
Programming the Tip of the Iceberg:
Software Reuse in the 21st Century

Antero Taivalsaari
Nokia Bell Labs
Tampere, Finland

antero.taivalsaari@nokia-bell-labs.com

Niko Mäkitalo
University of Helsinki

Helsinki, Finland
niko.makitalo@helsinki.fi

Tommi Mikkonen
University of Helsinki

Helsinki, Finland
tommi.mikkonen@helsinki.fi

Abstract—Opportunistic design – an approach in which people

develop new software systems by routinely reusing and combining

components that were not designed to be used together – has

recently become very popular. This emergent pattern places

focus on large scale reuse and developer convenience, with the

developers ”trawling” for most suitable open source components

and modules online. The availability of open source assets for

almost all imaginable domains has led to software systems in

which the visible application code – written by the application

developers themselves – forms only the ”tip of the iceberg”

compared to the reused bulk that remains mostly unknown to

the developers. The actual reuse takes place in a rather ad hoc,

mix-and-match fashion. In this paper, we take a look at this

emerging approach and argue that challenges associated with

such development model are quite different from traditional

software development.

Keywords-Software reuse; software engineering; opportunis-

tic design; opportunistic reuse; software platforms; software

mashups; mashware; economics of scale.

I. INTRODUCTION

General purpose, commercially available software compo-
nent libraries have been proposed ever since the famous NATO
1968 conference in which the term software engineering was
also introduced [1]. As a research topic, software reuse became
especially popular in the 1980s [2], [3], [4], following the
successful workshop on software reuse arranged by ITT Cor-
poration in September 1983. In practice, commercial success
of large-scale software reuse and component libraries did not
begin until the 1990s, though.

In the past twenty years, the way people develop software
has been affected strongly by the World Wide Web. The
emergence of the Software as a Service model [5], [6] has
enabled an approach in which people routinely trawl for ready-
made solutions for specific problems online; the discovered
libraries and code snippets are included in applications with
little consideration or knowledge about their technical quality.
While such an approach can be very convenient for developers,
such form of reuse is very ad hoc in its practices compared
to the systematic textbook methodologies that were proposed
for reuse already two or three decades ago [2], [7].

At the same time, open source software components have
become available for nearly all imaginable areas of software
development. For instance, one area that has been profoundly
impacted by the emergence of open source software is backend

development for cloud-based systems. Twenty years ago –
during the Internet boom in the late 1990s – if one wanted
to build a cloud-based Internet service, each company had
to create their own custom solution. Typically, each company
bought the biggest servers that they could afford (e.g., Sun’s
E10000 server or perhaps even a few of them for redundancy),
and then installed web server software and the Java Enterprise
Edition (J2EE) development stack on these machines. Nearly
all other software had to be written from scratch. Today, open
source components for backend development abound, and
cloud system developers rarely have to write any of the major
components themselves. Today’s backend system development
is mainly about picking the most applicable components and
then configuring and orchestrating those components to work
together. The need to acquire physical machines has largely
disappeared, too, since the majority of backend components
can be hosted in public clouds such as AWS, IBM Cloud, or
Microsoft Azure.

In general, the emergence of the Software as a Service
model and the widespread availability of open source compo-
nents has led to an approach in which developers rarely write
any significant new systems entirely from scratch. Rather, they
construct systems by trawling the Internet for most applica-
ble ready-made components online, and then combining and
configuring those already existing solutions, decorating them
with relatively minor application-specific modifications and
additions. This approach is all about combining unrelated,
often previously unknown hardware and software artifacts by
joining them with ”duct tape and glue code” [8]. Depending on
one’s viewpoint and desired connotation, such development is
referred to as opportunistic design [8], opportunistic reuse, ad

hoc reuse, scavenging [9], mashware [10], [11], or sometimes
even ”frankensteining” [8]. The resulting approach bears the
imprint of cargo-cult programming [12] – the ritual inclusion
of code or program structures for reasons that the programmers
do not fully understand.

Although it is widely admitted that opportunistic designs are
not automatically optimal and that such designs may require
significant architectural adjustments to fulfill functional or
non-functional requirements [13], developers have embraced
this approach in droves. For instance, in client-side web devel-
opment, web mashups have become very popular [14]. In cloud
backend development, the use of SOUP (Software of Unknown



Provenance) components is nowadays even more prevalent,
given the large amount of available open source components
and the apparent complexity in building corresponding func-
tionality from scratch. In the latter domain, the popularity of
opportunistic design has exploded because of the success of
Node.js (https://nodejs.org/) and its Node Package Manager

(NPM) ecosystem (https://www.npmjs.com/). Nowadays, there
are over 830,000 reusable NPM modules available for nearly
all imaginable tasks (http://www.modulecounts.com/). The
corresponding numbers for the Java and Python ecosystems are
over 280,000 modules (Java Maven repository) and 180,000
modules (PyPI Python Packet Index). Opportunistic reuse is
common in spite of components potentially having unknown
safety-related characteristics or having been developed by
unknown developers using unknown methodologies. Compo-
nent selection is often based simply on popularity ratings or
recommendations from other developers.

As a lower-level example, the emergence of cheap, off-the-
shelf hardware has resulted in a situation in which hardware
components are often used in applications that have little to
do with the original use cases for those hardware components.
For instance, mobile phone chipsets are nowadays commonly
used as a starting point for many other types of hardware
projects simply because mobile chipsets and development
boards are produced in much larger quantities and are thus
significantly cheaper than dedicated custom components. Sim-
ilarly, Raspberry Pi (https://www.raspberrypi.org/) or Arduino
(https://www.arduino.cc/) boards are commonly used in var-
ious types of Internet of Things (IoT) development projects,
even though such boards may be ”overly capable”, i.e., have
too much computing power and storage capacity for the actual
needs of simple sensing solutions.

The availability of reusable assets for just about any domain
has changed the nature of system development profoundly.
Contrary to textbook examples, developers rarely perform
reuse in a planned and managed fashion, as assumed in
product line development [15]. Instead, developers tend to
reuse software in an opportunistic, mix-and-match fashion,
trawling and scraping the Internet for most suitable or most
easily available components at the time when they need them.
The resulting systems resemble icebergs, with only the ”tip
of the iceberg” written by developers themselves, whereas the
bulk of the system comes from other sources and remains
invisible and poorly understood under the water. Quite often,
the developer has no idea of what code or how much code
they are actually reusing, since the included components may
dynamically pull in hundreds or even thousands of additional
subcomponents. Such invisible, transitive reuse is especially
common in the aforementioned Node.js/NPM ecosystem.

While it is acknowledged that software reuse may introduce
significant productivity gains [7], the scale of opportunistic de-
sign and ad hoc reuse has received surprisingly little attention
among researchers. Since this model is becoming common in
various domains, the software engineering community must
start seriously studying and considering the consequences and
challenges associated with the approach.

In this paper, we examine the software engineering chal-
lenges arising from opportunistic design and reuse. This paper
is an expanded variant of a short insights article that we
recently published in IEEE Software [16]; while the insights
article communicates our position and includes a brief moti-
vating case study, this paper introduces the relevant academic
background and connects the work to the broader scope of
reuse in general. The primary goals of the paper are to discuss
how profoundly this model changes application development,
extend the call for action presented in [16], and provide
directions for further research.

II. IMPLICATIONS FOR SOFTWARE ENGINEERING

The first author of the paper wrote his doctoral thesis on
software reuse in the early 1990s [17]. Revisiting the literature
from that era, there are some interesting statistics. In the
1980s, studies showed that a considerable amount of time in
software development was spent on designing routines and
structures that are almost identical with constructs used in
other programs. In 1984, Jones reported that on average only
15 percent of code is truly unique, novel and specific to
individual applications; the remaining 85 percent appears to
be common, generic, and concerned with making the program
to cooperate with the surrounding execution environment [18].
Other studies in the 1980s reported potential reuse rates
between 10 and 60 percent [2], [3], [4].

Although the potential for software reuse was high in the
1980s and early 1990s, actual reuse rates remained very low.
Those days developers actually preferred writing their own
code, and took pride on doing as much as possible from
scratch. In fact, they were effectively expected or forced to
do so, since third-party components were not widely available
or easy to find. Before the advent of the World Wide Web,
trade magazines and journals were the primary source for
advertisements and reliable reviews of third-party components.
Furthermore, before the widespread adoption of open source
software development, components were rarely available for
free or with license terms favoring large-scale use.

Today, the situation is dramatically different. The World
Wide Web and the widespread availability of open source
software have led to a cultural shift in which software reuse
is no longer a shame. On the contrary, many companies and
individuals today are actually proud about the amount the
third-party code in their products. For instance, to our surprise,
we have recently ran into several new automobile advertise-
ments and reviews in which well-known car manufacturers
(e.g., Bentley and Volvo) proudly boast about the large amount
of software in their cars, as if it was categorically a good thing
[19]. For instance, the 2018 version of the Bentley Continental
GT is said to contain ”93 processors, feeding more than a 100

million lines of code through eight kilometers of wiring”1.
In general, the opportunity to reuse software from various

origins is reshaping both the fashion software is being devel-
oped and the way it is consumed. As opposed to the situation

1http://edition.cnn.com/style/article/bentley-continental-gt/index.html



in the 1980s and 1990s when the amount of reused software
formed only a fraction of the entire software systems, the
situation is now decidedly the opposite. While opportunistic
designs promise short development times and rapid deploy-
ment, developers are becoming accustomed to designs that
they do not fully understand, and yet using them even in
domains that require high attention to security and safety.

We are concerned that the rapid growth of software systems
created using opportunistic design will result in significant
security problems. Such systems often have so much invisible
code with so many dependencies that they are impossible
to analyze by hand. Furthermore, the trend towards software
systems in which components are updated dynamically on
the fly (even over the air) results in dynamic dependencies
that cannot be analyzed statically. The pace at which we get
new versions and updates – enabled by new techniques like
Continuous Deployment [20] and DevOps [21] – is such that
it is next to impossible to test all the combinations that may
exist. API incompatible changes in any of the underlying com-
ponents may suddenly render the entire system useless. While
such behavior may be just a nuisance in a simple desktop
application, this could be fatal in an embedded software system
such as software controlling critical systems of an automobile,
airplane or large machinery.

Paraphrasing Leslie Lamport’s famous anecdote on dis-
tributed systems2 it is possible to express the situation as
follows: ”Modern software development is characterized by

failures that occur because there were changes in components

that you didn’t know your software to depend on.”
In some ways, these challenges have existed as long as

computer hardware and operating systems have provided ab-
stractions – an important associate of reuse [9] – that eliminate
the need to fully understand how things work at a lower
level. However, the unknown provenance aspect – dynamically
combining components that really were not designed to work
together and that were never properly integration tested – can
amplify the problems to a whole new level.

III. DISCUSSION

According to Krueger’s classic survey paper on software
reuse, the keys to successful software reuse are abstraction

and reduction of cognitive distance [9]. A proper abstraction
provides a clean separation between internal implementation
details and an external public interface. Cognitive distance is
the amount of intellectual effort that must be expended by
software developers in order to take a software system from
one stage of development to another. According to Krueger, a
successful software reuse technique must fulfill the following
four ”truisms” [9]:

1) For a software reuse technique to be effective, it must
reduce the cognitive distance between the initial concept
of a system and its final executable implementation.

2Leslie Lamport: ”A distributed system is one in which the failure of

a computer you didn’t even know existed can render your own computer

unusable.” [22]

2) For a software reuse technique to be effective, it must
be easier to reuse the artifacts than it is to develop the
software from scratch.

3) To select an artifact for reuse, you must know what it
does.

4) To reuse a software artifact effectively, you must be able
to ”find it” faster than you could ”build it”.

The success of opportunistic design in the past years can be
attributed largely to second and fourth points above. The World
Wide Web and search engines have made it easy to search for
potentially applicable software components and code snippets
online. Furthermore, the availability of software in open source
form has made it easy to experiment with potentially applica-
ble components without any significant financial commitment
ahead of time.

Yet, contrary to Krueger’s third point above, it can be
argued that the overall understanding of the reused software
has decreased over the years. After all, the key premise
in ”classic” software reuse is that there are systematically
designed systems with stable, well-documented interfaces. The
sheer volume of open source software makes it difficult to
analyze and compare technologies in detail, let alone fully
understand the abstractions exposed by them, especially in
light of the highly varying quality of documentation that is
characteristic, e.g., of the aforementioned NPM ecosystem.

Contrary to the classic premise of stable, reusable code, in
reality the majority of successful systems are under constant
change. Following a popular informal law of computing, the
more successful a system is, the more likely it is that it
will have to be changed. Those systems that are (re)used the
most, tend to be the ones that also experience the most rapid
evolution. Such evolution does not always necessarily maintain
backwards compatibility, as exemplified by the recent devel-
opment of Angular and React JavaScript libraries – creating a
version compatible setup can easily take a considerable amount
of time. This is definitely the case with popular web libraries,
across all the layers of the software stack, as new versions
are published. For designs that rely on installed software this
may not be such a serious problem, but even in such a context
there can be subsystems that are updated on the fly, e.g., as
security problems are discovered.

The basic problem in opportunistic design is that it does not
follow any systematic, abstraction-driven approach. Instead,
as characterized by Hartmann et al [8], developers end up
creating significant systems by hacking, mashing and glu-
ing together disparate, continually evolving components that
were not designed to go together. Developers publishing such
components often have no formal training in creating high-
quality software components, and the developers performing
opportunistic, ad hoc reuse might not have any professional
skills for selecting and combining such components.

Hartmann et al published their observations in 2008 – at
the time when the area of web mashup development (see
[14]) was experiencing rapid growth. In their paper, Hartmann
et al mentioned that at the time there were over 3100 web
mashups leveraging 775 distinct APIs [8]. Today, the scale of



opportunistic reuse is dramatically larger, given the nearly ex-
ponential growth of the most popular component ecosystems.
At the time of this writing, the npmjs.org website lists
over 830,000 NPM modules. Some of the most popular NPM
modules, such as lodash, have over 80 million download
requests per month, reflecting very high levels of reuse. We
are clearly past the point when any individual developer could
master all the components in their domain, or objectively
compare and choose the best components for their system,
except simply by relying on recommendations and popularity
ratings.

In view of the numbers presented above, there is really
a paradigm shift in the making in the software industry.
Unlike in the past, when software reuse was just an anomaly,
reuse is now becoming the norm for any significant software
development projects. Yet software reuse is occurring in a very
different way than originally envisioned a few decades ago.
It is also quite surprising how little attention these dramatic
changes and the current massive scale of reuse have received
in the software engineering research community.

IV. CALL FOR ACTION

We feel that there is a need for a call for action for the
software engineering research community at large. Software
reuse is finally occurring in a very large scale, but the
level of awareness of opportunistic reuse and the ”tip of the
iceberg” development approach in the software engineering
research community has remained surprisingly low. We argue
that academic researchers have not really realized yet how
significantly the effortless availability of vast numbers of
open software components is affecting software development.
Conversely, there are useful software reuse principles and
practices from decades ago that today’s developers are not
generally familiar with. In a way, software reuse is a ”lost
art” that is now being reinvented by practitioners with little
attention to research work carried out in the 1980s and 1990s.

Below is a summary of the recommended actions and topics
that provide wide range of research opportunities ranging
from analytical work to constructive development and risk
management.

• Systematic survey and analysis of widely used open
source repositories and components, and the quality of
their interfaces and documentation.

• Systematic analysis of the compatibility of the most
popular open source components for key domains, and
recommendations of best available components for each
area, based on objective reviews and measured statistics
of them in real-world applications.

• Systematic studies of the evolution of the most popular
open source repositories and components, with special
attention to the stability of their interfaces.

• Study and definition of recommended reuse patterns and
combinations of most popular open source components.

• Tools for visualizing all the ”underwater” dependencies
in a ”tip of an iceberg” software system that relies
extensively on SOUP components.

• Tools that help assess the stability and maturity of reused
components, e.g., how likely they will change in terms
of their interfaces, and assessing how trustworthy their
contributors are.

• Improved tools for static and dynamic component depen-
dency analysis, ”tree shaking” (for eliminating duplicate
components), crawling to the end of dependency chains
to create transitive closure of all the needed modules, and
so on.

• Tools and techniques (e.g., dynamic, regularly updated
dependency charts) to monitor and understand changes
in widely used component subsystems that are loaded on
the fly from third party sources;

• Tools and techniques that enable the development and
testing of ”iceberg” software systems within safe bound-
aries. Such sandboxing technologies are especially im-
portant in complex systems in which software runs on
multiple servers or VMs.

• Tools and techniques that expose programming errors as
early as possible, minimizing risks and allowing recovery
with minimal damage to the end users. Such techniques
are important in permissive, error-tolerant web-based
systems that by default do not report their errors until
absolutely necessary.

• Risk management guidances and techniques that help
assess the risks associated with ”tip of the iceberg”
systems that depend fundamentally on rapidly evolving
third-party components.

Indeed, successful opportunistic reuse is heavily dependent
on risk management. The use of third-party components –
especially if it occurs in a fashion in which first-level reused
components end up transitively pulling in layers and layers
of other components – raises the risks associated with a
software system considerably. While concerns regarding the
issues around trust have been raised already over 30 years ago
[23], the fact that unrelated software components are nowadays
so commonly fused together means that software written with
even the best of intentions can introduce severe problems. This
is especially true when those components are developed by
unknown developers using unverified development methods,
and if those components are allowed to update themselves
dynamically. Risk management in the context of large-scale
opportunistic reuse is still a surprisingly little studied topic.

More broadly, while many of the individual topics above
have been studied earlier, we feel that a holistic approach
for tackling the challenges introduced by opportunistic design
is still missing. Effectively, the bullets listed above form a
research agenda that we plan to follow in our work, e.g., in
teaching our students and new recruits as well as in proposing
relevant research topics to our graduate students.

The eventual solution to programming the tip of the iceberg
will be developer education to understand the contexts in
which opportunistic design and ”tip of the iceberg” develop-
ment are acceptable, and where more risk-aware approaches
are needed. For instance, in highly regulated areas such as
medical software development the use of SOUP components



requires detailed justification, and the use of automatically
updating software components is outright prohibited. To this
end, practices and software reuse principles developed in the
1980s and 1990s – especially in the area of creating modular,
well-documented, stable interfaces and reusable components –
provide a solid foundation to build on.

V. CONCLUSIONS

In the late 1990s, software reuse was declared dead [24].
The rumblings about the death of software reuse turned out
to be premature, though. Over the past 5-10 years, large scale
software reuse has finally become a reality. However, software
reuse has happened in a very different way than originally
envisioned by the software engineering community and its
pioneers. While McIlroy’s original 1968 vision of called for
high-quality mass produced software components to be used
in a large, industrial scale [25], today’s software reuse scene
is really all about hordes of software developers producing a
cornucopia of overlapping open source components of varying
quality – as exemplified by the extremely popular Node.js
NPM ecosystem with its hundreds of thousands of modules.

At some point after the turn of the millennium, a tipping
point was reached. Nowadays, it is nearly impossible to write
any significant software systems without reusing third-party
components extensively, with the developers themselves only
writing the ”tip of the iceberg” – while the bulk of the system
comes from external sources and unknown developers. This is
dramatically different from software development in the 1980s
and 1990s when developers still prided on writing most of the
software themselves.

In hindsight, it is really interesting note how quickly the
world of software development evolved from ”not invented
here”3 to a smørgasbord model with a cornucopia of ready-
made components and modules available for nearly every
imaginable domain and purpose. Looking back, the reasons
for this transition should have been obvious, including the
ease of publishing components on the Internet, the ease of
searching, reading and posting reviews and trustworthiness
ratings, as well as the general shift towards openness and open
source software, complemented with the growing overall size
of software systems. Instead of using systematic catalogues,
component libraries or textbook methods for software reuse,
developers perform web searches for potential components on-
line, and then rely on popularity ratings and recommendations
in choosing the most suitable candidates.

In this paper, we have studied opportunistic design and its
implications, and presented a call for action for the research
community. It is our belief that opportunistic reuse and the
”tip of the iceberg” programming model raise the need for
risk management to a whole new level than in traditional
software reuse. We hope that this paper raises the awareness
of opportunistic reuse, and encourages people to tackle the
challenges associated with this important topic.

3Belief that in-house developments are inherently better, more secure, more
controlled, quicker to develop, and incur lower overall cost (Wikipedia).

REFERENCES

[1] P. Naur and B. Randell, Software Engineering: Report of a Conference

Sponsored by the NATO Science Committee (Garmisch, Germany, Oct

7-11, 1968). NATO Scientific Affairs Division, Brussels, 1969.
[2] R. G. Lanergan and C. A. Grasso, “Software Engineering with Reuseable

Designs and Code,” IEEE Transactions on Software Engineering, vol.
SE-10, no. 5, pp. 498–501, 1984.

[3] M. Lentz, H. A. Schmid, and P. F. Wolf, “Software Reuse Through
Building Blocks,” IEEE Software, vol. 4, no. 4, pp. 34–42, 1987.

[4] T. J. Biggerstaff and C. Richter, “Reusability Framework, Assessment
and Directions,” IEEE Software, vol. 4, no. 2, pp. 41–49, 1987.

[5] M. Turner, D. Budgen, and P. Brereton, “Turning Software into a
Service,” Computer, vol. 36, no. 10, pp. 38–44, 2003.

[6] A. Bouzid and D. Rennyson, The Art of SaaS: A Primer on the

Fundamentals of Building and Running a Successful SaaS Business.
Xlibris, 2015.

[7] Y. Kim and E. A. Stohr, “Software Reuse: Survey and Research
Directions,” Journal of Management Information Systems, vol. 14, no. 4,
pp. 113–147, 1998.

[8] B. Hartmann, S. Doorley, and S. R. Klemmer, “Hacking, Mashing, Glu-
ing: Understanding Opportunistic Design,” IEEE Pervasive Computing,
vol. 7, no. 3, pp. 46–54, 2008.

[9] C. W. Krueger, “Software Reuse,” ACM Computing Surveys, vol. 24,
no. 2, pp. 131–183, 1992.

[10] T. Mikkonen and A. Taivalsaari, “The Mashware Challenge: Bridging
the Gap Between Web Development and Software Engineering,” in
Proceedings of the FSE/SDP Workshop on the Future of Software

Engineering Research. ACM, 2010, pp. 245–250.
[11] A. Taivalsaari and T. Mikkonen, “Mashups and Modularity: Towards Se-

cure and Reusable Web Applications,” in 23rd IEEE/ACM International

Conference on Automated Software Engineering-Workshops. IEEE,
2008, pp. 25–33.

[12] E. Lippert, “Syntax, Semantics, Micronesian Cults and Novice
Programmers,” 2004, accessed: 2018-04-22. [Online]. Avail-
able: https://blogs.msdn.microsoft.com/ericlippert/2004/03/01/syntax-
semantics-micronesian-cults-and-novice-programmers/

[13] M. Shaw, “Architectural Issues in Software Reuse: It’s not just the Func-
tionality, it’s the Packaging,” in ACM SIGSOFT Software Engineering

Notes, vol. 20, no. SI. ACM, 1995, pp. 3–6.
[14] S. Aghaee and C. Pautasso, “End-User Programming for Web Mashups,”

in International Conference on Web Engineering. Springer, 2011, pp.
347–351.

[15] P. Clements and L. Northrop, Software Product Lines. Addison-Wesley,
2002.

[16] T. Mikkonen and A. Taivalsaari, “Software Reuse in the Era of Oppor-
tunistic Design,” IEEE Software, vol. 36, no. 3, pp. 105–111, 2019.

[17] A. Taivalsaari, A Critical View of Inheritance and Reusability in Object-

Oriented Programming (Doctoral Thesis). Jyväskylä Studies in Com-
puter Science, Economics and Statistics 23, University of Jyväskylä,
Finland, 1993.

[18] T. C. Jones, “Reusability in Programming: A Survey of the State of the
Art,” IEEE Transactions on Software Engineering, vol. SE-10, no. 5,
pp. 488–494, 1984.

[19] D. Zax, “Many Cars Have a Hundred Million Lines of Code,” MIT

Technology Review, Dec. 2012.
[20] M. Fowler, “ContinuousDelivery,” Available: http://martinfowler.com/

bliki/ContinuousDelivery.html, Apr. 2013, accessed: 2017-10-21.
[21] P. Debois, “Devops: A Software Revolution in the Making,” Journal of

Information Technology Management, vol. 24, no. 8, pp. 3–39, 2011.
[22] L. Lamport, “Distribution,” 1987. [Online]. Available: http://research.

microsoft.com/en-us/um/people/lamport/pubs/distributed-system.txt
[23] K. Thompson, “Reflections on Trusting Trust,” Communications of the

ACM, vol. 27, no. 8, pp. 761–763, 1984.
[24] D. C. Schmidt, “Why Software Reuse has Failed and How to Make

It Work for You,” 1999, accessed: 2017-11-22. [Online]. Available:
https://www.dre.vanderbilt.edu/⇠schmidt/reuse-lessons.html

[25] M. D. McIlroy, “Mass Produced Software Components,” in Naur and

Randell (eds): Software Engineering: Report of Conference Sponsored

by the NATO Science Committee, Garmisch, Germany, Oct 7-11, 1968,
pp. 79–85.


