderma-U. peregrina $'3C gradient (Fig. 7a). Moreover, the
increase of B. subspinescens and C. obtusa points to continuous food
supply derived from sustained primary productivity (Rathburn and
Corliss, 1994; Diz et al, 2007; Bubenshchikova et al, 2015).
Therefore, both benthic foraminiferal and U. peregrina 8'>C data
indicate eutrophic conditions with high sustained organic matter
fluxes during the late ORL interval. Local marine primary produc-
tivity pulses, riverine discharge, and influx of nutrient-rich Atlantic
waters have been proposed as possible organic matter sources for
this interval (Y/D, EH) (Jiménez-Espejo et al., 2008; Rodrigo-Gamiz
et al., 2011; Ausin et al., 2015a). According to our data, the signifi-
cant decrease in the G. bulloides 3'3C record during this period
(Fig. 6a) might reflect increasing intensity of upwelling events
possibly related to changes in the Alboran gyres location and/or
intensity (Fig. 8c) (Thunnel and Sautter, 1992; Lebreiro et al., 1997;
Schiebel and Hemleben, 2017). Nonetheless, higher influx of
nutrient-rich Atlantic waters in a context of warming and deglacial
sea level rise cannot be ruled out (Ausin et al., 2015a).

During the post-ORL interval (latest EH, MH, LH), the
U. peregrina 3'3C record maintaining relatively low values (Fig. 6¢),
along with high abundances of A. weddellensis, C. obtusa,
B. subspinescens, U. mediterranea, U. peregrina, and M. affinis (Fig. 3),
indicate the permanence of eutrophic conditions with high sus-
tained organic matter fluxes (Fig. 8d) (Rathburn and Corliss, 1994;
De Rijk et al., 2000; Schmiedl et al., 2003, 2010; Diz et al., 2007;
Bubenshchikova et al., 2015). The combination of species feeding
from fresh organic matter (phytodetritus) (A. weddellensis, U.
mediterranea) (Gooday and Lambshead, 1989; Gooday, 1993; De

corresponds to the early ORL interval and dark yellow vertical bar is the late ORL interval. (For interpretation of the references to colour in this figure legend, the reader is referred to

the Web version of this article.)
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Rijk et al., 2000; Schmied]l et al., 2003; Fontanier et al., 2006; Diz
et al., 2007) with species capable of feeding from refractory
organic matter (M. affinis) (Schmiedl et al., 2000; Fontanier et al.,
2006) is consistent with a sustained high organic matter flux
allowing fresh organic matter to remineralise during downward
transport along the water column (Westrich and Berner, 1984).
Phytodetritus feeders would bloom with the arrival of the first
organic particles and species feeding from degraded organic matter
would feed from the remineralised organic particles. Since river
runoff was reduced (Rodrigo-Gamiz et al., 2011), the origin of this
sustained high organic matter supply could be related to the semi-
permanent high-productivity ‘Malaga cell’, which forms due to the
southward migration of the Atlantic Jet fostering upwelling of
nutrient-rich waters (Sarhan et al., 2000; Ausin et al., 2015b).
However, the decreasing G. bulloides 5'3C values indicates a gradual
reduction in upwelling intensity over the MH (Fig. 6a).

5.2. Deep and intermediate water circulation across the last ORL

The integrated study of the benthic foraminiferal assemblages,
benthic 3'3C, TOC and ichnological facies provide a solid base to
unravel changes in deep water ventilation. These changes would
always be overprinted by the above described changes in organic
matter fluxes. Nevertheless, the integrated analysis of sites at
different depths, under different productivity regimes and using a
set of proxies with different sensitivity to organic matter fluxes and
deep water ventilation, can provide a solid insight into western
Mediterranean changes in deep water ventilation.

One of the most outstanding results from the combination of
taxonomic and geochemical analyses on benthic foraminifera is the
good agreement between the two independently estimated records

of past changes in oxygen content at intermediate depths (HER-GC-
UB6; 946 m depth). Both the O, index and C. pachyderma-
U. peregrina 5'3C gradient records show a remarkable decrease in
oxygen content coincident with the onset of the ORL deposition, a
ventilation recovery during late ORL, and relatively well-
oxygenated conditions before and after the ORL deposition
(Fig. 7a). It could be argued that minimum O; values during the
early ORL deposition reflect enhanced organic matter fluxes as is
supported by the TOC records and the higher resolution Cs7 alke-
nones concentration record (Cacho et al., 2002) (Fig. 7c and d).
Nevertheless, maximum development of eutrophic conditions with
sustained high organic matter fluxes occurred during the late ORL,
according to the benthic foraminiferal assemblages and shallow
infaunal 8'3C values (see discussion in previous section 5.1). Thus,
minimum values in our two O reconstructions (O index and 3>C
gradient) during the early ORL need to have an additional factor to
the remineralisation of organic matter provided by organic matter
fluxes.

Weaker deep-water ventilation conditions in the western
Mediterranean basin could account for minimum O, content, a
situation supported by the three C. pachyderma §'3C records from
intermediate and deep sites (Fig. 7b). All three records show a
parallel depletion in 3'>C ratios during the HS1 reaching low values
during the early ORL interval. Core MD95-2043 from the western
Alboran Sea (1841 m) and core MD99-2343 from the Minorca Rise
(2391 m) are located under very different productivity regimes
(Fig. 1), and TOC reconstruction from the Minorca core, a rather
oligotrophic region, does not show the formation of any ORL but it
has a comparable isotopic depletion. This observation supports a
weakening in deep convection of the Gulf of Lion as the main driver
for the O,-depletion during the onset of the deglaciation. This
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situation is further supported by the coeval reduction in UP10 (size
fraction >10 pm) values from the deep site in the Minorca Rise
(MD99-2343; Fig. 7d) since this grain-size proxy at this location
reflects changes in the intensity of deep water currents (Frigola
et al,, 2007; Cisneros et al., 2019). Higher ventilation during the
pre-ORL interval and reduced ventilation during the early ORL at
both intermediate and deep sites is also shown by decreasing high
oxygen taxa and increasing low oxygen taxa (Fig. 7e and f).
Furthermore, the replacement of Ichnological Interval I (general-
ized mottled background, convoluted shape, revealing a complete
mixing of the shallowest sediment by an important benthic activ-
ity) by Ichnological Interval II (darker colour sediments, disap-
pearance of the mottled background, and very small and scarce
discrete traces of Palaeophycus, and Chondrites, revealing
decreasing benthic activity) suggests a ventilation decrease during
the early ORL (Rodriguez-Tovar et al., 2009a, 2009b; Rodriguez-
Tovar and Uchman, 2010, 2011; Monaco et al., 2012; Rodriguez-
Tovar and Reolid, 2013) (Fig. 7h and Fig. S2). Geochemical data
based on U/Th XRF data from another Alboran site at 2382 m depth
also support an oxygen decrease before the ORL deposition
(Jiménez-Espejo et al., 2015). These conditions favoured the in-
crease in preservation of organic matter in the Alboran Sea from the
pre-ORL to early ORL intervals (Fig. 7c).

During the early ORL, poorly ventilated conditions might be
mainly driven by weak deep-water circulation due to higher water
column stratification associated with deglacial sea level rise and the
subsequent reduction of WMDW formation (Rogerson et al., 2008).
Consequently, reduced deep-water circulation lead to higher
preservation of organic matter and formation of the ORL in the
Alboran Sea, as recorded at different depths (Cacho et al., 2002;
Rogerson et al., 2008; Ausin et al., 2015a; Martinez-Ruiz et al.,
2015). In summary, the benthic foraminiferal assemblage and
C. pachyderma §'3C comparison from intermediate and deep sites
(Fig. 7b, e and f) support a parallel and rapid change from glacial-
well to deglacial-poor ventilated conditions affecting the water
column up to 946 m depth. This situation would have affected the
whole western Mediterranean basin although the ORL apparently
only formed in the Alboran Sea, likely as a result of the more
eutrophic character of this area (Fig. 8a and b).

Interestingly, the benthic foraminiferal assemblage comparison
from the deep (1841 m and 2391 m) and intermediate (946 m) sites
shows a different behaviour during the second part of the ORL.
Diminishing abundances of the deep-infaunal low oxygen taxa
group at the intermediate depths (Fig. 7f) indicates an O, recovery
also supported by the two O, reconstructions (Fig. 7a). This
observation marks the development of different ventilation
behaviour between deep and intermediate depths. Minimum
ventilation conditions at the deeper sites are supported by the
disappearance of the epifaunal and high-oxygen species
C. pachyderma during this time, which accounts for the §'3C record
interruption, while this species continues at the intermediate site
(Fig. 7b). Furthermore, low oxygen taxa abundances remain rela-
tively high at deep site of the Alboran Sea during the late ORL
supporting weak deep ventilation (Fig. 7f). Minimum in deep water
currents during this second phase of the ORL are also reported by
the UP10 record from the Minorca Rise (Fig. 7d). This decoupled
response of intermediate and deep conditions suggests the arrival
of better ventilated “intermediate” water mass that would account
for the enhanced O, arrival at the depth of core HER-GC-UB6
(946 m). This is illustrated in Fig. 8c with the location of a deep-
intermediate water mass interphase between the studied inter-
mediate and deep sites. Consequently, the increase of the inter-
mediate water circulation in the Alboran Sea during this period
might be related to the reinforcement of intermediate water
masses, i.e. LIW (Millot, 2009, 2014), and/or the formation of an

intermediate water mass in the Gulf of Lion. On one hand, increased
stratification of the water column due to deglacial sea level rise
during the second part of the deglaciation likely hinder deep con-
vection in the Gulf of Lion as can be deduced from minimum values
of the UP10 proxy north of Minorca (Fig. 7d). On the other hand,
reinforcement of LIW ventilation during the YD, which was recor-
ded by grain-size records from Corsica Trough, might have
contributed to the first reventilation step at intermediate depths in
Alboran Sea, although a rapid reduction of LIW ventilation is also
recorded during the early Holocene (Toucanne et al., 2012). In fact,
cold and arid conditions during the Y/D (Barcena et al., 2001; Cacho
et al., 2002; Rodrigo-Gamiz et al., 2011; Bartolomé et al., 2015)
would likely favoured WMDW formation in the Gulf of Lion.

The ORL ended with a major re-ventilation phase at both in-
termediate and deep levels as is indicated by the abrupt increase in
the opportunistic and indicative of well-ventilated conditions
Gyroidina spp. group (Schmiedl et al., 2003) for all the studied sites
at the same time that deep-water current proxy (UP10) peaked
maximum speed values (Fig. 7d). This is consistent with the high O,
values reached at this time by our two O, reconstructions and the
Ichnological Interval III reflecting better ventilation (larger trace
fossils, mottled appearance, Palaeophycus, Planolites and Thalassi-
noides) (Rodriguez-Tovar et al., 2009a, 2009b; Rodriguez-Tovar and
Uchman, 2010, 2011; Monaco et al., 2012; Rodriguez-Tovar and
Reolid, 2013) (Fig. 7a and h). Moreover, poor preservation of
organic matter (low TOC) (Fig. 7c) in the Alboran sites is consistent
with enhanced ventilation conditions at both intermediate and
deep depths (Fig. 8d). This situation denotes the re-establishment
of a relative well-ventilated deep circulation in the Western Med-
iterranean basin after sea level rise and stabilization (Frigola et al.,
2007) (Fig. 8d). According to the available chronologies, this
reventilation occurred between 9.2 and 7.6 ka, thus predated the
eastern Mediterranean reventilation phase that started at 6.1 ka (De
Lange et al., 2008) and finalised the last sapropel formation. These
observations indicate a rather independence on the operation
mode of the thermohaline systems of the two Mediterranean ba-
sins during the deglaciation and early-middle Holocene.

6. Conclusions

Benthic foraminiferal assemblages, benthic shallow infaunal
313C and G. bulloides 5'3C records from intermediate depths at the
Alboran Sea recorded changes in organic matter fluxes to the sea
floor across the last 24 ka. The pre-ORL (LGM, HS1) and early ORL
(B/A) intervals were characterised by mesotrophic conditions with
episodic (seasonal) moderate organic matter fluxes. During the late
ORL interval (Y/D, EH), organic matter fluxes increased and eutro-
phic conditions with sustained organic matter supply were estab-
lished. We posit that increasingly higher intensity of upwelling
events, as shown by the decreasing G. bulloides 3'3C values, was the
source for organic matter fluxes over this interval. During the post-
ORL interval (latest EH, MH, LH), similar benthic foraminiferal
species and shallow infaunal 3'3C values to those of the late ORL
interval point to eutrophic conditions with sustained high organic
matter fluxes.

Deep- and intermediate-water circulation variability in the
western Mediterranean basin is studied combining benthic fora-
miniferal assemblages, benthic 3'3C, TOC and ichnological facies
from three cores covering intermediate and deep depths. The
combined application of O, indexes from both benthic foraminifera
and 3'3C C. pachyderma-U. peregrina gradient proves their suit-
ability as reliable oxygen proxies. During the pre-ORL and early ORL
intervals, faunal, geochemical and grain-size data show a fast
change from glacial-well to deglacial-poor ventilated conditions at
both intermediate and deep sites. Since organic fluxes increased
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during the Y/D after the beginning of the ORL in the Alboran Sea,
the ORL onset was mainly triggered by weak deep-water circulation
leading to higher organic matter preservation. During the late ORL,
intermediate- and deep-water ventilation are decoupled with
enhanced intermediate-water circulation and weak deep-water
circulation. This palaeoceanographic interpretation suggests that
intermediate depths were bathed by a better-ventilated “interme-
diate” water mass, which might be related to a more intense or
deeper arrival LIW, and/or the formation of an intermediate water
mass in the Gulf of Lion. An important reorganization of the water
mass structure of the western Mediterranean basin during the
deglaciation may account for these circulation changes. The demise
of the ORL (post-ORL interval) is marked by better ventilation in
both deep and intermediate sites in the western Mediterranean
Sea. This reventilation phase (9.2—7.6 ka) predates the eastern
Mediterranean reventilation (6.1 ka) that ended the Sapropel 1
deposition, which implies a decoupling between the western and
eastern Mediterranean thermohaline systems.
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