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1. Introduction

System logs are the diagnostic window to the state of health of a server. Logs
are collected to files from which system administrators can monitor the status and
events in a server. The logs are usually unstructured textual messages which are
difficult to go through manually, because of the ever-growing data. Often manual
search is the only option for system administrators to find the cause of server
faults, and there is little help from automated systems. Anomaly detectors can
assist on locating the problem and in some cases, they could even predict the
eventual server fault and preventive actions could be made.

Anomaly is defined as something that deviates from what is standard, normal
or expected. Thus, anomaly detection from system logs is to find the rare or
unexpected log message or rather sequence of log messages and this could be
automated trough set of mathematical models. Anomaly detector could be used
by the system administrators to detect intrusions, faulty appliance connections
and unreported bugs. It could be used in cooperation with development for fixing
more severe bugs which are hard to detect in normal use of the system.

"The process of event log analysis for anomaly detection involves four main
steps: log collection, log parsing, feature extraction, and anomaly detection."
[He+16] The raw data from the logs is unstructured, noisy and inconsistent thus
some preprocessing and parsing is essential. Feature extraction is done with word
embedding model which will give an event log a multidimensional vector represen-
tation. The numerical data can then be further analyzed with a set of machine
learning models.

The aim in this study is to create anomaly detector by trying different vector
embeddings for the feature extraction. The vector embeddings will be done with
word2vec, doc2vec and fastText embedding models. Word2vec inspects each log
word by word, doc2vec has broader picture comparing full log messages with each
other and fastText has the ability to inspect the structure of each word of the
log message individually. Further analysis and the anomaly detection are done
with Independent Component Analysis, Hidden Markov Model and Long Short-
Term memory. I will review the success of the embedding models for the anomaly
detection task. The anomaly detector is done with collaboration of Software Point.
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1.1 Motivation for this thesis
The reason for the review like thesis is, that initially I wanted to create event log
anomaly detector which could be used generally for different applications. Doc2vec
embedding model seemed powerful tool to transform unstructured log messages
to vector embeddings which could be then further processed with other machine
learning models. However, I noticed that the log vectors created by Doc2vec
didn’t converge towards similar log messages and seemed that each vector is just
a randomly distributed vector. Even with longer training times the convergence
was quite low and only log messages with substantially more words than others
could be distinguished from each other. Since Doc2vec is not the only embedding
model available I wanted to try with some other models too and writing a review
of them seemed to be an interesting pursuit.

1.2 Structure of the thesis
First in this thesis the word embedding models are introduced. Next the proposed
anomaly detection models are represented with mathematical explanations. Then
I display how these models are trained and used in this thesis in order to solve
the anomaly detection problem. After this the results of the embedding and the
anomaly detection models are represented and reviewed. Lastly open discussion
about the results and future work suggestions.
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2. Word embedding

Natural language processing (NLP) is an interdisciplinary field, which combines
linguistics and artificial intelligence in pursue of making computers read and un-
derstand human language in a manner that valuable artefacts could be produced.
For example, speech recognition and text classification are of NLP’s area of in-
terest. Text classification tasks could be dividing movie reviews to positive and
negative[CZ05] and even detecting influenza epidemics by mining twitter messages
[Cul10]. The problem at stake in this thesis is to understand whether a textual
event log message is anomalous.

Since the anomaly detection algorithms need structured vector like inputs,
some kind of feature extraction is needed on the log messages. One of the simplest
word vectorization is one-hot encoding. One-hot encoding creates a vector for each
word in the vocabulary, where all of the values in the vector are marked as zero
expect for the index of the word is marked as one. However, one-hot encoding
explains nothing about the semantics of the words and each vectorization is just
an orthogonal representation to another dimension. Since each new word creates
new dimension for the vector the computational toll for anomaly detection would
be severe. Thus, word embedding models could bring faster solution for this.

Word embeddings contains a class of techniques where each word is rep-
resented by a real-valued vector, often tens or hundreds of dimensions. This is
contrasted to the thousands of dimensions required for a one-hot encoding. The
values of the vector are acquired by learning a supervised machine learning model
such as Word2vec.

The word embedding models used in this study are presented in the next
subsections.

2.1 Word2Vec
Word2vec is a vector embedding model which is an efficient method for learning
high quality vector representations of words from large amounts of unstructured
text data. Since the training of the model does not involve dense matrix multipli-
cations, the training is rather efficient. "An optimized single-machine implemen-
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Figure 2.1: The CBOW and Skip-gram model frameworks. The training objectives are to learn
word vector representations that are good at predicting the middle word (CBOW) or the nearby
words (Skip-gram). [SAA17]

tation can train on more than 100 billion words in one day." [Mik+13] Word2Vec
is a two-layer neural network. It takes words as one-hot vectors, the vector is
feedforwarded trough fully-connected layer’s weights and it outputs probabilities
of target words from the vocabulary of the corpus. Word2vec has two different
architectures of finding the word vectors: Skip-gram and Continous Bag-of-Words
(CBOW). The difference is that CBOW tries to predict the middle word given
surrounding words and Skip-gram tries to predict surrounding words given the
middle word. In this study the Skip-gram model with negative sampling is used
and it is described as follows:

To train the model the objective is to maximize the log probability of

T∑
t=1

∑
c∈Ct

log p(wc|wt), (2.1)

where Ct is the training context (the words surrounding center word wt). Larger
Ct results in more training examples and thus can lead to a higher accuracy, at the
expense of the training time. However, the size of Ct can be in the range 5 − 20
for small training datasets and for larger datasets the size of Ct can be smaller
[Mik+13]. The problem of predicting context words can be set of independent bi-
nary classification tasks. Then the goal is to independently predict the presence of
context words. Using binary logistic loss, the negative log-likelihood − log p(wc|wt)
can then be defined by as follows:

log(1 + e−s(wt,wc)) +
∑

n∈Nt,c

log(1 + es(wt,n)). (2.2)

Here the Nt,c is a set of negative examples sampled from the vocabulary and the
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s is a scoring function which maps pairs of word and context to scores in R. Now
we can write the objective as follows:

T∑
t=1

[
∑
c∈Ct

log(1 + e−s(wt,wc)) +
∑

n∈Nt,c

log(1 + es(wt,n))] (2.3)

Parametrization for the scoring function s between the center word wt and the
context word wc is to use word vectors. For each word w in the vocabulary there
are defined two-word vectors: uw and vw. These are the "input" and "output" vector
representations of w. In particular the vectors uwt and vwc corresponding to words
wt and wc. Then the score can be computed as scalar product of s(wt, wc) = u>wt

vwc .
Word2vec has interesting feature, a word offset technique where simple al-

gebraic operations are performed on the word vectors, it was shown for example
that vector(”King”) - vector(”Man”) + vector(”Woman”) results in a vector that
is closest to the vector representation of the word "Queen" [MYZ13].

2.2 fastText
Word2vec treats each word as unique and ignores the internal structure of words.
[Boj+16]. Event log messages might contain file names, rare or unique words
and even misspelling. Each unique word will be handled as a new token in the
vocabulary even though the meaning of the word could be same as with another
word. fastText is possible solution for this and it is an extension to the Word2vec
model. Instead of learing vectors for each individual word, fastText represents
each word as an n-gram of characters. Boundary symbols < and > will be added
at the beginning and end of a word, allowing it to be distinguished from other
words. Also, the word itself is included in the set of n-grams. Taking a look at the
word update and setting n = 4 as an example, the n-gram will then be:

< upd, upda, pdat, date, ate > .

Now supposedly a dictionary of n-grams of size G is given. With word w the set
of n-grams is Gw ⊂ {1, . . . , G}. A vector representation zg is presented for each
n-gram g. The overall word embedding is the sum of these character n-grams thus
the scoring function is:

s(w, c) =
∑

g∈Gw

z>g vc (2.4)

Since fastText breaks words down to n-grams it can find good word embeddings
to rare words and even words that were not seen during training.

5



Figure 2.2: Distributed Memory and Distributed Bag of Words frameworks for doc2vec. The
Distributed Memory model is similar to the word2vec CBOW model. Distributed Bag of Words
is similar to the word2vec Skip-gram model.

2.3 Doc2Vec
Doc2Vec, also known as Paragraph Vector, is similar algorithm to Word2vec and
fastText, but instead of vectorizing words it creates vector embedding of pieces of
text, such as sentences, paragraphs, and documents. Doc2vec is also an extension
of Word2vec and it was introduced by Le and Mikolov [LM14]. The doc2vec
model also has two different variations Distributed Memory and Distributed Bag
of Words. Distributed Memory model is similar to the Word2vec CBOW mode
where the only change is an additional paragraph token that is mapped to a vector.
The paragraph token can be thought as another word vector in the input which
represents missing information from the current context.

In Distributed Bag of Words version, the model tries to predict word vectors
randomly sampled from the current paragraph. This way each iteration a text
window is sampled from which a random word is sampled, and a classification
task is formed given the paragraph vector.

Doc2vec has shown some promising results in event logs anomaly detection
models which are based on natural language processing. [Mim19]
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2.4 Random vector embedding
In addition to the previous embedding models a random vector embedding is
added. Random vector embedding creates a random vector for each word in the
vocabulary from which the log vectors can be composed. Random vector embed-
ding is essentially Word2vec with no training. This makes each log vector different
in a way that messages such as:

2019-03-18 10:09:36,459 [127.0.0.1] INFO ELEMENTTAG 4340 - Generating HTML
2019-03-18 10:09:36,479 [127.0.0.1] INFO ELEMENTTAG 4340 - Done generating HTML

might be embedded completely differently even though the semantics are similar.
Random vector embedding is done mainly for base line measurement. If random
vector embedding succeeds better than any other embedding method, then there is
no reason to use time and processing resources to embed log messages for anomaly
detection.
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3. Anomaly detection

Anomaly detection in event log analysis leans heavily on pattern recognition. A
"normal" pattern is attempted to find and if an event doesn’t follow the pattern it
may be considered as an anomaly. In order to create useful detector, the threshold
of anomaly must be set carefully. It is not intentional to overwhelm the system
administrator with hordes of false positives.

In this study there are three different types of anomaly detection models.
First one is the only fully unsupervised model called Independent Component
Analysis (ICA). ICA attempts to separate the data to statistically independent
sources. The preprocessing of ICA is done by centering and whitening the data.
During whitening, the higher dimensional log vectors are projected to lower di-
mensions to help the clustering problem. The datapoints which don’t fit well in
any cluster are considered outliers and may be anomalous log messages. An outlier
is not necessarily anomalous since it could be just a rare event. Thus, this model
is more of supportive type for the other models. Perhaps the best known problem
solved with ICA is the "cocktail party problem", where the goal is to separate
independent signal from noisy mixture of signals. However ICA has also shown
promises in server log anomaly detection [LZL10].

Usually in event logs the interesting objects are not just rare events but
rather the unexpected sequence of events. Thus, the second model is Hidden
Markov Model (HMM). HMM assumes the system to be a Markov Process with
unobservable states. This means that the output of the system can be observed
but it is considered to be a result of the hidden unobservable state. Each state has
some probability distribution for the emitted output and a probability to transition
to different state. The model could be initialized without training, but one would
then need to know the emission and transition probabilities. Since the transition
and emission matrices are unknown a Baum-Welch training algorithm is used to
initialize the matrices. HMM has been used largely for speech recognition, but it
has also succeeded in system anomaly detection [WFP99; YM05]

Lastly a recurrent neural network model, Long short-term memory (LSTM),
is used to inspect the log vectors. LSTM is used as sparse autoencoder where the
model maps an input sequence to a fixed-length vector, and then maps it again
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to the same size as the input. Anomalies are such log messages or sequences of
messages which the auto-encoder finds difficult to predict. Similar auto-encoder
has already been successfully used in text classification [Xu+17], text generation
[LLJ15] and time-series anomaly detection [Mal+16].

In the next subsections all the three models are introduced in more depth.

3.1 Independent Component Analysis
Independent Component Analysis is a statistical model which transforms the given
multidimensional data into components which are statistically as independent as
possible. ICA was chosen over Principal component analysis (PCA) since it has
been shown that ICA can more effectively identify anomalies in some cases [LZL10].
ICA is also a special case of blind source separation and it might be of use for the
other anomaly detection models.

The ICA is a generative model and it tries to explain how the observed
data was generated by mixing process of some independent components. Thus
ICA assumes that the embedded log vectors x = (x1, . . . , xn) can be explained
by independent components s = (s1, . . . , sm) with a linear transformation matrix
which is called a mixing matrix A in this context. With the variables we get the
statistical model of ICA as,

x = As. (3.1)

To solve the independent components, an unmixing matrix W, such that WA = I,
need to be found. Then the independent components are obtained by,

s = Wx. (3.2)

Many of existing algorithms for ICA aim to maximize the non-gaussianity of the
independent components. One way to find the mixing matrix W is with the Algo-
rithm 1. The algorithm is called FastICA, which was introduced by Aapo Hyväri-
nen [Hyv99; HO00] and it is one of the most widely used algorithms performing
ICA.

To simplify the algorithm, the data should be preprocessed first by center-
ing and second by whitening it. Centering can simply be done by subtracting
each element by the mean vector m = E(x). The data is whitened by a linear
transformation so that the new vector’s x̂ components are uncorrelated and their
variances equal unity. Thus the covariance matrix of the data equals the iden-
tity matrix E(x̂x̂>) = I. Whitening can be done with eigen-value decomposition
[HO00].
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Algorithm 1: FastICA
Input: The data x, number of independent components k
Result: Unmixing matrix W
Center and whiten the data x
Initialize the weight vectors W = (w1, . . . , wk) randomly
repeat

for j = 1 to k do
Update w+

j = E{xg′(w>j x)} − E{g′′(w>j x)} for ∀j ∈ {1, . . . , k}
end
Update W = w+/|w+|

until convergence;

The function g is non-quatratic function to measure the non-Gaussianity.
For example function g1(u) = 1

a1
log cosh(a1u) with values 1 ≤ a1 ≤ 2 is good for

general purposes contrast function, and function g2(u)− 1
a2
e−a2u2/2 for more robust

solutions [HO00]. Convergence is achieved when the dot-product of old and new
values of w is close to 1.

For log anomaly detection purposes, the ICA can separate anomalous sources
from the data and the preprocessing reduces the dimensionality of the log vectors
for making the clustering easier. An outlier could be considered as anomaly al-
though, the outlier detection is only good for so far since many interesting log
events are inside a sequence of events and not the individual logs itself. In the
next section the Hidden Markov Model is introduced which offers a solution to the
sequential data.

3.2 Hidden Markov Model
A Markov Chain or Markov Model is a stochastic process where a sequence of
changing states is observed, and it is assumed that the future state is independent
of past state given the present state. In Hidden Markov Model (HMM) the chang-
ing states cannot be observed but each state emissions some observable output,
from which it can be predicted in which state the model is. Since hidden states
changes and if the transition probability is known the next state can be predicted.
A simple example of HMM is a doorman who cannot see the weather outside but
can see what people are wearing when they come in. The hidden state here is the
weather and the observations are people’s attire. If many people are observed to
carry an umbrella and wearing raincoats the doorman can predict that the hidden
state alias the weather is rainy. Knowing the current state, doorman can predict
that the next day will likely be rainy or cloudy and it is unlikely to be sunny.
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In attempt to transit this idea for log anomaly detection a set of log vectors are
observed which are usually seen in unhealthy system. Then a prediction can be
made that the system is unhealthy or in transition to unhealthy state. Even if it is
unknown what is the difference of healthy or unhealthy log vectors, the probability
of observations can be calculated, and log vectors can be assumed as anomalies
based on that.

A HMM is specified by a number of states N, their initial probability dis-
tribution π, a transition probability matrix A and an emission probability matrix
B. The transition probability matrix tells the probability of moving from state i
to state j. The emission probability matrix tells the probability of an observation
to be emitted from a state. The model is noted as λ = (A,B, π) from now on.
HMM assumes that the sequence of states is a Markov Chain and that the proba-
bility of each observation depends only on the state that produced the observation.
The paper "Introduction to Hidden Markov Models" [RJ86] gives HMM three key
problems of interest that must be solved for the model to be useful in real worlds
applications. These problems are the following:

Problem 1: Given the observation sequence O = (O1, . . . , OT ) and the model λ,
how do we compute the probability of the observation sequence.

Problem 2: Given the observation sequence O = (O1, . . . , OT ), how we choose a
state sequence I = (i1, . . . , iT ) which is optimal in some meaningful sense.

Problem 3: How can we set the model parameters λ = (A,B, π) to maximize
the probability of observation sequence O = (O1, . . . , OT ) given λ.

In short, the problems ask, how to calculate the probability of a sequence,
how to predict the current hidden state and how to initialize and train the model?
The solutions for the problems are stated next.

3.2.1 Forward algorithm
To calculate the probability of observed sequence O with the model λ, the direct
calculation would be by adding the emission probabilities of every possible state
sequence. For an HMM with N hidden states and sequence of length T there are
NT possible state sequences. So, the direct calculation will be unfeasible even for
small values of N and T . Instead of direct calculation, a dynamic programming
algorithm, the Forward algorithm, is used instead. For the algorithm a forward
variable αt(i) needs to be defined as follows:

αt(i) = P (O1, . . . , Ot, it = qi|λ) (3.3)
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This is the probability of observation sequence from observation O1 to observation
Ot and state q at time t, given the model λ. The variable αt(i) can then be solved
with the Algorithm 2.

Algorithm 2: Forward algorithm
Input: The observed sequence O, the HMM model λ = (A,B, π)
Result: Total probability of the sequence given the model:

P (O|λ) = ∑N
j=1 αT (i)

Calculate the first forward variable
α1(i) = πibi(O1), for 1 ≤ i ≤ N
The rest variables can be calculated as
for t = 1, . . . , T − 1 do

for 1 ≤ j ≤ N do
αt+1(j) = ∑N

i=1 αt(i)aijbj(Ot+1)
end

end

Here αij is the transition probability from state i to state j and bj(Ot) is
the state observation probability of the observation Ot given current state j. Each
probability αt contains the sum of probabilities (αt−1, αt−2, . . . , α1) and to calculate
the next probability αt+1 one only needs to reuse the current αt and add the
transition and emission probability for every state.

3.2.2 Viterbi algorithm
For HMM the hidden states are usually the interesting part. In particular which
state the model is after some observations are observed? Again, by direct calcu-
lation of each possible hidden state sequence and maximizing the likelihood this
is doable, but it is frustratingly tedious since the sequences for hidden states in-
creases exponentially with the number of hidden states. Also, here a dynamical
programming algorithm, the Viterbi algorithm, is proposed. Viterbi algorithm is
similar as the Forward algorithm but instead of calculating the sum of probabili-
ties Viterbi takes the maximum of the previous state probabilities. Also, Viterbi
doesn’t only return the probability of the sequence, but it also returns the sequence
itself. The Viterbi algorithm is defined in Algorithm 3.

Further explanation of the Viterbi algorithm can be found from the paper
[For73].
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Algorithm 3: Viterbi algorithm
Input: The observed sequence O, the HMM model λ = (A,B, π)
Result: The probability of the most probable hidden state sequence

and the sequence of hidden states.
Initialize the variables δ and Ψ:
for 1 ≤ i ≤ N do

δ1(i) = πibi(o1)
Ψ1(i) = 0

end
Recursive calculation:
for 2 ≤ t ≤ T do

for 1 < j ≤ N do
δt(j) = max1≤i≤N δt−1(i)aijbj(ot)
Ψt(j) = arg max1≤i≤N δt−1(i)aij

end
end
Termination:
Pmax = max1≤i≤N δT (i)
imax
T = arg max1≤i≤N δT (i)
Sequence of the most probable states:
for t = T − 1, T − 2, . . . , 1 do

imax
t = Ψt+1(it+1)

end

13



3.2.3 Baum-Velch algorithm
In order to get meaningful results with the HMM the model parameters need to be
initialized with reasonable values. However, the emission or transition distribution
is often unknown, as in the case of log anomaly detection. Thus, a solution for
setting and training the parameters needs to be found. One of the most used
HMM parameter estimator is the Baum-Velch algorithm. It is a special case of the
expectation-maximization algorithm (EM-algorithm) and its purpose is to set the
transition matrix A, emission matrix B and the initial state distribution π such
that the probability of observations P (O|λ) is maximized. Baum-Welch algorithm
utilizes a two-part algorithm, the Forward-Backward algorithm, from which the
first part, Forward-algorithm was introduced in previous subsection. Thus, next
is the Backward part.

Backward-algorithm: Backward algorithm is quite similar to the Forward al-
gorithm but it deals with the observations in reversed order. The backward variable
can be defined as:

βt(i) = P (Ot+1, Ot+2, . . . , OT |it = qi, λ) (3.4)

This is the partial observation sequence from t+ 1 to the end of the full sequence.
Given are the state qi at time t and the model λ. The variable βt(i) can be solved
with the Algorithm 4.

Algorithm 4: Backward algorithm
Input: The observed sequence O, the HMM model λ = (A,B, π)
Result: Total probability of the sequence given the model:

P (O|λ) = ∑N
j=1 πjbj(o1)β1(i)

Initialize the end of the observation sequence:
for 1 ≤ i ≤ N do

βT (i) = 1
end
Probability of each observartion in the sequence:
for 1 ≤ i ≤ N do

for 1 ≤ t ≤ T do
βt(i) = ∑N

j=1 aijbj(Ot+1)βt+1(j)
end

end

The first step defines the βT arbitrary to be 1 for all i and the second step
is the recursive step which notes that the result of βt(j) is equal to sum of all
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successive values βt+1(j) multiplied by transition and observation probabilities,
aij and bj(Ot+1).

Now that both αt and βt are solved the Baum-Welch with the Forward-
Backward algorithm can be defined as the Algorithm 5.

Like the EM-algorithm the Baum-Velch has two phases in which the algo-
rithm will alternate. In the E-step the expected state occupancy count γ and
the state transition count ξ are calculated with the transition matrix A and the
emission matrix B. In the M-step the values γ and ξ are used to recompute new
values for matrices A and B. The matrices A and B and the distribution π need
to be initialized randomly if there is no further information about the observation
sequences.

The HMM gives unsupervised approach for finding anomalies from the se-
quential data. First the model is initialized by feeding the data to Baum-Welch
algorithm and then analyzed with the Forward and Viterbi algorithms. Forward
algorithm gives the probability of given sequence and it is used to compare adja-
cent or parallel sequences probabilities. If one’s probability is a lot lower than the
others, then the sequence can be assumed anomalous. Viterbi algorithm is used
to find the hidden state sequence and if one state can be thought anomalous then
logs which are emitted from the anomalous state are assumed anomalous.

A competing and more complex method for sequential anomaly detection
is the Long Short-Term Memory and it is hypothized to perform better than the
HMM. Although it is been shown that despite the success of deep neural networks,
a more traditional graphical model approaches can be beneficial [PC16; MHA00].
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Algorithm 5: Baum-Welch algorithm
Input: The observations OT , hidden state set QN

Result: Trained HMM model λ = (A,B, π)
Initialize A and B randomly
repeat

for 1 ≤ t ≤ T do
for 1 ≤ j ≤ N do

γt(j) = αt(j)βt(j)
P (O|λ)

for 1 ≤ i ≤ N do

ξt(i, j) = αt(i)aijbj(Ot+1)βt+1(j)
P (O|λ)

end
end

end
for 1 ≤ i ≤ N do

estimate the initial states:

π̄i = γ1(i)

estimate the transition matrix:

āij =
∑T−1

t=1 ξt(i, j)∑T−1
t=1 γt(i)

estimate the emission matrix:

b̄j(k) =
∑T

t=1,Ot=k γt(j)∑T
t=1 γt(j)

end
until Until P (O|λ) ≈ P (O|λ̂);

16



3.3 Long Short-Term Memory
Recurrent neural networks (RNN) are used to learn patterns from sequential data
and make predictions out of it. RNN can memorize parts of the input during the
training sort of creating hidden state for the input and use them later to make pre-
dictions. Nonetheless during RNN’s training it has hard time to remember inputs
that are far away from the sequence. For example, if RNN is trying to process a
long text to do some prediction it might leave important bit from the beginning
and tend to make predictions only on the last words. This problem is also called
the vanishing gradient problem. Long Short-Term Memory (LSTM) architecture
holds solution for this since it has memory cell that can store information from
longer sequences. It is the state-of-the-art for variety of machine learning problems
and especially learning problems related to sequential data [Gre+17]. Since LSTM
is a special case of RNN a short description to RNN is in place.

3.3.1 Recurrent Neural Network
A Traditional neural network assumes that all inputs are independent of each
other. In many cases that is not the case. For example, in weather prediction a
cold day is unlikely to be followed by a warm day, instead it would be mild or
something between. RNNs passes a hidden value from previous layer to the next,
thus all inputs are assumed to be dependent of each other. Prediction with RNN is
calculated so that, each input xt from the sequence X = (x1, . . . , xT ) is combined
with a hidden vector ht from the sequence h = (h1, . . . , hT ) by equation:

ht = σ(Wxt + Uht−1 + bh). (3.5)

Here σ is the activation function, W are the input weights, U are the hidden
weights and b is the bias vector. Output can be calculated then with:

yt = σ(V ht + by). (3.6)

Here the matrix V denotes the output weights. Depending on the prediction task
the output can be calculated for every input value or smaller subset of input values.
For example, a machine translation task would calculate the output for each input
and a sequence classification task would calculate the output for just the last
input. When training RNN the loss of each output value needs to be taken into
consideration. Thus, the loss for one output sequence is the sum of each output’s
loss:

L =
T∑

i=1
d(yi, ŷi) (3.7)
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Since each input is dependent on each other the backpropagation needs to be done
at each point in time. At time-step T the gradient of loss L is calculated as:

∂L

∂W
=

T∑
t=1

∂Lt

∂W
. (3.8)

Here the right-hand term is by the chain rule of derivation as follows:

∂Lt

∂W
=

t∑
k=1

∂Lt

∂yt

∂yt

∂ht

∂ht

∂hk

∂hk

∂W
. (3.9)

Finally the weight update is done as with the update rule Ŵ = W − α ∂L
∂W

. Here
α is the learning rate which is set manually. This backpropagation trough every
time-step is also known as backpropagation trough time (BPTT). The problem
with vanishing gradients comes up in the training since the term ∂ht

∂hk
is factorized

as follows:
∂ht

∂hk

= ∂ht

∂ht−1

∂ht−1

∂ht−2
. . .

∂hk+1

∂hk

=
t∏

j=k

∂hj

∂hj−1
(3.10)

When t−k increases, the size of the factorized sequence converges quickly to 0, since
the term | ∂ht

∂hk
| < 1. Thus the gradient, and the weight updates, are dominated

only by the inputs closer to the last input of the training sequence. Vanishing
gradient might prolong the training extremely and it might not converge at all.
If the term | ∂ht

∂hk
| > 1 then the training would be wildly unstable for gradients are

increasing rapidly. This issue is also known as exploding gradients.
As stated before, LSTM brings answer to the vanishing and exploding gra-

dient problem and it is handled in the next section.

3.3.2 Long short-term memory
LSTM was introduced by Horchreiter and Schmidhuber in 1997 [HS97] and it is
a RNN architecture that contains units called memory blocks in the recurrent
hidden layer. The memory blocks are capable to store the temporal state and
control the flow of information through functions which are also called as gates.
The memory blocks contain input, forget, output gates and traditional activation
functions. Gates composed out if a sigmoid neural net layer and a point-wise
multiplication operation. Gates either let information go through or block the
information flow and it basically regulates how the cell state is changed during
the process. The LSTM network iterates trough 1 ≤ t ≤ T mapping the input se-
quence x = (x1, . . . , xT ) to an output sequence y = (y1, . . . , yT ) using the following
functions:
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Figure 3.1: Comparison between RNN and LSTM architecture.

it =σg(Wixt + Uiht−1 + bi) (3.11)
ft =σg(Wfxt + Ufht−1 + bf ) (3.12)
ot =σg(Woxt + Uoht−1 + bo) (3.13)
at =σc(Wcxt + Ucht−1 + bc) (3.14)
ct =ft � ct−1 + it � at (3.15)
ht =ot � σh(ct) (3.16)
yt =φ(V ht + by) (3.17)

Here it, ft and ot are the input, forget and output gates, at is the input
activation function vector, ct stands for the cell state and ht is the cell output
or the hidden state. σg is sigmoid function, which is used in all of the gates,
σh and σc are hyperbolic tangent activation functions. W = [Wi,Wf ,Wo,Wc]>
and U = [Ui, Uf , Uo, Uc]> is the concatenated weight matrix for input and output
weights. Matrix V is the output weights. σg and σh are the cell input and output
activation functions, φ is the softmax activation function and � is element-wise
product of the vectors. Initial values of c0 and h0 are 0.

In order to train the network, the process is similar as with RNN. The loss
is calculated as in equation 3.8 and 3.9 but now the gradient is a bit different. At
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time step t the derivation of the cell state is calculated as:

∂ct

∂ct−1
= ∂

∂ct−1
[ft � ct−1 + it � at] (3.18)

=σg(Wfxt + Ufht−1 + bf ) (3.19)

+ ∂

∂ct−1
σc(Wcxt + Ucht−1 + bc)� σg(Wixt + Uiht−1 + bi).

Here the forget gate dominates the result of the gradient and if the gate
decides that certain piece of information should be remembered then ft ≈ 1. Thus
the cell state gradient is ∂ct

∂ck
9 0 and the gradient of the loss function ∂Lt

∂W
9 0.

This proofs that the gradients do not vanish. Again the weights are updated by
the update rule: Ŵ = W − α ∂L

∂W
.

Even though LSTM is huge improvement to the regular RNN it still might
struggle with very long-time dependencies. LSTM also scales quickly making train-
ing time consuming even with faster computers.
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4. Methodology

In this chapter it is presented how the embedding and anomaly detection models
are trained and combined for the anomaly detection attempt. The structure of this
chapter will follow the four main steps of event log anomaly detection [He+16],
log collection, log parsing, feature extraction and anomaly detection.

Event logs are collected automatically from the servers, and a set of 484280
log messages are used for training the embedding models. These messages are
then further analysed with the anomaly detection models. Prior knowledge of
the logs is that during the logging time the server had lost connection from the
database twice. This is the interesting part which would be nice to be found
with the anomaly detection models, but other interesting events might also be
found from the logs. Before the logs are inputted to the embedding models, some
preprocessing is to be made.

4.1 Data preprocessing
Usually event log message contains at least the following attributes: timestamp,
thread, severity, action name, and free-form message text. For the study and the
embedding models, interesting attributes are all but the timestamp. Thus, the
textual inputs for the embedding models will be of type:

[THREAD] [SEVERITY] [ACTION] [MESSAGE]

The thread, severity and action name are fixed values and they do not need further
handling. Preprocessing is needed for the free-form message part, even though the
embedding models could probably learn the training data without any preprocess-
ing. The data contains messages that are similar to each other but there could
be a small detail which distinguishes the message from another. One example is
messages that contains a duration of action call.
[thread-1] INFO SecurityCheck - Statement: Department Security check for ’TrackItem’ having ’1’

rows with ’1’ action calls took 1.93ms
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[thread-1] INFO SecurityCheck - Statement: Department Security check for ’TrackItem’ having ’1’

rows with ’1’ action calls took 1.87ms

These messages deliver the same message with only slight time difference,
nonetheless the messages are currently considered different according to the em-
bedding models. So it is proposed that the messages will be modified to help unify
certain events. In this case the preprocessed message is changed to:

[thread-1] INFO SecurityCheck statement department security check for trackitem having <int>

rows with <int> action calls took <float> ms

Note that the message is also converted to lower case and apostrophes and
colons are removed. Also, only the message part of the log is changed and other
parts are unmodified. The table 4.1 contains all message conversions and short rea-
soning why the conversion is made. It is debatable whether preprocessing is needed,
since the embedding models would probably give these logs messages vector em-
beddings that are close for each other even without any preprocessing. However,
the preprocessing will make the embedding process a substantially easier when
there are less words in the vocabulary.
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Conversion Reason
All text to lower case. The text is free written text some of

the word tokens might have capital let-
ters and thus handled as unique word.

Symbols such as " ’ : ; . , replaced
with space, and extra whitespaces are
removed.

Some words end in dot or colon
or they are surrounded by parenthe-
sizes. Removing them makes vocabu-
lary smaller and simpler.

Dates to "[date]" or "[now]" if the date
is really close to the log timestamp

Some messages contains dates. Now is
set if the date in the message is close
to its timestamp.

Highlights such as "+++++++" to
"[highlight]".

There were different sized highlighters
and with different symbol sequences.
However, the use of it is that it is
easier to spot for the administrator
and the lengths or different symbols
doesn’t matter.

Connection id to "[id]". Some messages include the connection
id of the user. It’s better to sim-
plify this by replacing the changing se-
quence with id token.

Numbers are changed to "[serie]",
"[float]" or "[int]" depending of the
number

Messages include series (1.2.4.33.1)
floats (1.87) and integers (60) they all
are changed since the log file might
contain too much unique words with-
out conversion.

Table 4.1: Table of log message conversions used.
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4.2 Feature extraction
Each embedding model, Word2vec, fastText, Doc2vec and random vector embed-
ding, are trained to produce 100- and 300-dimensional vectors and each model
will be trained in total of 20 epochs. The attempt with chosen dimensions is to
find the boundary of how many is needed in order to explain the data reasonably.
Each trained model has sliding window size of 5 words. In Word2vec and fastText
there is no break between new log message, instead their training data is concate-
nated from all of the log messages creating a long document like structure. Since
Word2vec, fastText and random vector embedding creates word vectors instead
of vectors from full sentences, like Doc2vec, the word vectors from a log message
need to be combined to create a log vector. Log vectors are created by simply
summing all word vectors from a log with each other. For the Doc2vec model each
log message is considered as new document in its training corpus.

The data used for training has a lot of duplicate log messages and during the
implementation phase it was discovered that Doc2vec model could not distinguish
same or even similar messages from each other. This is probably due to the
nondeterministic nature of the model. Each log vector is randomly initialized.
Also, Doc2vec is better suited for finding embeddings to longer documents instead
of typical log message with only than 10 words or less. Even though the log vectors
from duplicate messages should be converging towards each other and it was tested
by increasing the training epochs, but it didn’t have significant effect. The figure
4.1 shows comparison between Word2vec and Doc2vec embedding models which
illustrates the problem. An alternative approach for using Doc2vec is introduced
in order to find better embeddings with the model.

A vocabulary is created from each unique preprocessed log message and a
Doc2vec model is trained against this vocabulary. This shall be called unique
Doc2vec model in this thesis. The unique Doc2vec model is also trained with 20
epochs but since it is trained against each unique log message the training data is
only 12733 messages instead of the 484280 messages. Adding the unique Doc2vec
models to the review pool, there will be in total of 10 different embedding models
to compare.

4.3 Anomaly detection
Each of the anomaly detection models are unsupervised. The unsupervised ap-
proach is useful since it doesn’t need pre-labeled data. With unsupervised models
it is also easier to generalize the models to work for event log data from different
applications. As downside unsupervised learning has the cost of usually needing
more training data, hence more training time.
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Figure 4.1: Comparison between Word2vec and Doc2vec. The nondeterministic nature of the
Doc2vec and short sentences makes it difficult to achieve dense representation from each unique
log message.

It should be noted that the 484280 logs contain 12733 unique messages from
where many messages are similar with only few word differences. Thus, the data
contains limited amount of features, which means that the amount of clusters and
hidden states for the ICA and HMM anomaly detection models can probably be
set fairly low compared to the size of the data.

4.3.1 Independent Component Analysis
The ICA is used for separating the independent data components to possibly
detect easily anomalous signals. Also the preprocessing for ICA projects the 100-
and 300-dimensional data to 3 dimensions which is then further analyzed with a
clustering algorithm. The data is clustered to 100 clusters in total, with k-means
clustering algorithm. If an event log does not fit well in any of the clusters, it is
labeled as unclustered. The unwell fitting is determined by the log vectors distance
from the center of cluster and the limit distance is the maximum distance between
any of two centers of clusters.

These clusters are further analyzed with the HMM model and the lower
dimensional vector representation is used in LSTM.

4.3.2 Hidden Markov Model
Instead of log vectors the HMM uses the clusters from ICA model as training
data. Hence the sequences given to the HMM are sequences of cluster indexes.
The model is initialized with 10 hidden states and the emission and the transition
matrices are initialized with uniform random probabilities. The model parameters
are then trained with the Baum-Welch algorithm. The training data is the com-
plete available data of 484280 cluster indexes which is split to shorter sequences
for each unique connection id.
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There are two ways to determine anomalous logs with HMM and both ways
use the Viterbi algorithm. We input the Viterbi with a short sequence of logs
where the examined log is in the middle. The whole data can be examined with
sliding window technique so that for each log a sequence is created with total of
20 and 100 logs. This way the probability of the sequences and the hidden state
of the log can be calculated. Probabilities of the sequences will be compared with
each other and if one is more unlikely than the other then the sequence hence the
log might be anomalous.

The other way to determine anomalous log is to inspect the hidden states
given by the Viterbi algorithm. Even though it is initially unknown which states
are anomalous we could determine anomalous state by low transition probabilities
or if the state’s emission probabilities separate a lot from the other states.

4.3.3 Auto-Encoder (LSTM)
The LSTM is used as sparse autoencoder. Sparsity helps the Auto-Encoder model
to avoid overfitting and it regularizes better. Before the detailed explanation of
the model here is a short motivation to use dropout to achieve sparsity for the
model.

Dropout: When the hidden layers have larger size than the input vector and
it has the possibility to learn the identity function, making the anomaly detector
useless. Sparsely connected layers could avoid this, but the more robust way is
to use dropout. This means that only some hidden units in a layer are active
during the forward/backward pass and the majority are inactive. The inactive
units outputs zero values meaning that their weights aren’t updated either during
the pass. This forces the network to learn more robust features with less neurons
available. This has been shown generally to improve the networks performance
and reducing overfitting with the cost of increased training time [Sri+14; GG16].
The inactive units are chosen randomly for each pass.

The model aims to break the n-dimensional data to higher dimensions and
then proceeds to reconstruct the input data. The recreated data is then compared
with the input data. An anomaly is defined here as an event that the LSTM model
cannot predict with great uncertainty. The network consists of input, output
and 3 hidden connected LSTM layers, thus creating a stacked LSTM network
with dropout layers. The first layer is of size 128, the middle layer is of size
256 and the last hidden layer is of size 64 and all neurons are using hyperbolic
activation function σ(x) = tanh(x). The model is trained to recreate the input
data therefore the quadratic loss function is calculated as L = ∑n(X−ŷ)2/n, where
the ŷ represents the models attempt to reconstruct the data. Model is trained with
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50000 log messages for 50 epochs with sequences of 100 logs and batch size of 32.
Thus 3200 log vectors are backpropagated every time before updating the weights.
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5. Results and evaluation

In this chapter the embedding models are compared with each other.
To measure the descriptiveness of different embedding models is a difficult

and somewhat unclear task. How to determine whether one model’s embedded
vectors are better describing the log data than other model’s? Perhaps the simplest
way is just to run the data through the anomaly detection models and rate their
success.

However, before the anomaly detection review I will take the Doc2vec model
into further inspection. Measuring the distance between two vectors, one can see
that the model does not distinguish two messages from each other well. From the
following messages the first two are identical but occurred in different time step
and the third is completely different message and none of the words are same as
in the first two messages.

1. [thread-1] DEBUG DBUtil SELECT sequencevalue FROM sdcsequence WHERE sdcid = ? AND sequenceid = ?

2. [thread-1] DEBUG DBUtil SELECT sequencevalue FROM sdcsequence WHERE sdcid = ? AND sequenceid = ?

3. [thread-2] INFO ActionService About to go through 1 command(s).

Calculating the Euclidean distance between the messages we get d(1, 2) =
0.0024, d(2, 3) = 0.0020 and d(1, 3) = 0.0006. Thus, the first message is closer
to the third than the second message even though the first and second messages
are identical. The same problem does not occur with the other embedding models
since the log vectors are created deterministic so that identical log messages gets
identical log vectors. Though there’s a chance that two different log messages
would get the same log vector.

Note that this evaluation does not yet explain the success or failure of the
embedding in terms of anomaly detection, it just explains that the model has not
reached its goal explaining the log message with respect to the other log messages.
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Figure 5.1: Plotting of 5000 log vectors projected from 100 dimensions to 3 with ICA. The
sixth plot is from Doc2vec model with 100 training epochs instead of 20. However, it is log
vectors sill did not converge significantly closer towards similar logs.

5.1 Independent Component Analysis
Here is shown the results of dimension reduced data with the different models.
Looking at the figures 5.1 and 5.2 one can easily see the difference between the
doc2vec and the other models. The doc2vec models projects the data to cloud of
points and the other models have much more dense output.

For all of the embedding models it seems that longer log messages are regu-
larly projected further away from the other messages. This might be troublesome
regarding anomaly detection since longer messages are not anomalous by default.
Many of the longer messages contains some SQL queries which in many cases
makes the log message to be longer than 25 words.

The table 5.1 shows some metrics of the clusters. From this table we can see
that the standard deviation of the cluster size is much lower for the Doc2vec and
unique Doc2vec models. This implies that cluster are not as dense as in the other
embedding models. The metrics also implies that the clusters from Word2vec,
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Figure 5.2: Plotting of 5000 log vectors projected from 300 dimensions to 3 with ICA.
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Embed.
model

Standard
deviation

Largest
cluster
size

Less than
100

messages

More than
15 000

messages
w2v 100 12677.318 80 216 29 8
fast100 13282.093 87 844 33 5
d2v 100 3825.317 14 094 8 0
ud2v 100 4762.622 18 279 2 5
Random
100

10785.136 68 362 25 7

w2v 300 12586.662 77 434 28 6
fast 300 12223.719 78 072 32 8
d2v 300 3905.764 15 173 8 1
ud2v 300 5071.340 20 193 2 6
Random
300

11518.842 71 549 22 8

Table 5.1: Table shows metrics from each embedding model’s cluster size.

fastText and random vector embedding are considerably uneven. That means
only a few of the clusters contains the majority of the messages. For many other
clustering cases this might be a problem, but in this case must be noted that the
original log data is also uneven. Thus, the uneven clustering can be seen as asset.

Finally let’s take better look at some more frequent messages.
1. [thread-1] INFO ActionService About to go through 1 command(s).

2. [thread-1] INFO ActionService Processing action block

3. [thread-1] DEBUG SecurityService Getting Connection for connectionid <id-1>

Similar or same messages appear also in dozens of other clusters in the Doc2vec
and unique Doc2vec models. Same observation could be made with the other
embedding models but on much fewer cases and not as severe. For example the
third log here is found in 2 clusters for Word2vec and fastText models, in 5 clusters
for random embedding model and over 60 clusters for Doc2vec and unique Doc2vec
models. It seems that the messages with a changing parameter, as connection id,
are clustered better for Word2vec and fastText than in random vector embedding
models.
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5.2 Hidden Markov Model
The figures 5.3 and 5.4 shows the probabilities of log sequences of size 20 and 100.
The predictions of word2vec, fastText and the random embedding are fairly similar
with each other and the Doc2vec and unique Doc2vec are similar to each other. The
doc2vec based models give fairly homogenous plots without much fluctuation with
the probability. However, the Word2vec, fastText and random embedding models
gives plots from which there can be distinguished a downward spike at index 5525.
The spike is easier to distinguish in the figure 5.3 than in figure 5.4 but it can be
seen in both. It is also more distinguishable in the 300-dimensional models. The
figure 5.5 shows how the states change during the spike and Word2vec, fastText
and random embedding models seem to show that during the spike there is clearly
only one hidden state active. Another interesting part is that around the index
8200 there is a sequence that has high and very stable probability. The figure 5.6
shows how the hidden states change around these time steps. Interestingly this
part is also distinguishable in the unique Doc2vec model and a bit in the Doc2vec
model.

Taking closer look at the log messages around downward spike we can see
that there are two error messages around it. The errors are as following:

[thread-1] ERROR DateTimeService Can’t parse date from ’’ with format ’FastDateFormat[dd.MM.yy
HH:mm,Europe]’.
java.text.ParseException: Unparseable date: ""
at java.text.DateFormat.parse(DateFormat.java:366)
at com.softwarepoint.services.DateTimeService.getLocalDateTimeFrom(DateTimeService.java:297)
at com.softwarepoint.services.DateTimeService.getLocalDateTimeSilently(DateTimeService.java:320)
...

The error is about trying to parse a date from empty string and the error is
probably cause of the code not handling an empty string. However, the same error
does occur couple other times and some of the cases the model fails to highlight
it. It could be that the error itself isn’t that unlikely to occur and the downward
spike is highlighted only given the circumstances.

Taking closer look at the high and stable probability spike there is a recurring
series of messages found such as:

[thread-1] DEBUG SecurityManager END: getConnection

[thread-1] DEBUG SecurityManager START: getConnection

[thread-1] DEBUG SecurityService Getting Connection for connectionid ’<user>’

This usually is a sign of user being idle and the server is polling the client.
Enlightened guess is that many of the users have left for lunch at the time since
the timestamp is close to 11.00.
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Figure 5.3: The probabilities of log sequences calculated with Viterbi algorithm and sliding
window size is 20 log messages. The x-axis shows index of the middle log in the sequence and
y-axis is the negative log probability for the log sequence
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Figure 5.4: The probabilities of log sequences calculated with Viterbi algorithm and sliding
window size is 100 log messages. The x-axis shows index of the middle log in the sequence and
y-axis is the negative log probability for the log sequence
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Figure 5.5: Plot shows how the predicted hidden state changes. The interval is chosen around
the part which has low probability in figure 5.3 and fairly low in figure 5.4. The x-axis shows
index of the middle log in the sequence and y-axis is the predicted hidden state.
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Figure 5.6: Plot shows how the predicted hidden state changes. The interval is chosen around
the part which has steady probability in figures 5.3 and 5.4.
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5.3 Long Short-Term Memory
From the training and validation loss graphs 5.9 it can be seen that the model
struggles to lower the loss with Doc2vec and unique Doc2vec models comparing
to the other embedding models. This is indication of the poorly converged log
vectors and that the log vectors given by Doc2vec seem randomly distributed
without easily detectable patterns. The other models seem to find some converging
but probably with longer training time all of the models could improve. Perhaps
surprisingly the random vector embedding is converging almost as well as the
Word2vec and fastText models.

From the figures 5.7 and 5.8 we can see that the results are again quite
similar regardless of the dimensionality used for the embeddings. Also, the effect
of the ICA can be seen in the input data graphs of Word2vec, fastText and random
embedding, when the separated sources are show discrete values instead of three
continuous curves. The auto-encoders trained with Doc2vec based embeddings
does not seem to produce sensible results as the training loss graph suggests. The
other models seem to produce similar plot as the input but it is noticeable that
none of the models can predict the spikes in the middle of the input data. The
highlighted messages are as follows:

[thread-1] INFO RequestController [Cookie: Portal=AD570CA3B12EA6C9F5095C1858A088CF9AC...]

Essentially the log message is a very long message which is just parsed badly
so that the created vector is projected further away from most of the log vectors.
Since the message itself is quite rare the LSTM fails to predict it. Also, the LSTM
autoencoder doesn’t seem to highlight same messages as the HMM. To get better
results from the LSTM model it would need to be trained more. 50 epochs does not
seem to be enough even for the already flourished Word2vec or fastText models.
However, at this point it could be said that the Doc2vec based models does not
work as well as the other models with the LSTM anomaly detection.
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Figure 5.7: Graph shows the results of LSTM Autoencoder when using 100 dimensional em-
beddings as input data. The left column shows how the input data looks, the middle column
shows the autoencoded result and the right column shows the absolute error.
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Figure 5.8: Graph shows the results of LSTMAutoencoder when using 300 dimensional emebed-
dings as input data. The graphs look quite similiar to the results from 100 dimensional embed-
dings and both results highilght the 3 error spikes at the indexes 7199, 7756 and 10671.
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Figure 5.9: The graph shows the loss of the LSTM model between each epochs. It seems
that there is little or no effect on the training when using word embeddings with 100 or 300
dimensions. The Doc2vec models does not seem to converge at all during the training whereas
the other models improve for some extent. However, training the models further would probably
decrease the loss for each model.

Figure 5.10: Closer look at Word2vec data with LSTM prediction and error. The LSTM can
predict the spikes in green signal only partly. Longer training times for the LSTM could make
the prediction more precise and the error plots would be easier to interpret.
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6. Discussion

6.1 Embedding models
There was minimal difference between the results of 100 and 300-dimensional log
vectors. However, taking the computational toll that 300 dimensional embeddings
brings I would recommend using 100 dimensional embeddings instead. The train-
ing time of the embedding models was not so different but simply saving and
loading log vectors that are three times bigger takes more time and effort at least
when working with bigger datasets.

For anomaly detection purposes the Word2vec and fastText embeddings
seemed to produce best results with the least training time. Training the anomaly
detection models with Doc2vec’s embeddings took roughly five times the time com-
pared to other models. The log vectors from Doc2vec and unique Doc2vec were
too randomly distributed and for the anomaly detection models it was difficult to
find repeating patterns. Even though the unique Doc2vec created vectors for each
unique log message, the clusters from these vectors didn’t seem to include similar
messages as in the clusters from Word2vec and fastText embedding models. The
LSTM model could probably create moderate results from the Doc2vec and unique
Doc2vec but they would require longer training times and still it would trail the
results from Word2vec or fastText. Perhaps suprisingly the random vector em-
bedding succeeded in HMM and LSTM quite well, even though it had the same
problem as the Doc2vec based models and had clusters with mixed messages.

6.2 Anomaly detector
Anomaly detection with just the ICA model and clustering did not work well since
the outliers were usually just longer log messages. This is not because the actual
ICA model didn’t work well for its task but instead how the log vectors were
constructed by summation of word vectors. However, the ICA’s biggest utility
was to reduce the dimensionality of the log vectors so they can be clustered and
analysed with the other models.
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The HMM and LSTM could produce better results even when the longer
log messages were problematic. However, each of the highlighted message is still
needed to be validated as anomaly manually and at current state the anomaly
detector will probably create more work for system administrators instead of re-
ducing it. Thus, the produced anomaly detector is not yet viable for automatic
system monitoring since its prone to point out many false positives as anomalies.
However, I can see that the detector could be used by development when fixing
already reported bugs which are difficult to reproduce or detect.
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7. Conclusion

I presented three word embedding models which can be used to give vector embed-
dings to event logs. In addition, two variations for these models were introduced
and in total five different embedding models were reviewed. Each of these models
created 100 and 300-dimensional vector embeddings of event logs which were then
further analysed with three anomaly detection models.

The results of this thesis show that Word2vec and fastText word embeddings
surpass the Doc2vec style of paragraph embedding when trying to analyse event
logs. If the training time of the embedding models is much higher than in this
thesis, then the case might be different. The anomaly detection models still need
some improving to gain more useful information but the HMM and LSTM model
could generate useful tool for software development and perhaps in some cases for
system administrators also.

7.1 Future work and improvements
Perhaps the biggest problem with the given anomaly detection solutions is that
the longer the message is the more likely it is considered as an anomaly. This
could be solved by changing the style how the log vector is constructed. In the
current Word2vec and fastText solutions each word in the log message gets an
embedding which are summed together with the other word vectors from the log
message. If a message has a lot of words, it will get more summations which will
set the log vector further away from the other log vectors. This could be solved
by dividing the summation with the amount of words in the log message or some
similar methods.

The study with rather fixed values for the embedding models and only the
different embedding models were on focus. It could have significant effect for
anomaly detection by fine tuning some of the embedding or anomaly detection
model parameters such as the window width in the embedding models. For the
Word2vec and the fastText it might give better descriptiveness of the data if the
window width would be set much longer so that it can inspect the words in the next
log message as well. Also, instead of using arbitrary amount of 100 log messages
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for each training sequence, the length of a sequence could be tailored to be 1
minute intervals of logs or all logs from certain connection id. This would make
each training sequence different length, but the sequence would be more natural
feed of logs.

This study was made only on one server’s logs. In theory the models work
generally for any textual log messages and the anomaly detector should produce
similar results in different applications, but it would need to be tested. Also,
additional embedding methods could be introduced for comparison with the ones
seen in this study. The additional embedding methods could be including but not
limited to GloVe and Latent Dirichlet allocation.
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