
2019 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS)

The Impact of Thread-Per-Core Architecture on
Application Tail Latency

Pekka Enberg
University of Helsinki

Ashwin Rao
University of Helsinki

Sasu Tarkoma
University of Helsinki

Abstract—The response time of an online service depends on
the tail latency of a few of the applications it invokes in parallel to
satisfy the requests. The individual applications are composed of
one or more threads to fully utilize the available CPU cores, but
this approach can incur serious overheads. The thread-per-core
architecture has emerged to reduce these overheads, but it also
has its challenges from thread synchronization and OS interfaces.
Applications can mitigate both issues with different techniques,
but their impact on application tail latency is an open question.

We measure the impact of thread-per-core architecture on ap-
plication tail latency by implementing a key-value store that uses
application-level partitioning, and inter-thread messaging and
compare its tail latency to Memcached which uses a traditional
key-value store design. We show in an experimental evaluation
that our approach reduces tail latency by up to 71% compared
to baseline Memcached running on commodity hardware and
Linux. However, we observe that the thread-per-core approach
is held back by request steering and OS interfaces, and it could
be further improved with NIC hardware offload.

Index Terms—Tail latency, Thread-per-core, IRQ affinity,
irqbalance, Key-Value Stores.

I. INTRODUCTION

Online services, such as e-commerce platforms and social
networks, are composed of wide range of smaller applications,
which communicate with each other using a request-response
pattern. These services communicate with applications in
parallel to reduce service-level response time. However, as
a service request cannot complete until all applications have
served their share of requests, the response time of the
slowest application determines the overall service response
time. Reducing application tail latency is therefore critical to
ensure that service requests are completed within their latency
requirements [9].

Individual applications are composed of one or more
threads, and the number of threads depends on the application
requirements and architecture [34], [42]. Recently, the thread-
per-core architecture has emerged to improve throughput
and reduce latency [40]. In this architecture, applications
instantiate a single thread per CPU core that is available
for the application. This reduces the overheads from CPU
multiplexing and synchronization, and allows threads to be
scheduled and balanced at coarse granularity for latency-
sensitive applications [33], [36]. However, this approach is
effective only when the threads can run independently.

Thread synchronization and blocking OS services are the
two main issues that prevent threads from running indepen-
dently. However, applications can mitigate both issues with

different techniques. For example, application-level data parti-
tioning can eliminate thread synchronization and applications
can restrict themselves to using asynchronous OS interfaces.
However, the need for such unconventional techniques raises
a question: what is the impact of thread-per-core architecture
on application tail latency?

To answer this question we use our key-value store that
leverages application-level partitioning and inter-thread mes-
saging, and compare its tail latency to Memcached [13], which
uses a traditional multi-threaded application architecture. We
also investigate the effect of interrupt processing and concur-
rency in multicore systems, which are reported to have an
impact on tail latency [27].

We make the following contributions.
– We explore the design space of thread-per-core architecture

(shared-everything, shared-nothing, and shared-something
models) and the impact of interrupt handling techniques
such as interrupt affinity and balancing in §III.

– We measure the impact of thread-per-core architecture on
application tail latency for different combination of interrupt
handling techniques in §IV.

– We discuss how thread-per-core approaches are held back by
request steering overheads, OS abstractions and interfaces,
and how applications could take advantage of hardware
offload in §V.

II. BACKGROUND

Application latency, i.e. the response time of a request made
to an application, depends on i) the time for the request to
reach a thread after it has arrived on the NIC, ii) the time for
the application to process the request, and iii) the time for a
response to arrive on the NIC from the thread. The components
i) and iii) depend on the OS network stack, while ii) depends
on thread synchronization for processing a request and creating
a response. The thread-per-core approach, discussed in §III,
aims to reduce application latency by addressing the issues of
CPU affinity, thread synchronization, and OS interfaces.

In-kernel network stack. When a packet arrives on the NIC, the
kernel device driver notices the new packet either by polling
the NIC, or via an interrupt. The device driver allocates an in-
kernel data structure for the packet, and forwards the packet
to the in-kernel protocol stack. The protocol stack performs
its processing and then notifies the application that new data
is available on one of its sockets. The notification wakes up

978-1-7281-4387-3/19/$31.00 © 2019 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/288487428?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a thread which then retrieves the new data with the recv
system call, performs its application-specific logic, and sends a
response using the send system call. The kernel then forwards
the response to to the NIC via the in-kernel network stack and
the device driver.

CPU affinity. On multicore servers, packets can bounce be-
tween up to three different CPU cores when traversing the
in-kernel network stack. The NIC steers packet to one of
its RX queues, which maps to a CPU core. When kernel
software steering is enabled, the kernel then forwards the
packet to another core which runs the in-kernel network stack.
Finally, the kernel forwards the packet to a thread which may
be running on yet another CPU core. This lack of packet
processing locality decreases overall performance [19], [35].
Furthermore, a thread currently servicing a request may have
to yield the CPU to the in-kernel network stack, which will
process a packet that is destined for another thread that is
running on a different CPU core [23].

Thread synchronization. Applications that run on multicore
servers use threads for parallelism to fully utilize all the
available CPU cores. However, the threads need to synchronize
with each other to serve a given request if multiple threads
access the same resources. This thread synchronization has
two problems: (1) the synchronization itself has overheads that
increases request processing latency, and (2) it limits scalabil-
ity on large multicore systems. Both issues can be mitigated
with various approaches including data partitioning [28] and
using concurrent data structures [6], [12].

OS interfaces. Applications use the POSIX socket API to
receive and transmit data over the network. The socket API
uses systems calls for implementing data plane operations
such as send and recv. This approach has a high over-
head because of system call context switching and kernel
crossing [14], [17], [19], [37], [43]. This interface also forces
the kernel to copy packet data to an application buffer,
amplifying the system call overhead. Furthermore, the system
call overheads have recently increased because the kernel
needs to mitigate against CPU security vulnerabilities such
as Meltdown and Spectre [8]. Applications therefore use I/O
multiplexing interfaces because the socket API does not scale
to a large number of connections. On Linux, applications call
the epoll_wait system call to wait for any of the sockets it
has expressed interest in to have new data available. However,
I/O multiplexing interfaces only provide notification that new
data is available, but the application still needs to call the
recv system call to obtain the data [31]. Furthermore, as
packet processing can happen on CPU core which is different
from the one the thread is running on, the notification can
require an expensive inter-process interrupt (IPI).

III. THREAD-PER-CORE ARCHITECTURE

In the thread-per-core application architecture, each thread
is pinned to a CPU core which is dedicated for that thread.

CPU0 CPU1 CPU2 CPU3

DRAM Data

(a) Shared-everything.

CPU0 CPU1 CPU2 CPU3

DRAM Data Data Data Data

(b) Shared-nothing.

Fig. 1. Example of shared-everything and shared-nothing approach. In the
shared-everything approach, the DRAM is shared among the threads pinned to
the CPU cores, while in the shared-nothing approach the DRAM in partitioned
among the threads.

This thread is designed to fully utilize the CPU core on which
it is running.

A. Resource Management

An application designed using a thread-per-core approach
can either (1) allow each thread to have acess to all of the
underlying resources (shared-everything), or (2) partition the
resources among its threads (shared-nothing), or (3) use a
hybrid of the two (shared-something).

Shared-everything approach. This approach eliminates the
costs of context switch between the threads while preserving
the typical shared-memory architecture of many applications.
However, this approach requires applications to exclude thread
synchronization that block and starve the CPU cores. For
instance, applications can leverage lockless data structures
and use asynchronous wait-free data structures to eliminate
blocking behavior.

In the example shown in Figure 1(a), the threads are pinned
to the CPU cores while the data is stored in the DRAM which
is shared among the threads. The threads need to synchronize
when accessing the data but pinning them to the CPU cores
allows them to run independently without avoiding context
switches.

The main benefit of this approach is that it can maximize
system throughput because any CPU core can be used to serve
the requests. The problem in the shared-everything approach
is that data bounces between CPU caches and that thread
synchronization limits multicore scalability [16].

Shared-nothing approach. Each thread only accesses the re-
sources assigned to it. This eliminates the need for locks
because each thread is independent of the other threads.
While this requires threads to communicate with each other,
Barrelfish [5] and Seaster [40] have exemplified scenarios
where partitioning and message passing are less expensive than
shared memory and locking.

In the example shown in Figure 1(b), each thread is allo-
cated a portion of the data stored in the DRAM. This thread
is now responsible for responding to the queries related to the
data allocated to it. However, when a thread receives a request
for the data it is not responsible for, then it must forward the
request to the appropriate thread.

The main advantage of this approach is that improves CPU
cache efficiency and eliminates thread synchronization. How-

ever, this approach can limit system throughput for skewed
workloads because only one CPU core can operate on a
specific part of the application data.

Shared-something approach. Application still need to partition
some resources, but more than one CPU core can access
the same data. The shared-something approach complements
the sub-NUMA clustering approach of Intel’s Skylake mi-
croarchitecture, which partitions CPU cores around memory
controllers within a NUMA domain [32].

B. Interrupt Affinity

The network stack performs the protocol processing in
kernel threads serving software interrupts (softirqs). When the
system is idle, the NIC generates an interrupt request (IRQ) on
arriving packets. The interrupt handler forwards the packets to
a kernel thread which performs protocol processing and sends
them to the application threads. If the arrival rate of packets
is high, the network stack starts polling the NIC.

On Linux, the irqbalance daemon distributes the IRQs over
the available CPU cores [1]. Li et al. [27] recommend running
interrupts on dedicated cores to avoid the irqbalance daemon
spreading interrupts to cores that are running application
threads. This can be achieved by leveraging IRQ affinity
which allows us to specify which CPUs can serve a given
IRQ [2], i.e. IRQ affinity can be used to specify the CPU
cores on which the in-kernel network stack runs. Running
the network stack on some dedicated CPU cores improves
performance because of (1) more efficient packet processing
and (2) reduced thread disturbance [21], [41]. Clearly, it is
desirable that IRQ are served on the CPU cores on which the
application threads are not running. However, the impact of
IRQ affinity and IRQ balancing on the performance of the
thread-per-core architecture is largely unknown.

IV. IMPACT ON TAIL LATENCY

We use the following two key-value stores (KV stores)
for quantifying the impact of the thread-per-core application
architecture: Memcached [13], and our custom key value
store named Sphinx. We compare the performance of Sphinx
against Memcached because it has a threaded, shared-memory
architecture, and it is the state-of-the-practice. Furthermore,
Memcached emulates a shared-everything thread-per-core ar-
chitecture when its thread pool size is configured to match
the number of CPU cores. We also considered comparison to
MemC3 [12], but ruled it out because we experienced server
crashes under load in our experimental setup. We decided
against comparing to solutions that require OS modifications
(e.g., DPDK) or specific hardware (e.g., FPGA).

A. Application Architecture

Sphinx’s architecture, shown in Figure 2, is designed around
two principles: (1) partitioning of OS resources and application
data between the CPU cores, and (2) message passing between
the threads. Its event loop leverages asynchronous OS services
(i.e., non-blocking socket system calls) and I/O multiplexing
(i.e., epoll) to implement a thread-per-core model. Sphinx is

SoftIRQ
Thread

NIC RX
Queue

PollIRQ

CPU0

Application
Thread

DRAM

CPU1

Socket

Socket

U
serspace

Kernel
H

ardw
are

SoftIRQ
Thread

NIC RX
Queue

PollIRQ

CPU2

Application
Thread

DRAM

CPU3

Network

Message Passing

Socket

Socket

Fig. 2. Architecture overview. Sphinx leverages application-level partitioning
and message passing to improve request-level parallelism and improve single-
thread performance on commodity hardware and Linux.

not a replacement for Memcached and it implements only
a subset of the Memcached wire protocol. However, Sphinx
is compatible enough with Memcached clients to allow us
quantify the impact of the thread-per-core architecture.

Application-level partitioning. Sphinx leverages partitioning,
similar to MICA [28], but unlike MICA it extends the ar-
chitecture to commodity OS and hardware by partitioning OS
resources and application data between its threads. MICA uses
kernel-bypass networking to direct packets arriving on a NIC
to the core that manages the key present in the request. MICA
also requires the clients to be aware of the partitioning scheme
for the data and it works only with stateless protocols such as
UDP. In contrast, Sphinx also partitions OS resources such as
sockets and leverages user space message passing to forward
requests between cores. When Sphinx starts up, it spawns a
thread on each of the CPU cores for which it is configured
to run on. Sphinx assigns each key to a specific core, and the
thread running on a core is responsible for storing the data on
the partition of the DRAM allocated to that core. The keys
are partitioned uniformly between cores by hashing the key
with MurmurHash3 and taking the modulo of the number of
threads. Sphinx also partitions sockets between cores to avoid
OS internal lock contention from multiple threads accessing
the same socket. Furthermore, by using the SO_REUSEPORT
socket option, Sphinx lets the network stack distribute con-
nections across the threads to ensure full utilization of all
cores [22], [30]. Note that NIC IRQ processing can run on
dedicated cores or on cores running Sphinx threads, depending
on Sphinx’s configuration.

Inter-thread messaging. When a thread receives a request via
a connection it manages, it first checks if it manages the key
present in the request. If it manages the key, it performs the
requested operation locally and sends a response. However, if
another thread manages the key, it uses message passing to
forward the request to that remote thread. The remote thread
performs the request operation and sends back a message

TABLE I
HARDWARE CONFIGURATION

Modern hardware
CPU Intel Xeon CPU E5-2680 v3 @ 2.5 0GHz

Cores 2 x 12 cores (48 hardware threads)
L1/L2/L3 768 KiB, 3 MiB, 30 MiB
Memory 256 GiB DDR4 @ 2133 MT/s

NIC Intel 82599ES 10-Gigabit SFI/SFP+
Queues 48 RX queues, 48 TX queues

Legacy hardware
CPU Intel Xeon E5540 CPUs @ 2.53 GHz

Cores 2 x 4 cores (16 hardware threads)
L1d/L1i/L2/L3 32 KiB, 32 KiB, 256 KiB, 8192 KiB

Memory 32 GiB DDR3 @ 1066 MT/s
NIC Broadcom NetXtreme II BCM57710

Queues 8 RX queues, 24 TX queues

to the original thread which responds to the request. The
purpose of this design is to ensure accesses to sockets are
local to a specific core, which eliminates contention on Linux
networking stack locks. Sphinx implements message passing
in userspace with shared memory and system calls for waking
up a receiver thread to eliminate IPC overheads. The threads
communicate with each other using a bounded, lock-free, and
single-producer single-consumer (SPSC) queue [29] which
eliminates the need for cache line sharing between producers.
Furthermore, we chose eventfd over signals as the wakeup
mechanism because the latter acquires a process-wide signal
handler spinlock.

Data structures. Sphinx uses the C++ standard library
unordered_map as the data structure for key-value index.
The key and value in the index are references to a memory
region, which are private to a thread that is responsible for a
given key. A log-structured memory allocator (LSMA) [38],
which stores both keys and values, manages the thread mem-
ory region. LSMA divides the thread memory region into
fixed-size segments, which are the size of a large page to
reduce TLB pressure (i.e., 2MiB on x86). The allocator
appends data to a segment until it runs out of free space and
then picks a new segment until all segments are full. If the
allocator needs to reclaim memory to accommodate a new
request, it expires whole segments in FIFO order. Sphinx does
not compact segments because of the cache-like semantics of
the Memcached protocol that specifies that new operations
may expire old data.

B. Evaluation Setup

We selected two different multicore configurations for the
evaluation, modern and legacy, which are detailed in Table I.
In the modern configuration, which represents a high-end
instance on the cloud, we use a server with 48 logical cores
and a multi-queue NIC that has RX and TX queues for
every logical core. In the legacy server configuration, which
represents a medium-end cloud instance, we use a server with
16 logical cores and a multi-queue NIC that has 8 RX and 24
TX queues. The number of RX queues is less than the number
of logical cores in the legacy configuration.

To answer the question of the impact of NIC IRQ isolation
on tail latency, we focus on IRQ balancing and IRQ affin-
ity and repeat the experimental evaluation for the following
configurations.
– IRQ affinity not configured, and IRQ balance enabled: The

irqbalance is enabled and no IRQ affinity is configured. We
use this configuration as the baseline because it the default
configuration on most systems.

– IRQ affinity not configured, and IRQ balance disabled: The
irqbalance is disabled and no IRQ affinity is configured.
This configuration isolates the impact of the irqbalance on
tail latency.

– IRQ affinity configured, and IRQ balance disabled: IRQ
affinity is configured so that NIC IRQs are handled by
dedicated cores and remaining cores are running threads.
The irqbalance daemon is disabled to eliminate interference
with the IRQ affinity configuration. This configuration is
expected to give the lowest latency [27], [41].
We do not consider a configuration with IRQ affinity

configured with the irqbalance daemon enabled because the
irqbalance daemon currently overrides IRQ affinity, and the
current implementation of this override further limits the
performance [18].

We compare the latency performance of Memcached and
Sphinx KV store in the following manner. We use two servers
at time: one server is used to run Mutilate [25], our load
generator, and the other to run the KV store being evaluated.
Each KV store is successively run on a modern server followed
by the legacy server, while Mutilate ran on a modern server.
We configured Mutilate to use 24 worker threads to avoid
overloading the server on which it was running. Mutilate is
configured to use default key and value sizes, 30 and 200 bytes,
respectively. The set/get ratio of Mutilate is configured as
0.0 for read-only workload and 1.0 for update-only workload.
Every test is run for 50 seconds and repeated 5 times. When
IRQ affinity is not configured, Memcached and Sphinx are
configured to use one thread per hardware thread (48 threads
on modern hardware and 16 threads on legacy hardware).
When IRQ affinity is configured, Memcached and Sphinx are
configured to threads on CPUs that are not handling NIC
IRQs. Specifically, we allocate 8 CPUs for serving NIC IRQs
and 40 CPUs for running threads on modern hardware, and
we allocate 4 CPUs for serving NIC IRQs and 12 CPUs for
running threads on legacy hardware. We vary the number of
concurrent connections per Mutilate worker thread from 1
to 16, resulting in a total number of concurrent connections
between 24 and 384.

C. Tail Latency Results

We observe that running Memcached and Sphinx with IRQ
affinity not configured and IRQ balance enabled (Figure 3(a))
exhibits a high tail latency for read and also update operations.
In contrast, we observe the lowest tail latency for the read
and the update operations when IRQ affinity is configured and
IRQ balance is disabled (Figure 3(c)). This is inline with the
recommendation of Li et al. [27].

24 48 72 96 12
0

14
4

16
8

19
2

21
6

24
0

26
4

28
8

31
2

33
6

36
0

38
4

Number of Concurrent Connections

0.0

0.5

1.0

1.5

2.0

2.5

99
th

P
er

ce
nt

ile
R

ea
d

L
at

en
cy

(m
s)

Memcached (legacy)

Sphinxd (legacy)

Memcached (modern)

Sphinxd (modern)

24 48 72 96 12
0

14
4

16
8

19
2

21
6

24
0

26
4

28
8

31
2

33
6

36
0

38
4

Number of Concurrent Connections

0.0

0.5

1.0

1.5

2.0

2.5

99
th

P
er

ce
nt

ile
U

p
da

te
L

at
en

cy
(m

s)

0.0 0.5 1.0 1.5 2.0

Read Latency (ms)

1
5

10

20

50

80

90
95
99

P
er

ce
nt

ile
(%

)

0.0 0.5 1.0 1.5 2.0

Update Latency (ms)

1
5

10

20

50

80

90
95
99

P
er

ce
nt

ile
(%

)

(a) IRQ affinity not configured, and IRQ balance enabled.

24 48 72 96 12
0

14
4

16
8

19
2

21
6

24
0

26
4

28
8

31
2

33
6

36
0

38
4

Number of Concurrent Connections

0.0

0.5

1.0

1.5

2.0

2.5

99
th

P
er

ce
nt

ile
R

ea
d

L
at

en
cy

(m
s)

24 48 72 96 12
0

14
4

16
8

19
2

21
6

24
0

26
4

28
8

31
2

33
6

36
0

38
4

Number of Concurrent Connections

0.0

0.5

1.0

1.5

2.0

2.5

99
th

P
er

ce
nt

ile
U

p
da

te
L

at
en

cy
(m

s)

0.0 0.5 1.0 1.5 2.0

Read Latency (ms)

1
5

10

20

50

80

90
95
99

P
er

ce
nt

ile
(%

)

0.0 0.5 1.0 1.5 2.0

Update Latency (ms)

1
5

10

20

50

80

90
95
99

P
er

ce
nt

ile
(%

)

(b) IRQ affinity not configured, and IRQ balance disabled.

24 48 72 96 12
0

14
4

16
8

19
2

21
6

24
0

26
4

28
8

31
2

33
6

36
0

38
4

Number of Concurrent Connections

0.0

0.5

1.0

1.5

2.0

2.5

99
th

P
er

ce
nt

ile
R

ea
d

L
at

en
cy

(m
s)

24 48 72 96 12
0

14
4

16
8

19
2

21
6

24
0

26
4

28
8

31
2

33
6

36
0

38
4

Number of Concurrent Connections

0.0

0.5

1.0

1.5

2.0

2.5

99
th

P
er

ce
nt

ile
U

p
da

te
L

at
en

cy
(m

s)

0.0 0.5 1.0 1.5 2.0

Read Latency (ms)

1
5

10

20

50

80

90
95
99

P
er

ce
nt

ile
(%

)

0.0 0.5 1.0 1.5 2.0

Update Latency (ms)

1
5

10

20

50

80

90
95
99

P
er

ce
nt

ile
(%

)

(c) IRQ affinity configured, and IRQ balance disabled.

Fig. 3. Latency results. In each subfigure, we present from left to right i) the the 99th percentile read latency for a given number of concurrent connections, ii)
the 99th percentile update latency for a given number of concurrent connections, iii) the percentiles for the read latency for 288 concurrent connections, and iv) the
percentiles for the update latency percentiles for 288 concurrent connections. When IRQ affinity is configured and IRQ balance is disabled, i.e., the configuration
recommended to run Memcached [27], we observe that Sphinx exhibits a lower tail latency for read and update operations compared to Memcached.

Across all configurations we observe that the tail latency
for the read and update operations increases with the number
of concurrent connections. We observe that the tail latency
of Sphinx for the update operations is lower than the corre-
sponding values of Memcached. In contrast, we observe that
the tail latency of Sphinx for the read operations is lower than
Memcached only when a) IRQ affinity is enabled and IRQ
balance is disabled, and b) for a large number of concurrent
connections. This shows that Sphinx is capable of exploiting
the CPU resources to reduce the tail latency.

In Figure 3, we observe that IRQ balance has a smaller im-
pact on the read and update latency of Sphinx and Memcached
compared to IRQ affinity. One reason for this behavior is that
when IRQ affinity is not configured, the CPU on which the
threads are running need to also serve the interrupts arriving
at the NIC RX queue.

When IRQ affinity is not configured and IRQ balance is en-
abled (the baseline configuration), Sphinx has up to 16% lower
read tail latency than Memcached on modern hardware. On
legacy hardware, Sphinx’s read latency is up to 9% lower than
that of Memcached. Similarly, Sphinx’s update tail latency is

up to 67% and 47% lower than that of Memcached on modern
and legacy hardware, respectively. These results highlight
the effectiveness of Sphinx’s architecture in the eliminating
overheads of user space locking. However, Sphinx’s read and
update tail latency are higher than Memcached’s for a small
number of concurrent connections. This shows a weakness of
the thread-per-core model for workloads that do not distribute
work to all cores.

When IRQ affinity is not configured and IRQ balance is
disabled (Figure 3(b)), Sphinx’s read and update tail latency
are unaffected compared to baseline. However, Memcached’s
read tail latency is up to 23% lower than baseline on modern
hardware but just 4% lower on legacy hardware. Memcached’s
update latency is 7% and 4% lower than baseline on modern
and legacy hardware, respectively. Disabling the irqbalance
daemon reduces Memcached’s tail latency and has no impact
on Sphinx’s tail latency, which makes it a robust optimization
to reduce tail latency.

Finally, when IRQ affinity is configured and IRQ balance
is disabled (Figure 3(c)), Sphinx’s read latency is up to 20%
lower than Memcached’s on modern hardware and up to 54%

lower on legacy hardware. Furthermore, Sphinx’s update tail
latency is up to 71% and 66% lower than baseline for modern
and legacy hardware, respectively, which highlights that IRQ
affinity is very effective for Sphinx’s thread-per-core model.

V. DISCUSSION

Our measurements show that the thread-per-core architec-
ture combined with data partitioning is capable of reducing
the tail latency. At the same time, building and testing Sphinx
gave us the following insights on the factors which are holding
back its performance.

Request steering. Request steering can improve tail latency,
for example, by prioritizing small requests over large ones to
eliminate head-of-line blocking [10]. However, software-based
request steering, such as message passing between threads
used by Seastar and our prototype KV store, suffer from high
overheads because of thread wake-ups [24]. The lack of OS
interfaces to perform the wake-up forces applications to use
POSIX signals or OS-specific interfaces, such as eventfd, to
perform the wake-up. Hardware steering approaches supported
by NICs are currently limited to flow-based steering. For
example, the MICA assigns a separate UDP port to each CPU
core and uses the NIC Flow Director to steer requests. The
problem with this approach is that it requires the client to
specify the correct UDP port, thus making the partitioning
scheme visible to the client. We therefore plan to look at using
programmable NICs for performing application-level packet
steering.

OS interfaces and abstractions. Kernel-bypass interfaces elim-
inate many of the in-kernel network stack overheads. However,
the lack of standard OS interfaces is holding back their
adoption. Recently, Linux has introduced Express Data Path
(XDP) interface, which provides an in-kernel packet processor
and a kernel-bypass interface. Similarly, Demikernels propose
OS interfaces that apply to a wide range of kernel-bypass
accelerators [44] while parakernels propose partitioning as
first-class OS principle [11].

Hardware offload. CPU speeds have stagnated [15], [39] and
they are falling behind NIC speeds [20]. Hardware offload
approaches are therefore needed to keep up with the fast
rate of packets arriving from the network. The KV-Direct
KV store [26], for example, offloads whole application to
an FGPA running on the NIC. This approach yields massive
performance gains because computation moves to the network.
However, offloading complete applications to a FGPA is
complex and expensive. One research direction is to look into
how applications can take advantage CPU and NIC offload co-
design, where only some parts of the application is offloaded.

Other approaches to application-level parallelism. Arachne is
a core-aware, user-level threading library that aims to provide
high throughput and low latency for short-lived threads (in
the order of few microseconds) [36]. Arachne is an example
of a thread-per-core, shared-everything model. By replacing

Memcached’s thread-pool with Arachne, they demonstrate the
benefits of running a single kernel thread per CPU core, and
pinning it to avoid inference from other threads.However,
Arachne does not solve the issue of blocking kernel operations
(for example, system calls or page faults), and leaves thread
synchronization to users of the threading library, stating that
applications should use asynchronous interfaces and avoid
paging.

Shenango makes the observation that state-of-art systems
waste CPU cycles to achieve microsecond-scale tail latency
by busy-polling the NIC to detect arriving packets [33]. To
address this inefficiency, Shenango dedicates a single CPU
core for running an IOKernel, which busy-polls the NIC for
packets, steers them to applications, and reallocates CPU cores
as per application run-time needs.

Future research directions. In this paper, we focus on how
to apply the thread-per-core architecture efficiently to address
the overheads of kernel threads and thread synchronization.
We implemented a prototype key-value store based on this
architecture, Sphinx, which used application-level partitioning,
inter-thread messaging, and IRQ isolation. We then used small
request sizes for studying the impact of application-level
partitioning and IRQ isolation. We envision to extend this
work by considering different workloads such as YCSB [7],
and the Facebook “ETC” request stream [4], [25] for emulating
large value sizes which are prevalent [3]. These workloads will
also help us evaluate the throughput and study the impact of
message passing. Initial evaluation results from YCSB indicate
that our current approach for message passing is inefficient for
larger request sizes because packet steering involves a memory
copy. We think that the issue is best addressed by co-designing
the application-level partitioning scheme with NIC hardware
offload using programmable NICs. Furthermore, we believe
that addressing the current OS interface limitations that are
holding back the efficiency of the thread-per-core model is
critical.

VI. CONCLUSION

Application tail latency is critical for services to meet their
latency expectations. We have shown that the thread-per-core
approach can reduce application tail latency of a key-value
store by up to 71% compared to baseline Memcached running
on commodity hardware and Linux. However, we believe that
the thread-per-core approach is held back by request steering
and OS interfaces, and it could be further improved with CPU
and NIC offload co-design.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for
their feedback, and Lirim Osmani for helping us setup the
experimental evaluation testbed.

AVAILABILITY

The source code of Sphinx is available at https://github.com/
penberg/sphinx in branch ancs19.

REFERENCES

[1] “Irqbalance,” irqbalance.github.io/irqbalance/, [Online; accessed 2019-
07-22].

[2] “SMP IRQ affinity,” https://www.kernel.org/doc/Documentation/
IRQ-affinity.txt, [Online; accessed 2019-07-18].

[3] A. Adya, R. Grandl, D. Myers, and H. Qin, “Fast Key-value Stores:
An Idea Whose Time Has Come and Gone,” in Proceedings of
the Workshop on Hot Topics in Operating Systems, ser. HotOS ’19.
New York, NY, USA: ACM, 2019, pp. 113–119. [Online]. Available:
http://doi.acm.org/10.1145/3317550.3321434

[4] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload Analysis of a Large-scale Key-value Store,” in Proceedings
of the 12th ACM SIGMETRICS/PERFORMANCE Joint International
Conference on Measurement and Modeling of Computer Systems, ser.
SIGMETRICS ’12. New York, NY, USA: ACM, 2012, pp. 53–64.
[Online]. Available: http://doi.acm.org/10.1145/2254756.2254766

[5] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania, “The Multikernel: A New
OS Architecture for Scalable Multicore Systems,” in Proceedings of the
ACM SIGOPS 22Nd Symposium on Operating Systems Principles, ser.
SOSP ’09. New York, NY, USA: ACM, 2009, pp. 29–44. [Online].
Available: http://doi.acm.org/10.1145/1629575.1629579

[6] B. Chandramouli, G. Prasaad, D. Kossmann, J. Levandoski, J. Hunter,
and M. Barnett, “FASTER: A Concurrent Key-Value Store with
In-Place Updates,” in Proceedings of the 2018 International Conference
on Management of Data, ser. SIGMOD ’18. New York, NY, USA:
ACM, 2018, pp. 275–290. [Online]. Available: http://doi.acm.org/10.
1145/3183713.3196898

[7] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking Cloud Serving Systems with YCSB,” in Proceedings of
the 1st ACM Symposium on Cloud Computing, ser. SoCC ’10. New
York, NY, USA: ACM, 2010, pp. 143–154.

[8] J. Corbet, “The impact of page-table isolation on I/O performance,”
https://lwn.net/Articles/752587/, [Online; accessed 2019-07-22].

[9] J. Dean and L. A. Barroso, “The Tail at Scale,” Communications of
the ACM, vol. 56, no. 2, pp. 74–80, Feb. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2408776.2408794

[10] D. Didona and W. Zwaenepoel, “Size-aware Sharding for Improving
Tail Latencies in In-memory Key-value Stores,” in Proceedings
of the 16th USENIX Conference on Networked Systems Design
and Implementation, ser. NSDI’19. Berkeley, CA, USA: USENIX
Association, 2019, pp. 79–93. [Online]. Available: http://dl.acm.org/
citation.cfm?id=3323234.3323242

[11] P. Enberg, A. Rao, and S. Tarkoma, “I/O Is Faster Than the CPU:
Let’s Partition Resources and Eliminate (Most) OS Abstractions,” in
Proceedings of the Workshop on Hot Topics in Operating Systems, ser.
HotOS ’19. New York, NY, USA: ACM, 2019, pp. 81–87. [Online].
Available: http://doi.acm.org/10.1145/3317550.3321426

[12] B. Fan, D. G. Andersen, and M. Kaminsky, “MemC3: Compact and
Concurrent MemCache with Dumber Caching and Smarter Hashing,”
in Proceedings of the 10th USENIX Conference on Networked
Systems Design and Implementation, ser. nsdi’13. Berkeley, CA,
USA: USENIX Association, 2013, pp. 371–384. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2482626.2482662

[13] B. Fitzpatrick, “Distributed Caching with Memcached,” Linux J.,
vol. 2004, no. 124, Aug. 2004. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1012889.1012894

[14] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy, “MegaPipe:
A New Programming Interface for Scalable Network I/O,” in
Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’12. Berkeley, CA, USA:
USENIX Association, 2012, pp. 135–148. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2387880.2387894

[15] J. L. Hennessy and D. A. Patterson, Computer Architecture, Sixth
Edition: A Quantitative Approach, 6th ed. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2017.

[16] D. A. Holland and M. I. Seltzer, “Multicore OSes: Looking Forward
from 1991, Er, 2011,” in Proceedings of the 13th USENIX Conference
on Hot Topics in Operating Systems, ser. HotOS’13. Berkeley, CA,
USA: USENIX Association, 2011, pp. 33–33. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1991596.1991640

[17] T. Hruby, T. Crivat, H. Bos, and A. S. Tanenbaum, “On Sockets
and System Calls: Minimizing Context Switches for the Socket

API,” in Proceedings of the 2014 International Conference on
Timely Results in Operating Systems, ser. TRIOS’14. Berkeley,
CA, USA: USENIX Association, 2014. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2750315.2750323

[18] Irqbalance, “Remove affinity hint infrastruc-
ture,” https://github.com/Irqbalance/irqbalance/commit/
dcc411e7bfdd95bbdb7fd0af8699f8cafe686ff4, [Online; accessed
2019-07-22].

[19] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han,
and K. Park, “mTCP: a Highly Scalable User-level TCP Stack for
Multicore Systems,” in 11th USENIX Symposium on Networked Systems
Design and Implementation, ser. NSDI 14. Seattle, WA: USENIX
Association, 2014, pp. 489–502. [Online]. Available: https://www.
usenix.org/conference/nsdi14/technical-sessions/presentation/jeong

[20] A. Kaufmann, S. Peter, N. K. Sharma, T. Anderson, and
A. Krishnamurthy, “High Performance Packet Processing with
FlexNIC,” in Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’16. New York, NY, USA: ACM, 2016, pp. 67–
81. [Online]. Available: http://doi.acm.org/10.1145/2872362.2872367

[21] A. Kaufmann, T. Stamler, S. Peter, N. K. Sharma, A. Krishnamurthy,
and T. Anderson, “TAS: TCP Acceleration As an OS Service,” in
Proceedings of the Fourteenth EuroSys Conference 2019, ser. EuroSys
’19. New York, NY, USA: ACM, 2019, pp. 24:1–24:16. [Online].
Available: http://doi.acm.org/10.1145/3302424.3303985

[22] M. Kerrisk, “The SO REUSEPORT socket option,” https://lwn.net/
Articles/542629/, [Online; accessed 2019-07-22].

[23] J. Khalid, E. Rozner, W. Felter, C. Xu, K. Rajamani, A. Ferreira,
and A. Akella, “Iron: Isolating network-based CPU in container
environments,” in 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18). Renton, WA: USENIX
Association, 2018, pp. 313–328. [Online]. Available: https://www.
usenix.org/conference/nsdi18/presentation/khalid

[24] A. Kivity, “Adventures with Memory Barriers and Seastar on Linux,”
https://www.scylladb.com/2018/02/15/memory-barriers-seastar-linux/,
[Online; accessed 2019-07-22].

[25] J. Leverich and C. Kozyrakis, “Reconciling High Server Utilization
and Sub-millisecond Quality-of-service,” in Proceedings of the Ninth
European Conference on Computer Systems, ser. EuroSys ’14. New
York, NY, USA: ACM, 2014, pp. 4:1–4:14. [Online]. Available:
http://doi.acm.org/10.1145/2592798.2592821

[26] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam, E. Chen,
and L. Zhang, “KV-Direct: High-Performance In-Memory Key-
Value Store with Programmable NIC,” in Proceedings of the 26th
Symposium on Operating Systems Principles, ser. SOSP ’17. New
York, NY, USA: ACM, 2017, pp. 137–152. [Online]. Available:
http://doi.acm.org/10.1145/3132747.3132756

[27] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble, “Tales of the
Tail: Hardware, OS, and Application-level Sources of Tail Latency,”
in Proceedings of the ACM Symposium on Cloud Computing, ser.
SOCC ’14. New York, NY, USA: ACM, 2014, pp. 9:1–9:14. [Online].
Available: http://doi.acm.org/10.1145/2670979.2670988

[28] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “MICA:
A Holistic Approach to Fast In-memory Key-value Storage,” in
Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation, ser. NSDI’14. Berkeley, CA, USA:
USENIX Association, 2014, pp. 429–444. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2616448.2616488

[29] N. M. Lê, A. Guatto, A. Cohen, and A. Pop, “Correct and Efficient
Bounded FIFO Queues,” in 2013 25th International Symposium on
Computer Architecture and High Performance Computing, Oct 2013,
pp. 144–151.

[30] M. Majkowski, “Why does one NGINX worker take all the load?” https:
//blog.cloudflare.com/the-sad-state-of-linux-socket-balancing/, [Online;
accessed 2019-07-22].

[31] S. Marz and B. V. Zanden, “Reducing Power Consumption and Latency
in Mobile Devices Using an Event Stream Model,” ACM Transactions
on Embedded Computing Systems, vol. 16, no. 1, pp. 11:1–11:24, Oct.
2016. [Online]. Available: http://doi.acm.org/10.1145/2964203

[32] D. Mulnix, “Intel Xeon Processor Scalable Family Tech-
nical Overview,” https://software.intel.com/en-us/articles/
intel-xeon-processor-scalable-family-technical-overview, 2017,
[Online; accessed 2019-07-22].

[33] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakrishnan,
“Shenango: Achieving High CPU Efficiency for Latency-sensitive
Datacenter Workloads,” in Proceedings of the 16th USENIX Conference
on Networked Systems Design and Implementation, ser. NSDI’19.
Berkeley, CA, USA: USENIX Association, 2019, pp. 361–377.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3323234.3323265

[34] V. S. Pai, P. Druschel, and W. Zwaenepoel, “Flash: An efficient and
portable web server,” in Proceedings of the Annual Conference on
USENIX Annual Technical Conference, ser. ATEC ’99. Berkeley, CA,
USA: USENIX Association, 1999, pp. 15–15. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1268708.1268723

[35] A. Pesterev, J. Strauss, N. Zeldovich, and R. T. Morris, “Improving
Network Connection Locality on Multicore Systems,” in Proceedings of
the 7th ACM European Conference on Computer Systems, ser. EuroSys
’12. New York, NY, USA: ACM, 2012, pp. 337–350. [Online].
Available: http://doi.acm.org/10.1145/2168836.2168870

[36] H. Qin, Q. Li, J. Speiser, P. Kraft, and J. Ousterhout, “Arachne:
Core-Aware Thread Management,” in 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18). Carlsbad,
CA: USENIX Association, Oct. 2018, pp. 145–160. [Online]. Available:
https://www.usenix.org/conference/osdi18/presentation/qin

[37] L. Rizzo, “netmap: A Novel Framework for Fast Packet I/O,” in 2012
USENIX Annual Technical Conference (USENIX ATC 12). Boston, MA:
USENIX Association, 2012, pp. 101–112. [Online]. Available: https:
//www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo

[38] S. M. Rumble, A. Kejriwal, and J. Ousterhout, “Log-structured
Memory for DRAM-based Storage,” in Proceedings of the 12th
USENIX Conference on File and Storage Technologies, ser. FAST’14.

Berkeley, CA, USA: USENIX Association, 2014, pp. 1–16. [Online].
Available: http://dl.acm.org/citation.cfm?id=2591305.2591307

[39] K. Rupp, “42 Years of Microprocessor Trend Data,” https://www.
karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/, [Online;
accessed 2018-02-25].

[40] Seastar, http://www.seastar-project.org/, [Online; accessed 2019-07-22].
[41] L. Shalev, J. Satran, E. Borovik, and M. Ben-Yehuda, “IsoStack:

Highly Efficient Network Processing on Dedicated Cores,” in
Proceedings of the 2010 USENIX Conference on USENIX Annual
Technical Conference, ser. USENIXATC’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 5–5. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1855840.1855845

[42] M. Welsh, D. Culler, and E. Brewer, “SEDA: An Architecture for
Well-conditioned, Scalable Internet Services,” in Proceedings of the
Eighteenth ACM Symposium on Operating Systems Principles, ser.
SOSP ’01. New York, NY, USA: ACM, 2001, pp. 230–243. [Online].
Available: http://doi.acm.org/10.1145/502034.502057

[43] K. Yasukata, M. Honda, D. Santry, and L. Eggert, “StackMap:
Low-Latency Networking with the OS Stack and Dedicated NICs,”
in 2016 USENIX Annual Technical Conference (USENIX ATC 16).
Denver, CO: USENIX Association, 2016, pp. 43–56. [Online].
Available: https://www.usenix.org/conference/atc16/technical-sessions/
presentation/yasukata

[44] I. Zhang, J. Liu, A. Austin, M. L. Roberts, and A. Badam, “I’m not
dead yet!: The role of the operating system in a kernel-bypass era,” in
Proceedings of the Workshop on Hot Topics in Operating Systems, ser.
HotOS ’19. New York, NY, USA: ACM, 2019, pp. 73–80. [Online].
Available: http://doi.acm.org/10.1145/3317550.3321422

