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ABSTRACT 

 
Microbial infections share many symptoms in common, rendering diagnosis difficult solely on 

clinical grounds. Thus, rapid, cost-effective and reliable tests are necessary for the diagnosis 

of infectious diseases. While the traditional diagnosis is mostly confined to detection of one 

pathogen at a time, a multiplex array could be a feasible alternative to improve the efficiency 

in the detection of infections. The Luminex xMAP-based high-throughput platform can provide 

simultaneous analysis of multiple analytes from the same sample by utilising differentially dyed 

microspheres. In this thesis, I developed xMAP-based Suspension Immuno Assays (SIAs) for 

the determination of IgG antibodies, IgM antibodies, as well as the avidity of IgG against the 

human cytomegalovirus (HCMV), Toxoplasma gondii (T. gondii) or human parvovirus B19 

(B19V). Moreover, I also developed xMAP-based multiplex DNA assays for 13 human 

polyomaviruses (HPyVs). 

Primary infections by HCMV, T. gondii and B19V during pregnancy can result in severe 

consequences to the foetus. The serological status of the mother is critically important in 

counselling and recognition of infections. Hereby, I developed and evaluated SIAs for IgG, 

IgM and IgG-avidity against these three important pathogens. Diagnostic performances of the 

new assays were assessed with more than 1000 well-characterised serum samples. All the 

newly developed assays exhibited excellent performance compared to corresponding high-

quality reference methods. The positive and negative percent agreements of the antibody-

SIAs in comparison with high-standard reference assays were 92-100% and 95-100%, 

respectively. Kappa efficiencies between SIAs and corresponding reference assays were 

0.94-1. Intra-assay and inter-assay coefficients of variations ranged between 2-12% and 1-

19%, respectively. Among clinical samples from individuals with primary infection, the IgM- 

and IgG-SIAs served as highly sensitive screening means for detection of acute infections and 

immune status; and IgG-avidity-SIAs as a highly specific confirmatory approach for separation 

of primary infections from long-term B-cell immunity. 

On the other hand, during the past 12 years, a dozen viruses have joined the known family 

members of HPyVs. Serological studies have shown that HPyV infections occur at young age 

and most of the viruses circulate widely in the general population. Although HPyV infections 

are generally asymptomatic, severe complications can arise due to virus reactivations in 

immunocompromised or elderly individuals. HPyVs can persist lifelong after primary infection; 

however, their tissue specificities, persistence sites and transmission routes are still unclear. 

Also, the clinical manifestations of HPyVs with regard to immune suppression are largely 

unidentified. To this end, I developed xMAP-based multiplex DNA assays for all 13 HPyVs 
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known before 2017, by using primer pairs and probes targeting the respective HPyV major 

capsid protein VP1 genes. 

The xMAP-based multiplex assays allowed for simultaneous detection of all the HPyVs 

with detection limits of 1-100 copies/µl. At high copies (105 copies/µl) each of the 13 target 

sequences were identified correctly with no cross-reactions. With this novel and specific assay, 

the extent to which the lymphoid system plays a role in the HPyV infection and persistence 

was assessed. The frequency of occurrence of HPyV viral genomes was explored in 78 

lymphoid tissues from children and adults with tonsillar diseases. HPyV-DNA was found in 

17.9% (14/78) of tonsils: JC polyomavirus (JCPyV, n=1), WU polyomavirus (WUPyV, n=3), 

Merkel cell polyomavirus (MCPyV, n=1), human polyomavirus 6 (HPyV6, n=6), trichodysplasia 

spinulosa polyomavirus (TSPyV, n=3). The observed frequent occurrence of HPyVs in human 

tonsils suggests the lymphoid tissue plays an important role as a potential transmission route 

and a location of persistence for these viruses. However, whether or not the undetected 

HPyVs share the same infection route requires more investigation with different sample types. 

Furthermore, to determine the occurrences in skin and clinical associations of HPyVs, I studied 

their genoprevalences in biopsies of premalignant [squamous cell carcinoma in situ (SCCis) 

or actinic keratosis (AK)] lesional vs. benign skin from 126 liver transplant recipients (LiTRs); 

as well as in healthy skin of 80 immunocompetent adults. Multiplex screening was followed by 

singleplex qPCRs of positive samples, for reference and quantification of the viral DNAs. In 

total, five dermal HPyVs – MCPyV, HPyV6, human polyomavirus 7, TSPyV, and Lyon IARC 

polyomavirus (LIPyV) – were found in 26.2% (58/221) skin biopsies. The prevalences and 

quantities of MCPyV in premalignant vs. benign skin of LiTRs were similar to those in healthy 

skin of controls. TSPyV was found in a single skin lesion at very low copies. The other three 

HPyVs occurred exclusively in benign skin. Overall, in 10 out of 12 SCCis/AK patients the viral 

DNA findings in skin were alike. Thereby, the occurrences of HPyVs in the skin of LiTRs and 

controls speak against a role for any of HPyVs in SCC development.  

The work presented in this thesis shows that the xMAP-based serological approaches 

exhibit excellent diagnostic performances compared to corresponding conventional methods. 

Moreover, the developed xMAP-based multiplex PCR for 13 HPyVs could be applied 

successfully in a variety of clinical materials. Altogether, the newly developed systems provide 

a powerful tool for medical diagnosis and research.  
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FOREWORD  

 
Infectious diseases are responsible for approximately 15 million deaths annually. Due to 

ecological changes, population growth, migration and travelling, emerging and re-emerging 

pathogens are rapidly rising and presenting an ever-increasing burden to public health. In the 

battle against infectious diseases, timely and accurate diagnosis is pivotal in making treatment 

decisions and improving patient prognosis. Even more importantly, diagnostic tests can help 

to control infection transmission via identifying the transmission route and potential infection 

risks and mechanisms.  

Over the years, a variety of methods have been developed for the diagnosis of infectious 

diseases. Traditional diagnostic methods, for example cell culture, has played an essential 

role in the early development of clinical microbiology. However, the majority of diagnostic 

methods have transited to serological and molecular determinations due to the increased 

diagnostic performance and reduced turn-around time. While there are diversified molecular 

and serological methods for the detection of infections, most of them are based on monoplex 

format (detect one pathogen at a time). Today, advanced technologies offer the platform for 

high-throughput multiplex detection which can save cost, time, labour and sample volume, 

without compromising diagnostic sensitivity and specificity. This high-throughput setting can 

significantly facilitate the diagnosis efficiency in resource-limited settings, particularly in the 

sample volume and time-limited conditions. 

The first part of the literature review of this thesis focuses on the traditional and advanced 

technologies in the diagnosis of infectious diseases. Luminex xMAP technology offers 

simultaneous determination of multiple analytes from the same sample by utilising dyed 

microspheres. This part provides a detailed description of xMAP technology, xMAP 

microspheres and detection instruments—and furthermore—introduces the previously 

developed xMAP-based multiplex applications for detection of infectious diseases.  

The second part of the literature review emphasises the microbial infection and antigen-

antibody interactions. This part gives the presentation of the vertically transmitted infections, 

followed by the fundamental knowledge of the infections by parvovirus B19, human 

cytomegalovirus and Toxoplasma gondii and host immune responses to these infections. The 

focus of this part is on the serodiagnosis and clinical significance of maternal infections by 

these three important pathogens. 

The last section of the literature review deals specifically with all currently known human 

polyomaviruses. The section focuses on the biology, epidemiology, discovery, pathogenesis 

and disease association of human polyomaviruses. To date, 14 human polyomaviruses have 

been found. The prototype human polyomaviruses JC and BK were discovered in 1971, but 
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the 12 others are new members of this family since 2008. The rapid discoveries of these novel 

viruses, on one hand, present a fascinating world of human polyomaviruses; on the other hand, 

raise many important questions regarding these newly found viruses.  
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REVIEW OF THE LITERATURE 

 

1. Diagnosis of infectious diseases 

 

Throughout human existence, infectious diseases have always had significant impacts on 

public health (1). The World Health Organization (WHO) estimates 13-15 million deaths 

attributed to infection annually until 2030 (2, 3). Despite the advances in the development of 

vaccines and treatments, infectious diseases are still the dominant cause of morbidity and 

mortality across the world, particularly in resource-limited countries.  

When fighting against infectious diseases, lab-based diagnosis plays an essential role to 

help the aetiology identification, appropriate treatment, controlling of outbreaks, disease 

surveillance and discovery of new pathogens. Over the years, various methods have been 

developed in clinical microbiology. Classical diagnostic techniques like culture and microscopy 

were heavily used in the early development of clinical laboratories. However, culturing is a 

prolonged process, which often requires from few days to weeks to produce results. In many 

cases, viruses grow poorly or not at all in the culture systems. Direct examination by 

microscopy is restricted to pathogens able to be visualised at low magnification. Current 

diagnostic methods have focused on the development of antigen detection, antibody detection 

and nucleic acid detection.  

 

1.1 Traditional diagnosis 

 

1.1.1 Antigen detection 

 

Diagnosis of infection can be obtained in the early stages of a disease by detection of microbial 

antigen in the clinical specimen. One of the classical methods for antigen detection is 

immunofluorescence (4). Immunofluorescence relies on the use of an antibody, linked to a 

fluorescent compound as a probe, to target a specific antigen on the surface of microbes or in 

cells present in the infected tissue. An antibody bound with a fluorochrome that absorbs light 

of a defined wavelength and then emits light at a higher wavelength offers optical detection 

with a special microscope. Immunofluorescence has been widely applied in diagnosis, 

particularly in respiratory infection in which a clinical specimen may contain microbial 

aggregates in sufficient amount to be seen microscopically (5). Another approach, latex 

agglutination, utilising the antibody bound to latex particles, can also offer rapid antigen 

detections in body fluids (6).  
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1.1.2 Antibody detection 

 

Infection and antibodies 

Microbial infections can trigger immune responses and defence mechanisms in the host. 

During infection, the host responds with production of antibodies, known as immunoglobulins 

(Igs), to help defend against foreign invasion. Igs are divided into five classes based on their 

structure: IgG, IgM, IgA, IgD and IgE. Specific IgM and IgA antibodies usually appear quickly 

after infection and are dominant during the first days or week after onset, followed by a switch 

to an increasing proportion of specific IgG antibodies (7).  

The binding of antibody and antigen is a noncovalent interaction, and the binding strength 

involves antigenic determinants and affinity of the corresponding antibodies. The affinity is 

related with the ratio of the molar concentration of bound Ag-Ab complex to the molar 

concentrations of unbound antigen and antibody at equilibrium, which can be referred to the 

association constant (Ka) (7). 

 

Ka = [Ag-Ab] / [Ab][Ag] = 1 / Kd  

Kd equilibrium dissociation constant 

Ka equilibrium association constant 

Ag antigen 

Ab antibody 

Ag-Ab antigen-antibody complex 

 

Affinity (intrinsic affinity) reflects a single binding site between antibody and antigen. In 

natural infection, the immune response often involves complex antigens containing multiple 

antigenic determinants and antibodies with bi- or multivalency (8, 9). In this case, another term, 

avidity (functional affinity) is chosen over affinity due to the measurement of the overall binding 

capacity within biological systems (10). IgG avidity testing allows for discrimination of a primary 

infection from a non-primary infection (i.e. past infection, exogenous reinfection, reactivation 

from latency). It reflects the “average” affinity of IgG antibodies. At the beginning of an infection, 

IgG antibodies have limited binding force towards a multiplicity of different epitopes with low 

avidity, but over time, under antigen-driven B-cell selection, the binding force increases 

through somatic hypermutations, resulting in higher avidity (11). In consequence, high-avidity 

IgGs predominantly exist in long-term seropositivity, whereas low-avidity IgGs are the major 

population shortly after primary infection (12).  

 

Antibody detection approaches 

Several techniques based on different principles have been used for antibody detection, yet  
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enzyme-linked immunosorbent assay (ELISA) is the most popular one. ELISA employs an 

enzyme as immunochemical label for the detection of analytes in clinical samples (13). A 

chemical reaction between enzyme (commonly used e.g. alkaline phosphatase, horseradish 

peroxidase and glucose oxidase react) and an appropriate substrate (chromogen or a 

fluorogen) allows the visualisation of analytes. When chromogen or fluorogen is triggered by 

an enzyme, a colourless or nonfluorescent molecule can be converted into a coloured or 

fluorescence end product.  

For antibody detection, classical ELISA formats are indirect ELISA, competitive ELISA and 

IgM-capture ELISA (14). In indirect ELISA, the analyte target antibody is bound to the 

immobilised antigen on a solid surface. The primary antibody can be detected by a secondary 

antibody conjugated with an enzyme which reacts with the substrate to generate a colour. 

Competitive ELISA is designed either based on the labelled antibody and analyte target 

antibody competing for binding to an immobilised antigen or based on a soluble antigen and 

immobilised antigen competing for binding to the analyte target antibody. Capture ELISA is 

preferably used for the detection of IgM antibodies. In capture ELISA, a repertoire of IgM 

antibodies in serum is captured by an immobilised anti-IgM antibody on the solid surface and 

then the specific IgM antibodies are detected by binding to the corresponding labelled antigen 

(14).  

For the determination of antibody avidity, approaches are in mainly two formats: One is 

chaotropic-based avidity assay that separates high and low avidity antibodies by a denaturing 

wash step, which elutes low-avidity antibodies from the antibody-antigen complex (15). 

Protein-denaturing reagents, i.e. urea, are commonly used in antibody-antigen dissociation. 

Another is competition-based avidity assay that detects low-avidity IgG directly by blocking 

the specific high-avidity IgG with soluble antigen and determining the concentration of the 

remaining marker-specific low-avidity IgG (16). Measurement of IgG avidity has been 

successfully applied in the diagnosis of several microbial infections (15, 17). 

 

1.1.3 Nucleic acid test 

 

Nucleic acid tests are laboratory tests based on the analysis of genetic parameters. 

Polymerase chain reaction (PCR) was initially developed by Kary Mullis and described in (18); 

this revolutionary technique provides the detection of a microorganism, prompting the 

identification of agents, especially for the ones that are difficult to culture. PCR methods can 

provide identification of pathogen DNA or RNA through amplification and are the essential 

molecular diagnostics in clinical microbiology laboratories nowadays.  

The basic PCR technique uses the oligonucleotide primers and DNA polymerase to 

capture and amplify the target DNA molecules. Most of the PCR methods rely on thermal 
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cycling, which allows repeated synthesis cycles of target DNA molecules. General thermal 

cycling includes heat initialisation (activate hot-start DNA polymerase), DNA denaturation 

(separate double DNA strands), DNA annealing (allow primer binds to target DNA) and DNA 

extension (synthesis of new DNA strand). The more advanced PCR technique, e.g. 

quantitative real-time PCR (qPCR), is a trendy method in clinical laboratories. The qPCR uses 

target amplification in combination with fluorescence probe-based detection, providing the 

estimation of the amount of a given sequence in a clinical sample. Compared to traditional 

PCR, qPCR has progressed with regard to quantification of analysis time, assay sensitivity 

and working safety (no need for gel electrophoresis staining with ethidium bromide) (19). Other 

advanced PCR techniques, for example, digital PCR (dPCR), utilise PCR and partitioning can 

provide the absolute quantities of DNA targets per partition and the copy number of a given 

sequence in the original sample (20). 

 
 

1.2 Multiplex technology 

 

Conventional diagnostic tests are predominantly monoplex approaches, which means they 

are limited to one analyte at a time per assay. Combining different assays into a single run 

can improve diagnosis efficiency in terms of cost, labour, time and sample volume. Multiplex 

detection technologies that allow the simultaneous detection of different analytes have shown 

to be a powerful tool for the detection of proteins and nucleic acids in clinical infectious disease 

diagnostics (21).  

Multiplexed serological assays mainly fall into two classes, planar assays and suspension 

microsphere assays (22). Planar multiplex assays (e.g. microspot microarray-based) consist 

of high-density microspots of capture ligands immobilised on a solid phase, while in 

suspension microsphere assays (e.g. Luminex xMAP-based), capture ligands are immobilised 

on colour- or size-coded microspheres. An advantage of planar assays compared with 

suspension microsphere assays is higher sensitivity and wide dynamic range (5 logs in planar 

assay vs. 3.5 logs in suspension assay). However, in comparison with planar assays, 

suspension assays provide improved precision as the data derived from multiple (50-100) 

independent measurements of each microsphere population (22). Both planar and suspension 

multiplex assays have diagnostic potential in clinical microbiology, yet suspension multiplex 

assays are the prevailing method for FDA-cleared protein measurements (23).  

Technological innovations allow for simultaneous detection and identification of multiple 

targets. The multiplex nucleic acid tests are beneficial to identify aetiological agents, especially 

when a patient presents nonspecific symptoms attributable to several pathogens. PCR-based 

multiplex tests are based on the combination of multiple primer sets into a single PCR run for 
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simultaneous detection of several targets. In general, PCR-based multiplex tests are divided 

into three categories: excitation and detection of multiple fluorophores-labelled probes in a 

single PCR run; solid microarray-based detection utilising different capture probes 

immobilised on a solid phase; and suspension microsphere-based approach based on 

different capture probes chemically linked to microsphere and then sorted using flow cytometry 

(21). Multiplex tests based on multiple fluorophore-labelled probes, e.g. multiplex qPCR, can 

offer real-time detection and relative quantification of multiple analytes. These types of PCRs 

are done in a closed tube to avoid the risk for contamination since they do not require a 

separation of pre- and post-PCR steps in the assay; however, these tests have limited 

multiplex capacity (up to 4-6 analytes). Solid microarray-based detection can correctly identify 

several targets in the single specimen by using a large number of probes. These tests are 

often used for whole-genome expression profiling or genome-wide comparisons (21). A 

suspension microsphere-based approach has the ability to detect 100 or 500 different targets 

simultaneously, providing a high-throughput and affordable platform for identification of 

microorganisms (24).    

 
 

1.3 Suspension microsphere assay 

 

In the late 1990s, a new technology, Luminex® xMAP (x=analyte, MAP=Multi-Analyte Profiling) 

was invented (25, 26). This new technology offers a high-throughput bioassay platform for 

simultaneous determination of multiple analytes in a single sample by using spectrally distinct 

sets of microspheres. Importantly, xMAP technology allows the end-users to customise their 

in-house assays and therefore is gaining popularity in pharmaceutical, clinical and research 

laboratories.  

Different from the microarray runs on a glass slide, xMAP identifies the analytes with 

different colour-coded sets of microspheres in a liquid suspension. The microsphere sets are 

coded internally, and each microsphere set can be determined by its unique spectral signature 

(different concentrations of two different fluorophores) (Fig. 1). A fluorescent reporter, for 

instance, streptavidin-R-phycoerythrin (SAPE) is used to detect the captured target molecule 

when bound on the microsphere surface (25).  

 

1.3.1 xMAP microspheres (beads) 

 

Each set of microspheres is dyed internally with different intensity of two or three fluorophores. 

The combinations of two internally-coded fluorophores can generate 100 spectrally distinct 

microsphere sets (Fig. 1A). The addition of a third internally-coded fluorophore allows the 

creation of 500 distinct microsphere sets (Fig.1B).  
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Figure 1. Each microsphere set is encoded internally with a unique internal concentration of 
fluorophores. Two internally-coded fluorophores generate 100 distinctly coloured microsphere sets 
(A) and three internally-coded yields 500 distinctly coloured microsphere sets (B).  
 

 

The classical xMAP microsphere is a 5.6 µm polystyrene microparticle, the surface of 

which is covered by approximately 108 carboxyl groups (COOH) for covalent coupling. Assays 

with polystyrene microparticles require filter plates for washing; which however, can cause 

problems such as leaking, clogging and nonspecific analyte adsorption (22, 27). 

Implementation of the magnetic microsphere has overcome this limitation. The magnetic 

microsphere has the same binding feature as a polystyrene microsphere, but contains a 

magnetic layer and differs in size (6.5 µm) (Fig. 2). Usage of the magnetic microsphere permits 

easy separation from solution, improving recovery during handling and washing steps (28).  
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Figure 2. The structures of magnetic and non-magnetic microspheres. Reproduced with permission 
from Reslova et al., Front Microbiol. 2017; 8:55. Copyright 2017 Reslova, Michna, Kasny, Mikel and 
Kralik. 
 

 

1.3.2 xMAP microspheres coupling 

 

The surface of each xMAP microsphere allows for simple carbodiimide coupling of diverse 

analytes. Protein coupling involves a two-step carbodiimide chemistry while the nucleic acid 

coupling is a one-step process. In protein coupling, the carboxyl group is first activated with 

an EDC (1-Ethyl-3-[3-dimetylaminopropyl] carbodiimide hydrochloride) reagent in the 

presence of sulfo-NHS (N-hydroxysulfosuccinimide), forming a sulfo-NHS-ester intermediate. 

Then, the reactive intermediate is replaced by the primary amine, forming a covalent amide 

bond (Fig. 3) (29). In nucleic acid coupling chemistry, the carboxyl group on the surface of 

microspheres is activated and forms covalent bonds with amine-attached oligonucleotides (29) 

(Fig. 4) 

 

 

 

Figure 3. Protein and microsphere coupling chemistry. Adapted with permission from Angeloni S, Das 
S, Dunbar S, et al, Protein Coupling. In: Luminex xMAP® cookbook 4th Edition, Luminex Corporation, 
2016: 16-25.  
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Figure 4. Nucleic acid and microsphere coupling chemistry. Adapted with permission from Angeloni 
S, Das S, Dunbar S, et al, Nucleic Acid Coupling. In: Luminex xMAP® cookbook 4th Edition, Luminex 
Corporation, 2016: 82-89. 
 

  

1.3.3 xMAP analysis 

 

The analysis of xMAP application requires a specific detection instrument. Those in the market 

are (presently): Luminex 100®/200®, FlexMAP 3D® and MAGPIX®. Luminex 100®/200® and 

FlexMAP 3D® are advanced instruments based on flow cytometry (25). FlexMAP 3D® is 

capable of measuring up to 500 analytes while Luminex 100®/200® is capable of measuring 

up to 100 analytes in a single sample. Besides, FlexMAP 3D® is compatible with both 96- and 

384-well plates while Luminex 100®/200® is compatible with 96-well plates (25). MAGPIX® is 

a basic instrument only compatible with the magnetic microspheres and with a maximal 

reading capacity of 50 bead sets. Distinct from other Luminex instruments, MAGPIX® is based 

on the principle that the immobilisation of microspheres on the magnetic surface can be 

recognised by LEDs and charge-coupled device (CCD).  

The analysis of microspheres relies on either lasers or light-emitting diodes (LEDs) (Fig. 

5). The classification laser or LED (635-nm, 10mW) excites the inner fluorescence 

impregnated in the microspheres and allows observation of two or three separate fluorescence 

emission wavelengths. A second laser / LED (532-nm, 13mW) excites the SAPE (578-nm 

emission) that allows the detection of the captured analytes on the microsphere surface. In 

laser-based analysis, each microsphere is measured when it rapidly goes through a flowing 

fluid stream and is digitally processed when the stream passes through the imaging cuvette 

(Fig. 5A). Whereas in LED-based analysis, microspheres are caught by the magnetic surface 

and the signal intensity is detected by a CCD camera (Fig. 5B). Each bead region per sample 

is measured with multiple, independent measurements (typically 50–100) (22). All the 

independent measurements are collected, and doublets and other aggregates are excluded 

using side scatter measurements. The final results are obtained as mean fluorescence 

intensity (MFI) (30). 



21 

 

               

 
Figure 5. The microsphere is analysed by lasers (A) or LEDs (B). The red laser/LED (635-nm) excites to 
identify a specific microsphere set according to its internal spectral signature. The green laser/LED 
(532-nm) excites to detect SAPE bound to the captured analytes. In laser-based analysis, each 
microsphere is measured when it rapidly goes through a flowing fluid stream and is digitally processed 
when the stream passes through the imaging cuvette. In LED-based analysis, microspheres are caught 
by the magnetic surface and the signal intensity is detected by a CCD camera. LED, light-emitting diode; 
CCD, charge-coupled device. 
 

 

1.3.4 Microsphere-based multiplex serological assay  

 

The multiplex serological assay is a good surrogate for single-analyte ELISA, thanks to its 

advantage of simultaneous detection of many different analytes in a single serum sample. The 

adoption of xMAP technology has led to a wide range of monoplex assays to transition into 

multiplex assays. This conversion is efficient and cost-effective and has shown superior 

sensitivity and dynamic range (25). The total-assay-time (TAT) and hands-on-time (HOT) for 

EIA and xMAP formats have been measured in (198). The TAT for the two is similar. xMAP 

has a shorter HOT than EIA because of less incubation time since the equilibrium is reached 

sooner in the near-liquid than solid phase (26). However, the time of measurement of xMAP 

(80 mins per 96-well plate) is longer than that of EIA (5 min per plate). Moreover, microsphere-

based assays have other characteristics which make it superior in immunological analysis: 

direct fluorescence opposed to colourimetric detection results in excellent sensitivity and 

reproducibility (198); small surface diameter (5.6 µm or 6.5 µm per bead) has lower risk of 

nonspecific binding (199); the covalent coupling followed by post-blocking minimises 

background noise (200); internal controls can monitor the assay performance in each well per 

run (26, 201); and a possibility to include or exclude assays according to clinical needs. In a 
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microsphere-based serological assay, analytes covalently linked to microspheres allow 

capture and quantification of the target molecule in solution. 

The common multiplex serological assay formats include competitive assay, capture 

sandwich assay and indirect assay (29) (Fig. 6). The competitive assay is useful for analysis 

of small proteins with a single (or very few) epitopes, or for measurement of neutralising 

antibody responses against a pathogen. The capture sandwich assay is commonly used to 

measure enzymes, drugs and other biological molecules. And the indirect assay is suitable for 

the detection of specific antibodies for example to determine allergy, vaccine responses and 

infection status. 

 

Figure 6. Common multiplex serological assay formats. (A) Capture sandwich immunoassay enables 
detection of an antigen with the use of a capture antibody coupled to a microsphere and a detection 
antibody conjugated with a fluorescent reporter. (B) Competitive immunoassay can detect an antigen 
with the use of a capture antibody coupled to a microsphere and a competitive-labelled antigen 
reversibly bound to the capture antibody. (C) Competitive immunoassay can also detect an antibody 
in the sample with the use of a capture antigen coupled to a microsphere and a competitive-labelled 
antibody reversibly bound to the capture antigen. (D) Indirect immunoassay is used to detect an 
antibody with an antigen coupled to a microsphere and a labelled detection antibody.   
 

 

Several microsphere-based multiplex assays have been developed for multiplex detection 

of microbial infection. For example, a competitive immunoassay was designed for 

measurement of neutralising antibodies against human papillomavirus (HPV) types 6, 11, 16, 

18 (31); an indirect immunoassay for antibodies against viral protein 1 (VP1) of all 14 human 

polyomaviruses (HPyVs) (32); for antibodies against human immunodeficiency viruses (HIV) 

recombinant antigens gp41, p17, p24, p31 and p66 (33); for antibodies against four 

recombinant proteins of hepacivirus C (34); for antibodies against Epstein–Barr virus antigens 

in nasopharyngeal carcinoma patients (35), and for antibodies against Trichinella spiralis and 

Toxoplasma gondii (T. gondii) in infected pigs (36).  
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1.3.5 Microsphere-based multiplex nucleic acid assay 

 

xMAP technology allows for the development of several genomic applications including 

miRNA assay, gene expression analysis, SNP analysis and specific sequence detection (25). 

In the xMAP-based applications for detection of various pathogens, target-specific PCR 

sequence detection is widely used. This assay format requires the amplification of the target 

sequence by PCR with specific primers. Then the amplified target DNA sequences are melted 

and annealed to their capture probes which are chemically linked on the microspheres. Finally, 

SAPE is added to detect and semi-quantify the target sequences (Fig.7). 

 

 
Figure 7. Target-specific PCR sequence 

detection. The target DNA sequence is 

amplified by PCR reaction when one of 

the primers is biotin conjugated. The 

amplified target DNA sequences are 

melted and annealed to their capture 

probes which are chemically linked on 

the microspheres. SAPE linked with 

biotin allows the detection and semi-

quantification of the target sequences. 

 

 

 

 

The microsphere-based multiplex nucleic acid assay has been successfully applied in 

genotyping of several microbes including viruses, bacteria, fungi and parasites. A 

microsphere-based commercial kit is available, for example, for detection of respiratory 

viruses, xTAG® Respiratory Viral Panel. This panel is intended for the simultaneous detection 

and identification of 20 respiratory viral targets in nasopharyngeal swabs. The test has a 

sensitivity of 91.2% and a specificity of 99.7% (37). Furthermore, microsphere-based in-house 

genotyping tests have been developed for genotyping of influenza virus H5N1 isolates from 

pharyngeal swabs and tracheal aspirates (38); for detection and genotyping of 46 mucosal 

HPV types associated with infections of genital, anal and oropharyngeal mucosae (39); for 

identification of 10 foodborne pathogens (40); and for detection of human enteric viruses in 

sewage and river water (41).  
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2.  Vertically transmitted infections 

 

Infections in pregnancy may pass to the foetus. The infections known to cause congenital 

defects have been denoted as “TORCH”. The acronym “TORCH” referring to Toxoplasma 

gondii (To), Rubella (R), Cytomegalovirus (C) and Herpes Simplex Virus (H), was first 

suggested by Nahmias in 1971 (42). Later, other researchers proposed to add “O” for “others” 

due to the increasing number of other pathogens considered significant causes of 

transplacental infection, e.g. human parvovirus B19 (B19V), Zika virus, varicella-zoster virus, 

HIV, hepatitis viruses B and C, Treponema pallidum for syphilis and Listeria monocytogenes. 

Vertical transmission of infection before birth (antenatal) is a major cause of foetal morbidity 

and mortality worldwide (43). The harmful agents may lead to severe outcomes including 

stillbirth, spontaneous abortion or central nervous system (CNS) defects. The mechanisms of 

vertical transmission of infection across the placental barrier are largely unknown. Existing 

studies suggest that the invasion strategies of pathogens may vary throughout gestation or 

with the level of maternal infection or the corresponding immune responses (43).  

In the diagnosis of vertically transmitted infections, nucleic acid tests can be useful to 

detect the presence of the pathogen genome, however its diagnostic value may be limited due 

to a short detection window or pathogen persistence after the initial infection or its minor role 

in identification of primary infection. Therefore, the detection of pathogen-specific antibody 

kinetics is crucial for the diagnosis of maternal infections. 

 

2.1 Parvovirus B19 

 

Parvoviruses are a group of small (25-nm) (44), non-enveloped viruses with single-stranded 

DNA (ssDNA) genomes of 5 to 6 kb. The name “parvo” originates from the Latin Parvum 

meaning “small”. B19V was identified in 1974 during blood screening of healthy donors for the 

hepatitis B surface antigen (45) and is also the first known pathogenic parvovirus infecting 

humans. Parvovirus B19 (B19V) infections are often mild or asymptomatic; however, they do 

have a wide range of pathological manifestations including the childhood fifth disease, 

transient aplastic crisis in patients with longstanding haemolytic diseases, e.g. sickle cell 

disease, hydrops fetalis, persistent anaemia in immunocompromised patients, as well as post-

infection arthralgia (46, 47).  

B19V has a linear ssDNA genome of 5596 nucleotides (nt). The B19V genome encodes 

three major proteins, one non-structural NS1 (77kDa) and two structural, VP1 (83kDa) and 

VP2 (58kDa). Similar to other parvovirus capsids, B19V capsids have T=1 icosahedral 

structure assembled from 60 copies of the structural proteins. In B19V, VP1 and VP2 

assemble to form a capsid, of which VP2 constitutes 90-95%. The sequences of the two 
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structural proteins overlap except the unique 227nt at N-terminal end of VP1 called VP1u (48, 

49).  

 

2.1.1 Intrauterine B19V infection 

 

B19V infection can be vertically transmitted from mother to foetus. Foetal infection may cause 

anaemia, hypoalbuminaemia, inflammation of the liver and possible myocarditis, leading to 

cardiac failure and even nonimmune hydrops fetalis (NIHF) and spontaneous foetal loss (50). 

B19V has tropism for erythrocyte precursors of bone marrow and foetal liver. When the virus 

replicates in the haematopoietic system, it can destroy the host cells. Foetuses are vulnerable 

and susceptible to viral infection due to their immature immune response and relatively short 

erythrocyte life span. The virus can also lyse erythroid progenitor cells, making B19V a potent 

inhibitor of erythropoiesis. The consequence can be severe transient or chronic anaemia and 

eventually high-output heart failure (50-55).  

The rate of vertical transmission has been estimated to be 25-50% and the incidence of 

foetal loss due to B19V, 1.7% to 12.5% (56-59). Foetal hydrops develops in up to 12.5% of 

infected foetuses with a peak in the second trimester (51, 60). B19V-seronegative women of 

childbearing age are at risk for B19V infection during pregnancy. Day-care workers, 

schoolteachers and mothers of B19V-infected children are also the high-risk population 

groups. In pregnant women, susceptibility to B19V infection has been estimated from 26 to 

43.5%, with a seroconversion rate of 0.6 to 2.4% that can reach 13.5% during epidemics (61, 

62).  

 

2.1.2 Serodiagnosis of B19V infection in pregnancy 

 

Quickly after viremia, a strong humoral response against B19V is elicited (Fig. 8). At 8 to 12 

days post-infection, the anti-B19V IgM antibody tends to appear, followed by the IgG antibody. 

The anti-B19V IgM is secreted into blood to clear viremia, and the clearance is enhanced by 

anti-B19V IgG. The anti-B19V IgM usually lasts for 3 to 6 months and then gradually wanes 

to an undetectable level, while the anti-B19V IgG, although decreasing with time, in most 

individuals remains detectable for life (Fig. 8). Several immunogenic epitopes have been 

identified on the VP1 and VP2. Many studies have shown that the virus proteins could induce 

strong B cell responses (52, 63-65).  
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Figure 8. Humoral response to B19V viral capsid proteins at different times in human infection. 
Adapted with permission from Wolters Kluwer Health, Inc.: David M. Knipe, Peter Howley, Fields 
Virology 6th Ed, 2013, volume II, Chapter 57 Parvoviridae, figure 57.14, p1785. 
 

 

Antibody detection is an important means for the diagnosis of maternal B19V infection. 

The first-line serodiagnosis is to use IgG and IgM tests. The presence of B19V IgM, 4-fold 

IgG-level rise or IgG seroconversion in paired samples is suggestive of a recent infection. The 

antibody assays for B19V have existed in various formats, the most commonly used ones 

being enzyme immunoassay (EIA), immunofluorescence assay (IFA) and chemiluminescent 

immunoassay (CLIA) (49). Recombinant VLPs expressed e.g. in insect cell culture or 

prokaryotic systems have been successfully applied in commercial as well as in-house 

serological tests. Conformational VP2-VLPs resembling native viral capsids can be 

recognised by specific IgG and IgM antibodies in recent infections as well as by IgG of long-

term immunity, whereas linear VP2 epitopes can only be recognised during acute infection 

and early convalescence (66). The kinetic difference in the ratio of antibody reactivity towards 

conformational and linear epitopes has been employed in development of a unique serological 

assay, epitope-type-specificity (ETS) EIA, which provides useful means for differentiation of 

recent from past B19V infection (66, 67).  

Another method of distinguishing between acute and past B19V infection is the 

measurement of IgG avidity. The avidity of B19V-IgG can efficiently distinguish acute from 

past infection. For B19V, the IgG avidity is measured by EIA with VP1, but not with VP2 

because the conformational VP2 determinants are irreversibly destroyed after the denaturing 

treatment and the linear VP2 epitopes cannot be recognized by past-immunity IgG (66, 68). 

In the clinics, the combination of IgM and ETS or IgG avidity EIAs can accurately diagnose 

whether the B19V infection occurred within 3-4 months (69, 70).  
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2.2 Human cytomegalovirus 

 

Human cytomegalovirus (HCMV), also called human herpesvirus 5, belongs to the highly host-

specific subfamily betaherpesvirinae of family Herpesviridae. It is a ubiquitous virus and highly 

adapted to the host (71). HCMV is the biggest virus in the Herpesviridae family with a double-

stranded (ds) DNA genome of 236,000bp. The genome has capacity to encode at least 167 

gene products, with alternate messenger RNA (mRNA) splicing in certain regions (71). HCMV 

DNA is encapsidated inside of a highly stable icosahedral capsid (T=16) made up of 162 

capsomeres. Cryoelectron microscopy in combination with computer-assisted tomographic 

image reconstruction (cryoEM or cryoET) has revealed HCMV to have a ~130-nm-diameter 

icosahedral nucleocapsid and ~200 nm-diameter mature virion particle (nucleocapsid + other 

structural details) (71-73). The capsid is surrounded by an envelope derived from the host cell 

membrane and containing viral glycoproteins. Additionally, herpesviruses have a typical thick 

tegument layer of virus-encoded proteins between the capsid and the envelope. The capsid 

and tegument are essential for attachment and entry into cells (71).   

HCMV is the most significant infectious cause of congenital disease, and the most 

common of non-genetic childhood hearing loss and of neurodevelopmental delay (74-77). 

After infection, the virus can never be completely cleared and remains latent for the life of the 

host. Reactivation of the persistent virus is an important cause of opportunistic infection in 

immunocompromised individuals and also serves as a source for viral transmission. 

 

2.2.1 Maternal transmission of HCMV 

 

The most common transmission route of maternal infection is breastfeeding; however, 

transplacental transmission is the major cause of the adverse sequelae with congenital HCMV 

infection. The risk of intrauterine transmission is closely related to the maternal pre-existing 

immune response to HCMV, for example, from primary HCMV infection the risk is 30-50% (78, 

79) and from a non-primary infection merely 0.5 to 3.4% (80-82). Although the mother’s 

existing immunity cannot prevent vertical transmission, reactivated infections are less likely 

causes of an adverse outcome to the foetus than primary infections (71, 77, 83). 

Transplacental transmission is more frequent during late gestation (84-87), whereas the 

incidence of severe congenital disease is higher in early pregnancy (88, 89).  

 

2.2.2 Congenital HCMV infection 

Congenital HCMV infections are associated with a variety of clinical manifestations, of which 

CNS abnormalities are the most common severe outcomes. Neonatal death occurs in 

approximately 10% of symptomatic newborns, and HCMV infection has been estimated to be 
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the leading cause of sensorineural deafness and infectious brain damage in children in the 

United States (71). Based on a report from the national congenital HCMV disease registry in 

1990-1993 (90), the most common non-neurological symptoms are: petechiae (54%), small 

for gestational age (47%), hepatosplenomegaly (40%) and jaundice at birth (38%); and the 

neurological abnormalities are: intracranial calcifications (37%), microcephaly (36%), hearing 

impairment (25%) and chorioretinitis (11%). HCMV birth prevalence was estimated at 0.7% 

based on 117 986 infants screened (91). Of the infected infants, 12.7% had symptomatic 

HCMV infection at birth, and 40-58% of the symptomatic infants at birth had permanent 

sequelae. Furthermore, 13.5% of the children without symptoms at birth had delayed 

development of permanent sequelae (91).  

 

2.2.3 Serodiagnosis of HCMV primary infection in pregnancy 

 

After primary infection, anti-HCMV IgM antibody is produced initially. IgM peaks at the first 

months after infection and then declines to an undetectable level typically within 3-6 months 

of onset (Fig. 9, IgM pattern A). However, persistent IgM may exist longer than 6 months in 

some individuals (Fig. 9, IgM pattern B). The anti-HCMV IgG level increases and peaks around 

1-3 months after primary infection; the specific IgG can persist life-long (48).  

The demonstration of detectable anti-HCMV IgM, seroconversion of specific IgG or more 

than four-fold IgG rise in a serum sample pair may indicate primary maternal infection (92). 

However, because anti-HCMV IgM may persist for long-term after the primary antigenic 

challenge and can also be elicited in non-primary infection, the IgM result alone cannot be 

used as a marker for HCMV acute primary infection (93). In this case, a result of reactivated 

IgM should be further confirmed by IgG-avidity assay. A high avidity result is suggestive of a 

past infection; on the contrary, a result of low-avidity IgG is an indicator of primary maternal 

infection occurred within last 3-4 months (94).  
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Figure 9. Kinetics of HCMV IgM, IgG and IgG avidity levels over time following HCMV primary infection. 
IgM pattern A shows a typical IgM response that antibody level declines within 3-6 months of onset 
(green arrow). IgM pattern B shows long-term IgM persistence that the persistent IgM may exist 
longer than 6 months in some individuals (red arrow) Low avidity index indicates primary infection 
within the preceding 3 to 4 months, whereas high avidity indicates a past infection with a low risk of 
intrauterine transmission. Modified with the publisher’s permission from Prince HE, Lape-Nixon M. 
2014. Role of cytomegalovirus (CMV) IgG avidity testing in diagnosing primary CMV infection during 
pregnancy. Clin Vaccine Immunol 21:1377-84. 
 

 

2.3 Toxoplasma gondii 

 

T. gondii is an obligate intracellular parasite which can infect almost all warm-blooded animals 

including humans, mammals and birds. The first observation of T. gondii as human pathogen 

was probably in 1914 by Castellani who described a T. gondii-like parasite in smears of blood 

and spleen from a 14-year old boy (95). However the first conclusive identification of T. gondii 

as a human pathogen was in 1939 by Wolf, Cowen and Paige (96, 97). In the 1960s, the entire 

life cycle was eventually identified with the discovery of the cat as a definitive host harbouring 

and spreading T. gondii oocysts through faeces (98, 99).  

Toxoplasma gondii is a coccidian parasite, belonging to the order Eucoccidiida and family 

Sarcocystidae. It can exist in three forms: an oocyst (environmental stage, sporozoite), 

tachyzoite (proliferative form) and tissue cyst (slowly dividing bradyzoite). After T. gondii 

oocyst ingestion, sporozoites are liberated in the host. Sporozoites can penetrate the intestinal 

epithelium and further differentiate into tachyzoites, the proliferative forms of T. gondii. In host 

cells, the tachyzoites rapidly multiply inside a parasitophorous vacuole and then invade any 

nucleated cell and disseminate throughout the host (100).  
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2.3.1 Maternal transmission of T. gondii 

 

Tachyzoites are the proliferative form of T. gondii and play a major role in vertical transmission. 

T. gondii primary infections during pregnancy constitute a high risk of transmission to the 

foetus. The mechanism of vertical transmission is not yet fully understood. A hypothesis was 

proposed that tachyzoites which invaded and multiplied within placental cells during transient 

parasitaemia are able to cross the placenta and enter the foetal circulation or foetal tissues 

(101-103). The transmission rate from mother to foetus varies depending on many factors, 

including primary maternal infection, gestational age (first, second or third trimester), maturity 

of the foetus, T. gondii strain and the maternal immune response (102, 104). In general, the 

risk of transmission is highest during the third trimester, but foetal infection in early pregnancy 

constitutes the highest risk of severe congenital diseases (105).  

 

2.3.2 Congenital T. gondii infection 

 

T. gondii replicating in a foetus induces strong inflammation and necrotic foci that can lead to 

major abnormalities in the brain and ocular tissues. In the former severe outcomes include 

mental retardation, hydrocephalus, deafness, seizures, microcephalus and psychomotor 

deficiency. In particular, T. gondii infection is the most common cause of posterior uveitis (106); 

e.g. responsible for >85% of cases in southern Brazil (107). T. gondii retinochoroiditis is mainly 

due to congenital and rarely to acquired infection. Acute retinochoroiditis could cause 

photophobia, scotoma and active or partial loss of vision (108). Most children with intrauterine 

infection are usually asymptomatic at birth, whereas the late manifestations (retinochoroiditis 

or neurological abnormalities) begin to show up in early adulthood (109). A longitudinal U.S. 

study showed 72% of infants not treated in utero or during the first year of life, developed eye 

lesions during a mean follow-up of 5.7 years (110). In 2013, WHO reported the global annual 

incidence of congenital toxoplasmosis to be (estimated at) 190 000 cases, corresponding to a 

burden of 1.2 million in disability-adjusted life years (DALYs)  (111). 

 

2.3.3 Serodiagnosis of primary T. gondii infection in pregnancy 

 

Once T. gondii enters the host, IgA and IgM are produced during the first few weeks post-

infection and the antibody level reaches a plateau within one month. Specific IgM declines to 

an undetectable level after several months to two years depending on the test used (112). 

Likewise, specific IgA can be detected long after infection, and thus IgM and IgA alone do not 

qualify for a marker of recent infection (113). Specific IgG appears after IgM and IgA and the 

IgG level reaches a plateau within 2-3 months. The IgG level declines and persists lifelong at 

a residual level (Fig. 10).  
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Serodiagnostic methods are useful for the detection of maternal T. gondii primary infection. 

IgG detection using a major membrane protein or whole parasite can efficiently detect infection, 

but the sensitivity is based on the technique used (ELISA, Sabin Feldman dye test, 

immunofluorescence antibody test and agglutination test) (114). The Sabin-Feldman dye test 

(115, 116) has been considered a gold standard for years. The test is based on parasite lysis 

by serum antibodies in the presence of complement. Nevertheless, it is performed only in few 

laboratories due to its complexity. ELISA-based detection is suitable for antibody detection 

and is used widely in clinical laboratories.  

 

Figure 10. Kinetics of antibody responses against T. gondii. IgM titer peaks at the first 1 to 2 months 
and declines 1 to 6 months after infection. However, IgM may persist one year or longer. IgA peaks 
within 1 month and declines 1-3 months after infection, sometimes it may still be detected after 9 
months. Specific IgG can be measured by many techniques including ELISA, Sabin Feldman dye assay, 
immunofluorescence antibody test (IFAT). Despite techniques, IgG peaks within 2-3 months in the 
absence of antiparasitic treatment. Reprinted with permission from Robert-Gangneux F, Darde ML. 
2012. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev 25:264-96. 
 

Since anti-T. gondii IgM may persist for months after initial exposure to the pathogen as 

well as being elicited by recurrent infection, a result of positive IgM should be retested for IgG 

avidity to rule out primary infection. As a rule, a high IgG avidity index indicates past infection. 

However, low or intermediate avidity indices cannot prove a recent infection (114). IgG 

maturation seems to be delayed especially in pregnant women, and the process can be further 

slowed down due to spiramycin treatment (117, 118). Another approach determining the stage 

of infection is to detect rising IgG titers between two consecutive serum samples obtained at 

3-week intervals, but the antiparasitic treatment may also hamper the IgG-titers. Therefore, a 

combination of different diagnostic tools for precise interpretations is required to achieve 

accurate timing of infection (114). 



32 

 

3. Human polyomaviruses 

 
Polyomaviruses belong to the family Polyomaviridae. The first polyomavirus was identified in 

1953 when Ludwik Gross noticed tumours in parotid glands after injecting leukemic extracts 

into animals. He soon published this finding and named this agent parotid tumour virus (119-

121). Later, Sarah Stewart and Bernice Eddy observed similar results in mice and renamed 

this agent SE (Stewart and Eddy) polyoma (poly =multiple, tumours=oma) virus (122). 

Eventually, virologists agreed to adopt the name “polyoma virus” (121). To date, 

polyomaviruses have been found in a wide range of hosts including humans, primates, birds, 

reptiles and rodents.  

To date, 14 human polyomaviruses (HPyVs) have been discovered. All HPyVs except the 

newest agent Lyon IARC polyomavirus (LIPyV) were assigned as polyomavirus species 

(Table 1). Based on the amino acid identity of the large tumor antigen (LTag), HPyVs have 

been grouped by the ICTV into three genera: Alphapolyomavirus (HPyVs 5, 8, 9, 12, 13), 

Betapolyomavirus (HPyVs 1, 2, 3, 4) and Deltapolyomavirus (HPyVs 6, 7, 10, 11) (123). 

Although all HPyVs share a similar genomic structure, they have distinct biological properties, 

for instance, disease associations, tissue tropism and epidemiology (124). 

 

3.1 Overview of human polyomaviruses  

 

All the HPyVs are listed in Table 1. The first two HPyVs, BK (BKPyV) polyomavirus and JC 

polyomavirus (JCPyV) were isolated and characterised in 1971 (124, 125). BKPyV (HPyV1) 

and JCPyV (HPyV2) were named for the initials of patients from whom the viruses were found. 

The third and fourth HPyVs, Karolinska Institute polyomavirus (KIPyV, HPyV3) (126) and 

Washington University polyomavirus (WUPyV, HPyV4) (127), were found in 2007, 36 years 

after the first two. KIPyV and WUPyV were identified from nasopharyngeal aspirates of 

children with respiratory tract infection, but no solid evidence yet links the viruses with the 

symptoms. One year later, the carcinogenic Merkel cell polyomavirus (MCPyV, HPyV5) was 

identified from a rare, but aggressive skin cancer, Merkel cell carcinoma (MCC) and was 

shown to be mutated and chromosomally integrated into most cases of MCC (128, 129). So 

far this is the only HPyV causally associated with cancer. In 2010, two other HPyVs, human 

polyomaviruses 6 and 7 (HPyV6, HPyV7), were found in skin swabs of healthy volunteers 

(130). They were considered normal skin viral flora until two recent studies (131, 132)  

proposed the two to be associated with pruritic skin eruptions during immunosuppression. In 

2010, another HPyV, trichodysplasia spinulosa polyomavirus (TSPyV, HPyV8), was 

discovered and isolated from the face of an immunocompromised patient with the rare skin 

disease trichodysplasia spinulosa (TS) (133). In 2011, human polyomavirus 9 (HPyV9) was 
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amplified from the blood and urine of an asymptomatic renal transplant recipient (134). 

Subsequently, in 2012, human polyomavirus 10 (HPyV10) / Malawi polyomavirus (MWPyV) / 

Mexico polyomavirus (MXPyV) was found and reported by several research groups (135-137). 

This virus was identified in stool samples of children with diarrhoea and in condyloma from an 

immunocompromised patient with warts, hypogammaglobulinaemia, infections and 

myelokathexis (WHIM) syndrome. The two isolates MWPyV and MXPyV were nearly identical 

and were proved to belong to a single species. In late 2012, the 11th human polyomavirus 

(Saint Louis polyomavirus, STLPyV, HPyV11) was isolated from stool samples of children with 

diarrhoea as well as healthy children (138). In 2013, human polyomavirus 12 (HPyV12) was 

identified in resected human liver tissue (139). In the following year, another novel human 

polyomavirus New Jersey polyomavirus (NJPyV, HPyV 13) was identified in a pancreatic 

transplant recipient. The patient harboured several clinical conditions (140). Finally in 2017, 

the latest novel human polyomavirus, LIPyV was discovered in human skin samples and its 

DNA has been detected at low prevalence (0.2%-2.1%) in skin swabs, oral gargles and 

eyebrow hair of cancer-free individuals (141).  

 

3.2 Epidemiology of human polyomaviruses  

 

Seroprevalences of HPyVs are presented in Table 1. HPyV serological studies are mainly 

based on IgG seroresponses against VP1, the immunodominant major capsid protein (32, 

142-144). Studies have shown the HPyV infections to be ubiquitous and to be acquired during 

childhood, as indicated by a rapid increase in seropositivity during the first years of life. For 

instance, our group showed the MCPyV-IgG prevalence to be 9% at 1-4 years and 35% at 4-

13 years (144); whereas TSPyV-IgG prevalence was 5% at 1-4 years, rising to 48% at 6-10 

years and reaching 70% among adults (143). Generally, the geographical differences in HPyV 

seroprevalences seem small, however, the seroprevalences of the HPyV species do differ. A 

comprehensive study (32) revealed high seroprevalences of HPyVs among Dutch blood 

donors (60-100%). However, the most recently identified HPyV12, NJPyV and LIPyV showed 

both low seroprevalences (<5%) and low seroreactivities (32). The low HPyV12 

seroprevalence fits with the recent notion of HPyV12 representing a shrew-derived virus (145). 

The NJPyV seroprevalence is not fully settled; this virus likely does not circulate widely in 

Europe (32).  
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Table 1. Fourteen human polyomaviruses so far discovered 
 

Species Virus name 

(abbreviation) 

Year 

identified 

Method of 

identification 

Source of 

isolation 

Associated 

diseases 

Genome 

length (bp) 

Seroprevalence 

HPyV1 
BK polyomavirus 
(BKPyV) 

1971 Cell culture Urine (125) Nephropathy 5153 80-100% (146-149) 

HPyV2 
JC polyomavirus 
(JCPyV) 

1971 Cell culture 
Brain (PML), Urine 
(124) 

Progressive 
multifocal 
leukoencephalopathy 

5130 40-80% (146-149) 

HPyV3 

Karolinska 
Institute 
polyomavirus 
(KIPyV) 

2007 
Deep 
sequencing 

Nasopharynx (150) Not defined 5040 40-95% (146, 151, 152) 

HPyV4 

Washington 
University 
polyomavirus 
(WUPyV) 

2007 
Deep 
sequencing 

Nasopharynx (127) Not defined 5229 60-90% (146, 151, 152) 

HPyV5 
Merkel cell 
polyomavirus 
(MCPyV) 

2008 
Digital 
transcriptome 
substraction 

Skin (Merkel cell 
carcinoma) (129) 

Mekel cell carcinoma 5387 
40-80% (146, 151, 153-
155) 

HPyV6 
Human 
polyomavirus 
(HPyV6) 

2010 
Rolling-circle 
amplification  

Skin (130) Pruritic rash 4926 
70-85% (130, 151, 153, 
155, 156) 

HPyV7 
Human 
polyomavirus 
(HPyV7) 

2010 
Rolling-circle 
amplification 

Skin (130) 
Pruritic rash, Thymic 
epithelial tumours 

4952 
35-65% (130, 153, 155, 
156) 

HPyV8 

Trichodysplasia 
spinulosa 
polyomavirus 
(TSPyV) 

2010 
Rolling-circle 
amplification 

Skin (TS spicule) 
(133) 

Trichodysplasia 
spinulosa 

5232 
70-85% (151, 153, 155, 
157, 158) 

HPyV9 
Human 
polyomavirus 9  

2011 
Consensus 
PCR and deep 
sequencing 

Serum (134) Not defined 5026 
20-70% (151, 153, 155, 
156, 159) 
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Species Virus name 
(abbreviation) 

Year 
identified 

Method of 
identification 

Source of 
isolation 

Associated 
diseases 

Genome 
length (bp) 

Seroprevalence 

HPyV10  MW 
polyomavirus 
(MWPyV) * 

2012 Rolling-circle 
amplification, 
multiple 
displacement 
amplification, 
Random PCR 

Stool / Skin  
(anal condyloma) 
(136, 137) 

Not defined 4927 40-99% (151, 160, 161) 

HPyV11 Saint Louis 
polyomavirus 
(STLPyV) 

2012 Pyrosequencing 
and multiple 
displacement 
amplification  

Stool (138) Not defined 4776 70% (162) 

HPyV12 Human 
polyomavirus 12 
(HPyV12) 

2013 Generic PCR Liver (139) Not defined 5033 23-33% (139, 156) 

HPyV13 New Jersey 
polyomavirus 
(NJPyV) 

2014 High-throughput 
sequencing 

Muscle (140) Not defined 5108 Unknown 

** Lyon IARC 
polyomavirus 
(LIPyV)  

2017 Degenerate 
PCR combined 
with next-
generation 
sequencing 

Skin (141) Not defined 5263 Unknown 

 

* Human polyomavirus (HPyV10) / Malawi polyomavirus (MWPyV) / Mexico polyomavirus (MXPyV) are the same virus species.  
** LIPyV has not been assigned as a polyomavirus species.  
Note added after completion of our work, Ondov et al. (Genome Biology 2019, https://doi.org/10.1186/s13059-019-1841-x) found 15th human polyomavirus Quebec polyomavirus (QPyV, GenBank 

BK010702) in fecal samples from a 85-year-old hospital patient in Montreal, Canada. 
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3.3 Molecular biology of human polyomaviruses 

 

Polyomaviruses are relatively small (~40-45 nm in diameter) (163), non-enveloped viruses 

containing a circular double-stranded DNA genome (~5.2kb). Polyomavirus capsids have an 

icosahedral symmetry structure with 72 capsomers in a skewed (T=7) arrangement (164). All 

polyomaviruses share a similar genomic organisation with two distinct transcriptional regions on 

opposite strands: early region and late region. Between the early and late gene regions is a non-

coding control region (NCCR) (Fig. 11). This regulatory region contains the origin of DNA 

replication as well as promoters for transcription of the early and late viral transcripts. 

 

Figure 11. Schematic presentation of the circular double-stranded DNA genome of human polyomaviruses. 
The genome has three main regions: a non-coding control region containing the early and late promoters; 
an early region encoding large T antigen and small T antigen and an alternatively spliced LTag; and a late 
region encoding the viral proteins VP1, VP2 and VP3. The agnoprotein is by far only found in JCPyV and 
BKPyV genome. Reproduced with permission from Feltkamp M.C.W, Kazem S. et al., 2013 From Stockholm 
to Malawi: recent developments in studying human polyomaviruses. J GEN VIROL 94(Pt 3):482-96. 

 

The early gene regions of HPyVs encode LTAg and small tumour antigen (STAg) (Fig. 11). 

These two antigens share 75-80 aa at their N termini, with a unique LTAg C-terminus (165). Some 

HPyVs also harbour open frames for middle T antigen (TSPyV, STLPyV) and / or alternate frame 

of the LTag reading frame, ALTO (MCPyV, NJPyV, TSPyV) (138, 140, 166, 167). Besides, 
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MCPyV and TSPyV produce truncated spliced LTag, 57kT and 21kT, respectively (167, 168). The 

late gene regions of HPyVs encode the capsid proteins, viral protein (VP)1, VP2 and VP3 (Fig. 

11). Exceptionally, MCPyV lacks a VP3 minor capsid protein (169). VP1 is the major structural 

protein, making up more than 70% of the total protein of the virus particle. The HPyV capsid 

contains 72 capsomers, each of which contains 5 VP1s and 1 VP2 or VP3. Only VP1 is exposed 

on the capsid surface (170).  

 

3.4 Host cells and suggested routes of transmission  

 

Like other non-enveloped DNA viruses, polyomaviruses are extremely resistant to 

environmental and chemical influences (171, 172). They are also resistant to UV-C irradiation 

like other non-enveloped viruses such as parvo- and caliciviruses. Although the interactions of 

newly found HPyVs and the host cells or tissues in vivo are largely unknown, collective 

information from several studies suggests that the horizontal transmission route of HPyVs may 

be direct contact or aerosol or faecal-oral (164, 173, 174). For example BKPyV and JCPyV are 

known to persist in the reno-urinary tract and can be excreted in the urine. Exposure to the 

virus-containing excreta could be a source of infection. JCPyV DNA has also been found in 

tonsillar stromal and B cells (175). Under experimental conditions, JCPyV can productively infect 

tonsillar stromal cells. Likewise, BKPyV DNA has been detected in the lung tissue, in the 

respiratory tract, and tonsillar tissue, and has a preferential tropism for human salivary glands 

(176-178). WUPyV DNA was detected in tonsils and nasopharyngeal lymphoid tissue of 

immunocompetent children (179). Of the HPyVs, MCPyV, HPyV6, and HPyV7 are frequently 

found in skin whereas TSPyV, HPyV9, HPyV10, NJPyV, LIPyV have also been sporadically 

reported in skin (141, 180-182).  MCPyV DNA was also found in tonsillar tissue from 

tonsillectomy patients and in nasopharyngeal aspirates from wheezing children (183). 

Moreover, MWPyV DNA has been found in faecal and respiratory samples of healthy children 

(136, 184), suggesting respiratory or faecal-oral transmission.  

On the other hand, environmental studies have proposed another potential source, water. 

BKPyV, JCPyV, MCPyV, KIPyV, and WUPyV are routinely found in sewage water (171, 172). In 

addition, a review summarized the recent environmental studies and the collective data showing 

that HPyVs can be detected in almost all types of water, includes wastewater, coastal seawater, 

stormwater, river water, and even drinking water, suggesting a water-source transmission 

pathway for HPyV infections (174). Nevertheless, intensive molecular and serological studies are 
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required to determine the route of transmission and the site of primary infection for the newly 

discovered HPyVs. 
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AIMS OF THE STUDY 
 
The specific aims of this thesis were: 
 
 

1) To develop and evaluate microsphere-based Suspension Immune Assays (SIAs) for IgG, 

IgM and IgG-avidity for B19V, HCMV and T. gondii 

 

2) To assess the diagnostic performances of the SIAs in diagnosis and timing of the 

infections by B19V, HCMV and T. gondii 

 

3) To set up and evaluate microsphere-based multiplex PCR assays for the detection of 

DNAs of 13 HPyVs 

 

4) To explore the occurrences of HPyV viral DNAs in tonsillar tissues and to determine to 

what extent the lymphocyte system plays a role in HPyV infections and persistence 

 

5) To investigate the occurrences of the HPyVs in skin biopsies from liver transplant 

recipients versus healthy controls, in order to determine whether the HPyVs are 

etiologically associated with squamous cell carcinoma.  
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MATERIALS AND METHODS 

1. Materials 
 

1.1 Patients and clinical samples (I-IV) 

 

Table 2. Clinical samples used in studies I-IV. 
 
Study  Study cohort  Sample  

n=  
Sample type 

I Archival samples from HUSLAB  80 Serum  

80 follow-up patients with B19V infection 143 Serum  

104 Medical students 104 Serum 

II Archival samples from HUSLAB  97 Serum 

Archival samples from HUSLAB  94 Serum 

Archival samples from HUSLAB  40 Serum 

66 follow-up children and adults with B19V infection 126 Serum 

52 follow-up patients with HCMV infection 149 Serum 

22 follow-up pregnant women with T. gondii infection 116 Serum 

87 Medical students 87 Serum 

III 78 children and adults with tonsillitis  
or tonsillar hypertrophy 

78 Fresh-frozen tonsillar 
tissue 

IV 126 follow-up adult liver transplant recipients  14 Fresh-frozen lesional skin 
  127 Fresh-frozen healthy skin 

  118 Serum  

 80 immunocompetent adults 80 Fresh-frozen healthy skin 
 

 

Archival serum samples from HUSLAB (I, II) 

Archival samples (-20°C) were obtained from Helsinki University Central Hospital Laboratory 

Service (HUSLAB) collected between 2003 and 2013. In study I, carried out with IgG-SIAs, 80 

samples from 60 subjects had been tested for IgGs by in-house B19V-EIA and by Vidas HCMV 

and Toxo ELFAs. In study II, carried out with IgM- and IgG-avidity-SIAs, 231 samples were studied 

for IgMs and IgG-avidity against B19V (n=40), HCMV (n=97) and T. gondii (n=94) by in-house 

B19V-EIAs, Biotrin’s B19V-IgM EIA, Architect HCMV CMIAs and Vidas Toxo ELFAs. The 

reference assays are listed in Supplementary, Table S1. 
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Children and adults with B19V infection (I, II) 

Serum samples from children or adults (2 to 58 years of age, median 10 years) with symptomatic 

B19V infection were collected between 1992 and 2001. Study I, for B19V IgG-SIA, included 143 

samples from 80 subjects, followed up serologically for up to 700 days after primary infection. 

Study II, for B19V IgM-SIA and IgG-avidity-SIA, included 126 samples from 66 subjects, followed 

up serologically for up to 700 days after primary infection. The diagnostic criteria for B19V infection 

were the presence of B19V-IgM, B19V-IgG seroconversion or a significant rise of B19 IgG and 

low avidity of B19V IgG in the first seropositive sample (67, 68, 185).   

 

Patients with HCMV infection (II)   

In study II, for HCMV IgM and IgG-avidity-SIAs, 149 samples were available from 52 patients with 

HCMV infection: 108 samples from 39 patients with HCMV primary infection (186, 187) and 41 

samples from 13 patients with HCMV secondary infection (exogenous reinfection or endogenous 

reactivation) (187). The sera had been collected between 1986 and 1997, and their sample 

number per patient ranged from one to six. The diagnostic criteria for HCMV primary infection 

were positive or borderline IgM in the first sample, seroconversion or, significant rise of IgG and 

low avidity of IgG in the first seropositive sample. The diagnostic criteria for HCMV secondary 

infection were a four-fold or greater increase in IgG in a serum pair, high avidity of IgG in the first 

serum and positive or borderline IgM (186, 187). 

 

Pregnant women with T. gondii infection (II)   

In study II, 116 samples were from 22 pregnant women with T. gondii primary infection. Of the 

patients, 9 individuals (sample n=48) presented specific IgG in the first sample and the other 13 

individuals (sample n=68) were seroconverters. The sera were collected between 1989 and 1990. 

The number of sera per patient ranged from two to seven. The diagnostic criteria for T. gondii 

primary infection were positive or borderline IgM, seroconversion or a significant rise of T. gondii 

IgG and low avidity of IgG in the first sample (188). All the patients presented positive or borderline 

IgM during follow-up, albeit a single IgG seroconverter.  

 

Medical students (I, II) 

For control in B19V study, serum samples from medical students were included. The 

seroprevalences of B19V and several emerging viruses (143, 189) have been previously 

determined in these samples. Study I, with B19V IgG-SIA, included single sera from 104 medical 
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students. Study II, with corresponding IgM-SIA, included single sera from 87 medical students; 

and with IgG-avidity-SIA, single sera from 57 students who had anti-B19-VP1-IgG.   

 

Children and adults with tonsillitis or tonsillar hypertrophy (III)   

In study III, tonsillar tissue from 78 subjects (31 children and 47 adults) was used. The paediatric 

donors ranged in age from 2 to 15 years (average, 6.6) and the adults from 16 to 69 (average, 

30.3). The tonsillectomies and tonsillotomies had in most cases been performed due to chronic 

tonsillitis or tonsillar hypertrophy (190). The tonsillar tissues had been obtained directly after 

surgical resection at the operation theatre.  

 

Liver transplant recipients (IV)   

In study IV, 126 adult liver transplant recipients (LiTRs) were included. All the LiTRs had been 

recruited for follow-up skin examination at Helsinki University Hospital between October 2012 and 

December 2016. The histological examinations were conducted and documented by 

dermatologists from the Dermatology Unit. Of the LiTRs, 12 had squamous cell carcinoma in situ 

(SCCis) or actinic keratosis (AK), with a median age at diagnosis of 68 years and a median post-

transplant (post-tx) time of 11 years. The remaining 114 LiTRs not developing SCCis or AK during 

follow-up had a median age at diagnosis of 62 years and a median post-tx time of 10 years. 

Altogether, 14 punch biopsies were collected from lesional sites and 127 from non-lesional sites 

and were stored at -70 °C. At least one biopsy of healthy skin was taken from each LiTR. 

Additionally, sera were available from 118 LiTRs.  

 

Fresh-frozen skin biopsies of immunocompetent adults (IV)   

For control, 80 immunocompetent adults (median age 43) who participated in epicutaneous 

testing were included in study IV. Cutavirus DNA has previously been studied in this cohort (191). 

Skin biopsies taken from the back of the individuals were stored in RNA-later at -80 °C. 

 
 

1.2 Antigens (I, II) 

 

The antigens used in study I or II are listed in Table 3. B19V recombinant VP2-VLPs were 

expressed with baculovirus system as described in (67, 69). B19V VP1u recombinant fusion 

protein including the unique region of B19V minor capsid protein (VP1) was expressed in E.coli 

as described in (68, 69, 187).  
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Table 3. Antigens used in studies I-II. 
 
SIAs  Antigen (Ag) Source 

B19V IgG Insect cell recombinant VP2-VLP In-house 

HCMV IgG Viral lysate (strain AD 169) Commercial  

T. gondii IgG T. gondii (RH strain) tachyzoite lysate Commercial  

B19 VP2 IgM Insect cell recombinant VP2-VLP In-house 

HCMV IgM Viral Lysate (strain AD 169) Commercial  

T. gondii IgM T. gondii (RH strain) lysate enriched in membrane fraction Commercial  

B19 VP1u-IgG-avidity Prokaryotic recombinant fusion protein containing the 

B19 VP1 unique region 

In-house 

HCMV IgG-avidity Viral Lysate (strain AD 169) Commercial  

T. gondii IgG-avidity T. gondii (RH strain) tachyzoite lysate  Commercial  

 

 

1.3 Plasmids, primers and probes (III, IV) 

 

Plasmids, primers and probes in the HPyV genoprevalence study are presented in Table 4. The 

first 13 HPyVs were tested in multiplex and the newest HPyV, LIPyV, separately. The primers and 

probes for the first 10, except MCPyV, were from Gustafsson et al. (192) and for LIPyV was from 

T. Gheit et al. (141). For MCPyV, STLPyV, HPyV12 and NJPyV, the primers and probes were 

designed for this study. Each probe sequence represented the reverse complement to the target 

region of the biotinylated PCR product. All the reverse primers of VP1 region were labelled with 

biotin at 5’-end and all the probes were 5′ amine-C12-modified.  

Plasmids containing a HPyV genome were used as positive controls and to determine assay 

sensitivities by limiting dilution analysis. A 10-fold dilution series from 108 to 100 copies/μl of HPyV-

DNA was prepared for each of the 14 HPyVs in PCR-grade H2O and another 10-fold dilution 

series from 106 to 100 copies/μL of combined DNAs for all the first 13 HPyVs in PCR-grade H2O. 

All the plasmid dilutions were aliquoted and stored at -20 °C.  
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Table 4. Sequences of primers and probes, amplicon sizes, amplicon positions in target genome 
and reference strains in study III-IV. 
 

* unassigned polyomavirus species 
 

 

Species Virus Forward primers sequence (5’-3’)  
Reverse primers sequence (5´ -3’) 
Probe sequence (5’-3’) 

Ampli-
con 
length  
(bp) 

Amplicon 
position in 
target 
genome 
(bp) 

Reference 
strain 
(GenBank 
accession 
no.) 

HPyV1 BKPyV ACAGAGGTTATTGGAATAACTAG 
ACTCCCTGCATTTCCAAGGG 
CTTAACCTTCATGCAGGGTC 

143 1915-2057 V01108 

HPyV2 JCPyV AATGAGGATCTAACCTGTGGAA 
CTGCACCATTGTCATGAGTTGCTTG 
ATGAATGTGCACTCTAATGG 

127 1742-1868 J02226 

HPyV3 KIPyV TTGGATGAAAATGGCATTGG 
TAACCCTTCTTTGTCTAAAATGTAGCC 
CTTGGAACAGCTAATAGTAGAATC 

142 2263-2404 EF127906 

HPyV4 WUPyV TTGGATGAAAATGGCATTGG 
TAACCCTTCTTTGTCTAAAATGTAGCC 
GAGTACATACAGGGCTTTCCAG 

142 2411-2552 EF444554 

HPyV5 MCPyV TTCCATCTTTATCTAATTTTGCTT 
AGGCCTAGTTTTAGATTACCAGAC 
GTAATAGGCCCACCATTTGT 

146 3755-3900 JF813003 

HPyV6 HPyV6 TTGCTTCTGGATCCAATACTGC 
GGCCTCAGGAATTTCAGGCAA 
TGGATGCTGGTTCATCTCTG 

131 1426-1556 HM011558 

HPyV7 HPyV7 AAGCAGCTACAACTGGGAACTT 
GGCCTCAGGAATTTCAGGCAA 
GCCTACCTTATCCTATGAGTG 

125 1450-1574 HM011566 

HPyV8 TSPyV AGAATGTATGATGACAAAGGTAT 
TCTGTAGTTTCCAGTTAGAAAC 
TGAGGGAATGAATTTCCATATGTT 

111 1722-1832 GU989205 

HPyV9 HPyV9 ATCTATGGCTCATCCTCAGG 
GTAGAGCTAGCAACTAGGCCT 
AGTGCAGGGTACCACTCTC 

107 1862-1968 KC831440 

HPyV10 MWPyV 
 

GTCCAGTTCCTACTAAAGTTCCT 
TACATCATTGCCCATCCTTGGTT 
GCCGGACACCACAATGACA 

128 1501-1628 JQ898292 

HPyV11 STLPyV TGAATATGATCCGTGCCAAA 
ACTGCATCAGGGCCTACTTG 
CCTCCTCCAACATGTGTTCC 

129 1318-1446 JX463184 

HPyV12 HPyV12 GTAATGGCACCCAAGAGGAA 
GGGGATTTAGAAAGGCCTCA 
CCCAGCAGTGTCCCTAAATT 

157 1402-1558 JX308829 

HPyV13 NJPyV TGTGTGCCAAAGAAGTGTCCT 
TCTGTCACCTGTTGGAGCATT 
CTGATGCTACTACTGAAATTGAA 

159 1113-1271 KF954417 

* LIPyV 
 

CAAGCCTTGCTGCAGCATTCCTAG 
ATCTTTGTTTTGTCCTCTAGAACCCT 
ATTGCCCCCAAGATAGAT 

155 3088-3242 
(LT region) 
(141) 

KY404016 
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2. Microsphere-based antibody assay (I, II) 

 

2.1 Coupling of antigens to xMAP microspheres (I, II)  

 

The xMAP microsphere (Luminex Corp., USA) coupling was performed according to the 

manufacturer protocol (29). To minimise nonspecific background, in each coupling, a total of 1.25 

× 106 microspheres were coated with the corresponding antigen, followed by blocking with Tris 

buffer (PBS + 50 mM Tris + 0.5 ml/l Tween-20). The coupled microspheres were washed and 

stored in StabilGuard® Immunoassay Stabilizer (SG, SurModics, USA) at 4°C in the dark. As a 

control in IgM-SIA, each sample was run with human IgG (Sigma-Aldrich, USA) -coupled 

microspheres. In the coupling, 6 µg of human IgG was used to coat 106 microspheres and the 

coupled microspheres were stored in 1 ml SG at 4°C in the dark. 

 

2.2 IgG-SIAs (I)   

 

The detection of IgG antibodies against B19V, HCMV and T. gondii was based on indirect SIAs 

format (Fig. 12). In brief, 50 μl of diluted sera in PBST (dilution 1:20) was added into each well of 

a 96-well flat-bottom plate. Then the diluted sera were incubated with B19V, HCMV, T. gondii-

antigen coated and naked microspheres for 45 minutes in the dark. After 3 washing cycles with 

Bio-Plex wash buffer (Bio-Rad, USA), 50 μl of 2 μg/ml biotinylated protein G (Thermo Scientific, 

USA) was added. The plate was thoroughly mixed and kept for 30 minutes in the dark. After 3 

washing cycles, 50 μl of 4 μg/ml SAPE (Life Technologies, USA) in PBST was added and kept 

for 30 minutes in the dark. After final washes, each well was resuspended with 120 μl of PBST 

and the median fluorescence intensities (MFIs) were measured with a Bio-Plex®200 instrument. 
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Figure 12. Schematic presentation of indirect IgG-SIA. Microsphere-based assays for the detection of IgG 
antibodies against B19V, HCMV and T. gondii were developed by using antigen recombinant VLPs made 
up of the B19V-VP2, HCMV viral lysate (strain AD 169) or T. gondii (RH strain) tachyzoite lysate. The IgG-
SIA is based on the detection of specific IgG captured by an antigen-coated microsphere and then the 
specific IgG can be measured when it links to the biotinylated protein G and SAPE (Left). Each sample was 
run together with uncoupled (“naked”) microspheres (Right) to estimate nonspecific binding in the SIAs. 

 

 

2.3 IgM-SIAs (II)        
 

The detection of IgM antibodies was based on indirect SIAs format (Fig.13). IgM-SIAs included 

IgG removal with GullSORB (Meridian Bioscience, USA) and two internal controls (naked-

microsphere and Rheumatoid Factor (RF) control). Uncoupled (“naked”) microspheres were used 

to estimate nonspecific binding in the SIAs and RF control was designed employing human IgG 

(Sigma-Aldrich, USA) -coupled microspheres to monitor the effectiveness of IgG and RF removal 

in each sample (Fig.13). In brief, GullSORB was mixed with the sera, making a serum dilution of 

1:20 (193). The mixture was kept at room temperature for 1h and centrifuged at 14,000 x g for 

one minute to remove precipitates. The supernatant was further diluted four-fold with PBST to 

yield a serum dilution of 1:80. Then 50 μl of diluted sera was dispersed into a 96-well flat-bottom 

plate and the B19V, HCMV, T. gondii-antigen and human IgG-coated as well as naked 

microspheres were added for 45 min. After washes, 50 μl of biotinylated anti-human IgM (Sigma, 

USA) at 3 μg/ml was added for 30 min. After washes, 50μl of 6 μg/ml SAPE (Life Technologies, 

USA) in PBST was applied for 20 min. After final washes, the wells were resuspended in 120 μl 

of PBST and the MFI values were measured.  
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Figure 13 Schematic presentation of indirect IgM-SIA. Microsphere-based assays for the detection of IgM 
antibodies against B19V, HCMV and T. gondii were developed by applying HCMV viral lysate (strain AD 
169), T. gondii (RH strain) tachyzoite lysate enriched in membrane fraction including the apical complex, 
or recombinant VLPs made up of the B19V-VP2. The IgM-SIA is based on detection of specific antimicrobial 
IgM antibodies when they are captured by corresponding antigen-coated microspheres. Then the 
captured antimicrobial IgM is targeted by adding biotinylated goat anti-human IgM (μ-chain specific) 
antibody. Finally, specific antimicrobial IgM can be measured when biotinylated anti-human IgM 
conjugates with SAPE (Left). Each sample was run together with uncoupled (“naked”) microspheres 
(Middle) to estimate nonspecific binding in the SIAs. In addition, each sample was run with human IgG 
(Sigma-Aldrich, USA) -coupled microspheres (right). This control was used to monitor the effectiveness of 
IgG and RF removal.  
 

 

2.4 IgG-avidity-SIAs (II)      

 

The IgG-avidity-SIAs are based on the principle of elution of antigen-bound antibodies by the 

protein-denaturing agent, urea (Fig.14). An IgG-avidity-SIA in singleplex format was performed 

with either B19V, HCMV or T. gondii-antigen coated microspheres and in multiplex format with 

the combination of two or three of them. Briefly, from each serum two dilution series were made 

in PBST, series 1 (1:20, 1:80, 1:320, 1:1280) and series 2 (1:80, 1:320, 1:1280, 1:5120). These 

dilutions were placed in a 96-well plate and incubated with the antigen-coated microspheres for 

45 min. Then, series 1 was washed three times for five minutes with freshly prepared 6M urea 

(Promega, USA) in PBS, and series 2 was washed with PBS only. After 3 washes, protein G 

(Thermo Scientific, USA) and SAPE were added as in IgG-SIAs, and the MFI values measured. 

Avidity value was the ratio of endpoint titer (EPR) of series 1 (urea treated) over series 2 (no-urea 

treated), calculated by a curve-fitting software (Avidity 1.2) (187). 
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Figure 14. Principle of IgG-avidity-SIA. Chaotrope-based IgG-avidity-SIAs are developed by exploiting 
HCMV viral lysate (strain AD 169), T. gondii (RH strain) tachyzoite lysate or recombinant fusion protein 
containing the B19 VP1 unique region. The measurement of IgG avidity in SIA was based on the endpoint 
titration of serially diluted sera and elution of low avidity antibodies by a protein-denaturing agent, urea. 
Specifically, the antigen-bound antibodies are treated in parallel with or without urea. As a result, the low-
avidity antibodies are eluted away while the high-avidity antibodies are retained and measured. 
 

 

2.5 Reference serological tests (I, II) 

 

Reference serological tests (Table S1) were used to evaluate performances of the IgG (I), IgM 

(II), IgG-avidity (II) SIAs.  

 

2.6 Statistical analysis (I)  

 

The square of the Pearson’s correlation coefficient, R2, was calculated by Graph-Pad Prism 

version 6 for Mac (GraphPad Software, USA) to determine the correlation of results between 

singleplex and multiplex IgG-SIAs. The positive, negative and overall percent agreements were 

calculated between SIAs and reference assays. In statistical calculations, borderline values in IgG 

and IgM SIAs were counted as positive given the primary role of IgG and IgM assays in screening. 

In IgG avidity SIAs, in turn, borderline avidity values were considered high-avidity due to the role 

of the assays in ruling out recent primary infections. In study I, two-way contingency table analysis 

in ‘Vassar-Stats’ was used for the calculation. In study II, contingency table analysis in GraphPad 

Prism version 7.00 for Windows (GraphPad Software, USA) was used. The agreements between 

SIAs and EIAs were evaluated by kappa coefficient and defined as (194).  
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3. Microsphere-based multiplex nucleic acid assay (III, IV) 

 

3.1 DNA extraction (III, IV) 

 

In study III, all tonsillar tissues were sliced with disposable scalpels and cell suspensions were 

prepared by mechanical homogenisation with a syringe plunge, followed by PBS wash and 

filtration through a 70 μm mesh (Corning Life Sciences). The cells were resuspended into a final 

volume of 100 μl PBS. Whole DNA was extracted by the KingFisher Duo DNA Extraction Kit 

(Thermo Fisher Scientific) according to the manufacturer instructions. The extracted DNA was 

stored at −20 °C. 

In study IV, all the skin specimens were sliced with disposable scalpels and digested with 

proteinase K overnight. DNA was isolated with Qiagen DNA mini kit (Qiagen, Hilden, Germany) 

according to the manufacturer instructions. The isolated DNA was eluted in 60 µl of AE buffer 

(Qiagen) and stored at -20°C. The DNA was also isolated from serum of 37 LiTRs with HPyV-

DNA in biopsies. The DNA from each serum (200 µl) was extracted with Qiagen DNA blood mini 

kit (Qiagen). The yield was eluted in 100 µl of AE buffer (Qiagen) and stored at -20 °C. 

 

3.2 Coupling of oligonucleotides to xMAP microspheres (III, IV) 

 

Oligonucleotide probes (Sigma-Aldrich, UK) for target viruses were assigned to individual xMAP 

microsphere (Luminex Corp., USA) sets. The coupling of oligonucleotides to microspheres was 

done according to the manufacturer instructions. The probe amounts ranged from 138 to 300 

pmol per coupling (106 microspheres). The probe-coupled microspheres were stored in 500 µl TE 

buffer at +4 °C in the dark. 

 

3.3 Microsphere-based multiplex HPyV-DNA test (III, IV) 

 

Multiplex nucleic acid amplification: In brief, 5 μl DNA templates were mixed in a 20 μl multiplex 

reaction consisting of 12.5 μl of 2× multiplex PCR mastermix (Qiagen, USA), 0.2 μM of each 

forward primer (Sigma-Aldrich, UK) and 1 μM of each biotinylated reverse primer (Sigma-Aldrich, 

UK). The amplification conditions were 95 °C for 15 min, 40 cycles at 94°C for 20 s, 50°C for 90 

s, 71°C for 80 s, and a final extension at 71°C for 10 min. In study IV, multiplex nucleic acid 

amplification for the 13 HPyVs was performed as described in study III except that annealing 

temperature was 57.5°C. Each run included as positive controls the plasmids of all 13 HPyVs. In 



 

50 

 

addition, a separate singleplex PCR for the LIPyV was done as described (141), and each PCR 

run included plasmid with LIPyV complete genome as a positive control.  

Hybridisation (Fig. 15): Followed by PCR amplification, type-specific oligonucleotide probes-

coated microspheres and PCR products were hybridised as described in (192) except that the 

SAPE (Invitrogen) incubation temperature was 48 °C. In brief, a total of 5µl of PCR products were 

mixed with 45 µl of tetramethyl ammonium chloride (TMAC) hybridization buffer (195) containing 

probes-coated microspheres (study I: probes of HPyV1-13; study II: probes of HPyV1-13 or 

LIPyV). The mixture was added into a 96-well V-bottomed plate and heated to 95°C for 10 min. 

After a cool down on the ice for a minute, the plate was incubated for 30 min at 48°C in the dark 

with shaking. After three washes, 4 μg/ml SAPE in staining buffer (195) was added for 20 min at 

48°C in the dark with shaking. After three washes, the microspheres were analysed in Bio-Plex 

200 (Bio-Rad). 

 

Figure 15. Microsphere-based multiplex HPyV-DNA test. The multiplex HPyV-DNA test involves the 
amplification of target genes and the following hybridisation links the amplified target strand to a specific 
probe on the microsphere. In our study, the test was designed using primer pairs and probes targeting 
the respective HPyV viral protein 1 (VP1) genes. The PCR amplification with one of the primers was 
labelled with biotin at 5′ end. After heat denaturation, dsDNAs were separated and the biotin-labelled 
target strands bind to specific probes linked on microspheres. Finally, SAPE was added to detect and semi-
quantify the target genes.  
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3.4 Microsphere-based singleplex HPyV-DNA test (III, IV) 

 

Microsphere-based singleplex HPyV-DNA test was performed as described in multiplex format 

except using one pair of primers for DNA amplification and a single probe for DNA detection. 

 

3.5 Cut-off determination (III, IV) 

 

The cut-offs of microsphere-based HPyV-DNA assays were defined as two times background 

means plus 15 MFI.  

 

3.6 Singleplex PCR (III) 

 

In study III, to confirm each positive HPyV-DNA finding in tonsillar tissue (JCPyV, WUPyV, MCPyV, 

HPyV and TSPyV), all the samples with positive findings were retested with singleplex PCR and 

agarose gel electrophoresis. To enrich the band signal, a second run of PCR was used employing 

the product of the first PCR as template. In brief, 5μl of DNA template was mixed in a 20 μL 

multiplex reaction consisting of 12.5 μL of 2 x multiplex PCR mastermix (Qiagen), 0.2 μM of the 

corresponding forward primer and 0.2 μM of the corresponding biotinylated reverse primer. The 

amplification conditions were the same as described in the microsphere-based multiplex PCR. 

The second PCR run was performed as the first run except for using 3μl of template. Each run 

included PCR-grade water as negative control, as well as single plasmid of corresponding HPyV 

as positive control. 

 

3.7 Quantitative singleplex PCR (IV) 

 

To quantify and confirm the microsphere-based DNA findings in study IV, samples with positive 

results were re-examined with the corresponding qPCRs as described (133, 196, 197). The viral 

DNA loads were given per million cells, determined with the human house-keeping gene RNaseP 

(198).  

 

3.8 DNA sequencing and sequence analyses (IV) 

 

The PCR product of the LIPyV-positive sample was purified with Diffinity RapidTip (Sigma-Aldrich, 

St. Louis, MO, USA) and Sanger sequenced. The resulting sequences were compared with the 

reference DNA sequences of the NCBI Entrez Nucleotide database (accession number 

KY404016 (141), using the NCBI Blast program. 
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3.9 Statistical analysis (IV) 

 

We performed Fisher’s exact test, Mann–Whitney U test, chi-squared test, unpaired 

nonparametric Kruskal–Wallis test and Dunn’s multiple comparison test to compare the 

prevalences or loads of MCPyV or HPyV6 DNA in skin biopsies from the lesion and/or non-lesion 

sites in LiTRs and immunocompetent individuals. All the statistical tests were performed using 

GraphPad Prism version 7.00 (GraphPad Software, La Jolla, CA, USA). A P-value <0.05 was 

considered significant. 

 

4. Ethical statements 
 

The Helsinki University Hospital Ethics Committee approved the use of all clinical samples 

included in this study. All the clinical samples were collected and handled following the ethical 

rules of the Ethics Committee of Helsinki and Uusimaa Hospital District. The medical students 

had provided informed consent for the collection, storage and use of their samples.   
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RESULTS AND DISCUSSION 

 
1. Microsphere-based serological assays (I, II) 

 

EIA- or immunofluorescence- based assays have been used mainly in singleplex format. 

Singleplex testing has its limitations, such as low throughput, cost and labour. The microsphere-

based methodology offers a simplified working platform by multiplexing assays, as well as a wide 

dynamic range of 3 to 4 logs (26). Regarding expenditure, the cost per sample in IgG-SIA was 

calculated as an example in study I, and estimated to be per sample 0.20€ for singleplex and 

0.35€ for a triplex, making these tools beneficial also financially.  

B19, HCMV and T. gondii infections can cause severe complications to foetuses or congenital 

abnormalities. It is important to determine whether or when a pregnant woman has acquired the 

infection. Combinations of serological tests (IgG, IgM and IgG-avidity) are practicable in the 

detection of infections during pregnancy (69, 199-201). Specific IgM can persist long after the 

initial antigenic challenge (112, 202) and also re-appear in HCMV or T. gondii reactivations. In 

such cases, measurement of the antigen-binding avidity of the antimicrobial IgG is necessary in 

the second line for the distinction of primary infection from long-term B-cell immunity. Current 

serodiagnosis approaches, e.g. ELISA, are mostly confined to detection of one pathogen at a 

time. To improve the efficiency in the detection of infections, in study I and II, we described the 

development of microsphere-based assays for detection of IgG antibodies, IgM antibodies and 

IgG-avidity against the three important pathogens in multiplex and monoplex format.  

 

1.1 Development of SIAs (I, II) 

 

Optimisation of SIAs 

The development of each SIA involved the optimisation of antigen concentrations, serum dilutions, 

secondary antibody concentration, SAPE concentration, GullSORB treatment and post-coat 

blocking. All the SIAs were first optimised individually and then were combined into a multiplex 

format. The optimal assay conditions for each SIA are listed in Table 5. 
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Table 5. Optimal assay conditions 
 

Assays Pathogens Ag amount 

(µg per 106 

beads) 

Serum dilution Secondary 

antibody 

(µg/ml) 

SAPE 

(µg/ml) 

IgG-SIAs 

B19V 50 1:20 2 4 

HCMV 20 1:20 2 4 

T. gondii 50 1:20 2 4 

IgM-SIAs 

B19V 6  1:80 3 6 

HCMV 25  1:80 3 6 

T. gondii 6  1:80 3 6 

 B19V 50  1:20-1:5120 2 4 

IgG-avidity-SIAs HCMV 20  1:20-1:5120 2 4 

 T. gondii 12.5  1:20-1:5120 2 4 

SIA microsphere-based suspension immunoassay; Ag antigen; SAPE streptavidin-phycoerythrin 

 

Our results showed that IgG absorption by GullSORB in each sample corrects the results for 

rheumatoid factor (RF) interference (unpublished data). Also, the GullSORB pre-treatment was 

shown to promote not only the specificity, but also the sensitivity of the IgM assays (study II, Fig. 

S3). It is well known that the interference through endogenous antibodies, e.g. RF can cause 

unspecific false-positive IgM results by bridging the serum IgG and the secondary antibody. 

Besides, the antimicrobial IgG can compete for the binding site with homologous IgM which 

shares the same antigen determinants. The GullSORB treatment has been utilised widely to 

eliminate the false-positive IgM result caused by RF (203, 204). 

The post-coat blocking of the microsphere was tested with bovine serum albumin (BSA) and 

Tris buffer. We noticed that post-coat blocking with bovine serum albumin (BSA) yielded 

inappropriately high background in some individuals. Instead, the replacement of BSA with Tris 

significantly improved the signal-to-noise ratios. Tris contains a primary amine, and it can 

specifically bind the spare reactive intermediate (sulfo-NHS-ester intermediate) on the antigen-

coated microsphere and hinder nonspecific binding in the following assays. The Tris buffer post-

coat blocking has also been successfully applied in (205). 

 

Cut-off determination (I, II) 

The SIA cut-offs were calculated by the means and standard deviations (SDs) of MFI values or 

avidity values. The cut-off criteria and values are presented in Table 6. For B19V IgG-SIA (I) and 

IgM-SIA (II), the cut-offs were determined with sera tested B19V seronegative by both Biotrin’s 

(Diasorin, Ireland) and in-house B19V IgG and IgM EIAs. For HCMV- and T. gondii-IgG and -IgM-

SIAs, the cut-offs were defined with separate sets of 60 sera shown to lack the respective 

antibodies by the corresponding Architect IgG and IgM tests (Abbott, USA). The cut-offs of low 
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and high avidity (II) were determined with the B19V or HCMV primary infection samples taken 

within 28-50 days after onset of symptoms, and with T. gondii using the first IgG-containing 

samples in < 3 month-seroconversion.  

 

Table 6. Cut-offs in SIAs 
 
Assays Pathogens Unit Cutoff 

criterion 
Cutoff value  Seronegative /  

Primary infection 
n= 

 B19V MFI 
4 SD 
5 SD 

Negative < 453  
Positive   > 532  

72 

IgG-SIAs HCMV MFI 
4 SD 
5 SD 

Negative < 650  
Positive   > 800  

60 

 T. gondii MFI 
4 SD 
4 SD 

Negative < 234  
Positive   > 234  

60 

 B19V MFI 
4 SD 
5 SD 

Positive, ≤714  
Negative, >831  

86 

IgM-SIAs HCMV MFI 
2 SD 
3 SD 

Positive, ≤518  
Negative, >631 

60 

 T. gondii MFI 
4 SD 
5 SD 

Positive, ≤938  
Negative, >1056  

60 

 B19V Index 
2.5 SD 
3.5 SD 

Acute, ≤35 
Past,  >44 

59 (≤28 days of onset) 

IgG-avidity-SIAs HCMV Index 
1.5 SD 
3 SD 

Acute, ≤15  
Past, >24  

52 (≤50 days of onset) 

 T. gondii Index 
1.5 SD 
2.5 SD 

Acute, ≤21  
Past,   >27  

40 (<3 months after 
IgG-seroconversion) 

 

 

Reproducibility (I, II) 

In IgG-SIAs (I), the intra-assay variability was calculated with 8 replicates in the same run, and 

the inter-assay variability with 6 distinct runs, using serum pools containing or lacking the 

respective IgG. The intra-assay and inter-assay variability of HCMV-, T. gondii- and B19V-IgG-

SIAs were 3-7%, 7-12%, 3-8%; and 4-9%, 8-15%, 1-12%, respectively. In IgM-SIAs (II), the intra-

assay variability was calculated with 8 replicates in the same run, and the inter-assay variability 

with 6 distinct runs, employing serum pools containing or lacking the respective IgM. The 

respective intra-assay CVs of HCMV-, T. gondii-, B19V-IgM-SIAs were 2-9%, 9-11% and 6-9%; 

and the inter-assay CVs, 9-12%, 11-16% and 11-14%. In IgG-avidity-SIAs (II), inter-assay 

variability was calculated with 6-8 distinct runs over three months, using acute-phase and past-

infection serum pools. The respective inter-assay CVs of HCMV-, T. gondii-, B19V-VP1-IgG-

avidity-SIAs – assessed using acute-phase and past infection serum pools – were 9-18%, 14-19% 

and 14-17%. All SIAs showed good within- and between-run precisions, demonstrating the 

reliabilities of the assays. 
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1.2 Diagnostic performance of SIAs (I, II) 

 

To validate the established assays, serum samples from well-characterized clinical cohorts were 

applied. All the samples were analysed by in-house or commercial reference serological tests 

(Table S1). The positive, negative and overall percent agreements of SIAs in comparison to 

reference assays are presented in Table 7.  

 

Table 7. Positive percent, negative percent and overall agreements of SIAs in study I-II  
 

Assays Pathogens Sample  
n= 

Positive percent 
agreement  
(95% CI) 

Negative percent 
agreement  
(95% CI) 

Kappa 
coefficient  
(95% CI) 

 B19V 247 98     (97-100) 98     (95-99) 0.99  (0.95-1.0) 

IgG-SIAs HCMV 79 100   (92-100) 100   (80-100) 1.0    (1.0-1.0) 

 T. gondii 77 100   (90-100) 100   (85-100) 1.0    (1.0-1.0) 

 B19V 127 95     (83-99) 100   (96-100) 0.96  (0.91-1.0) 

IgM-SIAs HCMV 97 98     (88-100) 98     (90-100) 0.96  (0.90-1) 

 T. gondii 94 100   (92-100) 100   (92-100) 1.0    (0.95-1.0) 

 B19V 94 92     (79-98) 100   (94-100) 0.93  (0.86-1.0) 

IgG-avidity-SIAs HCMV 97 100   (91-100) 95     (86-99) 0.91  (0.83-1) 

 T. gondii 94 100   (92-100) 100   (92-100) 1.0    (0.95-1.0) 

 

 

IgG-SIAs (I) 

In total, the agreement between B19V IgG-SIA and VP2-IgG-EIA tests was 99.2% (245/247). Full 

agreement between B19V SIA and EIA resulted in the cohort of the healthy medical student. Two 

discrepancies were found between B19V SIA and EIA: one (SIA-, EIA+) was collected on day 4 

and another (SIA+, EIA-) collected on day 1 after onset. In B19V-IgG-SIA, all the samples 

collected >10 days after onset were positive; and the four borderlines were collected within 6 days 

of onset (Fig 1. in study I). HCMV and T. gondii IgG-SIAs were 100% concordant with those 

obtained with Vidas ELFAs. Moreover, the multiplex IgG-SIAs were compared with singleplex 

SIAs and reference assays with 80 sera of known IgG reactivities against three pathogens (Fig 4. 

in study I). Pearson's correlation coefficients between multiplex and singleplex SIAs were 0.961-

0.977. With multiplex IgG-SIAs, B19V, HCMV, T. gondii IgG seropositivity corresponded perfectly 

with those obtained with reference assays (singleplex), except for a single discrepancy (SIA+, 

EIA-).  
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All IgG-SIAs were highly sensitive and specific in comparison to reference assays. Great 

correlation between the multiplex and singleplex assays indicated no interference among the 

three IgG SIAs. The few discrepancies in B19V are likely due to low antibody affinity as the 

samples were collected from very early infection. Moreover, the explanations for the 

discrepancies may also be due to the intrinsic differences between assays: fluorescence vs. 

colourimetric substrate detection, antigen coupling covalently onto magnetic microspheres vs. via 

adsorption and antibody detection with protein G vs. anti-human IgG.  

 

IgM-SIAs (II) 

The overall agreement between B19V SIA and Biotrin’s B19V IgM EIA tests were 98.4% 

(125/127). Both SIA and in-house IgM-VP2-EIA showed the absence of B19V-IgM in all 87 

samples from medical students. HCMV IgM-SIA agreed with the corresponding Architect IgM test 

in 97.9% (94/96) of samples. T. gondii IgM-SIA resulted in 100% (94/94) concordance with the 

corresponding VIDAS results. 

All in all, excellent agreements were observed between SIAs and reference assays in the 

detection of IgM. Of note, the antigens used in T. gondii IgM detection are usually tachyzoite 

lysates or recombinant proteins (16, 188, 206). Here we employed a tachyzoite lysate enriched 

in membrane fractions including the apical complex. Kumolosasi et el. (207) have shown that the 

apical complex is associated with active motility during parasite invasion and is a strong 

immunogen for IgM antibodies. Notably, the presently generated IgM-SIA based on this antigen 

showed full agreement with the Vidas Toxo IgM test employing the tachyzoite lysate.  

 

IgG-avidity-SIAs (II) 

With B19V, excluding three sera with insufficient VP1u-IgG in SIA, a total of 96.8% (91/94 samples) 

agreement was seen between IgG-avidity-SIA and VP2-ETS-EIA. All the seropositive samples 

from students showed high avidity in B19-IgG-SIA and B19V-VP1u-IgG-avidity-EIA. HCMV IgG-

avidity-SIA agreed with the Architect IgG avidity test in 95.9% (93/97 samples). Of the four 

discordances between HCMV SIA vs. Architect, three were SIA low vs. Architect high and one 

was SIA borderline vs. Architect low. The four samples were retested with Vidas IgG avidity assay 

and exhibited low avidity (n=2) and borderline avidity (n=2). With T. gondii IgG-avidity SIA, a full 

agreement was observed between IgG-avidity-SIA and Vidas IgG avidity ELFA, giving a 100% of 

positive as well as negative percent agreements. 

Altogether, IgG-avidity-SIAs results were highly concordant with the results obtained from 

reference assays. Notably, the B19V VP1u-IgG-avidity-SIA showed good agreement with the in-
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house EIA measuring the “conformation-dependence” of VP2-IgG (67, 69, 185), and altogether, 

pinpointed the time of B19V infection accurately. With regard to HCMV, notwithstanding the test 

type divergence, in clinical performance avidity-SIA (based on chaotrope-elution) agreed very well 

with the corresponding Architect (based on antigen-competition).  

In IgG-avidity SIAs, we used endpoint titration of serially diluted sera which has been 

considered as gold standard so far for IgG avidity. Accordingly, the avidity result is calculated by 

the ratio of end-point titers obtained from the generated titration curves. A simpler, but popular 

approach, the “avidity indices” (AI) are derived from single dilutions of serum. With our data, the 

AI approach may not be sufficient to calculate IgG-avidity SIAs (unpublished data). Moreover, our 

recent studies have verified and extended the long-term notion (10) that the AI approach is 

influenced by the IgG concentration (208).   

 

 

1.3 IgM and IgG-avidity SIAs for the timing of infection (II) 

 

To study the IgM and IgG-avidity-SIAs in the timing of infection, we examined 391 follow-up serum 

samples from 140 patients with infection by HCMV (186, 187), T. gondii (188, 209) or B19V (67, 

68, 185). The IgM and avidity results are summarised in Table 8. Of the samples collected within 

three months of infections by HCMV, T. gondii or B19V, multiplex IgM-SIAs detected the 

corresponding IgM (including borderline IgM results) in 87.4% (83/95), 87.5% (33/40) and 100% 

(82/82) samples; and low avidities of IgG were also shown in 86.9% (53/61), 88.6% (31/35) and 

93.2% (68/73) among these samples. With HCMV and B19V IgG-avidity-SIAs, high avidities were 

shown in 95.4% (42/44) and 90.7% (49/54) of samples collected beyond three months of primary 

infection (including HCMV secondary infection), respectively. All the samples collected beyond 

200 days were high avidity in HCMV and B19V IgG-avidity-SIAs. With T. gondii IgG-avidity SIA, 

82% (9/50) exhibited high (70%, 35/50) or borderline avidity (12%, 6/50) among the samples 

collected beyond 200 days, albeit five patients exhibited persistent low avidity IgG. 

The IgM as well as the IgG-avidity-SIAs showed high clinical sensitivities among the samples 

collected within three months of primary infection by HCMV, T. gondii or B19V. Only beyond two 

months onset of B19V and HCMV infections did the first examples of high avidity appear. As both 

persisting and re-appearing IgMs were observed among these samples, the need for infection 

time verification became substantiated. With the IgG-avidity-SIAs, more than 90% of samples 

collected beyond three months of primary infection by B19V or HCMV (including secondary 

responses of the latter) were correctly identified (high avidity) as past infection. Likewise, T. gondii 

IgG-avidity-SIA could effectively distinguish acute from latent/chronic T. gondii infections, 
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however, low-avidity IgG was seen in five patients beyond 200 days of primary infection. 

Persistence of low-avidity IgG in T. gondii infection has been seen in many studies, especially 

among pregnant women and in medicated patients (210-213). Therefore, as pointed out (214), 

measurement of T. gondii IgG avidity serves better in ruling out than ruling in the recent acquisition 

of infection.  

 
Table 8. SIA-based IgM and IgG-avidity determination for dating infection 
 

 IgM-SIA, n (%) IgG-avidity-SIA, n (%) 

 Positive Borderline Negative   Low Borderline High 

CMV   

< 3 mo 83 (87.4%) 0 12 (12.6%)   53 (86.9%) 3 (4.9%) 5 (8.2%) 

> 3 mo* 13 (24.1%) 4 (7.4%) 37 (68.5%)   4 (7.4%) 1 (1.9%) 49 (90.7%) 

T. gondii   

< 3 mo 33 (82.5%) 2 (5%) 5 (12.5%)   31 (88.6%) 4 (11.4%) 0 

> 200 days 27 (54%) 2 (4%) 21 (42%)   9 (18%) 6 (12%) 35 (70%) 

B19V   

< 3 mo 82 (100%) 0 0   68 (93.2%) 4 (5.5%) 1 (1.4%) 

> 3 mo 11 (25%) 1 (2.3%) 32 (72.7%)   0 2 (4.5%) 42 (95.5%) 

*  Samples collected from beyond three months of HCMV primary and from HCMV secondary seroresponses. 

 
 

1.4 Polyclonal immunoreactivity (II) 

 

Heterologous IgM reactivity among the three microbes was found in 3.5% (25/709) of samples in 

study II. To identify the original immunoreactivity, multiplex IgG-avidity SIAs were applied. Among 

the 25 IgM-immunoreactive samples, 13 lacked the corresponding IgG, and the other samples 

showed high avidity to exclude recent primary infection. Interestingly, of the samples presented 

with homologous (with respect to the IgM-reactivity) IgG, two samples from a patient with a profile 

of HCMV secondary infection also displayed IgG and IgM SIA reactivities against B19-VP2. 

However, both of the samples lacked B19 VP1u-IgG (required for IgG-avidity determination). 

Retested by EIA, they turned out to have B19V primary infection (VP2 IgM-EIA positive and VP2-

IgG ETS index <10). The results suggested that this patient may have had a B19V (primary 

infection) inducing a serological pattern of HCMV secondary infection.   

IgM antibodies appear in circulation not only in acute (primary) and secondary infection, but 

also due to polyclonal B-cell stimulation (215). Transient heterologous IgM reactivity induced by 

HCMV or B19V primary infections have been long known (216). Here, the measurement of 
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qualitative characteristic of the antimicrobial IgG (19) by multiplex IgG-avidity-SIA were shown 

suitable for identification of the infection origin.  

 

1.5 Conclusion (I, II) 

 

In our study, the strategy of IgG-IgM multiplex screening followed by IgG-avidity reflex testing can 

provide a high-throughput and accurate means for detection and stage determination of B19V, 

HCMV, T. gondii infections. Altogether, the IgG, IgM and IgG-avidity-SIAs were in diagnostic 

performance closely comparable to high-quality reference assays, providing a reliable and cost-

effective means for diagnosis of B19V, HCMV, T. gondii infections. All IgG and IgM-SIAs were 

highly sensitive, and antibodies were detectable even on one day after the onset of symptoms. 

The IgG-avidity-SIAs were highly efficient in the differentiation of recent primary and secondary 

infections.  

 

 

2. HPyVs and multiplex DNA detection (III, IV) 

 

Classical PCR-based single-reaction techniques have been widely used in clinical laboratories 

for detection and genotyping of pathogens. The ability to detect multiple targets in a single reaction 

is a great leap forward in nucleic acid detection. Probe-based quantitative real-time PCR provides 

a quantitative analysis for targets; it is widely used, but is of limited multiplexing capacity. Next 

Generation Sequencing-based applications can reveal the entire nucleic acid content of 

pathogens in a sample, whereas they are currently not routinely employed in clinical microbial 

diagnosis because of challenges on turnaround time, cost per sample and enormous bioinformatic 

data analysis. A major advantage of microsphere-based DNA detection is having a high level of 

multiplexing. 

Many emerging human viruses were discovered rapidly by advanced molecular techniques. 

During the past 12 years, virus hunting has led to the discovery of 12 new HPyVs. So far, six 

HPyVs have been linked with diseases, especially MCPyV associated with skin cancer, 

emphasises the oncogenic potential of HPyVs. Seroepidemiologcal evidence indicated that most 

cases of HPyV primary infection occur asymptomatically in childhood (32, 143, 144). All the novel 

and highly divergent HPyVs call for in-depth studies regarding their tissue tropism, route of 

transmission, epidemiology, latency, reactivation and clinical impact.  
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2.1 Development of microsphere-based HPyV-DNA detection (III, IV) 

 

 To study the disease associations for HPyVs, previous studies have developed and validated 

several PCR protocols for nucleic acid detection (183, 217, 218). However, the existing PCR 

assays are of limited value in the multi-HPyV assessment. A microsphere-based DNA detection 

assay has been set up for the detection of 10 HPyVs (192). To optimize and extend this assay, 

we developed a method for the detection of all 13 HPyVs known before 2017.  

In the early assay development, we noticed asymmetric PCR as opposed to standard PCR 

significantly increased the sensitivity of assays (unpublished data). The explanation is that the 

biotinylated strand preferentially binds to its complement strand rather than the probe sequence 

on the microsphere. In this regard, asymmetric PCR for build-up of the excess biotinylated strands 

can overcome the competition during hybridisation (219).  

 

Detection limit (III, IV) 

Detection limits of microsphere-based HPyV-DNA assays were determined with 10-fold serial 

dilutions of DNA standards. Each HPyV plasmid was diluted serially from 108 to 100 and a mixture 

of all HPyV plasmids diluted serially from 106 to 100 in TE buffer. Detection limits were measured 

at the PCR annealing temperature 50°C (III) or 57.5°C (IV) in singleplex and multiplex formats. 

The limit of detection was defined as the dilution containing the fewest copies of a viral genome 

that still gave a positive result in duplicates. Detection limits of all the assays are listed in Table 9. 

Increased sensitivity was seen when raising the annealing temperature from 50°C to 57.5°C. The 

explanation for this improvement could be that at higher temperature the mixed primers are less 

prone to form primer-dimers. 
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Table 9. Limits of detection of microsphere-based HPyV PCR at annealing temperature 50°C (study 
III) and 57.5°C (study IV). 
 

 
Limits of detection (DNA amount per µl) 

Annealing 50°C Annealing 57.5°C 

HPyV Singleplex 

Multiplex  

(single 

plasmid) 

Multiplex 

(mixed 13 

plasmids) 

Singleplex 

Multiplex 

(single 

plasmid) 

Multiplex 

(mixed 13 

plasmids) 

BKPyV 10 10 10 1 1 1 

JCPyV 10 10 10 1 1 1 

KIPyV 10 10 10 1 1 1 

WUPyV 10 10 10 1 1 1 

MCPyV 10 10 100 1 1 1 

HPyV6 10 10 10 1 1 10 

HPyV7 100 100 100 1 1 1 

TSPyV 10 10 10 1 1 1 

HPyV9 10 10 100 1 1 10 

MWPyV 1 1 10 1 1 1 

STLPyV 10 100 100 1 1 10 

HPyV12 1 10 10 1 1 100 

NJPyV 10 10 1 1 1 10 

LIPyV - - - 1 - - 

 

 

Specificity (III, IV) 

The specificity of multiplex PCR at the two annealing temperatures was evaluated with DNA 

purified from virus-free SF9 and HEK 293 cells. Neither of the two annealing temperatures 

showed observable amplification with these specimens. Cross-reactivity in microsphere-based 

HPyV-DNA tests was studied with plasmids of each HPyV alone and with 13 plasmids combined 

as a template to hybridise with a mixture of 13 type-specific probe-microspheres. The multiplex 

PCR at both annealing temperatures identified all 13 target sequences correctly, with no 

observable cross-amplification. 

To conclude, singleplex and multiplex PCR assays were developed for the DNA detection of 

13 HPyVs. The multiplex format provides a flexible and low-cost platform for the known and yet 

undiscovered HPyVs. The newly developed multiplex assays are highly sensitive and specific, 

suitable for epidemiological and diagnostic studies to address whether any of the emerging 

HPyVs are associated with disease. 
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2.2 HPyV-DNA in tonsillar samples (III) 

 

HPyVs can establish persistent infections. The mechanism behind the persistence involves the 

equilibrium between viral replication and the efficiency of the host immune response (220). It is 

not known so far which precise cell types serve as reservoirs for the persistence of HPyV-DNAs 

and which specific sites play roles in HPyV reactivation, especially under weakened immune 

conditions. The sites for persistence may differ among HPyV species, and can serve as the source 

of the reactivated virus and potentially also the disease sites (221). HPyV-DNAs have been found 

widely in the human body, including in lymphoid organs, albeit in low copy numbers (183, 222, 

223). Whereas JCPyV, BKPyV, MCPyV, HPyV6, HPyV7 and TSPyV are known to be associated 

with diseases, the others are orphan regarding clinical manifestations. 

By applying the newly developed multiplex PCR, we studied tonsillar tissue from 78 subjects 

(31 children and 47 adults) mostly with tonsillitis or tonsillar hypertrophy. Positive findings were 

seen in 13 specimens: JCPyV (1/78, 1.3%), WUPyV (3/78, 3.8%), MCPyV (1/78, 1.3%), HPyV6 

(6/78, 7.7%), TSPyV (3/78, 3.8%). JCPyV, MCPyV and HPyV6 DNAs were found in juveniles or 

adults and WUPyV and TSPyV DNA in young children. Co-infection with WUPyV and TSPyV was 

found in a 6-y child with hypertrophy. The positive findings were confirmed with corresponding 

singleplex PCRs and agarose gel electrophoresis. 

A total of five HPyVs (JCPyV, WUPyV, MCPyV, HPyV6 and TSPyV) were found in tonsillar 

tissue in this study. JCPyV DNA has been found in tonsillar tissue in several studies (222, 224), 

and tonsillar stromal cells have been shown to be susceptible to JCPyV infection. In a previous 

study (183), WUPyV and MPyV DNA was detected in 3.5% (8/229) and 2.2% (5/229) respectively 

of tonsillar tissues by using nested singleplex PCR. Moreover, a study investigated 229 tonsillar 

biopsies for the presence of TSPyV, finding TSPyV DNA in eight (3.5%) tonsils (218). A German 

tonsillar HPyV-DNA prevalence study, using real-time quantitative PCRs in singleplex format, 

found JCPyV (1/40, 2.5%), WUPyV (3/40, 7.5%), MCPyV (4/40, 10%), HPyV6 (1/40, 2.5%) in 

non-malignant tonsillar tissue, with overall very low HPyV DNA amounts (225). Their viral 

prevalence findings are highly similar to ours. Other studies of HPyV finding in tonsils are listed 

in Table 10. Genoprevalence of HPyV in tonsillar tissue varies in different studies and in various 

geographic locations. Nevertheless, in line with other studies, the result confirmed and suggested 

that the lymphoid system plays a crucial role in HPyV biology as the site of initial infection or 

reactivation. Of note, HPyV12, NJPyV and LIPyV have not been detected in tonsillar tissues in 

present or previous studies (225-227).  
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To conclude, the frequent occurrence of HPyVs in human tonsils provided evidence that the 

lymphoid tissue plays an important role for these viruses. However, whether or not the undetected 

HPyVs share the same infection route requires more investigation with different sample types.  

 

Table 10. Genoprevalence of HPyV in tonsillar tissue by PCR assays 
 
Virus Sample  Children /  Sample  Prevalence (%) Study Country 

Species n Adults type Children Adults Total   

BKPyV 220 Children FFPE 0.5  0.5 (228) USA 

(HPyV1) 78 Children and Adults FFPE - - 5.1 (229) Italy 

 29 Children and Adults Frozen - - 0 (230) Italy 

 57 Children Fresh 5.3  5.3 (231) Italy 

 50 Children Frozen 6.0  6.0 (179) Italy 

 40 Children and Adults ND - - 0 (225) Germany 

 99 Children Swab 0  0 (227) China 

 100 Children Fresh 0  0 (223) Italy 

 689 Children and Adults Brushing 12.3 0.2 2.6 (226) France 

JCPyV 220 Children FFPE 0  0 (228) USA 
(HPyV2) 57 Children Fresh 0  0 (231) Italy 

 50 Children Frozen 0  0 (179) Italy 

 40 Children and Adults ND - - 2.5 (225) Germany 

 99 Children Swab 0  0 (227) China 

 100 Children Fresh 0  0 (223) Italy 

 689 Children and Adults Brushing 0.7 0.5 0.6 (226) France 

KIPyV 229 Children and Adults Fresh - - 0 (183) Finland 

(HPyV3) 78 Children and Adults FFPE - - 12.8 (229) Italy 

 29 Children and Adults Frozen 7.7 6.2 6.9 (230) Italy 

 50 Children Frozen 0  0 (179) Italy 
 51 Children Frozen  0  0 (232) Turkey 

 99 Children Swab 2.0  2.0 (227) China 

 40 Children and Adults ND - - 0 (225) Germany 

 689 Children and Adults Brushing 0 0 0 (226) France 

WUPyV 229 Children and Adults Fresh - - 2.2 (183) Finland 
(HPyV4) 78 Children and Adults FFPE - - 5.1 (229) Italy 

 29 Children and Adults Frozen - - 0 (230) Italy 

 50 Children Frozen 12.0  12.0 (179) Italy 

 51 Children Frozen  3.9  3.9 (232) Tukey 

 99 Children Swab 13.1  13.1 (227) China 

 40 Children and Adults ND - - 7.5 (225) Germany 

 689 Children and Adults Brushing 0 1.6 1.3 (226) France 

MCPyV 229 Children and Adults Fresh - - 3.5 (183) Finland 

(HPyV5) 78 Children and Adults FFPE - - 0 (229) Italy 

 40 Children and Adults ND - - 10.0 (225) Germany 

 103 Adults FFPE  10.2 10.2 (233) Czech 

 99 Children Fresh 6.0  6.0 (227) China 

 689 Children and Adults Brushing 9.4 16.0 14.7 (226) France 

HPyV6 40 Children and Adults ND - - 2.5 (225) Germany 
(HPyV6) 103 Adults FFPE  4.6 4.6 (233) Czech 

 99 Children Fresh 0  0 (227) China 

 689 Children and Adults Brushing 9.4 18.1 16.4 (226) France 

         



 

65 

 

Virus Sample  Children /  Sample  Prevalence (%) Study Country 

Species n Adults type Children Adults Total   

(HPyV7) 103 Adults FFPE  0.9 0.9 (233) Czech 

 99 Children Swab 0  0 (227) China 

 689 Children and Adults Brushing 1.4 0.7 0.9 (226) France 

TSPyV 40 Children and Adults ND - - 0 (225) Germany 
(HPyV8) 689 Children and Adults Brushing 21.0 1.1 5.1 (226) France 

HPyV9 40 Children and Adults ND - - 0 (225) Germany 
(HPyV9) 99 Children Swab 0  0 (227) China 

 689 Children and Adults Brushing 0.7 1.1 1.0 (226) France 

MWPyV 100 Children Fresh 6.0  6.0 (223) Italy 
(HPyV10) 99 Children Swab 2.0  2.0 (227) China 

 40 Children and Adults ND - - 0 (225) Germany 

 689 Children and Adults Brushing 0 0 0 (226) France 

STLPyV 40 Children and Adults ND - - 0 (225) Germany 
(HPyV11) 99 Children Swab 2.0  2.0 (227) China 

HPyV12 40 Children and Adults ND - - 0 (225) Germany 
(HPyV12) 99 Children Swab 0   (227) China 
 689 Children and Adults Brushing 0 0 0 (226) France 

NJPyV 
(HPyV13) 

40 Children and Adults ND - - 0 (225) Germany 

LIPyV 689 Children and Adults Brushing 0 0 0 (226) France 
ND no data; FFPE formalin-fixed paraffin-embedded  

 
 

2.3 HPyV-DNA in the skin of liver transplant recipients (IV) 

 

To determine the occurrences of the HPyVs in skin and possible clinical associations, we applied 

multiplex PCR and singleplex qPCR assays to study HPyV genoprevalences in SCCis or AK and 

benign skin in LiTRs and in healthy skin of immunocompetent adults. Furthermore, DNA was 

isolated from the serum of LiTRs with HPyV-DNA detectable in biopsies. All the samples were 

first tested using the new multiplex PCR assay for 13 HPyVs, followed by singleplex qPCRs to 

quantify the viral DNAs. The detection of LIPyV was performed in singleplex format and then 

further confirmed by sequencing because no published quantitative PCR method is available for 

detection of LIPyV DNA. 

In 126 LiTRs, a total of 14 punch biopsies collected from lesional and 127 from non-lesional 

sites were studied (Fig.16). The occurrences of MCPyV DNA in lesions versus non-lesions were 

similar, with no significant statistical difference. TSPyV DNA was detected in a single biopsy, at 

extremely low level (1.1 copies per 106 cells). HPyV 6 and HPyV7 DNAs were present in only 

healthy skin. The viral loads of the two viruses were similar. One biopsy from a LiTR with no 

premalignant lesions was tested LIPyV positive. The PCR product was confirmed by sequencing, 

showing 100% identity to the reference LIPyV genome (KY404016). For control, skin biopsies 

from 80 immunocompetent adults having participated in epicutaneous irritant testing were studied. 
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MCPyV and HPyV6 DNAs were found in 15% (12/80) and 2.5% (2/80) of skin biopsies, 

respectively.  

 

Figure 16. HPyVs genoprevalence in lesional and benign skin biopsies collected from liver transplant 
recipients. 

 

Overall, HPyV-DNA was found in skin biopsies of 38 LiTRs including five patients with pre-

stage SCC. Except for two patients with HPyV-DNA present exclusively in pre-stage SCC, in all 

other 10 pre-stage SCC patients the viral DNA findings were alike in both premalignant and 

healthy tissues. The MCPyV-DNA-positive individuals with lesion(s) vs. non-lesion(s) and HPyV6 

and HPyV7 DNA-positive-individuals matched in ages. Co-infection was seen in two LiTRs with 

no premalignant lesions. The sera of all 37 biopsy-HPyV-positive LiTRs tested DNA negative for 

all 14 HPyVs. 

Previous studies of HPyV in cutaneous SCC or pre-stage SCC are listed in Table 11. In all, 

our data on HPyVs in SCC precursors and SCC are in line with previous studies, and point to 

virus latency or shedding, rather than activation. The diverse genoprevalence among studies may 

be related to the sample size per patient, sample type, methods of analysis and study population. 

In this study, MCPyV DNA was detected in both premalignant and benign skin with no statistically 

significant difference in viral DNA prevalence or load, speaking against a role for this carcinogenic 

virus in SCC development. In our much larger series, HPyV6 and HPyV7 were present exclusively 

in non-diseased skin. As in previous studies (234, 235), our low prevalences of HPyV6 and HPyV7 

do not point to SCC pathology among LiTRs. LIPyV was discovered quite recently, at low 

genoprevalence in skin swabs of cancer-free individuals (141). In our cohort, LIPyV DNA was 

found in skin tissue of a single LiTR, but not in her serum, and the seroprevalence of LIPyV seems 

to be low (32, 142). Interestingly, a very recent study showed LIPyV DNA in faeces in an outbreak 

of feline diarrhoea (236), suggesting that LIPyV might be a feline-origin polyomavirus. The 

medical impact of LIPyV in humans or in felines remains to be determined in forthcoming geno- 

and seroprevalence studies. 
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As a summary, the data in this thesis work does not support a role for any of the 14 HPyVs in 

SCC pathogenesis. In light of the large number of existing human cancer types and their 

multifactorial pathogenesis, inclusion of additional risk factors and their combinations with HPyV 

types could provide new information on the driving forces of cancer development. 

 

Table 11. Occurrences of HPyVs in cutaneous SCCs and pre-stage cutaneous SCCs by PCR assays 

 

Patients Lesion Sample  

n 

Sample 

type 

HPyV Prevalence 

(%) 

Study 

immunocompetent SCC 177 FFPE MCPyV 15   (237) 

immunosuppressed 

immunocompetent 

immunosuppressed 

immunocompetent 

SCC 

SCC 

SCCis 

SCCis 

25 

28  

13 

23 

FFPE 

FFPE 

FFPE  

FFPE 

MCPyV 

MCPyV 

MCPyV  

MCPyV 

52  

25  

69  

17.4  

(238) 

immunosuppressed 

immunocompetent 

SCCis 

SCCis 

21 

24 

FFPE  

FFPE 

MCPyV  

MCPyV 

9.5  

8.3  

(239) 

immunocompetent SCC 30 FFPE MCPyV 13  (240) 

immunocompetent and 

immunosuppressed 

 

SCC 185 Fresh-

frozen 

MCPyV 

JCPyV 

BKPyV 

KIPyV 

WUPyV 

37  

0 

0 

0 

0 

(241) 

ND SCC 21 FFPE HPyV6 

HPyV7 

33  

4.7  

(234) 

immunocompetent SCCis 8 FFPE MCPyV 

HPyV6 

HPyV7 

TSPyV 

HPyV9 

25  

12  

0 

0 

0 

(235) 

immunocompetent SCC 52 FFPE MCPyV 

HPyV6 

HPyV7 

TSPyV 

HPyV9 

27  

4  

0 

0 

0 

 

immunocompetent AK 31 FFPE MCPyV 

HPyV6 

HPyV7 

TSPyV 

HPyV9 

19  

3  

0 

0 

0 

 

immunocompetent and 

immunosuppressed 

SCC 75 FFPE MCPyV 28  (242) 

immunocompetent SCC 11 Fresh-

frozen 

MCPyV 18  (243) 

ND SCC 34 FFPE MCPyV 18  (244) 

ND no data; FFPE formalin-fixed paraffin-embedded; SCC squamous cell carcinoma; SCCis squamous cell carcinoma 
in situ; AK actinic keratosis 
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2.4 Conclusion (III, IV) 

 

The new multiplex assay was successfully applied to detect viral DNA in various clinical materials, 

including fresh tissues (III and IV), serum (IV), urine and plasma (245). The existing screening 

approach can target currently assigned HPyV species in multiplex or LIPyV in singleplex. 

Comprehensive detection of all currently assigned HPyVs species requires merely 5 μl of DNA 

template.  On the other hand, one should keep in mind the limitations of microsphere-based DNA 

detection. Despite the possibility of determining DNA quantity according to a calibration curve, 

the microsphere-based multiplex DNA assay can provide only semi-quantitative data because the 

PCR amplification step prior to xMAP analysis does not reveal the real DNA copy number in the 

original sample (25). Also, direct DNA hybridisation is highly specific for selective sequences. 

Even if able to detect particular virus strains, such approaches can be vulnerable to mutations, 

like any other sequence-specific nucleic acid detection. Importantly, the existing virus panel can 

be easily adapted for adding more emerging viruses in the near future.  
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CONCLUDING REMARKS AND FUTURE 

PROSPECTIVES 

 

This thesis includes the design and setup of new methods for molecular and serodiagnosis and 

their clinical utilities. In the studies, I (i) developed serological tests for identification of three 

intrauterine infections; (ii) evaluated the diagnostic performance of newly developed serological 

tests; (iii) set up a microsphere-based PCR assays for the detection of 13 HPyVs; (iv) determined 

the role of lymphoid tissue for HPyV persistence and transmission; and (v) analysed the possible 

pathological associations between HPyVs and premalignant skin lesions of post-transplantation.  

The newly developed antibody tests in both multiplex and singleplex formats were shown to 

be highly sensitive and specific in comparison to high-standard commercial or in-house reference 

assays (study I, II). The current panels for intrauterine infections are of remarkable potential for 

other anti-microbial antibodies. Heterologous IgM reactivity was identified by multiplex IgG-

avidity-SIA. Other solutions, such as applying recombinant peptides/proteins or design of 

competition-format-based SIA, may improve IgM detection, yet require forthcoming examination. 

The current xMAP technology permits only one fluorescent reporter for identification of a single-

type capture property (e.g. a given antibody isotype) against different analytes (antigens). Bold 

thinking on the development of multiplexing serological tests would aim at a variety of capture 

properties (e.g. IgG, IgM and IgA) against various antigens in a single well, by applying more than 

one reporter in concert with colour-coded microspheres.  

With our microsphere-based multiplex PCR, several HPyVs were found in tonsillar tissues of 

children and adults, indicating the lymphoid system plays a role in HPyV infections and 

persistence (study III). Moreover, the resembling presences of HPyV viral DNAs in lesional and 

non-lesional skin of post-tx patients were shown not to be associated with premalignant 

pathogenesis (study IV). Since HPyVs are capable of persisting and later reactivating, more 

studies are warranted to assess the possible clinical impact of new HPyVs concerning 

immunocompromised or elderly individuals. Furthermore, for the newest members, LIPyV, 

HPyV12 and NJPyV exhibiting low seroprevalences in the general population, forthcoming studies 

should focus on identifying their unique transmission routes (if any) and origins of infections. In 

this regard, the development of cell culture systems would permit us to understand the potential 

pathogenesis, tissue/cell tropism and specific cell reservoirs for these viruses.   

Emerging technologies have achieved increasing feasibility in clinical microbiology, especially 

as many viruses are challenging to grow in cell culture. Several novel molecular and 
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serodiagnosis methods are already available. However, the new approaches will not replace, but 

combine and enhance traditional methods. The combinations of techniques yield a 

comprehensive diagnostic toolbox, improving our understanding of the association between 

infectious agents and diseases. 
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SUPPLEMENTARY DATA 
 

Table S1. Reference assays in study I and II 

 
Study Manufacturer 

Assay 
Antigen Assay principles  Unit Interpretation of 

results 

I In-house 
B19V VP2-IgG 

Parvovirus B19V recombinant 
VP2 virus-like particle 

EIA Absorbance Negative, <0.198 
Positive, >0.198  

I BioMérieux 
Vidas HCMV IgG 

Viral lysate (AD 169) ELFA, two-step ELFA with a final 
fluorescent detection 

Titer (IU/mL) Negative, <4 
Positive, ≥6 
Equivocal, 4 - <6 

I BioMérieux 
Vidas Toxo IgG 

Cell-cultured tachyzoites lysate 
(RH strain) 

ELFA, two-step ELFA with a final 
fluorescent detection 

Titer (IU/mL) Negative, <4 
Positive, ≥8 
Equivocal, 4 - <8 

II In-house 
B19V VP2-IgM 

Parvovirus B19V recombinant 
VP2 virus-like particle 

EIA Absorbance Negative, <0.17 
Positive, >0.22 
Equivocal, 0.17-0.22 

II DiaSorin 
LIAISON Biotrin 
B19V IgM 

Parvovirus B19V recombinant 
VP2 virus-like particle 

EIA Index Negative <0.9 
Positive, >1.1 
Equivocal, 0.9-1.1 

II Abbott 
Architect HCMV IgM 

Viral lysate (AD 169) and 
recombinant antigens 

CMIA, two steps indirect anti-IgM 
detection 

Index Negative, <0.85 
Positive, ≥1 
Equivocal, 0.85-0.99 

II BioMérieux 
Vidas Toxo IgM 

Cell-cultured tachyzoites lysate 
(RH strain) 

ELFA, two-step ELFA with a final 
fluorescent detection 

Index Negative, <0.55 
Positive, ≥0.65 
Equivocal, 0.55 - <0.65 

II Abbott 
Architect HCMV IgG 
avidity 

 
Viral lysate (AD 169) 

CMIA, two assays with and without 
liquid HCMV antigen to neutralise 
high-avidity HCMV antibodies 

% Avidity Low avidity, <50% 
High avidity, ≥60% 
Equivocal, 50-59.9% 

II BioMérieux 
Vidas HCMV IgG 
avidity 

Viral lysate ELFA, two assays with and without 
6M urea to dissociate low-avidity 
antibodies 

Avidity index Low avidity, <0.4; 
high avidity, ≥0.65; 
equivocal, 0.4–<0.65 

II BioMérieux 
Vidas Toxo IgG 
avidity 

Cell-cultured tachyzoites lysate 
(RH strain) 

ELFA, two assays with and without 
6M urea to dissociate low-avidity 
antibodies 

Avidity index Low avidity, <0.2 
High avidity, >0.3 
Equivocal, 0.2 - 0.3 



 

 

 

7
4
 

Study Manufacturer 
Assay 

Antigen Assay principles  Unit Interpretation of 
results 

II In-house  
B19V VP2-IgG-ETS 

Parvovirus B19V VP2 virus-like 
particles and synthetic peptide 
KYVTGIN 

EIA ETS Index  Recent infection, ≤10% 
Past infection, >20% 
Equivocal, 11-20 

II In-house  
B19V VP1-IgG-
avidity 

Prokaryotic recombinant fusion 
protein containing the B19 VP1 
unique region 

EIA Index Recent infection, ≤15% 
Past infection, >25% 
Equivocal, >15 - 25% 

CMIA, chemiluminescent microparticle immunoassay; ELFA, enzyme-linked fluorescent assay; 
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