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Abstract

The purpose of this thesis is to look from two di↵erent perspectives how wave
equations can be solved. These are the forward problem of wave equations
as partial di↵erential equations of the initial or boundary-value type, and
later in the framework of control theory. First, to provide a meaningful
solution space, the basics of the theory of weak derivatives and Sobolev spaces
are discussed along with some approximation, extension, and embedding
theorems. Then, the initial or boundary value problem of the wave equation is
defined, its weak solutions are constructed based on general hyperbolic partial
di↵erential equations, and the existence and uniqueness of said solutions is
proved. The last part of this thesis concentrates on linear control theory:
controllability of a linear system, and especially how it can be defined and
proven form the first half of the last chapter. The other half is reserved for
wave equations in control theory and why it is possible to reduce a wave
control problem to solving the control problem of the aforementioned linear
system.

Tiivistelmä

Tutkielmassa esitellään aaltoyhtälöiden teoriaa käsitellen niitä sekä osittais-
di↵erentiaaliyhtälöiden alkuarvo- tai reuna-arvo-ongelmina että kontrolliteo-
rian avulla. Aluksi käydään lävitse heikon derivaatan ja Sobolev-avaruuksien
määritelmät, sekä tutustutaan lyhyesti keskeisiin tuloksiin Sobolev-funktioi-
den approksimoinnista, jatkamisesta ja upotuksista. Tutkielman keskeisin
osio on omistettu aaltoyhtälön reuna- ja alkuarvo-ongelmien heikkojen ratkai-
sujen määrittelylle ja niiden olemassaolon sekä yksikäsitteisyyden todistami-
selle yleisinä hyperbolisina osittaisdi↵erentiaaliyhtälöinä. Tutkielman viimei-
sessä kappaleessa määritellään joukko kontrolliteorian peruskäsitteitä ja er-
ityisesti tarkastellaan lineaarisen systeemin reunakontrolliongelmaa tavoit-
teena todistaa, että tämä systeemi on kontrolloituva. Lopuksi tutkitaan,
kuinka aaltoyhtälön reunakontrolliongelman voi muuntaa lineaariseksi sys-
teemiksi, minkä seurauksena voidaan todeta myös yksinkertaistetun aal-
toyhtälön olevan kontrolloituva.
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1 Introduction

From modelling a beam of sunlight to measuring tectonic movements, the
natural world o↵ers countless intriguing examples of phenomena which have
inspired scientists to make amazing discoveries. Here, a specific subcategory
of hyperbolic partial di↵erential equations known as wave equations is taken
under a microscope to understand its fundamental properties. First, we
consider a wave equation as a forward problem: Given an initial value and
boundary values, what kind of wave satisfies the equation? Is there a solution
for this problem, and if the answer is yes, is it unique? The second question
we try to find an answer for, is what happens when the initial state is known
along with a desired outcome of the values the wave function produces at
a given moment of time. Can fiddling with the input source produce this
desired output?

This latter problem belongs to the field of control theory. The control the-
ory itself was born from the mathematical tradition and technical advances
of the industrialisation as a means of reasoning scientifically the process of
independently limiting or directing the use of energy or resources within a
system – often within a machine or a production process. This model of
thinking is still relevant in comptemporary world where e�cient automated
processes are important in most engineering sciences.

As being said already, this thesis is an attempt to form a good basic
understanding of what a wave equation is, and how it can be solved as a
forward problem, or with an approach of control theory. For this purpose,
the basics of Sobolev spaces and weak derivatives are also considered in order
to work out solution spaces for hyperbolic equalities. The last chapters are
reserved for control theory with the purpose to study how it applies to simple
wave equations.
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2 General Definitions, Results and Notations

This chapter contains a general list of notations and definitions the reader
might find useful later on. If not otherwise stated the definitions and theo-
rems are sourced from Evan’s “Partial Di↵erential Equations” [3].

Leigh defines Cauchy sequences in ”Functional Analysis and Linear Con-
trol Theory” [10, p. 5] in the following way:

Definition 2.1. Let X be a vector space with a measure d. For a Cauchy
sequence (xn) the following holds true: for ✏ > 0, there exists an integer N
for which d(xn, xm) < ✏ when m,n > N .

Definition 2.2. Let X and Y be Banach spaces. A linear operator is a
mapping f : X ! Y with f(ax + by) = af(x) + bf(y) when x 2 X, y 2 Y

and a, b are constants. When the space Y = R or Y = C, the mapping is
called a linear functional ·

Definition 2.3. A Banach space is a normed linear space where all Cauchy
sequences converge within the space itself. In other words, the space is a
complete normed linear space.

Definition 2.4. A Hilbert space is a Banach space for which its norm is
defined as

kxk := (x, x)1/2,

where ( , ) marks its given inner product.

Definition 2.5. Let X and Y by two Banach spaces with X ⇢ Y and f 2 X.
Now, if both conditions

(i) kfkY  CkfkX , where C is a constant

(ii) each bounded sequence in X is precompact in Y , meaning that for
each r > 0 there exists a finite cover which consists of sets of diameter
smaller than r,

hold true, then X is compactly embedded in Y , X ⇢⇢ Y .

According to Adams [1, p. 3], dual spaces are defined followingly:

Definition 2.6. Let Y be a vector space. The dual space of Y is the set of
all continuous linear functionals on Y . The dual space is denoted as Y ⇤.

Evans’ book contains the following theorems and definitions [3]:
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Theorem 2.7. A space Y can be embedded to its double dual space Y
⇤⇤ by

defining a set of mappings
x 7! Tx,

where
Tx(�) = �(x).

Definition 2.8. The weak⇤-topology is the weak topology of Y ⇤ induced by
the image T (Y ) 2 Y

⇤⇤.

Definition 2.9. Let R be a commutative ring with unity and M,N and L

R-modules. Then a pairing is an R-bilinear map f : M ⇥N ! L.

According to Logemann and Ryan [11, p. 286], di↵erentiability in an
open subset of Rn is defined as

Definition 2.10. Let U be an open subset of Rn with U 6= ;. A function
f : U ! Rm is di↵erentiable at x 2 U if there exists a real m ⇥ n -matrix
known as (Df)(x) for which

lim
y!0

kf(x+ y)� f(x)� (Df(x))yk
kyk = 0.

If a matrix (Df)(x) exists for every x 2 U , the function f is di↵erentiable.
In such case, Df : U ! Rm⇥n with x 7! (Df)(x) is called the derivative of
the function f .

A more general definition for a derivative in normed spaces is defined
in Gen Nakamura and Roland Potthast’s Inverse Modeling [14, p. 2-50].
This Fréchet di↵erential coincides with the classical derivative for functions
f : Rn ! Rn as explained by Nakamura and Potthast.

Definition 2.11. Let X and Y be normed spaces and U an open subset of
X. A mapping fU ! Y is called Fréchet-di↵erentiable at u 2 U if there
exists an operator f 0 in the normed space of bounded linear operators from
X to Y and a mapping g : U ! Y such that

(i) kg(h)k
khk ! 0 when khk ! 0,

(ii) f(u+ h) = f(u) + f
0
h+ g(h).

If f is Fréchnet-di↵erentiable at every u 2 U , then f is Fréchnet-di↵erentiable
in U .

Notice that a Fréchnet di↵erential f 0 defined before is unique.
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Definition 2.12. Let U be an open subset of Rn. The space of continuous
functions f : U ! Rn is notated by C(U).

Likewise, the spaces of continuously di↵erentiable functions are defined
as

C
k = {f : U ! Rn : f is k-times continuously di↵erentiable}

and
C

1 = {f : U ! Rn : f is infinitely di↵erentiable}.

The space of infinitely di↵erentiable functions  : U ! R which all have
compact support in U is notated by C

1
c
(U). Any function  2 C

1
c
(U) is

generally called a test function.
As a special case, when U = [a, b] ⇢ R, the space is notated by C

1
c
(a, b).

Definition 2.13. Let U be an open subset of Rn. The Hölder space C
0,�(U)

is defined as the space of all functions f 2 C(U) for which the norm

kfk
C0,�(U) :=

X

|↵|k

kD↵
fk

C(U) +
X

|↵=k|

sup
x,y2U
x 6=y

⇢
|f(x)� f(y)|

|x� y|�
�

< 1.

A couple of notices concerning Hölder spaces: they satisfy the criteria of
the definition 2.5 and thus are Banach spaces. Oftentimes the constant is set
to be 0 < � < 1.

The basics of measure theory are presented after Evans’ book [3, pp.
729-731, 733].

Definition 2.14. Let M be a collection of subsets of Rn. If

(i) ;,Rn 2 M ,

(ii) if A 2 M , then Rn � A 2 M ,

(iii) if {An}1n=1 ⇢ M , then both
S1

n=1 An and
T1

n=1 An are in M ,

and M is called a �-algebra.

Theorem 2.15. There exists a �-algebra M and a mapping f : M ! [0,1]
for which the following conditions apply:

(i) Every open and every closed subset of Rn belongs to M .

(ii) For any ball B 2 Rn the value of f(B) is the n-dimensional volume of
B.
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(iii) If {An}1n=1 ⇢ M and the sets An are pairwise disjoint for every index
n = 1, 2, ..., then

f

 1[

n=1

An

!
=

1X

n=1

f(An).

(iv) Let B 2 M and f(B) = 0. If A ✓ B, then A 2 M and f(A) = 0.

The function f is most often notated by |·| and is called the n-dimensional
Lebesgue measure. Similarly, the sets in M are Lebesgue measurable sets.

Definition 2.16. Let f : Rn ! R. The function f is a measurable function
if

f
�1(U) 2 M

for each open subset U ⇢ R.

Definition 2.17. Let X be a real Banach space. A function f : [0, T ] ! X

is strongly measurable if there exist functions sn : [0, T ] ! X such that

(i) every function sn is simple, that is

sn(t) =
kX

i=1

�Ui(t)xi

for each n = 1, 2, ... when 0  t  T , every Ui is a Lebesgue measurable
subset of [0, T ] and xi 2 X when i = 1, ..., k,

(ii) sn(t) ! f(t) for almost every 0  t  T .

Definition 2.18. For a function s(t) =
P

k

i=1 �Ui(t)xi the integral

Z
T

0

s(t) dt :=
kX

i=1

|Ui|xi,

if s is simple.
A strongly measurable function f : [0, T ] ! X is summable if there exists

a sequence of simple functions {sn}1n=1 for which the integral

Z
T

0

ksn(t)� f(t)k dt ! 0 when n ! 1.

Furthermore, if a function f : [0, T ] ! X is summable, then its integral

Z
T

0

f(t) dt = lim
n!1

Z
T

0

sn(t) dt.
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Robert Adams defines L
p-spaces in “Sobolev Spaces” [1, p. 22] in the

following way:

Definition 2.19. Let 1  p < 1. The space of measurable functions in a
domain U ⇢ Rn for which

Z

U

|f(x)|p dx < 1

is defined as Lp(U). More specifically, the space consists of equivalence classes
of measurable functions – a function f is likened to a representative of a class
f0 if it is measurable and its values di↵er from f0 only on a set of a measure
zero.

Similarly, according to Evans [3, p. 702]

Definition 2.20. Let U be an open subset of Rn. Define Lp

loc
(U) as the space

of measurable functions f : U ! R such that f 2 L
p(V ) for all V ⇢⇢ U .

Definition 2.21. Let U be an open subset of Rn. If a convergence happens
locally in L

p(U), that is
fn ! f in L

p(V ),

for each V ⇢⇢ U , the notation used is

fn ! f in L
p

loc
(U), as n ! 1.

Theorem 2.22. Let U be an open subset of Rn. The space Lp(U) is complete
if 1  p  1.

The proof of the theorem 2.10 in Adam’s book includes a proof for the
completeness of Lp(U) [1, pp. 26-27].

Definition 2.23. Let U be an open subset of Rn. The space L
1(U) is

defined as
{f : U 7! Rn : sup |f(x)| < 1 for all x 2 U}.

The norm
kfkL1(U) = kfk1 := sup

x2U
|f(x)|.

According to Evans [3, p. 731],

Definition 2.24. The essential supremum of a measurable function f over
set U is defined by

ess sup
U

f = inf{y 2 R : µ({x 2 U : f(x) > y}) = 0}.
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Definition 2.25. The support of a function f is the set where f is nonzero,

supp(f) = {x : f(x) 6= 0}.

Definition 2.26. The value of the floor function of f is notated by bf(x)c.
The floor function returns the integer part of a value f(x) for all x in the
domain of f .

Definition 2.27. A vector ↵ = (↵1,↵2, . . . ,↵n), where for every index i it
holds ai 2 N, is a multi-index of order

|↵| = ↵1 + . . .+ ↵n.

The ↵-derivative of a function u is defined as

D
↵
u(x) :=

@
|↵|
u(x)

@x
↵1
1 . . . @x↵n

n

= @
↵1
x1

. . . @
↵n
xn
u.

As stated in Vladimir Maz’ya’s Sobolev Spaces with Applications to El-
liptic Partial Di↵erential Equations” [13, pp. 3-4], multi-indeces have the
following properties:

Definition 2.28. Let n,m 2 N with m  n. For multi-indices ↵ =
(↵1,↵2, . . . ,↵n) and � = (�1, �2, . . . , �m),

↵! = ↵1!↵2! . . .↵n!

and ✓
↵

�

◆
=
X

↵��

↵!

�!(↵� �)!
.

The following theorem and proof are presented in Evans’ [3, p. 706].

Theorem 2.29 (Cauchy’s inequality). Let a, b 2 Rn. Then

ab  1

2

�
a
2 + b

2
�
.

Proof. Since 0  (a� b)2 = a
2 � 2ab+ b

2, the result is gained by adding 2ab
and then dividing the inequality by 2.

The next two Gronwall’s inequalities are formulated and proven according
to Evans [3, pp. 708-709].
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Proposition 2.30 (Gronwall’s inequality). Let ⌘(·) be a nonnegative, abso-
lutely continuous function on [0, T ], which satisfies the di↵erential inequality

⌘
0(t)  �(t)⌘(t) +  (t)

for almost every t 2 [0, T ], when � and  are also nonnegative, summable
functions on [0, T ]. Then

⌘(t)  e

R t
0 �(s) ds


⌘(0) +

Z
t

0

 (s) ds

�
(1)

for all 0  t  T .

Proof. Suppose that the function ⌘ is nonnegative and absolutely continuous
on interval [0, T ]. Also, suppose that functions � and  are nonnegative and
summable on [0, T ], and that for the derivative of ⌘ the following inequality
holds

⌘
0(t)  �(t)⌘(t) +  (t),

for almost every t 2 [0, T ]. Now for almost every s 2 [0, T ]

d

ds

⇣
⌘(s)e�

R s
0 �(r) dr

⌘
= e

�
R s
0 �(r) dr (⌘0(s)� �(s)⌘(s))  e

�
R s
0 �(r) dr

 (s).

Next, consider the previous function before derivation:

⌘(t)e�
R t
0 �(r) dr  ⌘(0) +

Z
t

0

e
�

R s
0 �(r) dr

 (s) ds  ⌘(0) +

Z
t

0

 (s) ds.

The inequality (1) now follows since it was assumed that � and  are non-
negative and summable on [0, T ].

Proposition 2.31 (Gronwall’s inequality 2). Let ⇠ be a nonnegative, summable
function on [0, T ] which for almost every t satisfies the integral inequality

⇠(t)  C1

Z
t

0

⇠(s) ds+ C2

for some nonnegative constants C1 and C2. Then

⇠(t)  C2(1 + C1te
C1t)

for almost every t 2 [0, T ].
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Proof. Suppose ⇠ is a nonnegative, summable function on [0, T ] which for
almost every t satisfies the inequality

⇠(t)  C1

Z
t

0

⇠(s) ds+ C2. (2)

Let function ⌘(t) :=
R

t

0 ⇠(s) ds. Then its derivative ⌘0  C1⌘ + C2 for almost
every t 2 [0, T ]. Now, the Gronwall’s inequality 2.30 implies

⌘(t)  e

R t
0 C1 ds


⌘(0) +

Z
t

0

C2 ds

�

= e
C1t(⌘(0) + C2t)

= C2te
C1t,

since ⌘ is defined by the definite integral of ⇠. Next, continue approximating
⌘ from (2):

⇠(t)  C1⌘(t) + C2  C1C2te
C1t + C2  C2(1 + C1te

C1t).

According to Arfken and Weber’s “Mathematical Methods for Physicists”
[2, p. 590], the Leibniz’s integral rule can be defined by the following theorem.

Theorem 2.32 (Leibniz’ integral rule). Let U be an open subset of Rn with
g, h 2 C

1(U). For a Lebesgue integral with a measurable integrand f =
f(x,↵) 2 C

1(U) and limits g and h which both may depend on a variable ↵,
the derivative of an integral

d

d↵

Z
h(↵)

g(↵)

f(x,↵)dx =

Z
h(↵)

g(↵)

@f(x,↵)

@↵
dx+f [h(↵),↵]

dh(↵)

d↵
�f [g(↵),↵]

dg(↵)

d↵
.

Theorem 2.33 (Minkovski’s inequality). Let 1  p  1 and f, g 2 L
p(U),

where U is an open subset of Rn. Now

kf + gkLp(U)  kfkLp(U) + kgkLp(U).

The proof is presented in Evans’ book [3, p. 707].

Definition 2.34. Let A be an n⇥ n-matrix.

(i) A is symmetric if Aij = Aji for every index i, j = 1, . . . , n.

(ii) A is positively semi-definite if all of its eigenvalues are nonnegative.
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(iii) A is invertible if there exists an n⇥ n matrix A
0 for which

AA
0 = I and A

0
A = I,

where I is the n⇥ n identity matrix.

Definition 2.35. Let A be a n⇥m-matrix. A is right invertible if A0
A = I

holds true. Likewise, if AA0 = I, then A is left invertible.

As a notice, for a square matrix either left or right invertibly implies full
invertibly and vice versa.

For these and more results of matrix properties, I recommend David
Poole’s “Linear Algebra: A Modern Introduction” [15].

The next two theorems and their proofs are presented in Logemann and
Ryan’s “Ordinary Di↵erential Equations” [11, pp. 262-266].

Theorem 2.36. Let M 2 Rm⇥n. Now the following hold true

(i) (imM)? = kerM⇤ = {x⇤ : x⇤
M = 0}.

(ii) The rank of M , or rankM , is equal to its maximum number of linearly
independent rows, or equivalently, colums.

(iii) If m  n, there exists M
] 2 Rn⇥m for which MM

]
z = z for all z 2

imM .

(iv) If m > n, there exists M
] 2 Rn⇥m for which M

]
Mz = z for all z 2

(kerM)?.

Theorem 2.37 (The Cayley-Hamilton theorem). Let M 2 Rn⇥n. Then it
satisfies its characteristic equation

M
n + �n�1M

n�1 + · · ·+ �1M + �0I = 0,

where �i are the eigenvalues of the matrix M .
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3 Weak Derivatives and Sobolev Spaces

The motivation for weak derivatives and Sobolev spaces rises from the need
of having function spaces with more lenient definitions for well-behaving in
terms of derivatives. In the case of partial di↵erential equations not all solu-
tions are perfectly smooth – there can be troublesome behaviour appearing
in the solutions of even the simplest physical problems. The weak derivative
is especially designed to work with these types of solution functions, as com-
pared to ordinary derivatives, the set of functions for which weak derivatives
exist is larger. The Sobolev spaces are defined by weak derivatives just as
the C

n-spaces are defined by ordinary or partial derivatives. In this paper
Sobolev spaces are used as the main domains while proving existence and
uniqueness of the solutions of wave equations.

This chapter follows the chapter ”5. Sobolev Spaces” of Evans’ book [3,
pp. 253-309]. Any material from other sources is cited separately.

3.1 Weak derivatives

Definition 3.1. Let U be an open subset of Rn. When f, g 2 L
1
loc
(U) and

↵ is a multi-index, the function g is defined as the ↵th-weak derivative of f ,

D
↵
f = g,

if Z

U

fD
↵
 dx = (�1)|↵|

Z

U

g dx

for every test function  2 C
1
c
(U).

Lemma 3.2 (Uniqueness of weak derivatives). If there exists a weak ↵th-
partial derivative of function f , then it is uniquely defined almost everywhere.

Proof. Let U ⇢ Rn be open, ↵ a multi-index and f 2 L
1
loc
(U). Suppose that

there are two di↵erent functions g and h which satisfy the criteria of the
definition 3.1.

Now,

(�1)|↵|
Z

U

g dx =

Z

U

fD
↵
 dx = (�1)|↵|

Z

U

h dx

for every test function  2 C
1
c
(U). Thus,

(�1)|↵|
Z

U

(g � h) dx = 0,

and consequently g = h almost everywhere.
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3.2 Sobolev spaces

Here is a short collection of definitions concerning Sobolev spaces, their norms
and the dual space of one of the most frequently used Sobolev space. The
notation is done according to Evans’ book [3], but other conventions also exist
in literature. As an example, Ladyzhenskaya’s The Boundary Value Problems
of Mathematical Physics [7, pp. 19-24] o↵ers an another, equivalent way of
defining Sobolev spaces and consequently a di↵erent approach to proving
some of the theorems presented in this chapter.

Definition 3.3. Let U be an open subset of Rn. The Sobolev space

W
k,p(U)

consists of all locally summable or, in other words, locally integrable functions
f : U ! R for which the following holds true: for each multi-index ↵  k,
where k is a nonnegative integer, D↵

f exists in the sense of the definition 3.1
and belongs to L

p(U), where 1  p  1.
The closure of C1

c
(U) in W

k,p(U) is notated by W
k,p

0 (U).
A function f is in W

k,p

loc
(U) if f� 2 W

k,p(V ) for every V ⇢⇢ U when � is
in C

1
c
(U).

The following technical theorem shows how weak derivatives function with
the definition of Sobolev spaces.

Theorem 3.4. Let U be an open subset of Rn and f, g 2 W
k,p(U). Assume

↵ is a multi-index with |↵|  k. Then for each constant �, µ 2 R, the linear
combination �f + µg 2 W

k,p(U) and the weak derivative is also linear,

D
↵(�f + µg) = �D

↵
f + µD

↵
g.

Proof. By the definition of the functions f and g, and the linearity of L1
loc
(U),

the linear combination �f + µg 2 L
1
loc
(U). Next, consider the definition of

weak derivatives and let  2 C
1
c
(U). Now,

Z

U

fD
↵
 dx = (�1)|↵|

Z

U

f↵ dx

and
Z

U

gD
↵
 dx = (�1)|↵|

Z

U

g↵ dx.

13



Consequently,
Z

U

(�f + µg)D↵
 dx =

Z

U

�fD
↵
 dx+

Z

U

µgD
↵
 dx

= �

Z

U

fD
↵
 dx+ µ

Z

U

gD
↵
 dx

= �(�1)|↵|
Z

U

f↵ dx+ µ(�1)|↵|
Z

U

g↵ dx

= (�1)|↵|
Z

U

�f↵ dx+ (�1)|↵|
Z

U

µg↵ dx

= (�1)|↵|
Z

U

(�f↵ + µg↵) dx,

which proves
D

↵(�f + µg) = �D
↵
f + µD

↵
g.

Definition 3.5. Let U be an open subset of Rn. The Sobolev norm of a
function f 2 W

k,p(U) is

kfkWk,p(U) :=

8
<

:

⇣P
|↵|k

R
U
|D↵

f |p dx

⌘1/p
, when 1  p < 1

P
|↵|k

ess sup
U
|D↵

f | , when p = 1.

It is notable that the sums go through all possible multi-indices limited
only by the index k while the rest of the norm is the relative to the l

p- or
L
p-norm of the derivative D

↵
f .

Theorem 3.6. The formulae defined earlier impose norms in spaces W k,p(U).

Proof. Let U ⇢ Rn, functions f, g 2 W
k,p(U) and � be a constant. The

purpose of this proof is to verify that the formula k · kWk,p(U) satisfies the
criteria set for a norm:

(i) k�fkWk,p(U) =

8
<

:

⇣P
|↵|k

R
U
|D↵(�f)|p dx

⌘1/p
, when 1  p < 1

P
|↵|k

ess sup
U
|D↵(�f)| , when p = 1

=

8
<

:

⇣P
|↵|k

R
U
|�|p |D↵

f |p dx

⌘1/p
, when 1  p < 1

P
|↵|k

ess sup
U
|�| |D↵

f | , when p = 1.

= |�| kfkWk,p(U).

14



(ii) Suppose kfkWk,p(U) = 0. By the definition of the Sobolev norm, the
absolute value of D

↵
f is now zero almost everywhere for all multi-

indeces ↵ with |↵|  k. This implies f = 0 almost everywhere. This
chain of implications applies also in the other direction, hence

kfkWk,p(U) = 0 if and only if f = 0 almost everywhere.

(iii) Suppose 1  p < 1. By Minkovski’s inequality 2.33

kf + gkWk,p(U) =

0

@
X

|↵|k

kD↵
f +D

↵
gkp

Lp(U)

1

A
1/p



0

@
X

|↵|k

(kD↵
fkLp(U) + kD↵

gkLp(U))
p

1

A
1/p



0

@
X

|↵|k

kD↵
fkp

Lp(U)

1

A
1/p

+

0

@
X

|↵|k

kD↵
gkp

Lp(U)

1

A
1/p

= kfkWk,p(U) + kgkWk,p(U).

If p = 1, then define sets

A = {x 2 U : f(x)  kfkWk,1(U)}
B = {x 2 U : g(x)  kgkWk,1(U)}.

Notice that the measure µ{(A \ B)c} = 0. Thus, if x 2 A \ B, then

|(f + g)(x)|  kfkWk,1(U) + kgkWk,1(U),

which implies

kf + gkWk,1(U)  kfkWk,1(U) + kgkWk,1(U).

Later the dual space of H1
0 (U) is needed to prove the existence of hy-

perbolic equations’ weak solutions. The next definition shows how this dual
space is found explicitly according to Evans [3, p. 722].

Definition 3.7. Let U be an open subset of Rn. The dual space of H1
0 (U) is

H
�1(U). A function f belongs to H

�1(U) if it is a bounded linear functional
on H

1
0 (U), which means that it satisfies

(i) f(ax+ by) = af(x) + bf(y) for a, b 2 R and x, y 2 U ,

15



(ii) |f(x)|  c|f(x)| for all x 2 U .

To use the dual space of H1
0 (U) e�ciently, define a mapping known as a

pairing between the space and its dual. This is denoted by h , i, meaning

f
⇤(f) = hf ⇤

, fi,

when f 2 H
1
0 (U) and f

⇤ 2 H
�1(U).

Definition 3.8. Let U be an open subset of Rn. Assume that a sequence
{fn}1n=1 and a function f are in W

k,p(U). The sequence fn converges to f in
W

k,p(U),
fn ! f in W

k,p(U), as n ! 1,

if
lim
n!1

kfn � fkWk,p(U) = 0.

3.3 Approximations, extensions and inequalities

One of the key steps in transferring the knowledge gained from working with
Sobolev functions to the case of norm inequalities is to approximate Sobolev
functions with smooth functions, which are considerably more straightfor-
ward to handle. Here, the basis of global approximation is given as an outline
to the theory – more can be read in Evans’ book [3, pp. 264-268], where the
complete line of theorems and proofs is presented in detail. Later on, di↵er-
ent ways to handle Sobolev functions are presented shortly, mostly omitting
their proofs for the sake of easy reading. These inequalities, extensions, and
other technical ways to simplify working with Sobolev spaces can be found
with more details in Evans’ book [3, pp. 268-271, 275-289], and Adams’ book
[1, chapters III-VI].

But first, consider the property of Sobolev spaces that makes them so
useful when approximating solution functions: The following proof is done
based on Evans’ book [3, pp. 262-263].

Theorem 3.9. Let U ⇢ Rn. The Sobolev space W
k,p(U) is a Banach space

for each k = 1, 2, . . . and 1  p  1.

Proof. It was already proven in the theorem 3.6 that Sobolev norms are true
norms. Thus, the only thing left here to prove is the convergence of Cauchy
sequences in W

k,p(U).
Let {fn}1n=1 be a Cauchy sequence inW

k,p(U). Then the sequence {D↵
fn}1n=1

is also a Cauchy sequence in L
p(U) for each |↵|  k by the definition of

16



Sobolev spaces. From the completeness of Lp(U) it follows that there exist
functions f↵ 2 L

p(U) for which

D
↵
fn ! f↵ in L

p(U) as n ! 1

for every multi-index |↵|  k. When ↵ = (0, . . . , 0),

fn ! f(0,...,0) in L
p(U) as n ! 1.

Next, show that f(0,...,0) 2 W
k,p(U) and D

↵
f = f↵ for each |↵|  k. Let � be

an arbitrary test function in C
1
c
(U). Then consider the definition of a weak

derivative to get
Z

U

fD
↵
� dx = lim

n!1

Z

U

fnD
↵
� dx

= lim
n!1

(�1)|↵|
Z

U

D
↵
fn� dx

= (�1)|↵|
Z

U

f↵� dx.

This implies
D

↵
fn ! D

↵
f in L

p(U) as n ! 1
for every multi-index |↵|  k. Hence,

fn ! f(0,...,0) in W
k,p(U) as n ! 1.

With an applicable definition of an inner product, some of the Sobolev
spaces can be proved to satisfy the criteria set for a complete inner product
space. This follows as a corollary to the previous theorem.

Corollary 3.9.1. Let U be an open subset of Rn and f, g 2 W
k,2(U). A

Sobolev space W
k,2(U) is a Hilbert space with its inner product defined by

(f, g)Wk,2(U) :=
X

|↵|k

Z

U

D
↵
fD

↵
g dx

Proof. Let 1  k < 1. Assume f, g, h 2 W
k,2(U) and �, µ 2 Rn. Then

(i) (f, g)Wk,2(U) =
X

|↵|k

Z

U

D
↵
fD

↵
g dx

=
X

|↵|k

Z

U

D
↵
gD

↵
f dx

= (g, f)Wk,2(U)
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(ii) (�f + µg, h)Wk,2(U) =
X

|↵|k

Z

U

D
↵(�f + µg)D↵

h dx

=
X

|↵|k

Z

U

(�D↵
f + µD

↵
g)D↵

h dx

=
X

|↵|k

Z

U

�D
↵
fD

↵
h+ µD

↵
gD

↵
h dx

=
X

|↵|k

Z

U

�D
↵
fD

↵
h dx+

X

|↵|k

Z

U

µD
↵
gD

↵
h dx

= �(f, h)Wk,2(U) + µ(g, h)Wk,2(U)

(iii) (f, f)Wk,2(U) =
X

|↵|k

Z

U

D
↵
fD

↵
f dx

=
X

|↵|k

Z

U

(D↵
f)2 dx � 0 for all f 2 W

k,2(U).

(iv) Suppose (f, f)Wk,2(U) = 0. Then for all |↵|  k the weak derivative
D

↵
f = 0 almost everywhere, which implies f = 0 almost everywhere.

For the opposite direction: if the function f is zero almost every-
where, then D

↵
f = 0 almost everywhere for all |↵|  k, and thus

(f, f)Wk,2(U) = 0.

Being Hilbert spaces, these Sobolev spaces deserve a special notion used
from now on, namely

H
k(U) := W

k,2(U).

Also, the pairing between H
1
0 (U) and H

�1(U) is notated by h , i .
The theory of approximations is built in several steps generalising the

previous results, starting from local approximation: when U ⇢ Rn is divided
into subsets U✏ = {x 2 U : dist(x, @U) > ✏} for ✏ > 0, the following theorem
applies as stated in Evans’ book [3, pp. 264-265]:

Theorem 3.10 (Local approximation by smooth functions). Let U be an
open subset of Rn. Assume that for some 1  p < 1 and k 2 N a function
f 2 W

k,p(U). Set
f
✏ = ⌘✏ ⇤ f in U✏.

Then f
✏ 2 C

1(U✏) for each ✏ > 0, and f
✏ ! u in W

k,p

loc
(U), as ✏! 0.

This proof is written in detail in [3, pp. 264-265, 713].
The knowledge that all Cauchy sequences have a limit within the Sobolev

space in question leads to it being possible to build approximating Cauchy
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sequences of smooth functions as C1(U) ⇢ W
k,p(U) when the set U is ‘nice’

enough. The next theorem by Evans [3, p. 266] explains the specific criteria
detailedly.

Theorem 3.11 (Global approximation up to the boundary). Let U ⇢ Rn be
bounded with @U being C

1. Suppose that f 2 W
k,p(U) for some 1  p < 1

and k 2 N. Then there exist functions fn 2 C
1(U) for which

fn ! f in W
k,p(U) as n ! 1.

Here, the proof is omitted; it can be found in Evans’ book [3, pp. 266-268].
As the main topic of this paper is wave equations in Rn, it is necessary

to extend the previous approximation result to the whole Rn. The following
extension theorem by Evans [3, p. 268] is the key to this process.

Theorem 3.12 (Extension theorem). Let 1  p  1, and suppose that
U ⇢ Rn is bounded with a C

1-smooth boundary. Select a bounded open set V
for which U ⇢⇢ V . Then there exists a bounded linear operator

E : W 1,p(U) ! W
1,p(Rn)

such that for each f 2 W
1,p(U) the following properties are satisfied

(i) Ef = f almost everywhere in U ,

(ii) Ef has a compact support within V , and

(iii)
kEfkW 1,p(Rn)  CkfkW 1,p(U),

where the constant C depends only on p, U and V .

The proof can be found in [3, pp. 268-271].

Definition 3.13. The extension of function f : U 7! Rn to the whole Rn

is defined as Ef , where the operator E is defined in the Extension theorem
3.12.

For more information on di↵erent Sobolev inequalities and the proof of
the following, here only shortly presented theorems can be found in Evans’
book [3, pp. 275-289].
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Theorem 3.14 (Poincaré-Friedrichs inequality). Let U be a bounded, open
subset of Rn. Suppose f 2 W

k,p

0 (U) with 1  p < n. Then

kukLq(U)  CkDfkLp(U)

for each

1  q  p
⇤ =

np

n� p
.

The constant C depends only on p, q, n and the set U .

The proof can be found in Evans’ book [3, pp. 279-280].

Theorem 3.15 (Morrey’s inequality). Let n < p < 1. Then there exists a
constant C, depending only on n and p, for which

kfkC0,�(Rn)  CkfkW 1,p(Rn)

for every f 2 C
1(Rn), where

� := 1� n/p.

The proof can be read in Evans’ book [3, pp. 280-283].
Aside from extending a function continuously to gain a new, essentially

similar function to work on, it is also possible is to consider the version of a
function.

Definition 3.16. A function f
⇤ is a version of a function f if their values

are the same everywhere except for a set of measure zero. Or in other words,
f
⇤ = f almost everywhere.

The following theorem and its proof after Evans’ [3, pp. 283-284] ties
together several of the previously mentioned results.

Theorem 3.17. Let U be a bounded, open subset of Rn with C
1-smooth

boundary @U . Assume n < p  1 and f 2 W
1,p(U). Then f has a version

f
⇤ 2 C

0,�(Ū) where � = 1� n/p, with the estimate

kf ⇤kC0,�(Ū)  CkfkW 1,p(U),

where the constant C depends only on n, p and U .

Proof. Assume that @U is C
1-smooth and f 2 W

1,p(U). Then, by the Ex-
tension theorem 3.12, there exists an extension Ef = g in W

1,p(Rn) which
satisfies

8
><

>:

g = f almost everywhere in U

g has a compact support

kgkW 1,p(Rn)  CkfkW 1,p(U).
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First, prove the case n < p < 1. Theorem 3.10 implies the existence of
functions g✏ 2 C

1
c
(Rn) for each ✏ > 0. These functions converge

g
✏ ! g in W

1,p(Rn) when ✏! 0.

Form a sequence {gm}1m=1 of these functions by choosing the index m to
correspond to the values ✏ growing smaller.

Since the function gm are in C
1
c
(Rn), they satisfy the criteria for Morrey’s

inequality 3.15, and thus

kgm � gkkC0,1�n/p(Rn)  Ckgm � gkkW 1,p(Rn)

for all indeces k,m � 1. This implies that there exists a function g
⇤ 2

C
0,1�n/p(Rn) for which

gm ! g
⇤ in C

0,1�n/p(Rn).

From the convergences in both W
1,p(Rn) and C

0,1�n/p(Rn) it follows that
g
⇤ = f almost everywhere on the set U . In other words, g⇤ is a version of f .
Next prove the estimate: Morrey’s inequality 3.15 implies

kgmkC0,1�n/p(Rn)  CkgmkW 1,p(Rn).

The same convergence statements as before can now be used to take the limit
within this inequality with the result of

kg⇤kC0,1�n/p(Rn)  CkgkW 1,p(Rn).

This can be further estimated by the estimate for the extension g to get

kg⇤kC0,1�n/p(Rn)  CkgkW 1,p(Rn)  CkfkW 1,p(U),

which concludes the proof in the case n < p < 1.

The result also applies in the case p = 1, a proof of which can be found
in Kinnunen’s lecture notes “Sobolev spaces” [6, pp. 59]. Here, it is omitted
since the basics of the wave equations do not require it – there it is enough
to consider only Sobolev spaces with a finite index p.

The following theorem makes it possible to consider a well-behaving ver-
sion instead of a Sobolev function with potentially less continuity when
proving general theorems. From here on, whenever a Sobolev function is
presented, it is identified with its continuous version when p > n.

As the previous inequalities state, when conditions are right, a function in
a Sobolev space may well belong to other function spaces also. To continue
with this idea, according to Evans [3, p. 286], the following theorem explains
closely the relationship between certain Sobolev and L

p-spaces. This compact
embedding will later prove its worth in defining a basis that works for both
spaces H1

0 (U) and L
2(U).
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Theorem 3.18 (Rellich-Kondrachov Compactness Theorem). Let U be a
bounded open subset of Rn and @U be C

1. Suppose that 1  p < n. Then

W
1,p(U) ⇢⇢ L

q(U)

for each 1  q < p
⇤ = pn

n�p
.

Notice that the theorem applies also in the case of p = 1, since p
⇤
> p

always and p
⇤ ! 1 as p ! n.

The detailed proof can be found in Evans’ book [3, pp. 286-289].
Ladyzhenskaya o↵ers another formulation of this same theorem, where

the space W
1,2(U) = H

1(U) proves out to be precompact in L
2(U) when U

is a bounded domain [7, pp. 25-28].

3.4 Time-dependent Sobolev spaces

To prove the existence and uniqueness of weak solutions of wave equations in
the next chapter it is necessary to add the time dimension to the definition
of Sobolev spaces. Here this is done by defining the time-dependent Sobolev
spaces by considering functions of a Sobolev space with a target Hilbert space
at any point on time from 0 to T as described in Evans’ book [3, pp. 301-
302].

Definition 3.19. Let Y be a Hilbert space. The time-dependant Cn-spaces
are defined as

C([0, T ], Y ) := {f : [0, T ] ! Y : f is continuous}
C

n([0, T ], Y ) := {f : [0, T ] ! Y : f is n-times continuously Fréchet di↵erentiable}.

From continuity and di↵erentiability to measurable functions and weak
di↵erentiability; the next defintions follow the same pattern as Cn(U)-spaces.

Definition 3.20. Let Y be an Hilbert space. The time-dependent Lp-space

L
p([0, T ], Y )

consists of all strongly measurable functions f : [0, T ] ! Y with

kfkLp([0,T ],Y ) :=

8
<

:

⇣R
T

0 kf(t, ·)kp
Y
dt

⌘1/p
< 1 for 1  p < 1

ess sup0tT
kf(t, ·)kY < 1 for p = 1.
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Definition 3.21. Let Y be a Hilbert space and f 2 L
1([0, T ], Y ). A function

g 2 L
1([0, T ], Y ) is the weak derivative of f , if

Z
T

0

 
0(t)f(t) dt = �

Z
T

0

 (t)g(t) dt

for all scalar functions  2 C
1
c
(0, T ). The derivative of f is notated by

f
0 = g or ft = g.

Using the previous definitions it is again possible to extend the concept of
ordinary derivatives to reach the actual time-dependent Sobolev spaces and
their norms.

Definition 3.22. Let Y be a Hilbert space. The time-dependent Sobolev
space

W
1,p([0, T ], Y )

consists of all functions f 2 L
p([0, T ], Y ) for which there exists f 0 2 L

p([0, T ], Y )
in the weak sense. The norm is defined by

kfkW 1,p([0,T ],Y ) :=

8
<

:

⇣R
T

0 kf(t)kp
Y
+ kf 0(t)kp

Y
dt

⌘1/p
for 1  p < 1

ess sup0tT
(kf(t)kY + kf 0(t)kY ) for p = 1.

For functions belonging to the space W
1,p([0, T ], Y ) the connection with

the space Lp([0, T ], Y ) is the same as before with W
k,p(U) and L

p(U). Since
now the index k = 1, the norms only include a function and its first derivative
which makes it possible to write open the sum over multi-indices. The reason
for this restriction in the case k = 1 is due to the fact that it is enough to
consider only spaces of form W

1,p(U) when searching for a solution for a wave
equation as will be seen in the next chapter.

As for the earlier results concerning ordinary Sobolev spaces, the time-
dependant Sobolev spaces are defined as function spaces. The space Y is an
ordinary Sobolev space and hence, the inequalities and theorems apply for
this space.
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4 Wave Equations in Rn

This chapter concentrates on shedding light on some of the basic properties
of wave equations: it contains the proofs for the existence and uniqueness of
solutions to these equations in the case where the coe�cients determining the
equation can depend both on time and space. The chapter mainly follows
Evans’ [3, pp. 398-417] and Ladyzhenskaya’s [7, pp. 147-168] books as
sources.

According to Evans [3, pp. 398-399],

Definition 4.1. The wave operator is defined as

⇤ =
@
2

@t2
+ L,

where the operator L is a second-order partial di↵erential operator for each
time coordinate t � 0. The operator L is either of divergence form

Lu = �
nX

i,j=1

�
a
ij(x, t)uxi

�
xj
+

nX

i=1

b
i(x, t)uxi + c(x, t)u

or nondivergence form

Lu = �
nX

i,j=1

a
ij(x, t)uxixj +

nX

i=1

b
i(x, t)uxi + c(x, t)u,

where the coe�cients aij, bi and c are given and the indeces i, j = 1, . . . , n.

Actually, this is the general notation of second order hyperbolic partial
di↵erential operator. The classification of wave equations as a subcategory
of hyperbolic equations is relatively di�cult to do exactly, so this paper
presents the proofs to general hyperbolic equations as they represent wave
transmission in heterogenous and non-isotropic media such as sound waves
in a room with furniture. A case like this leads to a general wave equation as
solid, complex shaped objects a↵ect the sound waves in a way that is hard
to predict and intuitionally di�cult to model.

The hyperbolic operator needs to satisfy the next characterising definition
involving the coe�cients of the operator L.

Definition 4.2. Partial di↵erential operator @
2

@t2
+L is (uniformly) hyperbolic

if there exists a constant C such that
nX

i,j=1

a
ij(x, t)⇠i⇠j � C |⇠|2
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for all (x, t) 2 UT = U⇥]0, T ] and ⇠ 2 Rn, where U ⇢ Rn is open and
bounded, and T > 0.

Remark 1. The coe�cients of the operator L are supposed to satisfy the
following criteria

a
ij(x, t), bi(x, t), c(x, t) 2 C

1(UT )

and a
ij = a

ji for all i, j = 1, . . . , n.

The actual equation studied from now on is the initial/boundary-value
problem

utt + Lu = f in UT

u = 0 on @U ⇥ [0, T ]

u = g, ut = h on U ⇥ {t = 0}, (?)

where functions f : UT ! R, g, h : U ! R are given and u : ŪT ! R,
u = u(x, t) is the unknown function.

Remark 2. The function f, g and h satisfy the following criteria

f 2 L
2(UT ), g 2 H

1
0 (U) and h 2 L

2(U).

As can be seen from the definition of L, this is a very general equation: it
is inhomogenous and the coe�cients depend both on time and n-dimensional
space. In contrast to the basic homogenous wave equation in R, which is
relatively easy to solve with basic analysis, the general case leads to more
complex structures. Hence, this chapter culminates in proofs of the existence
and uniqueness of weak solutions which function as mappings from the given
time slot to a specific Sobolev space.

4.1 On defining weak solutions

The next step for defining the initial/boundary value problem for wave equa-
tions is to solve such systems. Motivation for a weak solution stems from the
need of finding an appropriate function of some known level of smoothness
to solve a wave equation. It turns out that a time dependent L

2-space de-
fined from an interval [0, T ] to Sobolev space H

1
0 (U) satisfy this criterion.

This subchapter contains an outline of the thought process leading to this
conclusion before the actual proofs following Evans’ ideas [3, pp. 400-402].
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Definition 4.3. Let U be an open subset of Rn and x 2 U . The associated
mappings of (?) are defined as

u : [0, T ] ! H
1
0 (U),

[u(t)] (x) := u(x, t)

and

f : [0, T ] ! L
2(U),

[f(t)] (x) := f(x, t),

when 0  t  T .

What is the point of changing the original functions in the initial/boundary
value problem (?) to the associated mappings? Shortly, this transforms the
system to a form that makes the later proofs of uniqueness and existence
easier to follow. The change is on the level of function spaces as this way the
functions of interest are in L

2([0, T ], H1
0 (U)) or L2([0, T ], L2(U)).

The following steps show how this change is conducted.
First, fix any function v 2 H

1
0 (U). Next, multiply the equation utt+Lu =

f by v to get

v(x)utt(x, t) + v(x)Lu(x, t) = v(x)f(x, t),

where (x, t) 2 UT . Then integrate the result by parts over U , which results
in Z

U

�
v(x)utt(x, t) + v(x)Lu(x, t)

�
dx =

Z

U

v(x)f(x, t) dx.

As for the term Lu(x, t), it is possible to use the non-divergence form from
the definition 4.1 to writeZ

U

v(x)utt(x, t) dx

+

Z

U

 
�

nX

i,j=1

a
ij(x, t)uxi(x, t)vxj(x) + v(x)

 
nX

i=t

b
i(x, t)uxi(x, t) + c(x, t)u(x, t)

!!
dx

=

Z

U

f(x, t)v(x) dx.

Here the function u and its derivatives can be interchanged with the afore-
mentioned associate mappings,
Z

U

utt(t)v dx+

Z

U

 
nX

i,j=1

a
ij(·, t)uxi(t)vxj +

nX

i=1

b
i(·, t)uxi(t)v + c(·, t)u(t)v

!
dx

=

Z

U

f(t)v dx.
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This equation includes two L
2(U)-norms and an integral that for now is

shortened as B to get

(u00
, v)L2(U) +B [u, v; t] = (f , v)L2(U).

On the other hand, the problem (?) implies also

utt(x, t) = g
0(x, t) +

nX

j=1

g
j

xj
(x, t),

where the function g
0 is defined as

g
0(x, t) := f(x, t)�

nX

i=1

b
i(x, t)uxi(x, t)� cu(x, t),

and for j = 1, . . . , n, a function g
j is based on the first term of the operator

L and defined as

g
j(x, t) :=

nX

i=1

a
ij(x, t)uxi(x, t).

It seems now that it would be best to look for a weak solution u for which
u
00 2 H

�1(U) when 0  t  T . With this the term (u00
, v) can be interpreted

as hu00
, vi, that is, as a pairing between H

1
0 (U) and H

�1(U). This leads to
the following definition by Evans [3, p. 400] that is the culmination of this
process of determining how to actually define a weak solution for a wave
equation in an accurate and useful way.

Definition 4.4. A function u 2 L
2([0, T ], H1

0 (U)) for which u
0 2 L

2([0, T ], L2(U))
and u

00 2 L
2([0, T ], H�1(U)) is a weak solution of the hyperbolic initial/boundary-

value problem (?) if

hu00
, vi+B [u, v; t] = (f , v)L2(U)

for each v 2 H
1
0 (U) and almost every 0  t  T , and

u(0) = g and u
0(0) = h.

4.2 Existence of weak solutions

The earlier subsection shows the very idea behind solving a wave equation
with the help of Sobolev spaces and L

2-norm. Still, this is not enough to
actually prove the existence of solutions yet, but it is a foundation for the
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next results that will culminate in a proof of existence of weak solutions for
equations of type (?).

The approach here is based on Galerkin’s method which is a way to con-
struct a weak solution to the hyperbolic initial/boundary-value problem by
first building a finite-dimensional approximation of the problem, then search-
ing for its solution and lastly returning to solving the original case by taking
limits. The approximations in this process are also known as the Galerkin’s
approximations according to Evans [3, p. 401].

As already said, proving the existence of weak solutions by Galerkin’s
method involves approximated solution functions and limits. First it is nec-
essary to find an appropriate set of functions that simultaneously satisfy
several criteria in two di↵erent spaces. Earlier it was shown that the Sobolev
space H

1
0 (U) and L

2(U)-space are closely related and due to the Rellich-
Kondrachov Compactness Theorem 3.18 it is possible to find a set of functions
that works as a basis in both spaces.

How can the basis be of use in finding probable solutions for wave equa-
tions? Firstly, assume that functions wk, where k 2 N, are smooth, and most
importantly they satisfy these two criteria:

{wk}1k=1 is an orthogonal basis of H1
0 (U)

and
{wk}1k=1 is an orthonormal basis of L2(U).

One example of such basis is an eigenbasis of a compact selfadjoint operator,
also the familiar operator L = �� fits the criteria [3, p. 375].

Next, fix a positive integerm and consider a function um : [0, T ] ! H
1
0 (U)

of a form

um(t) :=
mX

k=1

d
k

m
(t)wk(x).

Select coe�cients dk
m
(t), when 0  t  T and index k = 1, . . . ,m, so that

d
k

m
(0) = (g, wk)L2(U), when k = 1, . . . ,m,

d
k

m

0
(0) = (h, wk)L2(U), when k = 1, . . . ,m

and
(u00

m
, wk)L2(U) +B [um, wk; t] = (f , wk)L2(U) (? ?)

with 0  t  T and k = 1, . . . ,m. In other words, for every m try to
find a function um, which is the projection of a function u onto the finite-
dimensional subspace spanned by {wk}mk=1, in order to satisfy the conditions
set for the equation (? ?).
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This next theorem, and especially its proof, will show that this indeed is
possible in practice as Evans shows in[3, pp. 401-402].

Theorem 4.5. For each m 2 N there exists a unique function um of the
form

um(t) :=
mX

k=1

d
k

m
(t)wk(x)

satisfying both

d
k

m
(0) = (g, wk)L2(U), with k = 1, . . . ,m,

d
k

m

0
(0) = (h, wk)L2(U), with k = 1, . . . ,m

and
(u00

m
, wk)L2(U) +B [um, wk; t] = (f , wk)L2(U),

where 0  t  T and k = 1, . . . ,m.

Proof. Assume that um is of the form
P

m

k=1 d
m

k
(t)wk(x). Since {wk}1k=1 is an

orthogonal basis in H
1
0 (U), the product of u00

m
(t) and wk is

(u00
m
(t), wk)L2(U) =

 
mX

k=1

d
k

m

00
(t)wk, wk

!

L2(U)

= d
k

m

00
(t).

Next, simplify the bilinear form by defining coe�cients B [wl, wk; t] corre-
sponding to specific coe�cient functions defined earlier:

B [um, wk; t] =

Z

U

 
nX

i,j=1

a
ij(·, t)uxi(t)wkxj

(·) +
nX

i=1

b
i(·, t)uxi(t)wk(·) + c(·, t)u(t)wk(·)

!
dx

:=
mX

l=1

B [wl, wk; t] d
l

m
(t)

for all k = 1, . . . ,m. Notice that B [wl, wk; t] depends solely on t and the
index n is the dimension of the subset U ⇢ Rn.

To simplify the notations, define

f
k(t) := (f(t), wk)L2(U) with k = 1, . . . ,m.

Now the inner product equation (? ?) can be written as

d
k

m

00
(t) +

mX

l=1

B [wl, wk; t] d
l

m
(t) = f

k(t), when k = 1, . . . ,m.
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This is a linear system of ordinary di↵erential equations. The method of
turning it into a system of equations of first degree is explained in Hirsch
and Smale’s “Di↵erential equations, dynamical systems, and linear algebra”
[4, pp. 102-103]: First, define

(
y1 := d

y2 := y
0
1 = d

0
,

where d = (d1
m
, d

2
m
, . . . , d

m

m
)T . To simplify the notation, write

A :=

0

BBB@

B [w1, w1; t] B [w1, w2; t] . . . B [w1, wm; t]
B [w2, w1; t] B [w2, w2; t] . . . B [w2, wm; t]

...
...

. . .
...

B [wm, w1; t] B [wm, w2; t] . . . B [wm, wm; t]

1

CCCA

and define f := (f 1(t), f 2(t), . . . , fm(t))T . Then, with the vector

y =

✓
y1

y2

◆

it is possible to rewrite the linear system as

y
0 =

✓
y2

f � Ay1

◆
=

✓
0 I

�A 0

◆✓
y1

y2

◆
+

✓
0
f

◆
.

By taking these initial/boundary conditions into account, the theory of inho-
mogeneous ordinary di↵erential equations in Logemann and Ryan’s book [11,
pp. 40-41] states that there exists a unique solution, namely a C

2-function
dm(t) = (d1

m
(t), ..., dm

m
(t)) which satisfies the conditions

d
k

m
(0) = (g, wk)L2(U), when k = 1, . . . ,m,

d
k

m

0
(0) = (h, wk)L2(U), when k = 1, . . . ,m

and

d
k

m

00
(t) +

mX

l=1

B [wl, wk; t] d
l

m
(t) = f

k(t), when k = 1, . . . ,m,

for 0  t  T . Therefore the function um of the assumed form solves the
equation (? ?) for 0  t  T .

The next phase is to show that a subsequence of the approximate solutions
um converges to a weak solution of the hyperbolic initial/boundary-value
problem. As usual, this convergence is shown by approximating the norms
and finding an upper bound as shown in the following theory and its proof,
which both are based on Evans’ [3, pp. 402-404].
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Theorem 4.6 (Energy estimates). There exists a constant C depending only
on U, T and the coe�cients of the operator L such that

max
0tT

⇣
kum(t)kH1

0 (U) + ku0
m
(t)kL2(U)

⌘
+ ku00

m
kL2([0,T ],H�1(U))


⇣
kfkL2([0,T ],L2(u)) + kgkH1

0 (U) + khkL2(U)

⌘

for m 2 N.
Proof. This proof uses several already defined notations and presented equa-
tions from this chapter; the starting point is the inner product equation of
the theorem 4.5.

Let 0  t  T and k = 1, . . . ,m. First, multiply the inner product
equation

(u00
m
, wk)L2(U) +B [um, wk; t] = (f , wk)L2(U)

by d
k

m

0
(t) and then sum over k = 1, . . . ,m. By theorem 4.5 the function um

is of the form
P

m

k=1 d
k

m
(t)wk(x), and hence the equation becomes

✓
u
00
m
,

mX

k=1

d
k

m

0
(t)wk

◆

L2(U)

+B

"
um,

mX

k=1

d
k

m

0
(t)wk; t

#
=

✓
f ,

mX

k=1

d
k

m

0
(t)wk

◆

L2(U)

.

This can be simplified by taking notice of the time derivatives of um: by the
definition of um the derivative

u
0
m
(t) =

mX

k=1

d
k

m

0
(t)wk.

Combining the new formulas, the previous equation becomes

(u00
m
,u

0
m
)L2(U) +B [um,u

0
m
; t] = (f ,u0

m
)L2(U)

for almost every 0  t  T .
There are three terms to consider separately. From the left side of the

equation take first the inner product

(u00
m
,u

0
m
)L2(U) =

✓
d

dt
u
0
m
,u

0
m

◆

L2(U)

=

Z

U

✓
d

dt
u
0
m

◆
u
0
m
dx

=
1

2

✓
d

dt

Z

U

|u0
m
|2dx

◆

=
d

dt

✓
1

2
ku0

m
k2
L2(U)

◆
,
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following by the bilinear form

B [um,u
0
m
; t] =

Z

U

nX

i,j=1

a
ij
um,xiu

0
m,xj

dx

+

Z

U

 
nX

i=1

b
i
um,xiu

0
m
+ cumu

0
m

!
dx

=: B1 +B2.

The coe�cients aij are symmetrical in the sense of translation of both i and
j, in short aij = a

ji when i, j = 1, . . . , n. This fact can be used to define a
symmetric bilinear form for u, v 2 H

1
0 (U) as

A [u, v; t] :=

Z

U

nX

i,j=1

a
ij
uxivxj dx.

Di↵erentiate this to get a new representation for the term B1:

d

dt
A [u, u; t] =

1

2

Z

U

nX

i,j=1

a
ij

t uxiuxj dx+
1

2

Z

U

nX

i,j=1

a
ij
@

@t
(uxiuxj) dx

=
1

2

Z

U

nX

i,j=1

a
ij

t uxiuxj dx+
1

2

Z

U

nX

i,j=1

a
ij
u
0
xi
uxj dx+

1

2

Z

U

nX

i,j=1

a
ij
uxiu

0
xj
dx

=
1

2

Z

U

nX

i,j=1

a
ij

t uxiuxj dx+

Z

U

nX

i,j=1

a
ij
u
0
xi
uxj dx

by the symmetry of the matrix A. Therefore,

B1 =
d

dt

✓
1

2
A [um,um; t]

◆
� 1

2

Z

U

nX

i,j=1

a
ij

t um,xium,xj dx.

The absolute value of the latter term can be approximated with Cauchy’s
inequality 2.29

�����

Z

U

nX

i,j=1

a
ij

t um,xium,xj dx

�����  C

Z

U

nX

i,j=1

|um,xi ||um,xj | dx

 C

nX

i,j=1

Z

U

|um,xi |2 dx

 Ckumk2H1
0 (U).
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Combined with the previous equation for B1 this implies

B1 �
d

dt

✓
1

2
A [um,um; t]

◆
� Ckumk2H1

0 (U),

where C is a constant. As for the other part of the form B [um,u
0
m
; t], it is

possible to approximate it with Cauchy’s inequality as before to get

|B2| =

�����

Z

U

 
nX

i=1

b
i
um,xiu

0
m
+ cumu

0
m

!
dx

�����


Z

U

nX

i=1

��bium,xiu
0
m

�� dx+

Z

U

nX

i=1

|cumu
0
m
| dx

 C

⇣
kumk2H1

0 (U) + ku0
m
k2
L2(U)

⌘
.

Now combine the results to discover a new inequality:

d

dt

⇣
ku0

m
k2
L2(U) + A [um,um; t]

⌘

 C

⇣
(u00

m
,u

0
m
) + B1 + Ckumk2H1

0 (U)

⌘

 C

⇣
(u00

m
,u

0
m
) + B1 +B2 + Ckumk2H1

0 (U) � B2

⌘

 C

⇣
(f ,u0

m
) + C

0kumk2H1
0 (U) + |B2|

⌘

 C

⇣
kumk2H1

0 (U) + ku0
m
k2
L2(U) + kfkL2(U)ku0

m
kL2(U)

⌘
.

Continue with Cauchy’s inequality 2.29 to find an upper bound for the prod-
uct term

 C

✓
kumk2H1

0 (U) + ku0
m
k2
L2(U) +

1

2

h
kfk2

L2(U) + ku0
m
k2
L2(U)

i◆

 C

⇣
ku0

m
k2
L2(U) + kumk2H1

0 (U) + kfk2
L2(U)

⌘
.

Lastly, this can be approximated with

 C

⇣
ku0

m
k2
L2(U) + A [um,um; t] + kfk2

L2(U)

⌘
,

since by the Poincaré-Friedrichs inequality 3.14

✓

Z

U

|Du|2 dx  A [u, u; t]

33



when u 2 H
1
0 (U) because the operator L is uniformly hyperbolic.

To make the rest of the proof more readable, define two new functions

⌘(t) := ku0
m
(t)k2

L2(U) + A [um(t),um(t); t]

and
⇠(t) := kf(t)k2

L2(U).

With these the inequality involving the time derivative simplifies into

⌘
0(t)  C1⌘(t) + C2⇠(t)

for 0  t  T and some constants C1, C2. The functions ⌘, ⌘0 are nonnegative
because the term A [um(t),um(t); t] is nonnegative due to the definition 4.2
of the hyperbolic operator. With ⇠ also being nonnegative, ⌘ absolutely
continuous and ⌘

0
, ⇠ summable, the Gronwall’s inequality 2.31 leads to an

estimate

⌘(t)  e
C1t

✓
⌘(0) + C2

Z
t

0

⇠(s)ds

◆
, when 0  t  T.

On the other hand,

⌘(0) = ku0
m
(0)k2

L2(U) + A [um(0),um(0); 0]

 C

⇣
kgk2

L2(U) + khk2
H

1
0

⌘
,

since due to the definition in theorem 4.5

kum(0)kH1
0 (U)  kgkH1

0 (U).

Returning to the original notation the combined estimate is

ku0
m
(t)k2

L2(U) + A [um(t),um(t); t]

 C

⇣
kgk2

H
1
0 (U) + khkL2(U) + kfk2

L2([0,T ],L2(U))

⌘
.

Because the time coordinate has been arbitrary during the proof up until
now, the bound is in fact

max
0tT

⇣
ku0

m
(t)k2

L2(U) + A [um(t),um(t); t]
⌘

 C

⇣
kgk2

H
1
0 (U) + khkL2(U) + kfk2

L2([0,T ],L2(U))

⌘
.

Then to the final stage in the proof: Fix any v 2 H
1
0 (U) with kvkH1

0 (U) 
1, and divide the function into two parts v = v

1+v
2, where v1 2 span{wk}mk=1
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and (v2, wk) = 0, with k = 1, . . . ,m. Clearly also kv1kH1
0 (U)  1. Notice that

using their definitions the pairing of u00
m
and v equals to

hu00
m
, vi = (u00

m
, v)L2(U) = (u00

m
, v

1)L2(U) = (f , v1)L2(U) � B
⇥
um, v

1; t
⇤
.

This means that in the sense of norms the upper bound is

|hu00
m
, vi|  C

⇣
kfkL2(U) + kumkH1

0 (U)

⌘
.

Finally, the approximation, better known as the energy estimate, is

Z
T

0

ku00
m
k2
H�1(U) dt  C

Z
T

0

⇣
kfk2

L2(U) + kumk2H1
0 (U)

⌘
dt

 C

⇣
kgk2

H
1
0 (U)2 + khkL2(U)2 + kfk2

L2([0,T ],L2(U))

⌘
.

The energy estimates are important because they allow taking the limits
in the Galerkin approximations. Without these limits it would be impossible
to speak of weak solutions in general cases; the main point is to try to find
a sequence of functions with ‘good behaviour’ in L

2(U) to lead to the final
solution in the form of a limit function.

The next theorem is the first of the two main results for wave equations,
since as partial di↵erential equations the aim is to prove both the existence
of solutions and later the uniqueness of them. Here, the proof follows Evans’
text [3].

Theorem 4.7 (Existence of weak solutions). There exists a weak solution
for the initial/boundary-value problem

utt + Lu = f in UT

u = 0 on @U ⇥ [0, T ]

u = g, ut = h on U ⇥ {t = 0}.

Proof. This proof consists of three parts: The first uses the energy estimates
to consider a sequence that forms a base for the rest of the proof. The second
part is to check if its limit function satisfies the criteria of the inner product
equation (? ?). The last work to do is to ensures that this function has the
right initial conditions.

By the energy estimates theorem 4.6 the sequence {um}1m=1 is bounded in
L
2([0, T ], H1

0 (U)), the sequence {u0
m
}1
m=1 is bounded in L

2([0, T ], L2(U)) and
{u00

m
}1
m=1 is bounded in L

2([0, T ], H�1(U)). Thus there exists a subsequence
{uml

}1
l=1 ⇢ {um}1m=1 and a function u 2 L

2([0, T ], H1
0 (U)) with derivatives
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u
0 2 L

2([0, T ], L2(U)) and u
00 2 L

2([0, T ], H�1(U)). Notably these sequences
have the following properties

8
><

>:

uml
* u weakly in L

2([0, T ], H1
0 (U))

u
0
ml
* u

0 weakly in L
2([0, T ], L2(U))

u
00
ml
* u

00 weakly in L
2([0, T ], H�1(U)).

Next consider the inner product equation (? ?). Fix an integer n and
choose a function v 2 C

1([0, T ] , H1
0 (U)) that can be written in the form

v(t) =
nX

k=1

d
k(t)wk(x)

where dk are smooth functions for all k = 1, . . . , n and functions wk form an
orthonormal basis in L

2(U) and an orthogonal basis in H
1
0 (U). Then select

an integer m � n and multiply the inner product equation (? ?) by d
k(t) to

get �
u
00
m
, d

k(t)wk

�
L2(U)

+B
⇥
um, d

k(t)wk; t
⇤
=
�
f , d

k(t)wk

�
L2(U)

for 0  t  T and k = 1, . . . ,m. Since the L
2-inner product and the pairing

between H
1
0 (U) and H

�1(U) are equivalent in this case, the equation can be
written as
⌧
u
00
m
,

nX

k=1

d
k(t)wk

�
+B

"
um,

nX

k=1

d
k(t)wk; t

#
=

✓
f ,

nX

k=1

d
k(t)wk

◆

L2(U)

.

Next, replace the sums with the function v and integrate with respect to t

over the interval (0, T ) to get
Z

T

0

�
hu00

m
,vi+B [um,v; t]

�
dt =

Z
T

0

(f ,v)L2(U) dt.

Now set m = ml to pass to the limit m ! 1 in the weak sense in the
three di↵erent L2 spaces mentioned earlier in the properties of the sequences
{uml

}1
l=1 and {u00

ml
}1
l=1. As a consequence, the equation includes now only

the limit function u as seen in the following line
Z

T

0

�
hu00

,vi+B [u,v; t]
�
dt =

Z
T

0

(f ,v)L2(U) dt.

Since functions of type v(t) =
P

n

k=1 d
k(t)wk(x) are dense in L

2([0, T ], H1
0 (U))

due to the definitions of {dk}1
k=1 and {wk}1k=1, this equation holds for all such

functions. This leads to the conclusion

hu00
, vi+B [u, v; t] = (f , v)L2(U)
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for all v 2 H
1
0 (U) and almost every 0  t  T . From the weak con-

vergence of the sequences it also follows that u 2 C([0, T ] , L2(U)) and
u
0 2 C([0, T ] , H�1(U)).
The only things still left to be verified are the initial values

u(0) = g

and
u
0(0) = h.

This requires again strating from the integral form of the equation (? ?).
Therefore, fix any function v 2 C

2([0, T ] , H1
0 (U)) with the initial values

v(T ) = v
0(T ) = 0. Next integrate the equation (? ?) from 0 to T with

respect to t to get

Z
T

0

�
hu00

,vi+B [u,v; t]
�
dt =

Z
T

0

(f ,v)L2(U) dt.

Then integrate the first term of the integrand on the left by parts twice:

Z
T

0

hu00
,vi dt+

Z
T

0

B [u,v; t] dt =

Z
T

0

(f ,v)L2(U) dt

The first integration results in

�hu0(0),v(0)i+ hu0(T ),v(T )i �
Z

T

0

hu0
,vi dt+

Z
T

0

B [u,v; t] dt =

Z
T

0

(f ,v)L2(U) dt.

The second one

�hu0(0),v(0)i+ (u(0),v0(0))
L2(U) � (u(T ),v0(T ))

L2(U) +

Z
T

0

�
(v00

,u)L2(U) +B [u,v; t]
�
dt

=

Z
T

0

(f ,v)L2(U) dt.

Since v(T ) = v
0(T ) = 0, some of the terms resulting from integration by

parts equal zero. Moving the rest of the terms to the right side gives

Z
T

0

�
(v00

,u)L2(U) +B [u,v; t]
�
dt =

Z
T

0

(f ,v)L2(U) dt

� (u(0),v0(0))
L2(U) + hu0(0),v(0)i.
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As before, replace the function u with a function from the sequence um

to prepare for going to the limit:

Z
T

0

�
(v00

,um)L2(U) +B [um,v; t]
�
dt =

Z
T

0

(f ,v)L2(U) dt

� (um(0),v
0(0))

L2(U) + (u0
m
(0),v(0)) .

Next set m = ml. Now, using the knowledge of the limits in terms of
weak convergence, passing to the limit l ! 1 the equation becomes

Z
T

0

�
(v00

,u)L2(U) +B [u,v; t]
�
dt =

Z
T

0

(f ,v)L2(U) dt�(g,v0(0))
L2(U)+(h,v(0))

L2(U)

since d
k

m
(0) = (g, wk)L2(U) and d

k

m

0
(0) = (h, wk)L2(U) when 1  k  m.

Looking back to the previous two equations, the only di↵erences between
them are the terms from the partial integration on the right side. These
have to be equivalent and thus lead to a new equation

� (u(0),v0(0))
L2(U) + hu0(0),v(0)i = � (g,v0(0))

L2(U) + (h,v(0))
L2(U) .

Since the choosen v(0) and v
0(0) are arbitrary, this concludes

u(0) = g and u
0(0) = h.

Thus u satisfies the criteria set for a weak solution of the hyperbolic initial/-
boundary-value problem.

4.3 Uniqueness of weak solutions

Since the existence of the weak solution for the hyperbolic initial/boundary
value problem has now been proved, all that is left of the basic theory is the
uniqueness of said solution. The following proof is not as straightforward as
the proof of existence. The lack of knowledge of the properties of a derivative
u
0 leads to certain complications that are solved with ‘tricks’. The main

frame of this proof is written according to Evans’ book [3, pp. 406-408]
and supporting information is gathered from Ladyzhenskaya’s text [7, pp.
164-168].

Notice that due to a surplus of superscript and a need to di↵erentiate
between these and derivatives, time derivates are marked with subscripts in
the following proof. As an example, u0 is written as ut.

Theorem 4.8 (Uniqueness of weak solutions). A weak solution of the hy-
perbolic initial/boundary-value problem is unique.
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Proof. As often is the case in proving uniqueness, here also it is su�cient
to show that the weak solution of the simplest version of the hyperbolic
initial/boundary-value problem with an arbitrary operator L is

u ⌘ 0.

The equation is linear due to the linearity of the operator L. This means
that if the function u ⌘ 0 is unique, then any other solution for a similar
hyperbolic equation can be proved unique by considering a proof of contra-
diction: the di↵erence of two simultaneous solutions defines another function
which will also act as a solution for the original equation. But because of the
linearity and properties of derivatives, this di↵erence function will be zero
almost everywhere, which implies that the assumption of having two di↵erent
solutions produces a contradiction, and thus it is a false one.

With this deduction in mind, consider the wave problem (?) with all the
initial values and source functions f ⌘ g ⌘ h ⌘ 0. First, fix 0  s  T and
set

v(t) :=

(R
s

t
u(⌧) d⌧, if 0  t  s

0, if s  t  T.

Now v(t) 2 H
1
0 (U) for each 0  t  T , since u is in the closed space H

1
0 (U)

for every ⌧ in (0, T ), and hence
Z

s

0

�
hutt,vti+B [u,v; t]

�
dt = 0.

Integrate the first term of the integrand by parts to get

(ut(s),v(s))L2(U) � (ut(0),v(0))L2(U) �
Z

s

0

(ut,vt)L2(U) dt+

Z
s

0

B [u,v; t] dt

where the two first terms on the left are zero because ut(0) = v(s) = 0.
What is left is

Z
s

0

�
� (ut,vt)L2(U) +B [u,v; t]

�
dt = 0,

since supposedly f ⌘ 0 in the equation (? ?). Due to the definition of v, the
derivative vt = �u in the weak sense on the interval 0  t  s. Therefore,
on this interval Z

s

0

�
hut,ui � B [vt,v; t]

�
dt = 0. (? ? ?)

To help with the somewhat complex notation, define two new functions,
namely

C [u, v; t] :=

Z

U

 
nX

i=1

b
i
vxiu+

1

2
b
i

xi
uv

!
dx
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and

D [u, v; t] :=
1

2

Z

U

 
nX

i,j=1

a
ij

t uxivxj +
nX

i=1

b
i

t
uxiv + ctuv

!
dx

for u, v 2 H
1
0 (U). The connection between these two and the bilinear form

is based on the time derivative of B [v,v; t]

d

dt

1

2
B [v,v; t] =

d

dt

1

2

Z

U

 
nX

i,j=1

a
ij
vxivxj +

nX

i=1

b
i
vxiv + cv

2

!
dx.

This can be di↵erentiated term by term within the integral due to the prop-
erties of the functions aij, bi, c and v. Start with the first sum,

d

dt

 
nX

i,j=1

a
ij
vxivxj

!
=

nX

i,j=1

a
ij

t vxivxj + a
ij
d

dt
(vxivxj)

=
nX

i,j=1

a
ij

t vxivxj + a
ij(vxitvxj + vxivxjt)

=
nX

i,j=1

a
ij

t vxivxj + 2aijvxitvxj .

Likewise, di↵erentiate the next sum

d

dt

 
nX

i=1

b
i
vxiv

!
=

nX

i=1

b
i

t
vxiv + b

i
d

dt
(vxiv)

=
nX

i=1

b
i

t
vxiv + b

i
vxitv + b

i
vxivt.

And lastly,

d

dt

 
nX

i=1

cv
2

!
=

nX

i=1

ctv
2 + 2cvtv.

When they are integrated over U with multiplicator 1/2 applied, the first
terms of these derivatives can be put together to form

1

2

Z

U

 
nX

i,j=1

a
ij

t vxivxj +
nX

i=1

b
i

t
vxiv + ctv

2

!
dx = D[v, v; t].
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Subtracting B[vt,v; t] from the rest results in

1

2

Z

U

 
nX

i,j=1

2aijvxitvxj +
nX

i=1

b
i
vxitv + b

i
vxivt + 2cvtv

!
dx

= B[vt,v; t] +
1

2

Z

U

 
nX

i=1

�b
i
vxitv + b

i
vxivt

!
dx.

Integrate this last integral by parts and remember that vt = �u to get
C[u,v; t].

Combine these results to get

d

dt

1

2
B [v,v; t] = D[v, v; t] + B[vt,v; t] + C[u,v; t].

Since
d

dt

1

2
kuk2 = hut,ui,

integrating this equation in terms of t leads to
Z

s

0

d

dt

1

2
kuk2 dt =

Z
s

0

hut,ui dt =
Z

s

0

B[vt,v; t] dt.

Thus
Z

s

0

d

dt

✓
1

2
kuk2

L2(U) �
1

2
B [v,v; t]

◆
dt = �

Z
s

0

�
C [u,v; t] +D [v,v; t]

�
dt.

Due to the definitions of function u and v, values u(0) = 0 and v(s) = 0.
Hence integrating the left side the equation yields

1

2
ku(s)k2

L2(U) �
1

2
B [v(0),v(0); 0] = �

Z
s

0

�
C [u,v; t] +D [v,v; t]

�
dt.

Next, approximate the newly defined forms C and D in terms of various
norms of the funtions u and v. Firstly,

|C[u,v; t]| 
Z

U

 
nX

i=1

��bivxiu
��+ 1

2

��bi
xi
uv
��
!

dx


Z

U

 
nX

i=1

kbik1 · 1
2
(v2

xi
+ u

2) +
1

2
kbi

xi
k1 · 1

2
(u2 + v

2)

!
dx

 C

Z

U

�
|rv(t)|2 + u

2(t) + v(t)2
�
dx

= C

⇣
kv(t)k2

H
1
0 (U) + ku(t)k2

L2(U)

⌘
,
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since for all indeces i it was supposed that b
i 2 C

1(UT ). Similarly, for the
form

|D[v,v; t]|  1

2

Z

U

 
nX

i,j=1

��aijt vxivxj

��+
nX

i=1

��bi
t
vxiv

��+
��ctv2

��
!

dx

 1

2

Z

U

 
nX

i,j=1

kaijt k1 · 1
2
(v2

xi
+ v

2
xj
) +

nX

i=1

kbi
t
k1 · 1

2
(v2

xi
+ v

2) + kctk1 · v2

!
dx

 C

Z

U

�
|rv(t)|2 + v

2(t)
�
dx

= Ckv(t)k2
H

1
0 (U) .

These two imply
����
Z

s

0

(C[u,v; t] +D[v,v; t]) dt

����  C

Z
s

0

⇣
kvk2

H
1
0 (U) + kuk2

L2(U)

⌘
dt .

Futhermore, by hyperbolicity

✓

Z

U

|rv(0)|2dx 
Z

U

X

i,j

a
ij
vxi(0)vxj(0) dx

= B[v,v; 0]�
Z

U

 
X

i

b
i
vxi(0)v(0) + cv

2(0)

!
dx

 B[v,v; 0]� C

✓Z

U

|rv(0)|v(0) dx+ kv(0)k2
L2(U)

◆
.

Notice that for every ✏ > 0 it holds

|rv(0)|v(0)  ✏

2
|rv(0) |2 + 1

2✏
v(0)2 .

Choose an ✏ such that C✏ = ✓, where C is the constant from the previous
inequality. Then

C

Z

U

|rv(0)|v(0) dx  ✓

2
krv(0)k2

L2(U) + Ckv(0)k2
L2(U) .

Thus

✓

2

Z

U

|rv(0)|2 dx  B[v,v; t] + Ckv(0)k2
L2(U)
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and

ku(s)k2
L2(U) + kv(0)k2

H
1
0 (U)  ku(s)k2

L2(U) +
2

✓

⇣
B[v,v; t] + Ckv(0)k2

L2(U)

⌘

 C

✓
1

2
ku(s)k2

L2(U) +
1

2
B[v,v; t] + kv(0)k2

L2(U)

◆

 C

✓Z
s

0

�
kvk2

H
1
0 (U) + kuk2

L2(U)

�
dt+ kv(0)k2

L2(U)

◆
.

In the next phase of the proof it will be easier to use a new notation to
simplify reading even further; the integral of the function u from zero to time
t is

w(t) :=

Z
t

0

u(⌧) dt, 0  t  T.

With this the previous inequality becomes

ku(s)k2
L2(U)+kw(s)k2

H
1
0 (U) (? ? ? ?)

 C

✓Z
s

0

⇣
kw(t)�w(s)k2

H
1
0 (U) + kuk2

L2(U) + kw(s)k2
L2(U)

⌘
dt

◆
.

By parallelogram the first term of the upper bound can be further estimated
by

kw(t)�w(s)k2
H

1
0 (U)  kw(t)k2

H
1
0 (U) + kw(s)k2

H
1
0 (U).

Also, from the properties of the function u, L2-norm, and Riemann integral
in general it follows that

kw(s)kL2(U) 
Z

s

0

ku(t)kL2(U) dt.

Together with these notions the previous inequality (? ? ? ?) implies

ku(s)k2
L2(U) + (1� 2sC1)kw(s)k2

H
1
0 (U)  C1

Z
s

0

⇣
kwk2

H
1
0 (U) + kuk2

L2(U)

⌘
dt.

Next choose a constant T1 2 [0, T ] so that

1� 2T1C1 �
1

2
.

In this case, if 0  s  T1, then

ku(s)k2
L2(U) + kw(s)k2

H
1
0 (U)  C

Z
s

0

⇣
kuk2

L2(U) + kwk2
H

1
0 (U)

⌘
dt.
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Consider the left side of the inequality as a function of s. Because the left
side forms a nonnegative, summable function on [0, T1] and the right side is
of correct form, it is now possible to refer to Gronwall’s inequality 2.31. In
this case the constant C2 = 0, so the left side of the inequality is zero. This
implies that u ⌘ 0 on the interval [0, T1].

To finish the proof, apply the same argument to the other intervals
[(n� 1)T1, nT1] with index n � 2 to cover the whole interval [0, T ] to de-
duce the wanted result.
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5 Control Theory

This chapter introduces the basics of control theory. The questions that
define this approach are “How to tell if a preferred state of a linear system
can be reached or not?” and “How can a finite dimensional wave equation
be understood in this framework?”. The viewpoint is changed when trying
to understand the inner workings of a model: In the previous chapter, the
partial di↵erential equation considered is a forward problem. This means that
initial and boundary values are given with the information of the assumed
dependencies between a function and its derivatives. In control theory, the
initial state of the system and notably, the observation of the state derived
from ‘outside of the system itself’ are presumed known. The object of interest
is then the input source or control and whether or not it is possible to find
one that produces the preferred end result.

The chapter is based on “Inverse Boundary Spectral Problems” by Katchalov,
Kurylev and Lassas [5], the lecture notes of course “Johdatus inversio-ogelmiin
by Lassas [8], and “Ordinary Di↵erential Equations” by Logemann and Ryan
[11].

5.1 Basics of control theory

According to Logemann and Ryan [11, p. 65], a linear system of an initial
value problem is defined as

Definition 5.1. Let I ⇢ R be an interval containing zero and pair (0, ) 2
I ⇥ Rn. A linear system can be written in the following form

ẋ = Ax+Bf, x(0) =  2 Rn
, (⇤)

y = Cx, (⇤⇤)

where A 2 Rn⇥n
, B 2 Rn⇥m and C 2 Rp⇥n.

The linear system consists of an inhomogeneous initial value problem on
line (⇤) and an observation data marked as the equation (⇤⇤). Since the
focus of this chapter is on control theory, the input f of the system is called
the control. Likewise, the output y is the observation which in the case of
a real world application would be the measured data from the process. The
function x describes the state of the system at any given time t.

The first step to solve this control problem is to notice that the equation
(⇤) can be solved by the formula known as variation of parameters as stated
in Logemann and Ryan’s book [11, p. 41-43]. But before continuing with this
theorem, it is necessary to define the following function spaces: According
to Logemann and Ryan [11, pp. 280-281],
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Definition 5.2. The space of matrices Fn⇥m is notated by MF.

Definition 5.3. Let I be an interval in R and Y ⇢ Rn. A function f : I !
MF is piecewise continuous if for every a, b 2 I, where a < b, the interval
[a, b] has a finite partition a < x1 < x2 < · · · < xk < b such that

(i) the function f is continuous on every interval (xl, xl+1) when l =
1, 2, . . . , k � 1,

(ii) the function f has a right limit at the point x1,

(iii) the function f has a left limit at the point xk,

(iv) the function f has a right and a left limit at the point xi for every index
2, 3 . . . , k � 1

The vector space of piecewise continuous functions from I to Y is notated
by PC(I, Y ).

As a notice from Logemann and Ryan’s book [11, p. 281]: a piecewise
continuous function f : I ! MF is integrable on every interval [a, b] when
a, b 2 I and a < b.

Then to the actual theorem used to solve linear systems of initial value
problems [11, pp. 41-43]:

Theorem 5.4 (Variation of parameters). For each input f 2 PC(I,Rm) and
initial value  2 Rn the unique solution of the problem (⇤) on I is given by
the formula of variation of parameters

x(t; , f) := e
At
 +

Z
t

0

e
A(t�s)

Bf(s) ds

for all t 2 I.

Proof. First, it is necessary to show that the formula actually produces a
solution for the initial value problem. Start by derivating the formula in
terms of the variable t: Suppose that the function f is at least piecewise
continuous. Then

ẋ(t; , f) =
d

dt

✓
e
At
 +

Z
t

0

e
A(t�s)

Bf(s) ds

◆

=Ae
At
 +

d

dt

Z
t

0

e
A(t�s)

Bf(s) ds,
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which by Leibniz’s rule 2.32 can be written as

ẋ(t; , f) =Ae
At
 + e

A(t�t)
Bf(t)

d

dt
t� e

A(t�0)
Bf(0)

d

dt
· 0 +

Z
t

0

@

@t
e
A(t�s)

Bf(s) ds

=Ae
At
 +Bf(t) + A

Z
t

0

e
A(t�s)

Bf(s) ds

=Ax(t; , f) + Bf(t).

Then notice that the initial value

x(0; , f) =e
A·0
 +

Z 0

0

e
A(0�s)

Bf(s) ds

= .

This proves that the formula is a solution for (⇤). Next, suppose that function
y is also a solution for the linear system. Now,

d(x� y)

dt
=

dx

dt
� dy

dt

= Ax+Bf � (Ay +Bf)

= A(x� y)

and this leads to an equation

ẋ� Ax = ẏ � Ay.

Then, a function z = x � y should solve the corresponding homogeneous
linear system

ż = Az, z(0) = 0

and thus, x = y.

In the previous chapter where the forward problem for wave equation was
solved the input function was given. In comparison, this time the search is
for an answer for what happens when the initial state is known and the input
is something that can be chosen within some limits. Can a predetermined
target state be reached from these settings? This problem type is known as
a controllability problem [11, p. 67].

Definition 5.5. Let  , ⇣ 2 Rn. If there exists a T > 0 and a control
f 2 PC([0, T ],Rm) for which x(T ; , f) = ⇣, then ⇣ is reachable from the
initial value  . Systems (⇤) and (⇤)-(⇤⇤) are controllable if for all pairs
( , ⇣) 2 Rn⇥n, ⇣ is reachable from  .
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The main information of any linear system of type (⇤) can be summarised
as a pair of matrices (A,B) 2 Rn⇥n⇥Rn⇥m. As before, this pair is controllable
if the actual system is controllable. Further on, the controllability matrix can
be formulated as

C(A,B) := (B,AB,A
2
B, . . . , A

n�1
B) 2 Rn⇥(mn)

,

where C(A,B) defines a mapping from Rmn to Rn [11, p. 69]. The controlla-
bility Gramian of the same set of matrices (A,B) is

QT (A,B) :=

Z
T

0

e
At
BB

⇤
e
A

⇤
t
dt 2 Rn⇥n

,

where the interval of integration depends on parameter T > 0. The matrix
QT is both symmetric and positive semi-definite [11, p. 69]. In the following
theorems these two definitions prove to be extremely useful when it comes to
understanding the set of reachable states and its connections with the pair
(A,B).

Remark 3. The image of a matrix M 2 Rm⇥n is notated by imM .

The next theorem by Logemann and Ryan [11, pp. 69-70] states the
first common characteristics between the matrices, but before it is useful to
consider the following lemma:

Lemma 5.6. For a pair of matrices A,B derived from a linear system of
type (⇤) the following equivalence holds

z 2 (im C(A,B))? , z
⇤
e
At
B = 0 for all t 2 R.

Proof. Suppose z 2 (im C(A,B))?. By theorem 2.36 this is equivalent with
z
⇤C(A,B) = 0. From the definition of C(A,B) it follows that z⇤Ak

B = 0 for
all k 2 [0, n� 1]. This can be generalised by the Cayley-Hamilton theorem
2.37 to cover every k 2 N[{0}, since it states that the operator Ak is a linear
combination of operators I = A

0
, A,A

2
, . . . , A

n�1 for every k 2 N [ {0}.
Hence continuing inductively from k = n� 1 yields the result z⇤Ak

B = 0 for
k 2 N [ {0}. This implies

0 =
1X

k=0

t
k

k!
z
⇤
A

k
B = z

⇤
e
At
B for all t 2 R.

For the other direction in the equivalence, suppose that z⇤eAt
B = 0 for

all t 2 R. When t = 0 this becomes

z
⇤
e
A·0

B = z
⇤
B = z

⇤
A

0
B = 0.
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Next, proceed to di↵erentiate the function z
⇤
e
At
B in terms of t:

d

dt
z
⇤
e
At
B = z

⇤
Ae

At
B,

and evaluate this again at t = 0 to get

z
⇤
Ae

A·0
B = z

⇤
A

1
B = 0,

since z
⇤
e
At
B is identically zero for all t 2 R. Continuing this process induc-

tively shows that z⇤Ak
B = 0 for all k = 0, . . . , n � 1. Thus, z⇤C(A,B) = 0,

and now theorem 2.36 implies z 2 (im C(A,B))?.

Theorem 5.7. For images of a pair of matrices A,B derived from a linear
system of type (⇤),

im C(A,B) = imQT (A,B) for all T > 0.

Proof. For all T > 0, the claim is equivalent with

(im C(A,B))? = (imQT (A,B))?,

since for both Rn⇥(mn) and Rn⇥n the orthocomplements are unique. The
proof is done in two parts proving inclusions to both directions separately.

Suppose T > 0 and z 2 (im C(A,B))?. By lemma 5.6, for all t 2 R
z
⇤
e
At
B = 0. This implies that

z
⇤
QT =

Z
T

0

z
⇤
e
At
BB

⇤
e
A

⇤
t
dt = 0 for all t 2 R,

which in turn implies according to theorem 2.36 that (imQT (A,B))?. This
proves that

(im C(A,B))? ⇢ (imQT (A,B))?.

Then suppose z 2 (imQT (A,B))?. Theorem 2.36 implies now that
z
⇤
QT = 0, and since QT is symmetrical, also QT z = 0 follows from this.

Thus hz,QT zi = 0. Now,

0 =

Z
T

0

hz, eAt
BB

⇤
e
A

⇤
t
zidt =

Z
T

0

kB⇤
e
A

⇤
t
zk2dt.

The norm integrand is a continuous, non-negative function, which implies
that B⇤

e
A

⇤
t
z = 0 for all t 2 [0, T ]. From this it follows that z⇤eAt

B = 0 for
all t 2 R, and consequently by lemma 5.6 z 2 (im C(A,B))?. This means
that

(imQT (A,B))? ⇢ (im C(A,B))?.
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One of the direct consequences of this theorem and theorem 2.36 is that
for all T > 0 there exists a left inverse mapping Q

]

T
2 Rn⇥n for which

QTQ
]

T
z = z for all z 2 im C(A,B).

To continue with the assisting definitions, the input-to-state map

CT : PC([0, T ],Rm) ! Rn
, u 7!

Z
T

0

e
A(T�t)

Bf(t) dt

depends on parameter T > 0. Its image imCT (PC([0, T ],Rm)) is the set of
all reachable states from 0 in time T as its name suggests. With this linear
map, the variation of parameter formula from theorem 5.4 simplifies to the
form

x(T ; , f) := e
AT
 +CTf.

Next consider the set of states of system (⇤) which are reachable from 0.
With maps CT this set is

R : =
[

T>0

imCT (PC([0, T ],Rm)) (⇤⇤⇤)

= {x(T ; 0, f) = CTf : T > 0, f 2 PC([0, T ],Rm)}.

To better understand the set R it is purposeful to look closer into optional
ways of defining it. In [11, pp. 69-71] this is done by considering images of
other sets defined earlier in this chapter.

Theorem 5.8.

R = im C(A,B) = imCT (PC([0, T ],Rm)) for all T > 0.

Proof. Suppose z is an arbitrary element in the subspace R. Then it is
possible to write z = CTf with some T > 0 and f 2 PC([0, T ],Rm).
Next, consider R divided into two parts: namely im C(A,B) and its ortho-
complement (im C(A,B))?. Now z = z1 + z2, where z1 2 im C(A,B) and
z2 2 (im C(A,B))?. By lemma 5.6, for all t 2 R

z 2 (im C(A,B))? , z
⇤
e
At
B = 0.

By this z⇤2e
T�t

B = 0 for all t 2 [0, T ], which leads to an equation

0 =

Z
T

0

z
⇤
2e

T�t
Bf(t) dt = hz2,CTfi = hz2, zi = kz2k2.
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Here it follows that z = z1 which was defined as an element of im C(A,B).
As z was arbitrary, R ⇢ im C(A,B).

The next goal is to prove the other inclusion. Suppose z 2 im C(A,B),
with T > 0 arbitrary and set u = C

]

T
z, where

�
C

]

T
z
�
:= B

⇤
e
A

⇤(T�t)
Q

]

T
z for all t 2 [0, T ]

is a mapping from Rn into PC([0, T ],Rm), and Q
]

T
2 Rn⇥n satisfies

QTQ
]

T
z = z for all z 2 im C(A,B).

Note that by its definition C
]

T
is linear. Let y 2 Rn. Now

CTC
]

T
y =

Z
T

0

e
A(T�t)

BB
⇤
e
A

⇤(T�t)
Q

]

T
y dt = QTQ

]

T
y.

For z 2 im C(A,B) this is CTC
]

T
z = z since by the definition of C]

T
the

mapping CT is right invertible. Continue the previous equation by applying
the definitions of u and R (⇤⇤⇤) to get

z = CTC
]

T
z = CTf = x(T ; 0, f),

which means that z 2 R and z 2 imCT (PC([0, T ],Rm)). Hence R =
im C(A,B) and R ⇢ imCT (PC([0, T ],Rm)) for all T > 0. Since

R =
[

T>0

imCT (PC([0, T ],Rm)) for all T  0,

it follows that
imCT (PC([0, T ],Rm)) ⇢ R.

To tie up the previous results into a form that is useful when defining
whether a system is controllable or not, this following theorem lists di↵erent
equivalent ways of proving controllability [11, pp. 72-73].

Theorem 5.9. The following are equivalent

(i) The initial value problem (⇤) is controllable.

(ii) rank C(A,B) = n.

(iii) QT is invertible for some T > 0.

(iv) QT is invertible for all T > 0.
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(v) CT is surjective for some T > 0.

(vi) CT is surjective for all T > 0.

(vii) CT is right invertible for some T > 0.

(viii) CT is right invertible for all T > 0.

Proof. The proof follows the implication chart below.

(ii) ) (viii)

) ,
(i) ( (iii) ( (iv) +

,
(iv)

)
)

(v) ( (vii)

(iv) ) (iii), (vi) ) (v), (viii) ) (vii)
These implications follow immediately from their claims.

(ii) , (iv) , (vi)
By theorem 5.7 QT is invertible if and only if rank C(A,B) = n. Since theo-
rem 5.8 can only hold true, when n = rank(im C(A,B)) = rank(imCT (PC([0, T ],Rm)))
for all T > 0, it also implies that (iv) is equivalent with (vi).

(vii) ) (v)
Suppose that (vii) holds. ThenCTC

]

T
z = z for all z 2 Rn, which implies that

imCT (PC([0, T ])) = Rn, in other words CT is surjective for some T > 0.
(ii) ) (viii)

Suppose rank C(A,B) = n. Then im C(A,B) = Rn and by the definitions of
CT and C

]

T
, it follows as in the proof of theorem 5.8 that CTC

]

T
z = z for all

z 2 Rn. Thus CT is right invertible for all T > 0.
(v) ) (i)

Suppose that CT is surjective for some T > 0. Choose state vectors a, b 2 Rn

to be arbitrary and then define a function

z := b� ae
AT

.

Since CT is surjective, there exists a function f 2 PC([0, T ],Rm) for which
CTf = z. This can also be written as

x(T ; a, f) := ae
AT +

Z
T

0

e
A(T�t)

Bf(t)dt

= b� z +CTf = b.
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By definition 5.5, the state b is reachable form the state a for every pair
(a, b) 2 Rn and hence the initial value problem (⇤) is controllable.

(iii) ) (i)
Suppose that QT is invertible for some T > 0. As before, let a, b 2 Rn.
Since QT is invertible, imQT (A,B) = Rn. By theorem 5.7 it also holds that
im C(A,B) = Rn which leads to the deduction that b � ae

AT 2 im C(A,B).
Next, define a function u := C

]

T
(b� ae

AT ). With this

x(T ; a, f) = ae
AT +CTf

= ae
AT +CTC

]

T
(b� ae

AT ) = b,

and as in before, the claim (i) holds.
(i) ) (ii)

Suppose that the initial value problem (⇤) is controllable. Then the set of
reachable states of this system R = Rn by its definition (⇤⇤⇤). By theorem
5.8, the rank of C(A,B) is equal with the dimension of im C(A,B) = n. Thus
statement (ii) holds.

5.2 Wave equation in control theory

And how does the control theory relate to wave equations? The actual formu-
lation for a wave equation defined previously in (?) does not seem to satisfy
the definitions for a linear system in this chapter. Hence, the next task is to
show that a wave equation can be considered as such system and as a con-
sequence, the earlier results of this chapter can be applied into controlling a
wave system. The change to a linear system is done according to the exam-
ples given in the article “Basic concepts of control theory” by Markus [12]
and the method provided by Hirsch [4, pp. 102-103]. Otherwise, the section
follows the lecture material of the course “Johdatus inversio-ongelmiin” by
Matti Lassas [8].

The following simplified wave operator will be considered in this section:

Definition 5.10. Let l > 0 and q 2 C
1([0, l]) be a real valued function. The

boundary spectral data of the wave operator A : H2
0 (0, l) ! L

2(0, l), where

A = �D
2 + q(x) (⇤⇤⇤⇤)

is
((�i)

1
i=1, (@x�i(0))

1
i=1),

where �i are the eigenvalues of the operator A and �i are the corresponding
eigenvectors for i 2 N.
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Like earlier in this chapter, suppose that the boundary spectral data is
known for the system (⇤⇤⇤⇤) and try to find appropriate potential function
q. The following method used to reconstruct q is called the boundary control
method. This requires certain definitions for function spaces used in following
proofs.

Definition 5.11. Let

L
2(a, b) = {f 2 L

2(0, 1) : f |(0,a) = 0, f |(b,1) = 0},

where 0  a < b  1.

Definition 5.12. An operator ST : C1
c
(R+) 7! L

2(0, 1) is defined to

STf0 := u
f0(·, T ) 2 L

2(0, 1),

where the function u
f0(x, t) is the generalized solution for the wave equation

✓
@
2

@t2
� @

2

@x2
+ q(x)

◆
u(x, t) = 0, when 0  x  1, t > 0

u(0, t) = f0(t) 2 C
1
c
(R+)

u(1, t) = 0

u(x, 0) = 0,
@u

@t
(x, 0) = 0,

where the function u 2 C
2(R+ ⇥ [0, 1]). Here, the function f0 is called the

control of this equation.

This new operator is built from three blocks: the second partial time
derivative, the second partial space coordinate derivative and a function q

depending only on the variable x. Written with the notation from definition
4.1,

Lu = �1 · uxx + 0 · ux + q(x)u(x),

where the function c(x, t) = q(x).
This simplified wave operator is a sub type of the general hyperbolic

operator defined in the previous chapter. Consequently, the results derived
earlier from it do still hold true.

The following lemma is crucial in showing that the wave equation de-
fined earlier in this chapter is indeed controllable, or at least approximately
controllable.
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Lemma 5.13. Let 0 < a  T < 1 and b = T � a � 0. Now

X = {uf0(·, T ) : f0 2 C
1
c
(b, T )} = STC

1
c
(b, T )

is a dense subset in L
2(0, a).

Proof. This proof consists of two parts. The main goal is to prove two sepa-
rate inclusions: first STf0 ⇢ L

2(0, a) and later C1
c
(0, a) ⇢ X ⇢ L

2(0, a).
Let f0 2 C

1
c
(b, T ). Suppose that the extension of u defined according to

theorem 3.12 as ue = Eu is the classical solution for the equation

�
@
2
t
� @

2
x
+ q(x)

�
u
e(x, t) = 0, when 0  t  T and 0  x  2,

u
e|t=0 = 0, u

e

t
|t=0 = 0,

u
e|x=0 = f0, u

e|x=2 = 0,

where similarly to the extension u
e, the extension of function q is q

e 2
C

1([0, 2]), and its values on the interval [0, 1] are q
e|[0,1] = q. It follows

from the values on the boundaries and the definition of f0 that ue disappears
on

S = {(x, t) 2 [0, 2]⇥ [0, T ] : t� b < x and t� b < 2� x}.

Next define the intersection of sets S and [0, 1]⇥ [0, T ], which written exactly
is the set

U = {(x, t) 2 [0, 1]⇥ [0, T ] : t� b < 2� x}.

Then, consider again another wave equation nearly identical with the previ-
ous one:

�
@
2
t
� @

2
x
+ q(x)

�
u(x, t) = 0, when 0  t  T and 0  x  1,

u|t=0 = 0, ut|t=0 = 0,

u|x=0 = f0, u|x=1 = 0.

Here, the function u
e|(0,1)⇥(0,T ) is the solution for this equation with u 2

C
2([0, 1]⇥ [0, T ]), and thus

u = u
f0 = Stf0, when 0  t  T and u

f0 |U ⌘ 0.

This proves the first inclusion STf0 ⇢ L
2(0, a).

Now for the other inclusion. This is easiest to prove with a change of
coordinates such that y = T � t and s = �x as demonstrated in the lec-
ture notes [8], which essentially means that the wave is reflected back to its
starting point.
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Let h 2 C
1
c
(0, a) and suppose that the function w is the solution for the

equation
�
@
2
s
� @

2
y
+ q(s)

�
w(s, y) = 0, when � 1 < s < 0 and 0 < y < T,

w|y=0 = h(�s), w|y=T = 0,

w|s=�1 = 0, ws|s=�1 = 0.

Since h(�s) 2 C
1
c
(�a, 0), it holds true that

w 2 C
1([�1, 0]⇥ [0, T ]),

w(s, y) = 0, when s < �a+ y.

Define the original functions u and f0 as

u(x, t) = w(T � t,�x)

f0(t) = w(�t, 0) 2 C
1([0, T ]).

This leads to the actual solution for the wave equation, for which

u(x, T ) = w(0,�s)|s=�x = h(x)

supp(f0) ⇢ [b, T ].

This implies
C

1
c
(0, a) ⇢ X ⇢ L

2(0, a),

which proves that the set X is dense in L
2(0, a).

But what does this all mean in terms of control theory in practice? The
final goal left is to connect the result of lemma 5.13 with the linear system
defined in the beginning of this chapter. Start with a boundary control
problem

(@2
t
��+ q)u(x, t) = 0

u|t=0 = 0, ut|t=0 = 0

u|@I⇥R+ = f(x, t), f 2 C
1
c
(@I ⇥ R+),

where the interval I = [0, 1]. Next, consider u as a combination of two
functions,

u(x, t) = v(x, t) + (Ef)(x, t),

where E is the extension operator from theorem 3.12 and v satisfies the
following inhomogeneus wave equation

(@2
t
��+ q)v(x, t) = �(@2

t
��+ q)E(f)

v|t=0 = 0, vt|t=0 = 0

v|@I⇥R+ = 0.
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What is notable in this equation is the fact that comparing to the previous
wave equation for the function u, this one here has zero as the boundary
value. This allows it to be written as a matrix formula according to the
examples by Markus [12] and as was earlier done in the proof of theorem 4.5
[4, pp. 102-103]:

@t

✓
v(t)
vt(t)

◆
=

✓
0 I

�+ q 0

◆✓
v

vt

◆
+

✓
0

(�@2
t
+�� q)E

◆
f.

Here, the vector
x(t) := (v(t), vt(t))

is the state of the system at a moment t 2 [0, a]. The state x belongs to the
Sobolev space H

1([0, a], L2(0, 1)). Now, this system is actually in the form
defined as the linear system (⇤) with

A =

✓
0 I

�+ q 0

◆

B =

✓
0

(�@2
t
+�� q)E

◆

f = f

x(0) =

✓
v(0)
vt(0)

◆
=

✓
0
0

◆
.

Since this form exists, it is now possible to deduce that an initial/boundary
value problem of a wave equation is controllable.
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