
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=ieru20

Download by: [The UC San Diego Library] Date: 27 May 2017, At: 09:59

Expert Review of Proteomics

ISSN: 1478-9450 (Print) 1744-8387 (Online) Journal homepage: http://www.tandfonline.com/loi/ieru20

Recent advances in applying mass spectrometry
and systems biology to determine brain dynamics

Enzo Scifo, Giulio Calza, Martin Fuhrmann, Rabah Soliymani, Marc Baumann
& Maciej Lalowski

To cite this article: Enzo Scifo, Giulio Calza, Martin Fuhrmann, Rabah Soliymani, Marc Baumann
& Maciej Lalowski (2017): Recent advances in applying mass spectrometry and systems biology to
determine brain dynamics, Expert Review of Proteomics, DOI: 10.1080/14789450.2017.1335200

To link to this article:  http://dx.doi.org/10.1080/14789450.2017.1335200

Accepted author version posted online: 24
May 2017.

Submit your article to this journal 

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=ieru20
http://www.tandfonline.com/loi/ieru20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/14789450.2017.1335200
http://dx.doi.org/10.1080/14789450.2017.1335200
http://www.tandfonline.com/action/authorSubmission?journalCode=ieru20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=ieru20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/14789450.2017.1335200
http://www.tandfonline.com/doi/mlt/10.1080/14789450.2017.1335200
http://crossmark.crossref.org/dialog/?doi=10.1080/14789450.2017.1335200&domain=pdf&date_stamp=2017-05-24
http://crossmark.crossref.org/dialog/?doi=10.1080/14789450.2017.1335200&domain=pdf&date_stamp=2017-05-24


1 

 

Publisher: Taylor & Francis 

Journal: Expert Review of Proteomics 

DOI: 10.1080/14789450.2017.1335200 

Review 

Recent advances in applying mass spectrometry and systems biology to 

determine brain dynamics 

Enzo Scifo1+, Giulio Calza 2+, Martin Fuhrmann3, Rabah Soliymani2, Marc Baumann2 

and Maciej Lalowski2 
+these authors contributed equally 

 
1Campbell Family Mental Health Research Institute of CAMH, Toronto, Canada 
2Medicum, Meilahti Clinical Proteomics Core Facility, Biochemistry/Developmental 

Biology, Faculty of Medicine, FI-00014 University of Helsinki, Helsinki, Finland 
3Neuroimmunology and Imaging Group, German Center for Neurodegenerative 

Diseases (DZNE), Bonn. Germany 

 

Corresponding author: 

Maciej Lalowski 

Medicum, Meilahti Clinical Proteomics Core Facility, Biochemistry/Developmental 

Biology, Faculty of Medicine, FI-00014 University of Helsinki, Helsinki, Finland 

maciej.lalowski@helsinki.fi  



2 

 

Abstract 

Introduction: Neurological disorders encompass various pathologies which disrupt 

normal brain physiology and function. Poor understanding of their underlying molecular 

mechanisms and their societal burden argues for the necessity of novel prevention 

strategies, early diagnostic techniques and alternative treatment options to reduce the 

scale of their expected increase.  

Areas Covered: This review scrutinizes mass spectrometry based approaches used to 

investigate brain dynamics in various conditions, including neurodegenerative and 

neuropsychiatric disorders. Different proteomics workflows for isolation/enrichment of 

specific cell populations or brain regions, sample processing; mass spectrometry 

technologies, for differential proteome quantitation, analysis of post-translational 

modifications and imaging approaches in the brain are critically deliberated. Future 

directions, including analysis of cellular sub-compartments, targeted MS platforms 

(selected/parallel reaction monitoring) and use of mass cytometry are also discussed. 

Expert Commentary: Here, we summarize and evaluate current mass spectrometry 

based approaches for determining brain dynamics in health and diseases states, with a 

focus on neurological disorders. Furthermore, we provide insight on current trends and 

new MS technologies with potential to improve this analysis. 

 

Key words: brain, mass spectrometry, Laser capture microdissection, Liquid 

chromatography mass spectrometry, LC-MSE, MS imaging, neurodegeneration, 

neuropsychiatric disorders 
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1. Epidemiology and societal impact of neurological disorders 

Alzheimer’s Disease (AD), the leading cause of dementia is characterized by a 

progressive cognitive decline that culminates in withdrawal from society, agony and 

eventually death [1]. The pathological hallmarks of AD include extracellular 

accumulation of misfolded amyloid ß (Aß) peptides into senile plaques in the brain, 

which are frequently surrounded by dystrophic neurites and intraneuronal neurofibrillary 

tangles. In 2016 approximately 63,000 and 241,000 new AD cases were reported in the 

U.S. among people 65 to 74 years old and those 85 years old or more, respectively [2]. 

The number of people with AD is predicted to triple over the next four decades [3]. 

Between 1-5% of all AD cases are early onset (EOAD), including familial and sporadic 

forms which translates to 50,000 – 250,000 people in the U.S. [4]. Despite decades of 

research, the molecular causes of AD are still poorly understood.  

Parkinson’s Disease (PD) is the second most common neurodegenerative 

disorder affecting mainly the motor system with degeneration of midbrain dopamine 

neurons [5]. The molecular mechanisms leading to neuronal loss in PD are not 

completely understood, although alterations in mitochondrial functions and protein 

aggregation are thought to play a central role [6]. A meta-analysis of seventeen 

prevalence studies on PD predicted that the number of individuals over age 50 with PD 

in the most populous nations is expected to increase from 4.1 million in 2005 to 8.7 

million in 2030 [7]. 

Neuronal Ceroid Lipofuscinoses (NCL) represent the most prevalent class of 

childhood neurodegenerative diseases [8,9]. They are mostly rare autosomal recessive 

disorders characterized by early accumulation of autofluorescent storage material in 

lysosomes of neurons or other cells [10]. Clinically, the NCL diseases are 

subcategorized into infantile, late-infantile, juvenile or adult forms. Several NCL types 

share distinct clinical features such as deterioration of motoric functions, seizures, visual 

failure as well as cognitive decline with dementia, which eventually lead to blindness 

and early death [11]. The prevalence of NCL is highest in the Nordic countries, for 

example, in Finland the estimated incidence of CLN1 is 9.4 per million whereas in the 

USA and United Kingdom it is estimated to be at 1.37 and 1.6, respectively [12]. 
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Major Depressive Disorder (MDD) which affects 6.7% of all American adults 

represents one of the most common mental disorders in the US and is predicted to be a 

leading cause of global disability by 2030 [13]. The underlying molecular mechanisms of 

MDD are still to be clarified and even upon successful therapy, depressive disorders 

impose a considerable strain on the patient, with remission rarely accompanied by a 

total disappearance of all symptoms [14]. 

The societal burden of the above mentioned neurological disorders and poor 

understanding of their underlying molecular mechanisms argues for the necessity of 

prevention strategies, early diagnostic techniques and novel treatment options to reduce 

the scale of their expected increase [3,7,14]. It is particularly important to consider that 

the diagnosis of these complex disorders usually takes place after onset of the first 

symptoms, enabling often only symptomatic and non-disease-modifying strategies. 

In this review we depict various workflows for isolation and enrichment of brain-

specific cell populations, both in health and disease conditions. Various aspects of 

sample processing, mass spectrometry technologies for differential proteome 

quantitation, analysis of post-translational modifications and imaging approaches in the 

brain are also critically discussed. 

2. Collection and treatment of brain samples 

Human post-mortem brain tissues for the investigation of cellular mechanisms 

associated with neurological disorders are obtained from a brain bank. Sample 

collection is done during routine autopsies with oversight from ethical committees that 

comprise experienced clinicians and pathologists. Findings from human postmortem 

studies may then be validated in appropriate animal models (typically mouse or rats) for 

purposes of probing causal links between a detected neurological pathology and 

affected molecular pathways. Mice may be euthanized by CO2 asphyxiation and brains 

quickly extracted from the skull followed by brief washes with cold PBS to remove 

excess blood and gentle drying with soft tissue. The brains are placed on an aluminum 

foil strip and transferred to an empty, large tube (to preserve brain morphology), which 
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is lowered into a liquid nitrogen bath and kept there until the whole tissue is frozen. 

Brains are then stored at -80 °C until sectioning. 

Human brain tissue samples are especially challenging for proteomic studies due 

to the variation in postmortem interval before autopsy is performed (usually several 

hours), during which rapid increase in protein degradation is observed. A timely 

proteomic analysis is critical for proper assessment of protein dynamics, various 

proteoforms [15] and to target labile Posttranslational Modifications (PTM), which are 

usually lost or altered by the time of sample collection [16], thereby increasing the risk of 

artifacts. In order to facilitate proteomic and genomic investigations on post-mortem 

tissues, special rapid autopsy (also known as “short postmortem interval autopsy”) 

programs have been developed [17,18] to preserve the proteomic and genomic 

characteristics of samples before significant post-mortem degradation occurs. 

Fresh-frozen specimens are the primary choice for brain proteomics analysis. 

Alternatively, Formalin-Fixed Paraffin Embedded (FFPE) samples, which are the 

standard method for tissue preservation in most hospitals, can be utilized upon specific 

treatments and enable multi-center retrospective studies with large sample cohorts. 

FFPE samples represent a particular challenge for proteomic analysis; formaldehyde-

induced inter and intra-molecular cross-linking [19] poses a significant challenge to 

proteomic investigations, whereas the cleavage of methylene bridges by Heat-Induced 

Antigen Retrieval (HIAR) [20] requires incubation at high temperatures which might 

hamper sample integrity. Despite immense efforts, there is still a need to further develop 

protocols for sample processing towards downstream proteomics analysis. In spite of 

these limitations, recent methodological developments have facilitated quantitative 

analyses by parallel reaction monitoring on FFPE breast cancer tissues [21] and PTM 

detection [22,23]. For a complete review of the proteomic developments in the analysis 

of FFPE tissues we refer to [24]. 
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3. Laser capture microdissection  

The cellular complexity and heterogeneity of brain tissue layers renders standard 

tissue homogenization and lysis protocols inadequate to isolate disease-specific cell 

populations of interest from predominant subsets (e.g. glial cells) [25,26]. Laser Capture 

Microdissection (LCM) is a technique for region or cell type specific sample enrichment 

of the proteome in health or disease states. This method, first introduced in 1996 [27], is 

of particular interest in neurological disorders characterized by “selective vulnerability”. 

For a detailed survey of the LCM technique for proteomics sample procurement we 

refer to [28] and [29]. 

Tissue sections of (5-15 μm thickness) from frozen brains are typically collected 

on polyethylene naphthalate (PEN) membrane slides using a cryostat and stained to 

visualize cellular architecture. Nissl based stains are the most commonly used for 

histological staining of tissues. Briefly, slides are fixed and washed in a series of ethanol 

dilutions, and subsequently stained with 0.2-2% Nissl based stains for 10 min followed 

by rinsing in ultrapure water. The slides are then dehydrated twice in a graded ethanol 

series (e.g. 50% ethanol, 75% ethanol, 95% ethanol and 100% ethanol for 30 sec each) 

and lastly placed in xylene for 3 min. For FFPE specimens, a deparaffinization step 

(usually 30 min. at 60° C followed by xylene washes) is required before proceeding with 

the standard LCM procedure [30,31]. 

Two main types of laser systems are used for LCM: near-infrared (IR) capture 

[27,32] and ultraviolet (UV)-cutting [33,34] lasers. The former are based on activation of 

a thermo-sensitive polymer (ethylene-vinyl acetate, EVA), which is then attached to the 

cells on the slide underneath prior to embedding and capturing them in the polymer [35]. 

The transmitted laser heat is rapidly applied to the tissue (in milliseconds), resulting in 

dissections with minimal heat damage to the tissue [36,37]. A comparison of UV and IR 

laser systems [38] points to higher speed and precision of the UV laser, especially when 

the collection of small discrete areas is required, whereas the advantage of the IR laser 

rests in its lower energy, which is less abrasive to the tissue. 

Glass or membrane slides can be utilized for IR capture laser with the Arcturus 

XT LCM system which additionally has a UV-cutting laser. In the latter, a high energy 
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laser is used to dissect target cells in tissues embedded on PEN membrane slides. 

Dissected cells may be retrieved into collection caps with the aid of photonic pressure 

from a second laser shot, gravity or glued onto a sticky cap after LCM [36]. Guidelines 

for manipulation of the various LCM systems are presented in their respective 

manufacturers’ manuals. 

4. Cell/tissue homogenization and protein solubilization  

Sample preparation of brain tissue requires good solubilization of proteins with 

detergents, which in turn creates challenges in downstream LC-MS analysis. Different 

methodologies were developed to accommodate the requirement for good solubilization 

and MS compatibility. One strategy involves the precipitation of the protein content and 

subsequent resuspension in MS-compatible buffers containing e.g. anionic, acidic 

labile-cleavable surfactants [39]; however the precipitation step may result in sample 

loss due to incomplete recovery during the resolubilization step. Another approach to 

extract proteins from cultured cells and tissue lysates (fresh frozen, and formalin-fixed, 

paraffin embedded) is the Filter Aided Sample Preparation (FASP) [37,40,41]. 

Solubilized protein homogenate is applied to an ultra-filter for reduction/alkylation, 

detergent removal, enzymatic digestion and buffer exchange [37]. Application of FASP 

to the processing of limited clinical brain samples offers several benefits. First, previous 

reports have suggested that 50−70% of the protein in the lysates processed with FASP 

is converted to peptides with a minimum number of missed cleavages [41–44]. We and 

others have also demonstrated that the technique ensures cleaner sample preparation 

and better peptide yields than the traditional “in solution” and “in gel” digestion 

protocols, respectively [37,40,45]. Moreover, the use of multi-enzymes e.g. trypsin and 

Lys-C for digestion (in up to 4M urea, maintaining good solubility conditions) improves 

the quality of proteomic analysis [37]. Finally, the sequential elution of peptides in FASP 

shifts the cleavage reaction equilibrium and therefore favors digestion of less abundant 

proteins or lower affinity enzyme sites [46]. Modified FASP protocols are also well suited 

for good recovery/enrichment of PTM, including phosphorylations (in combination with 

strong-cation exchange chromatography and/or titanium dioxide bead chromatography 
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and to capture phosphopeptides) [47] and glycosylations (N-Glyco-FASP utilizing lectin 

affinity chromatography for capture of N-glycosylated peptides) [48]. For example, by 

utilizing FASP methodology, 12,035 phosphorylation sites (8446 novel) on 4579 brain 

proteins were identified. Functional annotation revealed that 23% of the identified 

phosphosites were located on plasma membrane proteins, i.e. ion channels and 

transporters, facilitating better prediction/correction of brain proteins topologies [47]. 

5. Liquid chromatography tandem mass spectrometry analysis 

Mass Spectrometry (MS)-based proteomics provides a sensitive and quantitative 

platform that is widely used to identify key protein players in neurological disorders [49–

51]. The merits of the technique include automated high-throughput differential protein 

determination and quantitation from low sample amounts (sub-microgram levels), high 

dynamic range and resolution for analysis of post-translational modifications [52] or 

complex protein-interaction networks [53]. Altered protein amounts between control and 

disease states are typically either analyzed by unbiased global proteomic profiling 

(shotgun proteomics) or targeted MS, which relies on a priori knowledge to select a 

subset of proteins for quantitation. In both approaches, quantitation of proteins of 

interest is based on a comparison of signal ion intensities across sample groups of 

interest. A comprehensive survey of ion-intensity based label-free proteomics and two 

label-based approaches using isobaric tags incorporated at the peptide and protein 

levels (Tandem Mass Tags, TMT), revealed that the label-free approach outperforms 

label-based, TMT methods regarding proteome coverage (up to threefold more proteins 

were reproducibly identified in replicate measurements). These methods exhibited 

similar reproducibility concerning protein quantification, but slightly differed in terms of 

accuracy, with the label-free method being less accurate than both TMT approaches 

[54]. Importantly, the comparison of TMT and label free quantitation (LFQ) platforms 

should be considered with the following caveats. For example, the latest Proteome 

Discoverer v2.1 (Thermo Scientific) offers vast improvements for TMT analysis over the 

earlier v1.3 software that was used in the previous survey [54]. Moreover, developments 

in instrumentation have optimized MS3 TMT quantitation and multi-notch MS2 fragment 
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collection yielding improved MS3 reporter ion intensity [55]. Given the interference of 

non-selected precursors in complex samples, gradients and pre-fractionation steps 

should be performed in TMT “single shot” analyses to optimize identifications and 

quantification accuracy [56]. LFQ analysis has also been greatly improved with the 

continued development of Maxquant freeware 

(http://www.coxdocs.org/doku.php?id=maxquant:common:download_and_installation), 

which is developed for protein identification and quantification from large-scale MS 

datasets. The software package is equipped with normalization algorithms, allows for 

peak detection/matching across replicate runs and utilizes its own search engine 

(Andromeda) for protein identification, quantifies identified proteins and provides 

summary statistics. In addition to LFQ, Maxquant also supports analysis of MS data 

from other main labelling techniques, including: SILAC, Di-methyl, TMT and iTRAQ. It 

allows for processing of MS spectra obtained by MS systems from various vendors, 

such as - Thermo Fisher Scientific, Bruker Daltonics, AB Sciex and Agilent 

Technologies [57,58]. 

Label-free and label-based MS approaches have been utilized to analyze brains 

from either human cohorts [49,59,60] or rodent animal models [61–63] of neurological 

disorders. In recent years, the application of label-free methods in brain research has 

increasingly gained in popularity, since they provide more precise quantitation for lowly 

abundant proteins [64] and at lower operational costs (e.g. costs of 15N labelling of food 

or metabolic labelling in mouse disease models) in comparison to labelled approaches. 

A focused in-depth review of the benefits and shortcomings of the available techniques 

for addressing neuroscience-related questions has been published [65]. Molecular 

knowledge at the protein level is potentially more relevant to pathophysiological 

processes associated with the neurological disorders in comparison to findings from 

transcriptomics or molecular genetics. 

6. MSI- measurements of molecular distributions in the brain  

Mass Spectrometry Imaging (MSI) allows for region-specific, non-targeted label-

free, multiplexed molecular measurements from biological specimens directly on 
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tissues, yielding an image representing the distribution of both endogenous and 

xenobiotic compounds. The tissue spatial distribution of each MS peak can be utilized 

for “virtual microdissection” of areas corresponding to specific molecular profiles. After 

completion of the MSI analysis, removal of the matrix by ethanol washes allows 

histological staining of tissue thereby co-registering the two levels of information. 

This technique is capable of detecting analytes in the low pM concentration 

[66,67] and shares a feature of spatial resolution with Immunohistochemistry (IHC) and 

capacity for tissue micro-extraction(s) and multiplexing with Liquid Chromatography 

(LC)-MS [68–70]. MSI is an important tool for imaging especially small molecules, such 

as peptides or drugs to which specific antibodies are difficult to generate. 

Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI-MSI) is 

the most recent MSI approach, introduced in 2004 by Cook’s group [71]. DESI is an 

ambient ionization technique where a high-voltage spray capillary generates an 

electrically charged plume which is directed towards the sample [72]. As the 

electrospray droplets impact the sample surfaces, the ion analytes are desorbed and 

carried towards the inlet of a mass spectrometer; placing the sample in a moving stage 

which allows a rapid analysis of the tissue surface. DESI excels in the analysis of lipids 

and small molecules, and is characterized by minimal sample preparation, high-

throughput and ease of operation due to the ambient analysis and basic instrumentation 

requirements. 

In Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging 

(MALDI-MSI), a tissue section is coated with a thin layer of matrix prior to irradiation by 

a laser in the MALDI source that ablates discrete spatial positions in a grid manner and 

generates a mass spectrum for each point (Figure 1). The complexity of sample 

preparation for MALDI-MSI requires careful optimization during each phase (i.e. sample 

handling, tissue treatment and matrix application) in order to maintain the spatial 

arrangements of molecular compounds and avoid delocalization of the analytes as well 

as morphological artefacts [73–76]. It is necessary to minimize the time between 

harvesting and preservation steps (usually freezing in liquid isopentane or nitrogen) to 
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ensure attenuation of endogenous enzymatic reactions which could hamper the 

analysis [77]. Tissue preparation usually involves washing steps (e.g. cold acetone or 

EtOH), which are critical in removing any unwanted molecules and salts from the 

surfaces of the tissue which might suppress ionization [78,79]. In contrast, DESI-MSI 

requires minimal sample preparation (i.e. it does not require matrix deposition or 

conductive glasses to perform the analysis [71]). 

High spatial resolution MALDI-MSI analysis requires generation of a 

homogenous coating of small matrix crystals on the tissue section with analyte 

incorporation [80–84], which is achieved by the repeated spray cycles deposition of 

small volumes of matrix solution.  

Different studies have leveraged MALDI-MSI to detect and localize Aß deposits 

in transgenic mice and human brains. The distribution of signal arising from the deposits 

was linked to small anatomical structures and the composition of the amyloid deposits 

was investigated without disrupting tissue morphology [78,85–89]. MSI has also been 

used to characterize the correlation between Aß plaques and phospholipids changes in 

frontal cortex, hippocampus and subiculum [90]. 

Analysis of 6-hydroxydopamine (6-OHDA)-treated rat brains by MALDI-MSI 

indicated the distribution and altered levels of different proteins (e.g. calmodulin, 

cytochrome c, and cytochrome c oxidase) in the dopamine-depleted regions and an 

increase in unconjugated ubiquitin in the dorsal striatum of the 6-OHDA treated 

hemisphere, highlighting the involvement of the ubiquitin-proteasome system in PD [91]. 

Shariatgorji et al. applied a derivatization method to investigate dopamine, GABA, 

glutamate and acetylcholine without the need for matrix: the analysis enabled 15 µm 

spatial resolution and showed decreased striatal levels of DA and increased GABA, 

mirroring the findings in human PD [92]. 

In a recent study, MALDI-MSI on brain sections from a palmitoyl thio-transferase 

1, Ppt1 knockout mouse (NCL, CLN1 disease model) at different stages (pre-

symptomatic, symptomatic and advanced) showed the spatial distribution of several 

protein species, which were assigned to Myelin basic protein (Mbp) isoforms, 
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cytochrome c and its functional complex components, and subsequently validated by 

IHC and nano-Liquid Chromatography tandem mass spectrometry (nano-LC-MSE) [39]. 

Advances in technical aspects of MALDI-MSI have enabled in-situ detection and 

analysis of histone PTM given its specificity and multiplicity, and due to the absence of 

suitable antibodies for such investigations [93]. The ability of MALDI-MSI to detect and 

distinguish metabolic fragments and PTM in a region-specific manner is one of the key 

aspects that render it appealing for investigating early changes in brain disorders, where 

only a small part of the tissues is affected. 

For an extensive review of the application of MALDI-MSI in neurodegenerative 

and psychiatric disorders (i.e. PD, AD, schizophrenia and amyotrophic lateral sclerosis) 

we refer to Schubert et al. [94] which recapitulates the advancements of this technique 

in the last decade. 

DESI-MSI has been successfully applied to detect neurotransmitters in wild type 

rat brain slices [95] and 6-hydroxydopamine-treated (6-OHDA) rat brains [96], and to 

quantify small molecule neurotransmitters in rat brain sections by incorporating 

deuterated internal standards in the nano-DESI [97]. Most previous studies that 

leveraged DESI-MS for the imaging of brain lipids were conducted for the purposes of 

method development or to evaluate sample preparation protocols rather than to answer 

neurological questions [98]. However, the technique has recently been utilized in a pilot 

study to investigate phospholipid dysfunctions in schizophrenia [99], linking the 

molecular distribution of lipid species to an increase in phospholipase A2 in 

schizophrenia patients [100,101]. 

Analysis of current literature on MSI experiments points to the prevalence of 

MALDI-based approaches, likely related to the compromise between speed, spatial 

resolution (100 µm for conventional DESI, 10 µm for nanoDESI and 20 µm for the 

current high-end MALDI imagers), mass range (0-2,000 Da for DESI and nanoDESI; 0-

100,000 Da for MALDI), and signal stability during the experiment [102]. The prevalence 

of singly charged ions also gives MALDI an additional advantage over the spray-based 

technologies due to the simplified spectral interpretation. Recent developments in MSI 
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techniques (e.g. DESI-MSI and secondary ion mass spectrometry, SIMS-MSI), 

however, have enabled researchers with complementary tools to study different aspects 

of tissue dynamics on the same tissue section, given the non-destructive nature of such 

analyses. 

7.1   Dynamics of processes in neurodegenerative disorders 

Different studies have leveraged the combination of LCM with proteomics to 

investigate brain dynamics in pathophysiological conditions; in 2007, Lewy body (LB) 

inclusions were isolated from human temporal cortex neurons of dementia patients with 

cortical LB disease by LCM and subjected to proteomic analysis [103]. This in-depth 

characterization of cortical LBs enabled a specific enrichment of LB-associated proteins, 

highlighting 156 proteins of which only 17 had previously been associated with cerebral 

cortical or brainstem LBs utilizing conventional proteomics techniques. Targeted 

proteomics approaches (in particular immunoprecipitation methods), were also 

employed to study the different isoforms of alpha-synuclein in PD brain tissue 

homogenates [104]. Another study investigated the relationship between metabolic 

dysregulation induced by diabetes and the levels of parkin, PINK1 (phosphatase and 

tensin homolog-induced putative kinase 1) and DJ-1, highlighting a significant parkin 

dysregulation in the substantia nigra of a diabetic mouse model which was restored by 

treatment with metformin, one of the most commonly used anti-diabetic drugs [105]. 

Label free quantitative proteomics approaches were used to investigate the 

cortex [106,107] and substantia nigra [108] of AD patients, pinpointing differentially 

expressed proteins in pathological specimens compared to the normal aging brain. 

Analysis of temporal cortex neurons from FFPE AD human samples [109] identified 

78% neuronal proteins of which 50% were associated with AD. The high specificity of 

the results validates the strategy of combining LCM and proteomics to extract accurate 

meaningful data from a very small amount of tissue. Given the high precision of modern 

LCM apparatus it is also possible to isolate single amyloid plaques [110]; extraction of 

Aß deposits from patients with the Arctic (E693G) mutation enabled targeted 

characterization of Arctic Aß neuropathology. Different proteomic studies have 
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examined the composition of morphologically different Aß plaques, identified many 

proteins co-localizing with the plaques [111] and showed that each morphotype contains 

different Aß isoforms, with the predominant forms being Aß1-42 and Aß1-40 [112,113] 

Based on the Aß-induced oxidative stress hypothesis of AD progression, various 

studies have examined the effect of oxidative stress on the proteome of AD brains 

(reviewed in [114]). 

Proteome alterations in the brain of a Ppt1 knockout mouse model of CLN1 

disease and its age-matched counterpart at different stages were investigated using 

LCM- based label free nano-LC-MSE and MALDI-MSI [39]. The goal of the study was to 

quantify/visualize changes in protein expression of disease-affected brain thalamus and 

whole brain tissue slices, respectively. Alterations in various metabolic processes and 

inhibition of neuronal functions, including neuritogenesis were revealed at the pre-

symptomatic stage thalamus. The symptomatic stage of the disease was characterized 

by disturbances in mitochondrial functions, synaptic vesicle transport, myelin proteome 

and signaling cascades, such as RhoA signaling. These changes were more 

pronounced at the advanced stage of the disease with considerable myelin sheath 

breakdown (Figure 2) and elevated RhoA/Huntington’s Disease (HD) signaling 

cascades, linking CLN1 to other neurodegenerative disorders. The identified changes in 

protein levels were further validated by bioinformatics and network approaches, linking it 

to PPT1 and CLN3/CLN5 protein interactomes [40,115], IHC on brain tissues and 

literature mining from other NCL models, thus identifying various functional modules 

affected in CLN1 disease which can be targeted therapeutically [39]. Another, proteomic 

study combining global profiling and Acyl-resin-assisted affinity capture (Acyl-RAC) 

biochemically linked two NCL-associated proteins, DNAJ5/CLN4 (co-chaperone CSPα, 

responsible for autosomal dominant form of NCL, ANCL) and PPT1/CLN1 [63]. In CLN4 

patient brains, the abundance of PPT1 protein was profoundly elevated, misfolded and 

present in neuronal aggregates. Interestingly, it was demonstrated that CLN4 serves as 

a substrate for the depalmitoylating reaction of PPT1, which was severely affected in 

the ANCL brain. Thiopropyl-sepharose chromatography combined with LC-MS allowed 

for the enrichment and quantitation of 850 endogenously palmitoylated proteins [63]. 
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7.2   Dynamics of processes in neuropsychiatric disorders 

In this review, neuropsychiatric disorders are restricted to anxiety, depression, 

bipolar disorder and schizophrenia which encompass most of the known symptoms in 

this group of diseases. Accurate diagnosis and treatment of these disorders is hindered 

by their etiological and clinical heterogeneity [116], hence the need for more reliable 

biomarkers as well as therapeutic interventions. Genomic studies have dominated 

neuropsychiatric research in the last decade and improved our understanding of mental 

diseases [117–122]. However, the increased output of new molecular data has thus far 

not led to any significant improvements in diagnostic and therapeutic outcomes for the 

patients [123]. 

Investigations of anxiety disorders using MS-based proteomics are recent and 

mostly focused on rodent animal models. Quantitative MS analysis of the cingulate 

cortex synaptosome proteome [124] and metabolome [125] from high and low-anxiety-

like mouse models implicated alterations in mitochondrial transport/import, amino acid 

metabolism, pyruvate metabolism, oxidative stress and apoptosis in anxiety-like 

behaviour [124,125]. Two-Dimensional Electrophoresis (2-DE) coupled to MALDI-Time 

of-Flight MS (MALDI-TOF MS) analysis of hippocampus from a female rat model of 

anxiety identified 44 differentially expressed proteins, including dihydropyrimidinase-

related protein 2 (DRP-2/CRMP2), dynamin-1 protein and glial fibrillary acidic protein 

beta [126]. 

Most proteomic analyses of brain dynamics in depression involved rodent models 

[127–131] with a few human postmortem studies [60,132–134]. Studies of brains from 

mouse models of depression by 2-DE combined with MALDI-TOF indicated cytoskeletal 

damage, inhibition of anti-oxidation protein machinery as well as dysregulated energy 

metabolism and neurogenesis [127,129]. LC-MS/MS analysis and Selected Reaction 

Monitoring (SRM) assays (Figure 3) of post-mortem prefrontal cortices from depression 

patients highlighted dysfunction in cytoskeletal, mitochondrial, energy metabolism and 

synaptic related proteins [132–134]. Evaluation of prefrontal cortex and hippocampal 

synaptic junction preparations from rat models of depression by 2-DE and isobaric 

labelling coupled to MS analyses respectively, showed significant alterations in energy 
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and glutathione metabolism, as well as revealed association of synaptic junction 

proteins with stress vulnerability or insusceptibility [128,135]. 

In bipolar patients, MS analysis of the dorsolateral prefrontal cortex (DLPFC) 

pinpointed changes in cell metabolism, signaling cascades, regulation of gene 

transcription, protein and RNA chaperoning functional groups [136,137]. Two-

dimensional difference gel electrophoresis (2-D DIGE) and MS analysis of postmortem 

hippocampus from bipolar and schizophrenia patients revealed similar proteomic 

changes in: cytoskeletal rearrangements and cellular trafficking, oxidative stress 

response, mitochondrial function, protein-endocytosis, -degradation, and –ubiquitination 

[138,139]. 

 The few proteomic studies in schizophrenia mostly involved analysis of post-

mortem prefrontal cortices [139–144]. MS analysis of post-mortem prefrontal and 

auditory cortices from schizophrenia patients suggested neuritic, synaptic and 

glutamate signaling dysfunction, as well as abnormal phospholipid distributions [140–

142]. Peptidomic analysis of postmortem temporal lobe and corpus callosum from 

schizophrenia patients identified an intracellular peptide (PepH) with potential 

cytoprotective activity [143]. Quantitative MS assays of SNAP-25 isoforms in ventral 

caudate samples from schizophrenia patients were consistent with a greater effect of 

the SNAP-25A isoform in the observed reduced levels of SNAP-25 [144]. 

 

8. Expert commentary 

Global proteomic profiling has been extensively utilized to investigate 

differentially expressed proteins in human postmortem or animal models of neurological 

disorders [133,145,146]. Studies in postmortem brains are better suited for investigating 

disease associated alterations in the neural circuitry, at a cellular and molecular level in 

comparison to the complementary in vivo animal models [147]. However, human 

postmortem studies are challenging due to confounding variables and limitations in 

sample availability [147,148]. Consequently, animal models which usually do not 

accurately mimic complex neurological disorders are widely used to probe for plausible 

pathophysiological mechanisms [149–151]. 
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Application of MS-based proteomics in studies of neurodegenerative diseases is 

well established. For instance, MS analysis and confocal microscopy of postmortem 

cortex and hippocampus from AD patients indicated lysine methylation of tau in 

neurofibrillary lesions [152] as well as dysregulated: ROS/stress responses, oxidative 

phosphorylation, organellar acidification and the cytoskeleton [153]. Western blot 

assays, co-immunoprecipitation and MS analysis of postmortem PFC/mouse primary 

cortical neurons suggested that changes in c-Abl expression, activation and/or c-Abl-

mediated phosphorylation of Y39 play a role in regulating α-synuclein clearance and 

contribute to the pathogenesis of Parkinson’s disease [154]. LCM has been used to 

isolate subsets of cells or tissue structures of interest (e.g. amyloid plaques from brains 

of AD patients) in neurological disorders, for subsequent MS analysis [39,49,155]. In 

contrast, the application of mass spectrometry in neuropsychiatry research is relatively 

recent [123]. Another emerging technique used to assay dynamic changes in 

neurological disorders is MALDI-MSI [94]. The technique has widely been employed to 

study rodent models of AD and PD, with the goal of validating the models, investigating 

localization of protein aggregates, mapping differential proteomes/lipidomes associated 

with disease states or spatial distribution of novel drugs in the brain [94,156]. 

Current limitations in MSI relate to the inability to perform purification and 

separation steps (which translates to detection of only a small fraction of the signals 

observed in LC-MS/MS method [69]), mass limit of usually 30 kDa, sample-volume-

limited nature of the analysis and the requirement to validate the results with other 

targeted techniques (e.g. IHC). Despite these intrinsic limitations of MSI, rapid technical 

and methodological developments in the technique will quickly expand its capability in 

terms of both spatial and mass resolution. 

Strategies for MS-based analysis of PTM have mostly involved using enrichment 

of modified peptides from cellular models [157,158]. Literature knowledge about the role 

of PTM in disease states is therefore biased towards findings from in vitro and animal 

models, for which sample material is relatively abundant [159]. Optimization of peptide 

enrichment and sensitivity for analysis of PTM in postmortem brains therefore presents 

the ultimate challenge for validation of known biomarker candidates and identification of 
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novel ones. Insight from cancer research indicates that validation of known biomarker 

candidates remains the critical bottle neck in MS-based PTM analysis [160]. 

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) in combination with 

confocal fluorescence microscopy was recently used to image the spatial distributions of 

lipids, Aß deposits and neuronal/glial markers in two mouse models of Alzheimer’s 

disease [161]. Although brain regions with the Aß deposits could not be identified or 

localized by TOF-SIMS alone, the application of fluorescence staining and confocal 

laser scanning microscopy to an adjacent tissue section allowed for the generation of 

images that were used as navigation maps in subsequent TOF-SIMS analysis. This 

work highlighted accumulation of cholesterol in hippocampal areas undergoing Aß 

deposition in two mouse models of AD, in agreement with previous reports linking the 

former to AD pathogenesis [162–164]. The combination of techniques facilitated parallel 

imaging of cholesterol/lipids by TOF-SIMS and Aß deposits/glial cells using 

fluorescence microscopy at submicron spatial resolution in two transgenic mouse 

models of AD. This study provides a framework for the analysis of spatial distributions 

between lipid species and neuronal/glial markers in a single tissue section from healthy 

and diseased mouse brain tissues. 

 

9. Five-year perspective 

Given the successful application of MS technologies to neurodegenerative 

studies [152,153,165], similar strategies should readily be adopted to probe for 

biomarkers and putative therapeutic targets in psychiatric disorders. In our view, several 

MS platforms for proteome investigation in neurological disorders especially with a 

focus on quantitation, will gain a major impetus in the near future and are critically 

discussed here. 

Thus far, the majority of neurological studies employed global proteomic profiling 

towards identification of differentially expressed proteins between health and disease 

states [153,165]. In this respect, shotgun proteomics was particularly well suited for 

qualitative studies of complex proteomes, but it is limited in reproducibility and 

sensitivity [166,167]. In comparison, targeted MS platforms using Selected/Parallel 
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Reaction Monitoring (SRM/PRM) enable sensitive quantitation for a selected subset of 

peptides and therefore proteins [168–171]. Although SRM is the reference method for 

targeted MS experiments, it has a few shortcomings. For instance, it is limited by the 

actual number of transitions to be monitored and co-isolation of interferences along with 

the target precursor ion [168]. PRM has similar acquisition features as SRM, except that 

it substitutes the second mass analyzer used in SRM (quadrupole) with a high 

resolution Orbitrap. Benefits of PRM include: the ability to monitor in parallel all 

transitions of a given precursor in a single MS/MS spectrum and more selective 

measurements, i.e. the separation of ions with close m/z values (i.e., within a 10 ppm 

range) [170,172]. 

Co-expression analysis, which is widely used to identify genes involved in the 

same processes [173,174] may provide insight into the relative contributions of specific 

cell types in disease pathogenesis of individual brain proteomes. In a recent report, 

protein specific co-expression analysis identified 10 modules that were correlated with 

the AD phenotype, a subset of which included modules associated with neurons and 

various astroglial cells [175]. It is likely that such methods, together with other -omics 

approaches (e.g. [39]) will play a major role in validation of quantitative MS experiments 

in the future. 

The precise roles of PTM, e.g. phosphorylation, acetylation, glycosylation, fatty 

acylation, ubiquitination and nitrosylation (either individually or in combination) on 

neuronal physiology and pathology are poorly understood. Technological advances in 

MS instrumentation and in silico prediction tools should allow for more sensitive assays 

of PTM (including previously uncharacterized ones) in the brain, under health or disease 

states [176]. Therefore, better protocols that allow for enrichment and preservation of 

PTM during sample preparation are needed to achieve higher sensitivity in their 

detection. 

Mass cytometry is another recent technology that can be leveraged for 

simultaneous detection and quantitation of dozens of markers in individual neuronal 

cells [177,178]. Individual cells are stained with antibodies using metal isotopes as 

reporter groups [179] and introduced into Inductively Coupled Plasma (ICP) by 
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nebulization for subsequent mass spectrometry analysis [180,181]. Molecular 

signatures of single cell populations at a transcriptomic level, have already been 

successfully characterized and utilized to infer cell lineages [182], identify 

subpopulations [183], and highlight cell-specific biological features [184]. Similar 

approaches at the protein level will be critical in future diagnosis, identification of 

diseased cell subpopulations and evaluation of drug resistance. 

In comparison to the unexpected number of unique neuronal populations recently 

discovered by single-cell transcriptomics experiments [185], the proteomic information 

obtained by simple homogenization protocols or even LCM isolation of targeted brain 

regions still yields proteomic signatures arising from mixed cellular populations. 

Especially, the different population of glial cells and neurons induces high variability in 

such experiments preventing the measurement of small changes. Moreover, subcellular 

compartments of neurons are more difficult to access due to the high differentiation of 

neurons. However, some long-standing subcellular fractionation methods like the 

preparation of synaptosomes [186], enrichment of post-synaptic densities [187] or the 

isolation of mitochondria and endosomes [188], in combination with Fluorescent-

Activated Cell Sorting (FACS) may be used to address subcellular proteomes, by 

establishing specific cellular populations derived from defined brain structures. The 

FACS-MS approach, despite being challenging, has already been established for 

proteomic analyses of dendritic cells isolated from the spleen and V-ATPase-rich cells 

from kidney and epididymis [189,190]. 

Future studies should develop methods addressing the protein dynamics in 

distinct cellular populations making use of cell type specific Cre-driver mouse lines in 

combination with specific reporters. Furthermore, the possible developments of MACS 

(Magnetic-Activated Cell Sorting), [191] which similarly to FACS is able to isolate 

specific cellular populations utilizing magnetic sorting and targeted binding of antibodies 

to surface proteins in order to establish specific cell populations (i.e. neurons) [192], will 

enable in-depth proteomic investigations. Fluorescence activated nuclei sorting (FANS) 

coupled to LC-MS/MS analysis has also been utilized to identify and quantify proteins 

across NeuN-positive and NeuN-negative nuclear populations from human postmortem 
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frontal cortex [193]. Moreover, as the dynamics of the processes in neuronal cells 

appears to be distinct in different subcellular locations (e.g. synaptic buttons, axons, 

neurites and dendritic spines [194–197]) subcellular region-specific proteomic tools in 

combination with fractionation methods need to be further developed in order to uncover 

the high spatial complexity of these processes. Alterations in subcellular locations are 

implicated in pathological conditions (e.g. dendritic spines aberrations in HD, ataxias, 

AD and PD [198,199]), therefore these specific analyses will yield more detailed 

information about distinct/shared disease processes and pathogenesis. 

Undoubtedly, there is renewed interest within the scientific community for 

performing in-depth analysis of biological mechanisms by combining different –omics 

strategies (e.g. metabolomics, proteomics, transcriptomics) (Figure 4). An obvious 

benefit of such multi-omic approaches is the ability to increase confidence in acquired 

data from individual techniques and provide a global perspective on putatively affected 

pathways that could be targeted for pharmacological intervention towards the 

clarification of disease pathogenesis. Furthermore, given the rapid methodological and 

instrumental advancements in MSI, it is foreseeable that these –omics data could also 

be linked to the subcellular spatial localization of analytes in tissues [200] by automatic 

annotation of the high-resolution MSI data [201], thereby providing a complete profile of 

the physio-pathological state of biological tissues. 
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10. Key Issues 

• The societal burden of neurodegenerative and neuropsychiatric disorders, which 

is exacerbated by the poor understanding of their underlying molecular 

mechanisms, poses a significant challenge for society. 

• Targeted and non-targeted proteomic techniques are capable of specifically 

tackling the dynamic changes in protein expression, proteoforms and the post 

translational modifications in both pathological and physiological states. 

• Laser Capture Microdissection (LCM)-based approaches enable enrichment for 

specific disease-affected brain regions, enhancing the specificity of various –

omics investigations. 

• Mass Spectrometry Imaging (MSI, e.g. MALDI-MSI and DESI-MSI) allows for the 

investigation of protein/peptide spatial distributions in tissue sections in a non-

targeted manner, in fresh frozen and formalin-fixed paraffin embedded 

specimens. 

• Pros and cons of current methods for LCM-proteomics and MALDI-MSI are also 

discussed in this review. 
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Legends 

Figure 1. Scheme of MALDI-MSI on tissues. Schematic outline of a typical MSI 

workflow for fresh frozen (blue) or FFPE (orange) brain tissue samples. Analytical steps 

comprise tissue sectioning, paraffin removal (FFPE), washing, enzymatic digestion 

(FFPE mainly), matrix deposition and MALDI MSI analysis. The tissue is covered by a 

matrix compound and irradiated by the laser (which ablates discrete spatial positions in 

a grid manner), generating multiple mass spectra that are linked to a specific x and y 

coordinates. The spatial distribution of any given ion is depicted through a heat map, 

which represents the relative abundance levels of the selected ion in the tissue. ROI- 

Region of interest; HE – Hematoxylin/Eosin; LFB – Luxol fast blue; ITO – Indium tin 

oxide; IHC – Immunohistochemistry; PCA – Principal component analysis; ROC – 

Receiver operating curve. The image of MSI data elaboration was adapted from 

reference [202] with the permission of © IOP Publishing. The other images are from 

Wikimedia Commons. 

 

 

 
 



38 

 

Figure 2. Down-regulation of myelin basic proteins in the Ppt1-/- brain. A) Ion 

density distributions of an average m/z 14145 Da ([M+H]+) corresponding to myelin 

basic protein isoform 8. The increase in down-regulation of Mbp-8 isoform over time can 

be observed in the Ppt1-/- brain. The zooming of averaged spectra focusing on m/z 

14145 peak region at 1 month (pre-symptomatic), 3 months (symptomatic) and 5 

months (advanced stage), respectively. The mean of peak intensity is indicated. 

Relative intensity: dark blue- 0% intensity, red- 100% intensity. The maximum peak 

intensity in each image was set at 100%. T- Total ion current normalization (TIC). Scale 

bar- 5 mm. B) Immunohistochemical analysis of myelin basic protein immunoreactivity 

on consecutive slides. The area boxed in A) and corresponding to barrel field 1 of 

somatosensory cortex, SB1F, which has projections to thalamus, is indicated. A strong 

down-regulation of Mbp immunoreactivity in myelin layer at the advanced stage is 

shown. Scale bars- 200 µm and 50 µm respectively. C) A down-regulation of m/z, 

corresponding to myelin basic protein isoforms 5 (Mbp-5) and 8 (Mbp-8) is shown. D) 

Two different isoforms of Mbp detected in MALDI-MSI and nano-LC-MSE experiments at 

the advanced stage. The brain tissue slices were digested with trypsin, and the digests 

from selected brain regions, pinpointed by immunohistochemistry were resolved by 

nano-LC-MSE. The sequences of Mbp peptides detected in these experiments are 

underlined. Phosphorylated Tyrosine (T) measured in the nano-LC-MSE experiments is 

shown in orange. Boxed sequences-peptides detected in MALDI-MSI experiments. In 

magenta- Mbp peptide (HGFLPR, m/z 726.67) measured in MALDI-MSI experiments of 

tryptic peptides on tissues. Adapted from reference [39], with the permission of the 

publisher, © Springer. 
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