
Exploring Virtual Reality as an
Integrated Development Environment

for Cyber-Physical Systems
Tommi Mikkonen

Department of Computer Science
University of Helsinki, Helsinki, Finland

tommi.mikkonen@helsinki.fi

Petri Kettunen
Department of Computer Science

University of Helsinki, Helsinki, Finland
petri.kettunen@helsinki.fi

Kai-Kristian Kemell
Department of Information Technology
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Abstract—Cyber Physical Systems (CPS) development ap-
proaches tend to start from the physical (hardware) perspective,
and the software is the final element in the process. However,
this approach is unfit for the more software-intensive world that
is increasingly iterative, connected, and constantly online. Many
constraints prevent the application of iterative, incremental, and
agile development methodologies, which now are the norm for
many other fields of software. Time-consuming system validation
can only start when both hardware and software components are
ready, which implies that the software delivery and quality is
almost always the final bottleneck in the CPS development and
integration. Also organizational issues raise concerns – CPS de-
velopment teams are nowadays often geographically distributed,
which can result in delays in the process, shortcomings, and
even mistakes. In this paper, we propose using our envisioned
open-source Virtual Reality-based Integrated software Develop-
ment Environment (VRIDE) for developing the next generation,
increasingly software-intensive CPSs in efficient ways.

Index Terms—Virtual Reality (VR), Cyber-Physical Systems
(CPS), Integrated Development Environment (IDE), Embedded
Systems, Virtualization, Digital Twin, Virtual Twin, Simulation,
Agile Software Development, Collaboration.

I. INTRODUCTION

The Internet of Things (IoT) represents the next significant
step in the evolution of the connectivity and the rise of ma-
chines around us [18]. In such cyber-physical systems (CPS),
physical and software components are deeply intertwined, each
operating on different spatial and temporal scales, exhibiting
multiple and distinct behavioral modalities, and interacting
with each other in a myriad of ways that change with context,
in real time [15]. In the future, they will be ever more
complex with many cross-cutting issues, such as cyber-security
and usability. Furthermore, many CPSs are critical by their
fundamental nature, like electricity systems such as Smart
Grids [21]).

As a consequence of this development, everyday software-
enabled things in our surroundings are becoming connected
and programmable dynamically. Furthermore, the majority of

CPS class systems will never sleep (e.g., Smart Grids), and the
number of computing devices (cyber components) will also
be significantly larger and deployed in much more dynamic
and complex topologies than in traditional environments [18].
This in turn implies that the focus of CPS-related product
development will inevitably shift from individual devices to
software that powers and controls them both in local and in
connected setting – in essence, Weiser’s vision of the invisible
computer [20] is finally becoming everyday reality. In all the
role of software and the needs for its agile yet dependable
development become thoroughgoing. To reach this goal, we
need software engineering approaches that are better suited to
CPS development than those we are commonly using now [4].

In this paper we propose using virtual reality and other
virtualization techniques for building an IDE development
environment for CPS systems of the programmable world. Fur-
thermore, we provide first-hand experiences gained with the
prototype implementation and evaluate its potential benefits
for future CPS software development.

II. BACKGROUND AND MOTIVATION

A. CPS Characteristics

Cyber-Physical Systems (CPS) are systems that simultane-
ously act in the physical and digital space, comprising both
physical and computational processes [12]. Typical examples
of CPSs include drones, various robots, and autonomous vehi-
cles (e.g. [5]) and also larger, complex systems such as Smart
Grids [21]. Since a major part in their development includes
the design of physical, mechanical and electrical elements, the
development has been executed under their terms, and software
has traditionally been a final element to include in the system.
Now, as software as a key enabling technology and analytics
powered by software is becoming a major factor in innovation
in CPSs [13], [14], the situation is changing radically, and
software engineering is receiving attention already early on in
the development.



Up until recently, CPSs have largely been confined into
factories as factory robots and into other such closed environ-
ments, away from the public eye. Nowadays they are becoming
more interconnected (IoX) and ubiquitous. With advances in
AI and machine learning, CPSs have been able to become
more reliably autonomous while also taking on more generic
tasks. A factory robot that is programmed to do the exact same
action in the exact same way is far from being as sophisticated
as a CPS that acts in a reactive fashion and is able to perform
a multitude of tasks under different, changing circumstances.

Today, CPSs are developed across industries. The automo-
tive industry has often made the headlines with its autonomous
vehicles ranging from cars to trucks. Drone-based systems
are being developed for military, surveillance, and shipping
(e.g. Amazon’s Prime Air1) purposes. The aforementioned
factory robots are becoming more sophisticated and taking on
more demanding and changing tasks in smart factories as so-
called cobots [19]. Moreover, with recent advances in Artificial
Intelligence (AI) the increasing prominence of the IoT, CPSs
are becoming common across various industries and fields of
research [16].

As in addition to running digital software in the cyber
space, CPSs operate in the physical space, their development
differs from traditional software development of purely digital
software. In developing CPSs, the physical manifestation of
the system has to be both modelled digitally and ultimately
constructed physically. Thus, in developing CPSs, a working
digital simulation of the physical aspects of the system has
to be constructed and employed for testing and simulation
purposes. As a result, common software development envi-
ronments alone are not enough for CPS development with
various different engineering disciplines as they do not contain
the tools necessary for digitally simulating and integrating the
physical aspect of the systems. In addition to traditional soft-
ware development environments, various modelling tools are
used to model and simulate the physical aspect of the CPS for
this reason. Typically, these simulations are made using digital
twins, simulations that cover the macro geometrical and micro
atomic dimensions of the physical systems [17]. Constructing
simulations accurate enough to be called digital twins requires
high levels of expertise and supporting dedicated development
environments.

Aside from the complexity resulting from the need for
simulation, CPSs tend to be complex systems with distributed
software components. For example, an autonomous car could
have software running on car ECUs (Engine Control Unit), a
gateway-like hardware, edge computing, and cloud computing
(connected cars). These different software components might
need to be developed in different levels of abstraction, and
using different programming languages. This makes CPS de-
velopment challenging from the point of view of development
environments as well. The need for digitally modelling and
simulating the physical counterpart of the system during de-
velopment also further adds to this complexity. Finally, various

1https://www.amazon.com/Amazon-Prime-Air/

different hardware platforms and operating systems can also
be involved in the development ranging from hard real-time
kernels to large process automation systems.

Arguably, developing CPSs is challenging not only from
the point of view of the multi-disciplinary expertise required
(modelling, programming, engineering etc.), but also from the
tooling perspective. Integrated tool chains for CPS develop-
ment are currently still lacking. Modelling and programming
need to generally be done using separate software. Solutions
for modelling the software components (e.g. software stack,
power estimation, network, or sensing of the environment) of
generic CPSs are still lacking. Existing solutions are largely
designed for either specific operating system or specific de-
vices. However, the need for integrated development envi-
ronments for CPSs have also been pointed out in e.g. [6].
Moreover, there are various activities that aim at integrated
tool chains. However, even recent efforts such as COSSIM2

and INTO-CPS3 still lack tools for managing the complexity of
the surrounding environment and interactions between various
objects.

Taking into account the current and future nature and con-
texts of CPSs, agile development methods, practices and ways
of working excelling in general software contexts [8] could be
highly beneficial also in modern CPS development. However,
the inherent developmental requirements and constraints of
CPSs like discussed above must be accommodated. This is
where we see great opportunities of applying modern VR.

B. Virtual Reality and CPSs

Virtual Environments. Mixing virtual and real-world do-
mains as such is not new as such, and it has been applied in
various contexts [3]. So far such systems have been proposed
for various use, including the following exploration of the In-
ternational Space Station using VR facilities, allowing partici-
pants do things like dock cargo capsules, conduct spacewalks,
and perform mission-critical tasks4; composing software for
IoT devices that lets the developers to create applications
faster than is possible when using directly the real hardware5;
and analog modeling synthesizers that generates the sounds
of traditional analog synthesizers using DSP components and
software algorithms by simulating the behavior of the original
electric and electronic circuitry to digitally replicate their
tone6. Overall, various mixed reality (MR) applications are
increasingly experimented and utilized in many traditional
engineering areas such as factory plant design and building
construction. All those involve more and more software-based
and software-enabled functionalities.

Digital and Virtual Twins. In the context of virtual envi-
ronment, the concept of digital twin refers to a digital replica
of a physical system, used for reasoning about its physical

2http://www.cossim.org
3http://into-cps.org
4https://www.theverge.com/2017/3/9/14870462/oculus-nasa-esa-mission-

iss-vr-space-station-simulator
5https://iotify.io/iotify-virtual-lab
6https://en.wikipedia.org/wiki/Analog modeling synthesizer



counterpart [9], [17]. In the context of CPSs, digital twins can
be used in different ways across the life cycle of a product.
Initially, they can be used to aid in designing the first physical
form of the product and then be used to optimize it further [2].
Sensor data can be employed with digital twins to accurately
simulate potential alterations to the physical system before any
actual changes to it are made. The above is especially well-
suited for CPSs that are costly or otherwise difficult to alter
after their initial implementation. Being digital, digital twins
can also be used regardless of physical location, making them
attractive for geographically distributed teams. Furthermore,
digital twins are often employed when developing CPSs that
carry out more complex tasks in the physical world such as
autonomous vehicles. To this end, expensive and safety-critical
systems such as autonomous vehicles can benefit greatly from
digital twins as they can be used to both teach the artificial
intelligence in the safety of a digital environment as well as
simulate e.g. disaster scenarios without incurring any material
costs. By using digital twins, outcomes can be predicted both
by using historical data and by simulating novel and atypical
operation circumstances. In addition investigating failures and
anomalies in live systems can be supported by replicating them
in the twin part with the real system data.

Virtual Twins are a sub-set of digital twins, a technique used
in various contexts [1]. Virtual twins, as their name implies, are
digital twins with virtual presentations designed to be visually
observed human actors. Through their visual presentation,
virtual twins are intended to offer more information for human
observers than ordinary digital twins.

The above is beneficial in various ways, which include
gaining a better understanding of simulation results and gen-
erally seeing the CPSs in action in a virtual environment.
Presently, virtual twins are especially underutilized in CPS
development overall. They have been employed in the context
of smart factories and industry 4.0, however, showcasing their
potential relevance. In that context, virtual twins have been
employed to e.g. train factory staff in the safety of a virtual
environment, as well as to train robots for human interaction
on the physical factory floor. In a similar fashion, virtual twins
could be utilized in the development of CPSs in general.

III. ENGINEERING THE SOLUTION: VRIDE
To tackle the challenges listed above, we propose using

virtual reality based system as a development environment for
CPSs. In contrast to moving in accordance to the departments
of the developing organization, we wish to enable a more
holistic approach, where the strict boundaries between the
different engineering disciplines and development stages can
be blurred in Agile ways. This calls for a new kind of
a development environment where the tool chain forms an
integrated experience.

Our prototype implementation VRIDE (Virtual Reality In-
tegrated Development Environment) is an immersive develop-
ment environment for CPS development in different domains
(see Fig. 17). The VRIDE vision has been designed to act as

7Site http://bit.ly/vride-demo shows a demo video of current capabilities

a demonstrator that satisfies the problems listed above:
• VR content for CPS cannot be produced inside Immersive

Virtual Environments.
– VRIDE supports modifications of software and other

characteristics of the system inside the virtual envi-
ronment.

• Physical prototypes are costly.
– VRIDE enables building virtual versions of proto-

types in digital form. Various levels of detail can be
used, which enables early experimentation with less
detail, and elaborated simulations when more detail
is included.

• CPS development lacks an integrated tool chain.
– VRIDE aims to provide a development tool chain

for the virtual environment by introducing improved
automation and interfacing between tools and simu-
lations.

• Iterative, incremental, and agile development methodolo-
gies are challenging to employ in CPS development.

– Using VR enables rapid feedback from the simulated
environment.

• Collaboration between and inside teams in CPS develop-
ment is difficult due to the highly heterogeneous tools.

– The visual nature of VR makes it far easier for less
tech savvy would-be users to provide feedback and
participate in the design process.

Eventually, the goal is that the tool will support scripting,
integration and automation to allow its connection to DevOps
style pipelines. At present, the focus has been on developing
the front-end and software development capabilities, with an
ability to reflect the changes in software back to the virtual
environment.

Fig. 2 shows a component diagram of the VRIDE system,
given at a conceptual level to indicate the different functions.
Technically, the system is built using the Unity engine8,
which is a commonly used system in games and other virtual
environments, together with some auxiliary libraries. Full open
source code of the demonstrator and associated documentation
are made available at GitHub9 for experiments and further
research and development.

The prototype has given us some insights regarding how
VRIDE is understood by various stakeholders. In the follow-
ing, we list our view to VRIDE opportunities.

Enhancing systems thinking. Large complex CPSs may be
extremely hard to comprehend. For instance modern electricity
system Smart Grids are multilevel combinations of power
network systems and distributed ICT systems. VRIDE could
help software developers to realize the physical parts and their
cyber connections. Moreover, the systems dynamics can be
visualized with simulations and twins.

Supporting software requirements engineering. The soft-
ware developers can examine the future use environment of

8http://unity3d.com
9https://github.com/startuplabjyu/VRIDE



Figure 1. Validating an Autonomous Vehicle in a Virtual Environment. From
top to bottom: (i) A car running in a virtual environment; (ii) Programmer
palms for editing the code and settings within the environment ; (iii) Access
to vehicle code for altering its algorithms and behavior ; and (iv) A developer
wearing a VR gear, needed to realistically view the 3D environment.

Figure 2. Parts of VRIDE we have implemented and foreseen extensions.

the CPS-under-development before its physical construction.
This may assist in realizing the software requirements and
intended behaviors. Furthermore, with VRIDE the software
developers can revisit the VR ”world” as often and whenever
they need and want during the development. This is typically
not possible for instance in case of running factories.

Capabilities for the future of CPS development. Overall, the
role and share of software as a key enabling technology and
basis for value creation in most CPSs are expected to increase
in the future. Consequently, more software development work
will be needed. More powerful software engineering capa-
bilities are likely to be needed not only in pure software
organizations but also in current non-software companies.
Our VRIDE infrastructure aims to support such elaborate
capabilities.

Shorter R&D feedback cycles. Virtual prototypes and de-
signs can be used to gather feedback and evaluate the feasi-
bility of a design faster especially in the early stage of the
design process. Furthermore, even during production, digital
twins of systems can be used to test intended modifications to
the system without making any changes to the actual system.

More end-user involvement. The most notable strength of
VR is its immersive, visual representation of a digital space.
While involving end-users in the early phase of the product
design process can be challenging, the visual nature of VR
makes it far easier for less tech savvy would-be users to
provide feedback and participate in the design process.

Interdisciplinary and distributed virtual collaboration. Ef-
fective CPS development requires multiple teams that contain
expertise from various fields. The current state of the art,
however, only offers 3D user interfaces designed for single
users. Using such a system, teams could collaborate inside
the same virtual environment, also regardless of geographical
location. The collaboration can be used with technologies
proposed in the context of collaborative online development
environments, such as the Cored tool environment [11].

Supporting the adoption of newer development methodolo-
gies in CPS development. By providing an integrated tool
chain for CPS development and thus enabling cyclic develop-
ment, while also supporting end-user involvement and helping



provide rapid feedback, VRIDE could help adopt top-of-the-
line agile development methodologies such as DevOps and
various Continuous SE methods.

Less context switching. By enabling developers to program
and design VR content inside an Immersive Virtual Envi-
ronment, less switching between environments is required,
potentially speeding up development. Similar approaches have
been proposed also in other settings, such as the Lively Kernel,
where the developer can alter the behavior the system by using
the framework itself [10].

Making hard-to-reproduce faults easier to investigate. While
simulating accidents in the physical world is difficult and often
impossible, virtual simulations can be run without incurring
any material costs. Virtual simulations can be run time and
time again to gather more data as well as to provide on-the-
spot learning experiences.

Tool interoperability by providing an open source alterna-
tive. Presently, standardization between tools in the area is
lacking. Commercial tools are not open source and are gener-
ally designed for highly specific use contexts or tailored to fit
the context of each client. There is thus little interoperability
between tools, making it difficult to make use of multiple tools
to extend one another.

IV. CONCLUSIONS

Currently, CPS development lacks integrated tool chains.
Consequently, the development is carried out using separate
tools for programming, modelling and simulation. This results
in problems with using modern agile software development
methodologies that require automation and makes it more
difficult for teams and team members to collaborate. In this
paper, we propose using virtual reality environments in cyber-
physical system development, following the ideas of previ-
ously built self-sustainable systems such as the Lively Kernel,
where the Lively Kernel system can be used to modify itself
[10].

Aside from solving this problem with the tool chain, the
VRIDE virtual reality integrated development environment
for CPS could benefit developers in various ways, including
early and frequent testing of designs; collaboration with non-
technical users and developers coming from other fields to col-
laborate alongside software developers in CPS development;
and empower users by providing new opportunities such as
remote collaboration and training inside IVEs.

Since the idea is novel and work reported in this paper
is largely exploratory, there are several directions for future
work. These include technical challenges associated with deep
integration of all the modern development tools and infrastruc-
ture in the virtual reality, as well as usability and developer
experience challenges, when one is using a virtual reality
extensively extended periods of time. Furthermore, working
in cooperation with industries where digital and virtual twins
are an everyday tool would help us improve VRIDE and the
key assumptions associated with it.
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