
Perception based approach on pattern discovery and
organisation of point-set data

Mikko Pelkonen

Pro graduate thesis
UNIVERSITY OF HELSINKI
Department of Computer Science

Helsinki, March 11, 2020

Faculty of Science Department of Computer Science

Mikko Pelkonen

Perception based approach on pattern discovery and organisation of point-set data

Computer Science

Pro graduate thesis March 11, 2020 56

music information retrieval, pattern discovery

The general topic of the thesis is computer aided music analysis on point-set data utilising
theories outlined in Timo Laiho’s Analytic-Generative Methodology (AGM) [19]. The topic is
in the field of music information retrieval, and is related to previous work on both pattern
discovery and computational models of music. The thesis aims to provide analysis results
that can be compared to existing studies.

AGM introduces two concepts based on perception, sensation and cognitive processing:
interval–time complex (IntiC) and musical vectors (muV). These provide a mathematical
framework for the analysis of music. IntiC is a value associated with the velocity, or rate
of change, between musical notes. Musical vectors are the vector representations of these
rates of change. Laiho explains these attributes as meaningful for both music analysis and
as tools for music generation. Both of these attributes can be computed from a point-set
representation of music data.

The concepts in AGM can be viewed as being related to geometric methods for pattern
discovery algorithms of Meredith, Lemström et al. [24] who introduce a family of ‘Structure In-
duction Algorithms’. These algorithms are used to find repeating patterns in multidimensional
point-set data.

Algorithmic implementations of intiC and muV were made for this thesis and examined
in the use of rating and selecting patterns output by the pattern discovery algorithms. In
addition software tools for using these concepts of AGM were created. The concepts of AGM
and pattern discovery were further related to existing work in computer aided musicology.

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Contents
1 Introduction 1

2 Computational models of music 2
2.1 Stylistic composition . 6

3 Geometric pattern discovery in music 12
3.1 Repeated patterns in music 13
3.2 Representation of music data 13
3.3 Geometric representation . 14
3.4 Structure Induction Algorithms 15
3.5 Perceptually significant repetitions 17

3.5.1 Heuristics . 17
3.6 Further developments on the geometric pattern discovery al-

gorithms . 18
3.7 Issues with Structure Induction Algorithms 19

4 Analytic Generative Methodology (AGM) 21
4.1 Interval-time complex (intiC) 24
4.2 Musical vectors (muV s) . 27

4.2.1 Computing musical vectors 28

5 AGM software as a tool for music analysis 36

6 AGM and pattern discovery 37
6.1 MuVs in repeating patterns 38
6.2 Inspecting patterns based on muV s 39
6.3 Inspecting muV s using patterns 41
6.4 Filtering vector table based on muV s 42

7 Results 43

8 Discussion and future work 46

References 48

A Python implementation of Structure Induction Algorithms 51

B Examples of organised patterns and their musical vectors 53

ii

1 Introduction
Perception of music and the inference of structure are often studied in the
field of computer aided musicology in an effort to further the understanding
of our cognitive capacities and how we hear music. This has produced a
wealth of interesting theories, models and algorithms, as well as problems.

This thesis focuses on two different directions of research. The perception
based approach to music analysis in Timo Laiho’s Perception, Time and
Music Analysis — Analytic Generative Methodology [19] is investigated from
the point of view of computer aided music analysis, with the aim of the
implementation of it’s core concepts and the evaluation of their use in music
analytic tasks. Specifically the concepts are viewed in conjunction with the
family of geometric pattern discovery algorithms introduced by Meredith et
al. [24, 21].

In Analytic Generative Methodology (AGM) Laiho presents a new
methodology for music analysis. He calls the methodology perception based
and views music analysis through the perspective of musicology, physics,
cognitive science and philosophy. AGM includes two mathematical concepts
which are called interval–time complex (intiC) and musical vectors (muV).
Both of these describe the context based perception of movement, or the
velocity, of pitches. These concepts were studied and implemented and works
of computer aided musicology were reviewed to provide a context for their
application.

The pattern discovery algorithms by Meredith et al. [24, 21] are used
for the discovery of recurring patterns in multidimensional point-set data,
especially data representing polyphonic music. These patterns can be used to
for example infer the structure of a musical work. The algorithms suffer from
the problem of finding perceptually significant patterns. They may output
hundreds of thousands of different patterns for a single musical composition
and only a fraction of these could be thought of as perceptually significant or
interesting. As the aim of AGM is to explain perception based phenomena
it was evaluated in the use of solving this problem and inspecting whether
the combination of AGM and pattern discovery had combined value as tools
for computer aided music analysis. The results of this thesis include the
association of musical vectors and patterns which were be visualised as vector
graphs that demonstrated aspects of structure in musical works.

As the pattern discovery algorithms operate by calculating vectors be-
tween coordinate values of datapoints and the concept of musical vectors
from AGM can also be described as vector based relations between the points
of point-set data, the techniques from these pattern discovery algorithms
were used in the implementation of the computation of muV s.

Music theoretical methodologies, computational models of music and
other works of computer aided musicology were reviewed and potential
connections to AGM were made. Context based time and pitch-sensitive

1

concepts are found in works studying the grouping structure of music [3]
and the concepts of high- and low-level cognitive processing regarding the
perception of music, which was a central concept in AGM, can be found in
computational models of music [2, 26, 9].

The rest of this thesis is organised as follows. Related work is introduced
first in separate chapters. For computational models of music, theoretical
approaches to musical structure and models of music that employ aspects of
perception are presented. Then pattern discovery algorithms are inspected
in detail, including the description of the geometric representation of multidi-
mensional point-set music data used in the implementations of the algorithms
in this thesis. Next Analytic Generative Methodology is introduced and
within it begin the contributions of this thesis: the implementations of the
core concepts of AGM and the algorithms for the computation of musical
vectors. In it’s own chapter the usage of AGM software for music analysis is
briefly discussed. The chapters regarding the combination of the perception
based approach of AGM with pattern discovery include utilisation of the
algorithms developed for this thesis with pattern discovery algorithms, as
well as empirical experiments. Finally the results of using the presented
algorithms are reviewed and their usefulness and potential applications are
discussed.

2 Computational models of music
Previous research exists on several computational approaches to implementing
different musicological models and theories. A central component of this
thesis is a music analytic methodology, AGM, so it has been necessary
to investigate existing computational music analytical models. Different
approaches to computer aided musicology were reviewed. They could be
broadly divided into statistical modelling and algorithmic, or rule based,
systems. This division is not concrete as there is overlap between the groups.
The reviewed systems using statistical modelling acquire knowledge from a
corpus of music and then for example may use some probabilistic approach to
generate outputs using this knowledge. Rule based systems on the other hand
may utilise algorithmic solutions implemented based on expert knowledge on
the subject matter. Popular tools in this case include pattern discovery and
formal grammars used in natural language processing. Each approach has
a unique background on which their motivation, chosen methods and goals
are based. Theories and analytic models are focused on creating structural
descriptions of musical works and statistical models can be used to create
outputs such as predictions of notes not yet heard in a melody and new
works of music.

In the influential book Generative Theory of Tonal Music (GTTM)
Lerdahl and Jackendoff [20] outline a comprehensive theory for western tonal

2

music. The word generative in this case refers to generative linguistic theory,
the approach which they have adopted for music analysis. In AGM the word
generative on the other hand only refers to the generation of new output,
not an other existing paradigm. In GTTM a piece of music is described
as a mentally constructed entity and that the central task of music theory
should be to explicate that “mentally produced organisation.” The theory
should include both artistically interesting aspects of musical structure and
principles that account for simpler musical phenomena. Many of the concepts
used in computer aided musicology are related to this or similar theories.

GTTM uses a concept of musical intuition of the experienced listener.
The theory aims to describe how this idealised listener hears, understands and
structures music. It tries not to just describe the conscious understanding of
musical structure but rather the unconscious knowledge which the listener
uses to organize and process patterns of pitch and other properties of notes
such as duration, dynamics, timbre. The experienced listener differentiates
between typical or anomalous elements such as errors made by a performer
which may possibly be found ‘ungrammatical’.

The authors’ view is that a theory of a musical idiom should characterise
the mental organisation in terms of a formal grammar that models the
connections the listener makes between the presented musical surface of a
piece, i.e. the music the listener hears, and the structure he attributes to
the piece, and that such a grammar consists of a system of rules that can be
used to assign analyses to pieces. The theory is restricted to parts of musical
intuition that are characterised as being hierarchical in nature. These are
divided into four different structural descriptions. Grouping structure is a
hierarchical segmentation of the piece of music into motives, phrases and
sections. Metrical structure expresses that events of the piece are related to
rhythmic changes of strong and weak beats at different hierarchical levels.
Time-span reduction assigns a hierarchy of ‘structural importance’ to the
pitches of the piece. This is determined by their position in the grouping and
metrical structures. Finally prolongational reduction designates a hierarchy
of both harmonic and melodic tension and relaxation, and the progression
and continuity of the pitches.

The approach of GTTM is adopted from the generative-transformational
grammar school of the study of language. The generative linguistic theory is
described in GTTM as an effort to characterise what humans know when
they know how to speak a language. It is said to aim to explain what enables
the understanding and creation of an indefinite number of sentences most of
which a person speaking has never heard before. Linguistic theory models
unconscious knowledge, which has not been acquired by direct instruction or
is not available to conscious introspection. This is done with a formal system
called a grammar which describes, or is used to ‘generate’, all the possible
sentences of a language.

The approach in GTTM is compared to preceding theories that had used

3

linguistic approaches. It is said to differ by combining psychological concerns
and the formal nature of the theory to serve musically or psychologically
interesting generalisations. In addition the authors claim that previous
approaches had attempted literal translations of aspects of linguistic theory
into musical terms, for instance by looking for musical ‘parts of speech’,
transformations, deep structures or semantics. These have been replaced in
GTTM with concepts of musical structure such as organisation of rhythm
and pitch, the differentiation of dynamics and timbre and motivic-thematic
processes.

The intention of GTTM is the structural description of any tonal piece of
music from the viewpoint of what the experienced listener infers in hearing of
the piece, with the understanding of musical cognition as the goal. In addition
to the assignment of structural descriptions to a piece, the theory tries to
differentiate the descriptions along a scale of coherence, weighting them as
more or less ‘preferred’ interpretations. The experienced listener is thought
to more likely attribute some structures to the music than others. For these
purposes the theory employs rules which are divided into two types. The
Well-formedness rules (WFRs) specify the possible structural descriptions of
music and the preference rules (PRs) designate which structural descriptions
out of all the possible ones correspond to the experienced listeners hearing of a
particular musical work. The four different structural descriptions of music in
GTTM are connected to four processes: grouping structure analysis, metrical
structure analysis, timespan reduction analysis and prolongation reduction
analysis which are evaluated using the two types of rules.The concepts
of GTTM or their analogies, recur in many computational approaches to
modelling aspects of music.

Hamanaka et al. [16] have made a computational implementation of
the GTTM which includes algorithms for an Automatic Time-Span Tree
Analyser and σGTTM Analyser which detects local grouping boundaries.
The latter is done using a statistical learning method with a decision tree.
With the implementations they encountered issues with ambiguous rule
definition and conflicts among preference rules. Additionally they bring up
three problems related to computation and music analysis. There exists
ambiguity in music analysis — a piece of music will typically have more than
one interpretation. They consider this to be a major obstacle. The results
are susceptible to context dependence. They depend on many different factors
such as rhythm, chord progression, melody of other parts, historical context
and other yet unknown factors. Finally there exists a trade-off relationship
in music analysis between the level of automation of the analytic process and
the amount of variation in the input data. Where automating the analysis of
a more varied dataset becomes increasingly problematic. These are similar
issues to what Laiho [19] criticises of axiomatic theories and methodologies
of music analysis.

In his doctorate thesis [2] Emilios Cambouropoulos has formulated a

4

theory for obtaining structural descriptions of musical surfaces. The goal is
otherwise similar to GTTM but is based solely on creating computational
methods for such a theory. The aim of the theory is that computed de-
scriptions of a musical work could be acceptable by a human music analyst.
The theory and its implementation include both pattern discovery and, in a
subsystem for local grouping of a melodic music surface (Local Boundary
Detection Model), rules that relate to principles of proximity and similarity
which are similar to the core concepts of AGM.

Cambouropoulos describes that the primary aim of computational models
is to assist in the formulation of theories that describe musical activities and
tasks consistently rather than searching solutions to musical problems. He
states that theories allow the formulation of hypotheses and models. These
can be implemented as computer programs and evaluated. The results can
then be used in the re-examination and adjustment of the initial theories.
One of the goals of this thesis is to implement the central components of
AGM in part to help examine the theories it presents.

Cambouropoulos describes the overall form of his theory as follows.
Musical notes are used as discrete events that make up a ‘musical surface
(0)’. These events are then converted to another ‘musical surface (1)’ that is
comprised of a number of musical interval profiles. For pitch this includes
exact pitch intervals, scale/step intervals, step/leap intervals and a contour.

Next a process for discovering potential local boundaries is applied to
the musical surface (1). This task is called the Local Boundary Detection
model (LBDM) [3]. Local discontinuities and changes are used to provide
cues of possible points where local boundaries may be detected. With the
assumption that notes that are immediate neighbours of strong boundaries
will tend to be perceived as being more prominent than others, accents of
individual note events may be calculated. Cambouropoulos hypothesises
that these accents are the key to determining a low-level metrical structure
where one exists.

This ’proto-segmentation’ is then accompanied by higher-level compo-
nents to provide a more valid segmentation. These components are based on,
what Cambouropoulos calls, parallelism and similarity. The term parallelism
refers to the concept of repeating patterns in music which is explored in more
detail later in this thesis. Resulting recurrent musical patterns are perceived
by a listener or analyst and suggest partitioning of a musical surface. The
partitioning might contain ambiguous boundaries and overlapping segments.
The results may contain boundaries that are incompatible with each other
or contradicting with locally detected boundaries. The local boundaries and
higher-level segmentation boundaries can then be combined together for a
more complete segmentation.

Using the low-level properties of the musical structure from previous
steps of the system the parallelism component may be applied on reduced
versions of the surface as well. For example by using only notes on metrically

5

strong positions or accented notes.
The musical segments produced by the above operations are organised

and labelled into categories based on their similarity. A ‘goodness’ measure of
these categorisations is used to determine which of alternative segmentations
should be preferred. In addition Cambouropoulos suggests that the discovered
categories can be organised by their ordered in-time relationships and finally
the GCTMS-algorithms can be applied to the new sequences of labelled
musical segments, for example motives, to derive higher-level structural
descriptions. This final part has not been examined in publications.

As a third example of musical structure we may look into pattern discovery
algorithms which will be discussed more thoroughly later. An algorithm
that finds a set of repeating patterns in a musical work that can be used
to present the whole work can be thought of as an implementation of the
concept of grouping structure. An example of this, the COSIATEC algorithm
[24, 21], generates a list of repetitive patterns that can be used to represent
a musical work without overlap. This kind of an approach can be thought of
as an algorithmic structural analysis of a musical work. Meredith [23] has
conducted a review of a large selection of such algorithms to evaluate which
of them perform well in such music analytical tasks.

2.1 Stylistic composition

As AGM is based in a cognitive model developed to analyse music, the
work of Pearce [28] and Pearce et al. [25, 26] with statistical modelling
and hypotheses of cognitive processing in music was especially relevant.
In addition similar approach using Random Generation Markov Chains
(RGMCs) by Collins et al. [9] is looked at as it has been made to include
pattern discovery. Both of these lines of research center around acquiring
knowledge from a corpus to build a statistical model of music. One major
goal in these works is stylistic composition, i.e. creating works in a style of a
composer or a period of music, differing from free composition — any work
that is not a pastiche.

Pearce [28] proposes that “statistical models which acquire knowledge
through induction of regularities in corpora of existing music can, with
appropriate methodologies, provide significant insight into the cognitive
processing involved in music perception and composition.” His research
examines music, specifically, from the point of view of Artificial Intelligence.
Pearce conducts an empirical examination of modelling techniques in order
to develop statistical models of musical structure which have the potential to
account for aspects of the cognitive processing of music. The best performing
models are applied to examine specific hypotheses regarding processing in
music perception and cognition. To reduce the complexity of the task the
research is limited to modelling monophonic music, focusing only on pitch
structure. The influences of tonality, rhythm, meter and phrase on pitch

6

structure are accounted for. A symbolic presentation of musical surface is
used, and features such as tonal centres and phrase boundaries are acquired
directly from score sheets. As the modelling technique Pearce focuses on using
finite context models, also known as n-gram models, to examine the minimal
requirements placed on the cognitive processing of melodies. Pearce [28]
refers to Wiggins and Smaill [29] who note that “motivations for applying
AI techniques to the musical domain can be drawn out on a continuum
between those concerned with understanding human musical abilities at one
extreme (cognitive science) and those concerned with designing useful tools for
musicians, composers and analysts at the other (applied AI).” AGM seems to
be applicable to both ends of the spectrum Wiggins & Smaill propose. Pearce
uses similar definition regarding the existence of the different motivations for
applying AI techniques to the musical domain. The motivations originate
from natural science, engineering, engineering science, the arts and the
humanities. Further, “motivations drawn from different disciplines imply
different goals and methodologies for achieving those goals.” [28] Pearce
develops a system that is based on and evaluated using methodologies drawn
from basic AI research and applies his system to the cognitive modelling
of music perception and composition. The current understanding of music
cognition is said not to be as advanced as that of other areas of human
psychology, for example visual perception and memory. Music cognition
draws on knowledge in several different domains and at different levels of
description, and it is hinted that purely algorithmic model seems unrealistic.

Pearce and Wiggins [26, 27] have further studied auditory expectation
using probabilistic modelling. The focus of their work is around a model
of prediction in musical melodies, but they have used similar techniques for
predictions of musical harmony and even expectations in speech [27]. They
state that expectations play a role in a multitude of cognitive processes, list-
ing sensory perception, learning and memory, motor responses and emotion
generation. Pearce and Wiggins write that “Accurate expectations allow
organisms to respond to environmental events faster and more appropriately
and to identify incomplete or ambiguous perceptual input. To deal appropri-
ately with changes in the environment, expectations must be grounded in
processes of learning and memory.” [27] Their their work is presented around
the idea of information transmission by musical structure during the listening
experience, with the context of the producer of the music and the listener
sharing knowledge. The cognitive processes used in such a transmission and
their relationship with other more general processes in human cognition are
explored in [27].

The approach is developed and evaluated in the model called the “Infor-
mation Dynamics of Music (IDyOM) model of musical melody processing”.
[27] It is divided in separate layers with two way information flows, pro-
cesses and phenomena presented between each layer. The model itself does
not incorporate the connection in both ways as it is organised as a strict

7

bottom-up hypothesis, but the authors acknowledge the existence of a two
way interaction between the layers. The layers are starting from bottom:
Auditory stimulus → pitch/time percepts in sequence → learning system
→ expectations → segmentation (→ conscious experience). The core is
a model of human melodic pitch perception that uses Markov models, or
more specifically n-grams [28, 27]. IDyOM encounters a musical corpus from
which it learns and creates a compact representation of the data by matching
new note sequences against previously encountered ones. The model allows
predictions of n-gram models of all possible orders to contribute probability
mass to each predicted distribution.

The model [27] has five different configurations: long-term model (LTM),
short-term model (STM), their combinations and variations. LTM is exposed
to an entire corpus, which models the listener’s learned experience and
context for information theoretic analysis. This comes with a variation that
learns as stimulus proceeds (LTM+). STM is exposed only to the current
melody. In addition there were models which combined the short- and long-
term models. These were determined to be serious candidates as models of
human cognition and the single models were said to be informative regarding
musical structure.

Data is represented in the model with multiple features for each note
using the multiple viewpoints approach [11]. The viewpoints are derived from
pitch, time or a combination of them both. In addition the model uses an
explicit representation of a sequence in time. Basic viewpoints are selections
of note features: pitch, the start time of the note, duration and mode. A
derived viewpoint is for example a pitch interval. The viewpoints may be
linked as compound viewpoints AxB. Threaded viewpoints are selected
elements of a sequence: the scale degree of the first note in each bar of a
melody when metrical information is available. The viewpoints are thought
of as sequences of the values and each viewpoint models a percept which is
expressed and used in music theory.

Despite of this theoretical foundation the authors hold it important that
they are not predisposing the system in a hard-coded or rule-based way and
that the features are only the properties of the data level of abstraction below
the level of interest of their study. This would not contradict their claims of
“domain-generality and methodological neutrality at the level of interest of
sequence processing.” [27] Additionally the authors speculate about a system
that would construct its own viewpoints with machine learning methods. The
model is limited to monophonic music, only one aspect of the significantly
multidimensional range of music. The authors regard their memory model
as inadequate as it employs total recall which never fails and outperforms
humans in implicit learning tasks. [27]

As another example of a model usable in stylistic composition Collins
et al. have developed two computational models of stylistic composition
using a constrained Markov model. [9] With one of the systems they have

8

included SIACT pattern discovery algorithm with a “perceptually validated
formula” for rating pattern importance in guiding of target generation [6].
The algorithm is described as a “within-domain analogy-based design system”
[9] which consists of a target design and a source design. The target is a
new passage of music to be generated and the source is an excerpt of human-
composed music in an intended style. Large-scale repetitive structures have
been taken into account in the system, and the authors state this as the most
important contribution of the work, noting that other current approaches
to music generation tend to be focused on small-scale relationships. The
small-scale relationships in their system are acquired using a constrained
Markov model calculated over a database of pieces in the intended style.

Experiments in Musical Intelligence (EMI) created by David Cope [12]
is an algorithmic, or rule based, system for stylistic composition of music.
Collins et al. [9] use EMI and its output as a reference point in their research
on probabilistic models of stylistic composition. EMI is built upon using
musical signatures, or often used patterns that signal a composer’s style.
Cope argues that composers create music by mixing such signatures and
using recombinancy — the recombination of the elements found in their other
works and in the music of other composers. In his books Cope examines this
concept through various examples of western classical music. EMI has not
been been published in peer-reviewed journals but has been referenced and
reviewed by others.

Both Cope and Collins refer to Musikalisches Würfelspiel, or the musical
dice game, as one of the earliest examples of formal combinatorial probabilistic
music. It is a system that was popular throughout the 18th century in Western
Europe where the player of the game rolls dice to generate bars of a music
using a stylistic template musical score, in other words “Picking segments
from a database score sheet”. Cope has used EMI to produce new works in
the styles of composers such as Stravinsky, Palestrina and Scott Joplin.

EMI attempts to create a Musikalisches Würfelspiel out of music that
is not specifically designed to be such. It is done with the help of pattern
matching to avoid deconstructing the musical signature elements, which are
integral to the style of the music. Music is first entered to the EMI in the
form of events. The events contain the information of note attributes such
as pitch, timing, duration etc. Then the music is analysed according to a
system of identifiers and pattern matching is used to protect signatures from
recombinancy. A deconstruction phase places musical segments in a lexicon
according to a meaning that is attributed to the segments. Finally these
musical segments are reconstructed according to an augmented transition
network (ATN)

Collins et al. have developed and conducted a review of algorithms for
stylistic composition [9]. Focusing on several issues: avoidance of replication,
database construction, level of disclosure, i.e. to what extent is the model
reproducible, and the rigour and extent of evaluation. Different stylistic

9

composition briefs are used in the paper to evaluate how a model succeeds
in composition tasks. Ground bass and fugal exposition involve differing
compositional strategies. Chorale harmonisation is more concerned with
harmony than counterpoint. Other briefs are classical string quartet, Chopin
mazurka opening section and advanced tonal composition. The paper focuses
on the implementation of a Chopin mazurka -brief to test whether random
generation Markov chains (RGMCs) can be applied to music from different
composers or periods. The authors chose Chopin’s mazurkas as a corpus
with around 50 compositions to build an example database with enough
characteristic features. In addition this enabled them to compare the results
with EMI’s mazurkas.

A general description of Markov models for music is included in [9], where
a model consists of a state space, in this case the set of pitch classes, and
a transition matrix describing the probabilities that a state is followed by
another. As another demonstrative example the Musikalisches Würfespiel is
described as a Markov model where states are bar-length musical sequences
with uniform transition matrix and initial distribution. Additionally the
authors cite several other examples of HMMs and n-gram models in music
computing.

Collins et al. [9] define an example Markov model for melody with pitch
classes that form the state space of the Markov chain, for example the state
space for a piece of music with natural pitch classes plus B[would be

I = {F,G,A,B[, C,D,E}.

For the transition matrix for each i, j ∈ I the number of transitions from i to
j is counted and these counts are divided by the total number of transitions
from state i. An initial state for the transition matrix is defined as for
example

a = (1
2 , 0,

1
2 , 0, 0, 0, 0, 0, 0)

which gives a probability of 1
2 for initial pitch classes F and A. This kind

of a definition can then be used in a Markov chain to provide a sequence
of possible events. The above definition is limited to the considerations of
monophonic melodies. It is often a starting point of a compositional strategy
where it is followed by harmonic or contrapuntal development. The final
models proposed in [9] differ from this as they begin with a predominantly
harmonic, or vertical, full texture. A state in the state space of this kind of
a model consists of two elements: a beat of the bar on which a particular
minimal segment begins, and the spacing in semitone intervals of the set of
pitches that is sounding concurrently, without change. This state is referred
to as a beat/spacing state.

The models developed use an RGMC where a random number is used
to select an element of an initial distribution list. N-1 random num-
bers are then used to select elements of transition list L, dependent on

10

the previous selections. The result of this is a list of state-context pairs
((i0, c0)), (i1, c1), . . . , (iN−1, cN−1), referred to as the generated output. An
instance of the model used in the empirical evaluation has a state space I
for a first-order Markov model containing all beat/spacing states found over
thirty-nine Chopin mazurkas. In addition the model uses a template that
consists of instructions for tempo, key signature, time signature, partition
points etc.

Some shortcomings of using RGMC for stylistic composition are worth
pointing out. Collins et al. discuss addressing these mostly regarding
harmony in tonal music but applying principles of AGM could be another
way to approach some of the issues. RGMC works well on beat-to-beat level,
but does not guarantee same results at higher levels, with phrases strung
together without direction or large scale structure. Another issue mentioned
was a lack of awareness of the distribution of notes within a chord. There
should be sensitivity to the positions of lowest- and highest-sounding notes
in a chord. Finally a generated output might not convey a sense of arrival
or departure. Traditionally this can be addressed by composing the end of
a phrase first and merging the forwards and backwards processes which is
feasible with RGMCs.

The SIACT pattern discovery algorithm [10, 6] is used to try to ensure that
patterns from a template piece are inherited by the generated passage. The
patterns found by SIACT are filtered and rated by a perceptually validated
formula [8], which predicts musical importance of the patterns using observed
ratings related to their quantifiable properties. The formula uses a linear
combination of three factors: compactness, compression ratio and pattern’s
expected number of occurrences.

A template with patterns is defined in [9] to include additional information
when patterns are discovered in an excerpt. For each discovered pattern Pi,1
the onset time of first and last datapoints and their translators which bring
Pi,1 to the other occurrences P1,1, P2,1, . . . , PM,1 are stored. This information
ensures the retaining of large scale structures in the generated output. This,
main contribution of the paper, is described as the extraction and transferring
of repetitive structures from an existing composition to a new one. The
authors consider repetitive structures as being often hierarchical and try
to transfer this to the target design as well. The system begins with the
most nested repetitive element in the source design and generates material
consistent with that information for the target design. This is then repeated
for the next most nested element from the source design and more material is
added for the target design while keeping any material that is already added
in place. Generation of this local material is done using a Markov chain and
continued to the completion of a large-scale structure of the target design.

Even though generally the algorithms did not achieve the level of results
when compared to the output of EMI or human compositions the results
showed some promise — in a few cases the output was scored better than

11

amateur human compositions. The inclusion of repeated patterns did not
improve the scores of the generated output. The authors emphasised that the
experiment was informative regarding the development of music systems that
take into account large scale structures of compositions and the experiments
indicated that there were other factors that would need to be addressed.
Another factor that might have affected the results negatively was the setup
used for evaluation. The main issue being the fact that the judges had a
limited time to engage with the stimulus, 1 hour for 32 excerpts of music.
This had likely diminished the perception of repeated patterns.

3 Geometric pattern discovery in music
Meredith et al. introduce a family of Structure Induction Algorithms (SIA)
for discovering repeated patterns in point-sets [24]. The algorithms are
applied to multidimensional point-set data for the discovery of perceptually
significant repeated patterns in music.

The original motivation behind the algorithms is founded on the authors’
desire to develop a computational model of expert music cognition. The
paper refers to numerous music psychologists and music analysts with the
statement that “identifying significant repetitions in a piece of music is an
essential part of achieving a rich and satisfying interpretation of it.” [24]

Collins et al. [10] try to make distinctions between terms pattern ‘discov-
ery’, ‘extraction’, ‘identification’ and ‘mining’. They state that this distinction
is not often clear in MIR. In addition they use the terms ‘intra-opus’ discovery,
which concentrates on patterns that occur within pieces, and ‘inter-opus’
discovery, where patterns are discovered across multiple pieces of music. This
thesis is mainly concerned with the intra-opus discovery of patterns that
occur within pieces of music, and the related algorithms are referred here as
‘pattern discovery algorithms’.

Several modifications and additions to the algorithms have been developed
subsequently. Notably Collins et al. have developed SIACT [10] to try to
address some issues related to previous algorithms and SIARCT-CFP, [7]
an algorithm for detecting patterns with inexact pattern matching, with a
review of the state of pattern discovery in music. Janssen has conducted a
review of research on pattern discovery in music [18]. They have included
multiple geometric pattern discovery methods alongside string-based methods.
Meredith [23] has reviewed compression based pattern discovery algorithms
for music analysis tasks.

Meredith et al. [24] list scientific and engineering applications of an
algorithm for discovering repetitions in music: a component in a computa-
tional model of expert music cognition, in software tools for music analysts
and composers. Meredith [21] mentions the indexing of collection of music
documents for rapid searching and tools for music analysis and composition

12

as additional use cases for this type of pattern discovery. Collins utilises SIA
based geometric pattern discovery in stylistic composition algorithms and
pattern discovery from audio signals [9]. Even though the research focuses
on musical applications, it is stated that the algorithms could be used to the
processing of any data that can be represented as a multidimensional dataset.
This could include audio recordings, images, video and 3D-molecular models
[24].

3.1 Repeated patterns in music

A pattern discovery algorithm could be used for discovering characteristic
structural features in the works of a composer, for analysing the structure
of a work into subcomponents, or an unfinished work could be processed to
discover repeated structures and gain a new perspective to further progress
the work. The identification of perceptually significant repetitions is thought
to be an essential step in the process by which musical work is interpreted by
an expert listener. [24] Both Cope’s EMI [12] and Cambouropoulos’ GCTMS
[2] use pattern detection as a step in their computational models of music.
In addition Collins et al. attempt to incorporate pattern discovery in their
model of stylistic composition [9].

Pattern discovery with SIA discovers all exact repeating patterns in a
dataset and most of these exact repetitions in music are not perceptually
significant. There is a need to formally characterise what distinguishes these
interesting repetitions from repetitions that a listener does not notice or
that are not considered important by an analyst. There is also a significant
amount of diversity in perceptually significant repetition [24]. Patterns
involved in repetitions vary widely in their structural characteristics and
a pattern can be modified in many ways to give other patterns that are
perceived to be versions of it. A pattern may be a small few note long
motif, or a whole section of a work. A pattern in polyphonic music with
unambiguously identifiable voices may have notes from one or any number
of the voices. Occurrences of a pattern may overlap in time, patterns may
occur consecutively or they may be widely separated in time. A variety of
transformations that can be used to create a new pattern out of another
pattern is presented – a pattern may be truncated, augmented, diminished,
inverted, reversed and embellished.

3.2 Representation of music data

Music needs to be represented in some discrete format for the use of algo-
rithms. Most importantly the representation of music as events describing
notes rather than audio recordings of music is the focus of most, if not all
previous work regarding this thesis. Typically in musicology western music
notation is used. Music notation can be represented digitally by various

13

music software and formats such as MusicXML and then be parsed to be
input to algorithms. An alternative format for the input of music data could
be other digital formats, such as MIDI-files containing note information. For
this thesis music21, a toolkit for computer aided musicology and symbolic
music data, was used to parse music corpuses in various formats [13]. The
parsed data of a musical work was stored in a list containing numeric repre-
sentations of pitches and onset times of notes. In addition note lengths and
information regarding voice and dynamics of the notes could be used, as the
algorithms are applicable to multidimensional point-set data, but they were
not yet considered relevant for the inspected algorithms.

In addition to this point-set representation of music other approaches have
previously been used. String matching algorithms, that operate on symbolic
sequences of musical data, have for example been used in repetitive pattern
discovery algorithms but they have issues especially with polyphonic music.
Meredith et al. [24] state that such algorithms cannot deal with unvoiced
polyphonic music, such as keyboard music, and that string-matching also
causes problems in finding patterns which are distributed between several
voices, or transposed occurrences of patterns and patterns with gaps.

Multiple Viewpoints by Conklin and Witten [11] are another popular form
of music representation in computer aided musicology. Multiple independent
views of musical surface, or parameters for each note, are stored as viewpoints
and music is represented with sequences of these viewpoints. They may
contain different interval profiles, dynamic, timbral and other contextual
information. This approach is mainly applied to monophonic music, or
monophonic parts extracted from larger musical works. Models of musical
style by both Pearce et al. [26] and Collins et al. [9] employ this approach.
In addition Collins et al. have combined this with information of patterns
extracted from point-set data.

3.3 Geometric representation

Meredith et al. [24] define concepts and formalisms for geometric representa-
tion of multidimensional datasets and patterns which will be used throughout
the rest of this thesis. A vector is a k-tuple of real valued numbers. It is
a member of a k-dimensional Euclidean space, represented as an ordered
set of k real numbers. A k-dimensional vector is a k-tuple of real numbers.
A k-dimensional vector set is a set of vectors in which every vector has the
cardinality k. A datapoint is a vector in a pattern or a dataset. The term
dataset is usually reserved for a k-dimensional vector set that represents a
complete set of data that is being processed. The term pattern is reserved
for a k-dimensional vector set that is a subset of a dataset or a transfor-
mation of a subset of a dataset. When searching for occurrences of vector
set P in vector set D, the set P is referred as a pattern and the set D as
a dataset. Patterns P1 and P2 are defined to be translationally equivalent

14

if an only if there exists a vector v such that translating P1 by v gives P2.
A multidimensional dataset can be orthogonally projected to give another
multidimensional dataset.

Music can be represented in many appropriate ways as a multidimensional
dataset. A tiny 5-dimensional example set of three notes could be defined as
follows:

{< 0, 27, 16, 2, 2 >,
< 2, 44, 26, 1, 1 >,
< 4, 47, 28, 1, 1 >}

First element is the onset time of a note as the number of semiquavers that
have elapsed by the time the note occurs. Second element represents the
chromatic pitch of the note. It can be described as a numerical representation
of the key on a piano keyboard that when pressed plays the note. The
lowest note would normally be A\0 which is defined to be 0. The note
semitone above A\0 is B[0 and is therefore 1. The chromatic pitch of middle
C (C\4) is 39. Another way to represent the pitch of the note would be
morphetic pitch [22] which indicates the position of the notehead of the note
on the staff. The morphetic pitch of A\0 is defined to be 0. The morphetic
pitch of middle C (C\4) is 23, D above middle is 24 and so on. This is
included as the third element. A fourth element represents the duration
of the note measured in semiquavers and the fifth element represents the
voice in which the note occurs. Meredith suggests [23] using morphetic pitch
for modal and major-minor tonal music and chromatic pitch for pieces not
using a modal or tonal system. Instead of morphetic pitch, a similar pitch
representation, diatonic note number, provided in the music21 toolkit [13]
was used in this thesis. It identifies the diatonic version of a note ignoring
accidentals. In there C\0 is defined to be 0, G\0 = 5, C\1 = 8 and so forth.
Notes lower than C\0 are represented with negative numbers. The different
pitch representations of a dataset are considered to be different projections
of the dataset. The research on geometric pattern discovery often focuses
on discovering repeated patterns in ’piano-roll’ type representations such as
MIDI data, in which pitches are represented with chromatic pitch numbers.

As AGM was not thought to be dependant on existing music theoretical
frameworks, chromatic pitch representations were used with it’s implemen-
tation and in the inspection of specific patterns and their vectors. For the
selection of perceptually significant patterns diatonic pitch representations
were additionally used as most of the datasets for pattern discovery consisted
of tonal or modal music.

3.4 Structure Induction Algorithms

SIA discovers maximal repeated patterns by taking a multidimensional
dataset as input and finding the patterns in the dataset that when translated

15

by all possible vectors give other patterns in the dataset. A pattern is
maximal translatable, or an MTP, for a vector if it is the largest pattern
that can be translatable by it to give another pattern in the dataset. SIA
discovers all non-empty MTPs in the dataset. [24, 21]

The algorithm operates in the following manner. First it sorts the dataset
D and constructs a vector table W from the sorted dataset. The heads of
both the rows and the columns contain the datapoints of D. A cell in the
vector table contains the vector from the datapoint at the head of the column
of that cell to the datapoint at the head of the row of the cell. For V all the
values in the vector table below the leading diagonal are computed, which
are all the vectors from a datapoint to every other datapoint greater than it.
In addition the items in V contain a pointer to the vector’s origin data point
in D. The vectors in vector table are sorted, the original implementation [24]
uses a slightly modified merge sort that benefits from having the columns in
the input table already sorted. The complete set of non-empty maximally
translatable patterns can be obtained by scanning the list containing V once,
reading off datapoints and starting a new pattern when the vector changes.
The most expensive step is sorting vectors O(kn2log2n) for a k-dimensional
dataset of size n, with the space complexity of O(kn2). An implementation
of SIA was developed for this thesis using array operations from the numpy-
library for Python. The vector table V in this implementation is computed
from the whole vector table W . Code listings of the implementations of both
SIA and SIATEC are included in appendix A.

SIATEC finds for all translationally equivalent patterns their instances
and the associated translation vectors. TEC stands for ‘translationally
equivalent class’. First a modified version of SIA generates all the MTPs
and then the SIATEC algorithm finds all the occurrences of each MTP. The
basic implementation of SIA needs to only compute the vectors below the
leading diagonal — the MTP of −v is the same as translating the MTP by v.
Finding all the occurrences of any pattern within a dataset is more efficient
when the whole vector table W is computed.

The dataset is sorted so that vectors increase when descending a column
and decrease when moving left to right along a row. A column in the vector
table contains all the vectors so that the datapoint at top can be translated
by them to give another point in the dataset. Finding all the occurrences of
a pattern means finding all the vectors that the pattern is translatable by.
The worst-case time complexity of SIATEC is O(kn3) for a k-dimensional
dataset of size n.

In addition to the intra-opus pattern discovery algorithms these techniques
can be used for pattern matching. That is to say finding a multidimensional
query pattern from a multidimensional dataset. The SIAMESE pattern
matching algorithm [24] works essentially in the same way as SIA. The points
in the query pattern and the points in the dataset are sorted and a vector
table is constructed. Each entry in the vector table gives the vector from the

16

query datapoint at the head of the column to the dataset point at the head
of the row, with a pointer back to the pattern datapoint. All the vectors
are sorted to a list which gives all the vectors that the query pattern can be
translated by to give a non-empty match in the dataset.

3.5 Perceptually significant repetitions

Experiments [24] suggest that many of the perceptually significant repeating
patterns are MTPs discovered by SIA and SIATEC. However, SIATEC may
typically discover tens of thousands of TECs even in relatively short pieces of
music. Only a very small proportion of these TECs are perceptually significant
or analytically interesting. Rachmaninoff Prelude, Op.3 No.2 contains 70000
MTPs and probably less than 100 of them would be considered interesting by
an analyst [21]. The power set of a dataset D contains 2|D| different patterns
and the number of MTPs generated by SIA for a dataset D is less than |D|

2

2 .
[24].

There are several ways in which repeated musical structures might be
perceptually significant or analytically interesting. There exists different
“structural features that a repeated musical pattern might be able to tell
us something about.” [24] One example is to find theme-like and motif-like
patterns in a passage. Meredith et al. suggest using different kinds of
heuristics and rules to isolate perceptually significant repetitions from the
rest, stating that there might not be a single set of rules capable of isolating
all and only interesting repetitions. Various different algorithms have been
developed for this task.

3.5.1 Heuristics

Different heuristics that could be used to measure the significance of patterns
have been suggested [24, 21]. Meredith [21] explores three heuristics for
isolating the themes and motives in a piece of music: coverage, compactness
and compression ratio.

The coverage of a pattern is the number of datapoints in the dataset
that are members of occurrences of pattern. Coverage is generally greater
for patterns whose occurrences overlap less, larger patterns and those that
occur more often. “In general it seems theme-like and motif-like patterns
have relatively high coverage”. [21] Compactness is the ratio of the number
of points in the pattern to the total number of points in the dataset within
a region spanned by the pattern. The region can be defined in different
ways: smallest time segment that contains the pattern, bounding box or
convex hull of the pitch-onset-time graph. Typically at least one occurrence
of a theme-like pattern will have high compactness value. For isolation of
theme-like patterns the third interesting heuristic is the compression ratio. It
is defined as the ratio of the set of all the points covered by all the occurrences

17

of a pattern by specifying one occurrence of the pattern with all the non-zero
vectors by which the pattern is translatable within the dataset.

Using previously described heuristics in conjunction with SIATEC a
compressed or efficient representation of a dataset can be generated [21].
The COSIATEC algorithm takes a dataset as input and generates a list
of TECs that cover the input dataset without any overlap. First SIATEC
is run on the dataset and it generates a list of <pattern, translator set>
pairs. The heuristics compression ratio, coverage and compactness are used
to choose the ’best’ pattern P . P is output together with its translator
set. All the points covered by the P -set are removed and if the dataset is
empty, COSIATEC terminates. If points remain, SIATEC is run again on
the remaining dataset. The results are the best pattern and its translators
for each iteration. The degree of compression directly depends on the amount
of repetition in the dataset. The results in some cases resemble thematic
and motivic analyses carried out by music analysts [21].

In Modelling Pattern Importance in Chopin’s Mazurkas, Collins et al. [8]
introduce characteristics of a musical pattern with subjective assessment of a
pattern’s salience. Their objective was to identify how to order the output of
a pattern discovery system. This would allow the discarding of uninteresting
patterns. They set out to empirically validate known and novel concepts and
formulae that have been used to address this problem. In an empirical study
music undergraduates examined excerpts taken from Chopin’s Mazurkas
and rated discovered patterns giving high ratings to patterns that they
thought were noticeable or important. Half of the patterns that were used
in the review were hand picked by the authors and half were a random
selection of the output of the SIATEC algorithm. The authors used linear
regression models for rating discovered patterns in music with variables that
were included by forward selection and backward elimination. The resulting
model included parameters known from the COSIATEC-algorithm, with the
formula for the final pattern rating being:

rating = 4.28 + 3.42 · compactness
− 0.04 · expected_occurrences
+ 0.65 · compression_ratio

3.6 Further developments on the geometric pattern discov-
ery algorithms

Collins et al. have developed modified versions of the translational pattern
discovery algorithms [10, 6, 7]. They formulate the problem as discovering
translational patterns from a given piece of music in a semi-symbolic rep-
resentation, noting that these are not the only type of pattern that could
matter in music analysis, but that music analysts do acknowledge that such

18

discovery task forms part of the preparation when writing an analytic essay.
Their motivation behind studying translational patterns is the prospect of
automating the aforementioned pattern discovery task, and they consider the
problem to be an open problem in MIR. Collins’ et al. initial work comprises
of an evaluation of different pattern discovery algorithms applied to Baroque
keyboard works. [10] In addition they contribute modified versions of the
SIA-based geometric pattern discovery algorithms.

Forth and Wiggins [15] have developed a non-parametric version of
COSIATEC which requires only one run of SIATEC. This reduces the
computational complexity, but means that the output is always a subset of
the set of maximal patterns F . The original version of running SIATEC
successively makes it possible to discover patterns further in G \ F , where

G = TEC(P0, D0), . . . , TEC(PN , DN).

which is the output of COSIATEC.

3.7 Issues with Structure Induction Algorithms

Collins et al. [10] describe the ‘problem of isolated membership’ where
“a musically important pattern is contained within an MTP along with
other datapoints that might not be musically important.” They propose
the following solution to this problem: First SIA is run, then the inside of
each MTP of it’s output is ’trawled’ and the subsets that contain at least b
points and have a compactness greater than some threshold a are returned.
Compactness is the ratio of number of points in a pattern to the number of
points in the region of the dataset the pattern spans.

The region can be defined in different ways which affects the compactness.
Collins et al. employ a lexicographically ordered scheme, where points
are ordered based on pitch first and onset time second. This has a low
computational complexity of O(kn).

They define the compactness of a pattern P in a dataset D, where
P = p1, ..., Pl as

c(P,D) = l/|di ∈ D : p1 � di � pl

Alternatives to the trawling scheme are presented [10]. First is Meredith
et al.’s [24] suggestions for improving or extending the SIA family with devel-
oping an algorithm that searches the MTP TECs generated by SIATEC and
then selects all and only TECs that contain ‘convex-hull compact patterns’.
Other options include segmenting the dataset first. Usually the pattern
discovery guides segmentation and it is not clear how to do it in the opposite
order. Usage of a ’sliding window’ with SIA is suggested, but this may
prevent the discovery of important patterns if their generating vectors are
outside the window. Finally they “consider the set of all patterns that can
be expressed as an intersection of MTPs.” This would not be susceptible to
isolated membership problem, but is more computationally complex.

19

The compactness trawler by Collins’ et al. [10] is defined as follows:

1. P = {p1, . . . , pl} is a pattern in a dataset D and i = 1.

2. Let j be the smallest integer such that i ≤ j ≤ l and c(Pj+1, D) where
Pj+1 = pi, ..., pj+1.

3. If such integer does not exist then set P ′ = P , else set P ′ = pi, ..., pj .

4. Return P ′ if it contains at least b points, else discard it.

5. If j exists in step 2, set P in step 1 to equal pj+1, ..., pl, set i = j + 1,
and repeat steps 2 and 3. Otherwise set P as empty.

6. After a number of iterations P will be empty and the output can
be labelled P ′1, ..., P

′
N , which are N subsets of the original P , where

0 ≤ N ≤ l.

The complete algorithm is called ‘structural inference algorithm and
compactness trawler’ (SIACT). In it MTPs are first calculated with SIA and
the compactness trawler is applied to each MTP. The compactness trawling
of the algorithm requires O(kmn) calculations where m is the number of
MTPs returned by SIA.

A comparative evaluation of SIA, COSIATEC and SIACT is presented
[10] with a dataset consisting of baroque keyboard music analysed by a music
analyst, the second author of the paper, with a similar brief to the intra-opus
discovery task: discovering translational patterns that occur within a piece.

Meredith criticises SIACT [23] stating that when scanning a pattern P
from different directions, left or right, different points may or may not be
considered ‘isolated’. He demonstrates that in some cases using the original
SIA more complete patterns are found than with SIACT.

Another pattern discovery algorithm by Collins et al. [7] aims to solve an
inexactness problem and a precision problem of point-set pattern matching
with a novel algorithm called SIARCT-CFP. [7] As the first problem of the
point-set approach they describe that the algorithms extend only to a limited
number of inexact repetition types. The exact pattern matching algorithms
for example can not account patterns with rhythmic variation. Poor precision
means that the algorithms return many false positives, numerous patterns
that are not significant in any way. The inexactness is addressed with a
fingerprinting algorithm. If the output of a pattern discovery algorithm
finds at least one exact repetition, the fingerprinting algorithm is run to
find inexact occurrences of this pattern. The precision is addressed by a
categorisation process where similar patterns are grouped together and each
group is represented with one exemplar pattern.

In Analysing Music with Point-Set Compression Algorithms [23] Mered-
ith reviews several point-set pattern-discovery and compression algorithms.

20

Regarding the focus on compression algorithms Meredith explains that in
this case music analysis is inspected with a “hypothesis that the best analyses
of a piece correspond to the shortest possible descriptions of it.” The algo-
rithms employ different strategies aimed at selecting a set of MTP TECs that
collectively cover, or almost cover, the input dataset in a way that maximizes
compression. Many known SIA-derived algorithms are included. They are
evaluated on two musicological tasks: classifying folk song melodies into tune
families and discovering repeated themes and sections in pieces of classical
music. The COSIATEC algorithm, which achieved the best compression in
general, was also found to be the best-performing algorithm on the first task
and achieved the second-best score overall on the latter task.

In conclusion there have been multiple different variations in the SIA-
family of pattern discovery algorithms. Different approaches to selecting or
rating interesting patterns have been made. They have mostly focused on
creating structural descriptions of musical works in a manner that would
be similar to how an experienced listener or music analyst would hear or
organise music. Many empirical evaluations and applications to finding
interesting patterns in musical works have been done. As a different practical
example Collins et al. [9] have incorporated pattern discovery to the task
of modelling musical style. One of the main problems, the determination of
which patterns are perceptually significant, or important, remains an open
one as there exists more than one way to think about how people hear and
understand music.

4 Analytic Generative Methodology (AGM)
In Analytic Generative Methodology (AGM) Timo Laiho [19] presents a
new methodology for music analysis. AGM is presented as a perception
based methodology and is set to address the lack of the role of perception
in traditional music analysis. As one of the main components of AGM
Laiho introduces an analytic concept of Musical vector (muV). They can be
described as a two dimensional graphical representation of the relationship
of pitch occurrences (y-axis) in time (x-axis). This relationship is further
explained as a unit of difference, or the differential between successive notes,
which Laiho calls Interval-time Complex, or intiC. Laiho describes the
concepts of intiC and muV as a new kind of analytic dimension which do
not refer to isolated static elements but describe the temporal relations of
pitch occurrences. These concepts are founded on a music analytic theory
and a cognitive model of human perception and sensation which Laiho
develops in his thesis. Laiho’s theory is founded upon existing work and
models in musicology, cognitive science, philosophy and David Bohm’s work
on implicate order and views on physics. Laiho contrasts his theory to the
currently dominant structural music analytic methods, namely pitch-class

21

set theory and Schenkerian analysis, but relates it to Schenker’s concept
of prolongation and Adorno’s directionality and becoming, and makes a
connection to the temporal development of musical structures in Schenkerian
analysis.

A principal component of AGM, the Musical vector (muV) can be defined
as a vector between two pitches, or points of point-set data representing
pitches. Therefore it is directly related to translation vectors used in Structure
Induction Algorithms and can be computed using similar methods. In
addition the analytic properties ofmuV s can be used to examine perceptually
significant repetitions found using the algorithms in the SIA family.

In relation to this thesis and the computation of perception based aspects
of point-set data, certain parts of Laiho’s thesis warrant being brought
out. Laiho coins a concept of perception/sensation that combines both the
sensing of information about the world and turning it into neural signals,
with perception which deals with the interpretation of those signals. Laiho
evaluates music analytical concepts through cognitive science, with the view
of human perception and cognition as bottom-up and top-down processes
and their interaction. Top-down processes are described as axioms and
syntactic rules of formal languages, which represent high-level organisation
and can be used to generate sentences, or musical phrases, containing items
of low-level structures. These for example include the Schenkerian concept
of prolongation. Laiho assumes that with this approach it remains unclear if
the generated sentences have any actual relevance to perception/sensation.
The higher-level concepts are in addition described to be capable of in a
reductive manner decoding the “state of affairs” of low-level properties, but
this is stated to leave out essential time-dependent contextual factors evident
in perception/sensation. In the opposite direction the bottom-up processes
start from low-level sensory information which can be reducted to compound
higher-level structures. This is associated with connectionism in cognitive
science and the computational models of artificial neural networks.

The division of higher level structures and low-level sensory information is
found in concepts of high and low level processing in musicology for example
in differentiation between psychoacoustics and music theory and “primitive”
and “Schema based” streaming in Bregman’s Auditory Scene Analysis [1].
Bregman considers the concept of “auditory stream”, instead of a “sound-
object” to be a perceptual unit representing a single (precursory) auditory
event. Laiho connects this time-dependent concept to the analytic concepts
of AGM.

The main criticism of music analysis methodologies such as Schenkerian
pitch-class set theory are directed towards non-temporal assumptions of
“higher-order” reduction and it’s relationship to the reductive principles of a
strict, hierarchical axiomatic system. Although AGM is said not to intend
to abandon structural hierarchy and principles of reduction in the context of
cognitive processing. On the problem of grouping, or segmentation, Laiho

22

quotes Lerdahl [20]: “the hierarchical structure is known to be central to
learning and memory, both in the general case and for music in particular”
and that “the psychological evidence points to the central role of hierarchies
in cognition” adding that this does not imply the direct application of a
strictly ruled, formal axiomatic structure in analysis.

Some critique towards artificial intelligence and computational approaches
to human cognition is presented, but it is worth to note that this is mostly
aimed towards approaches and models of which most date latest to 1990s.
The issues are regarding the earlier focus on high-level cognitive processes
with methods such as predicate logic, semantic networks, the lack of methods
on the lower level of sensing and perception and the gap between low and
high level processing. In recent years research in machine learning, statistical
modelling, and in deep neural networks, with the application of methods
similar to and simulating human cognition and perception, has turned the
focus on computational research to more low level processing of information
and brought forward tools that may bridge gaps in the understanding of
sensory and perceptual cognition.

The above criticisms boil down to two points regarding an answer to the
question of what kinds of mechanisms constitute the possibility of musical
hearing: time-dependent perceptual/sensational factors are necessary for
the ability of structural musical hearing and these factors cannot depend on
computation of discrete entities.

Laiho illustrates another problem regarding high and low levels of cog-
nitive processing and a “meaning barrier” between them with The Chinese
Room argument of Searle. In The Chinese room -argument the “closure” of
an inner structure in cognitive processes is something that prevents “under-
standing” of the Chinese stories. Laiho claims that any kind of boundary
condition inherent in formal languages inevitably obstructs the two-way
interaction of the inside-outside processes of cognition and prevents meaning
production and understanding. He argues that in music analysis the analytic
descriptions must take into account time dependant perception/sensation
properties. AGM aims to overcome this “meaning barrier” by considering
the interactivity of inside and outside structures of a system showing that the
structurally “open” organisation (of language) functions as a basic cognitive
principle which is essentially related to perception/sensation capacities. The
structural basis of AGM is formed with this interactive model of cognitive
processing.

Finally with a third concept, milieu-territorial assemblages, Laiho tackles
the problems of higher order structural organisation of music while retain-
ing the connection to the context and temporally dependant concepts of
perception/sensation. Laiho organizes muV s into what he calls milieu and
territorial assemblages which correspond to higher level structures and or-
ganisational concepts of music analysis. These assemblages are however not
strict or concrete structures with well-defined borders but relations which

23

build upon each other in a recursive manner. This could be thought of as all
the different perceptible combinations of sets of musical vectors.

In the computational models of music and related algorithms reviewed
in this thesis the separation of high and low-level structures and processes
varies. In the most strict sense an axiomatic structural analysis would be
represented by the structures based on pattern discovery with algorithms
such as COSIATEC. Meredith [23] has evaluated the use of these kinds
of algorithms in music analytic tasks. On the other end of the spectrum
Pearce [26] approaches the problem of building a model of musical style
that is based on hypotheses of cognitive processing. This statistical model
is trained with a corpus of melodies from which, in a bottom-up manner,
it models cognitive learning processes. The work of Cambouropoulos [2, 3]
combines the results of pattern discovery with the discovery of local pitch
based phenomena to infer grouping structures. This hints to the usage of
interactivity of bottom-up and top-down processes in an algorithmic system.
Similarly the model of Collins et al. [9] combines low-level learning with
information from a pattern discovery algorithm which could be thought of
as higher-level information.

Laiho has tried to answer the question of what is the universal perceptual
factor of hearing, listening and understanding music that can be analytically
defined. According to Laiho this is the time and context based perception
of the movement i.e. velocity of pitches and other musical variables such as
dynamics or timbre.

4.1 Interval-time complex (intiC)

The interval-time complex (intiC) is introduced as a contextually and tem-
porally dependant relationship between two pitch occurrences. It can be for
example used to describe dramaturgic intentions of music based on qualitative
differentiation.

Laiho describes using intiC in contrasting qualitative differentiation, stat-
ing that music and art analysis that focuses in the structure of the differential
movement using the analytic concept of intiC brings forth conceptual and
temporal factors which underlie the perceptual/sensational organisation of
a work of music. Such an analysis provides a dynamic profile and hints at
features of differentiation from the point of view of musical interpretation
and performance. Algorithms that can be used to conduct intiC and muV
analyses on music score sheets were developed for this thesis.

Calculating intiC-values for a set of <time, pitch> -pairs in a dataset D
can be done as follows:

n = |D|
delta = (D[1]−D[0]) . . . (D[n]−D[n− 1])
intics = delta[pi]/delta[ti] | i ∈ (0 . . . n),

24

where D = (t0, p0) . . . (tn, pn) and ti are the onset times of pitches pi.
The values can then be plotted on a graph where x-axis corresponds to

time, and y-axis to intiC-values as shown in figure 1. On the x-axis the
values are plotted based on the datapoints of D starting from the second
point, which is the time step where we have our first intiC-value.

Figure 1: Example of Interval-Time Complexes of solo violin from Stravin-
sky’s Rite of Spring m. 91-92

Calculating the intiC values this way gives the value 0 for repeating
pitches. For simultaneous pitches, such as the pitches of a chord, the values
approach infinity. This is one reason why for visualisation and music analytic
purposes the intiC values computed this way are mainly suited to be used
with monophonic music data.

IntiC-based analyses using software developed for this thesis have been
used by students at the department of musicology at University of Helsinki
to examine the differing dynamics of for example sung popular music in
comparison to what is printed on sheet music of Olavi Virta, and for studying
the rhythmic dynamics of jazz-performances of Gil Evans.

Smoothing is used to bring out more dominant changes in intiC values
by clearing out more arbitrary variation. Laiho uses weighed averages of
neighbouring values (0.3 preceding value, 0.5 current and 0.3 following) as
the smoothing formula. For the software implementation of this thesis the

25

smoothing is done by using a convolution function over a window w:

w = [0.3, 0.5, 0.2]
smooth = convolve(w/sum(w), intics)

which gives us weighted averages over the previous, current and next intiC
values. This can be done repeatedly to give a series of more averaged out
intiC-curves which can be used to visually bring out the largest changes of
the values.

Figure 2: Nine iterations of smoothed Interval Time Complexes from figure 1

Different iterations of these intiC-values could be useful for example
for segmentation or boundary detection for monophonic music. A segment
boundary could be seen to be found at a local minimum or maximum of the
intiC-curve. This is somewhat similar to the approach of Cambouropoulos
[2, 4] where a Local Boundary Detection Model (LBDM) includes rules
regarding where a local grouping boundary exists. These rules that affect
boundary strength include the degree of change between two consecutive
intervals using proximity in both temporal and interval domain.

In analysing musical grouping processes, or segmentation, Cambouropou-
los uses structural repetition and similarity in combination with these local
Gestalt-based factors that are used to identify points of local maximal change
in various musical parameters, including pitch intervals, dynamic changes
and so on [4]. The intiC values could be calculated for dynamic or timbral
changes as well as any temporally variable information. Cambouropoulos
also refers to the usage of memory-based model [14] for melodic segmentation
where Markov models are used for acquiring melodic regularities with the
assumption that segmentation boundaries occur more likely close to accentu-
ated changes in entropy. This could be thought of as an option to combine
these low-level properties with higher-level concepts.

26

4.2 Musical vectors (muV s)

Musical vectors, or muV s, are another way to conceptualise the time depen-
dant relationship of pitches. The intiC can be thought of as the differential
of the muV — a vector between two pitch points. As mentioned previously a
subset of the muV s can be graphically presented as vectors between adjacent
points that represent pitch onsets. When only these vectors are taken into
consideration we get a pitch contour that takes into account the temporal
relationship between the pitch occurrences. In figure 3 which is an adaptation
of an example in AGM [19] of counter-subject of Mahler’s Fourth Symphony
(m. 20), the pitch contour is shown in blue. We can get the set of vectors
for the pitch contour by calculating Vcontour = {pi+1 − pi|i ∈ |D| − 1}, where
D is a temporally sorted point-set. MuV s include a much larger set of
vectors than just those between adjacent points. The potential muV s that
can signify possible connections towards points further in the dataset, or that
suggest the positions of likely new points that could be inserted to the set
are shown in green. The vector shown in red is the vector sum that describes
the whole pitch contour of the counter-subject.

20

0.0 0.5 1.0 1.5 2.0 2.5
Time

50.0

52.5

55.0

57.5

60.0

62.5

65.0

P
it

ch
n
u

m
b

er

Figure 3: Example of potential musical vectors for a counter-subject of
Mahler’s Fourth Symphony (m. 20) [19] p. 37

27

A basic definition of the muV set is as follows. Given a set of points
D, for each point pi ∈ D we have points pj ∈ D, where j ∈ i+ 1, ..., n and
n = |D|, that occur after pi, the rest of the dataset. For each of these points
we can calculate a vector v. These are all the potential muV s that can be
found.

As mentioned earlier, muV s are a subset of the set of all the vectors
of a vector table used in Structure Induction Algorithms [24]. Specifically,
as we are only interested in vectors with positive values that correspond to
the x-axis i.e. time, the set of all the potential muV s is equivalent to the
vector table V which contains the lower diagonal of the vector table W . The
size of this set of all potential musical vectors illustrates the problems that
arise when comparing every point of the dataset with each other. There are
issues with both the time complexity with performing computations on the
vectors, and with the size of the resulting outputs of the algorithms. As
one solution perceptually interesting muV s could be computed related to
concepts of heuristics described previously.

Some heuristics can be used based on the definitions Laiho has outlined.
A core concept is the detection of the directionality of movement i.e. the
velocity. The muV s are a description based on temporally oriented diagonal
relationships, which can also be thought of as velocities. The differences
of the muV s can be calculated, and the muV s can be organised based on
the changes of the velocities. A related attribute we can use is invariance:
consider a point x ∈ D, all the vectors from x to points that are in the same
or similar enough direction describe the invariance of movement. The vectors
can be thought of as being extended according to this heuristic. Essentially
we might only take into consideration the vector sum of all adjacent vectors
with the same direction as was illustrated in figure 3.

A simple definition can be made based on above properties. A vector
a is a musical vector if and only if there exists another vector b with the
same starting point A and an angle θ ≤ t between them, where t is some
threshold value. For all musical vectors with the same same starting point A
within an angle θ ≤ t, the descriptive musical vector is the vector with the
largest magnitude. If there exists a vector a from previous point A to point
B within an angle θ ≤ t of vector b from point B to a following point C, a
descriptive vector c from A to C is the descriptive vector of the points A, B
and C.

In addition Laiho suggests ideas that could be used as different heuristics:
continuous acceleration, continuous movement and muV s based on other
temporally organised data besides pitch.

4.2.1 Computing musical vectors

Using vector tables we can compute all musical vectors in different ways.
In algorithm 4.1 using vector table W we can find for each point pi, where

28

i ∈ 0 . . . n− 1, the musical vectors by comparing the angle for each vector vj

in column i below the diagonal with each other. The comparison can be done
using cosine distance, where each pair of vectors with cosine(vj ,vk) below a
threshold is considered to contain a musical vector. The cosine of two vectors
with the same angle has a distance of 0. Cosine(vj ,vk) is defined as

1− vj · vk

||vj || ||vk||

In theory an ideal musical vector will consist of two vectors that have an
identical angle, but in practice for example due to granularity of the point-set
notation data, or any other data where the relation of the x- and y-axis
is not completely linearly related, some difference in the angles should be
tolerated. A value of 0.0001 was used in the examples of this thesis.

For music analysis and visualisation uses we usually only consider the
vector with the largest magnitude of the pair, but both vectors of can
be considered and used for further computations. In algorithm 4.2 the
largest vectors are computed for each point by traversing the column of the
vector table W starting from the largest vectors and ending the computation
when a match is found, thus slightly reducing the amount of comparisons
required. Alternatively we could find for each point pi all the incoming and
outgoing vectors of the point and calculate the difference in the angle of
the vectors. The incoming vectors used are equivalent to the inverses of the
vector backwards from the point.

Algorithm 4.1: Finding all potential muV s
1 input: W, threshold ← 0.0001:
2 output: muv
3 begin:
4 n← |W |
5 muv ←{ }
6 for i← 1, n− 1:
7 for j ← i + 1, n:
8 for k ← 0, i:
9 vbw = W [i][k] ∗ −1

10 vfw = W [i][k]
11 if cosine(vbw, vfw) ≤ threshold:
12 if i not in muv:
13 muv[i]← set()
14 muv[i].add((vfw, i))
15 if k not in muv:
16 muv[k]← set()
17 muv[k].add((vbw, k))
18 return muv
19 end

29

Algorithm 4.2: Finding descriptive muV s
1 input: W, D, threshold ← 0.0001:
2 output: muv
3 begin:
4 n← |W |
5 muv ←{ }
6 for i← 0, n− 1:
7 Vi ←[]
8 for j ← n− 1, i + 1:
9 v ← nil

10 for k ← n− 1, i:
11 if k! = j:
12 if cosine(W [i][j], W [i][k]) < threshold:
13 if j > k:
14 v ←W [i][j]
15 break
16 if v is not nil:
17 redundant ← False
18 for k ← 0, i:
19 if cosine(W [i][j], W [i][k] ∗ −1) < threshold:
20 redundant ← True
21 break
22 if not redundant:
23 Vi.append(v)
24 if i not in muv:
25 muv[i] ← set()
26 foreach v ∈ V i:
27 muv[i].add((v[0], v[1]))
28 return muv
29 end

Computing vectors for smaller point-sets, i.e. short segments of music,
generally works and results in vector presentations similar to what is defined in
AGM. These could be directly usable as components of music analysts work, or
as generative tools used by a composer as mentioned in [19]. Larger point-sets,
such as longer polyphonic musical works tend to exhibit problems with the
combinatorial explosion of all point to point vectors in the muV set and the
tolerance for deviation with large sum-vectors mentioned earlier. Calculating
all the muV s with algorithm 4.1 and descriptive muV s in algorithm 4.2 is
computationally very expensive. For each point in the dataset we compare
each vector pointing to each further point with each other meaning that the
time complexity for algorithm 4.1 is in all cases O(n3) and for algorithm 4.2
it is as well at least the average case.

In addition there are issues with accuracy when comparing the angles of
the smallest and largest vectors. The differences between the angles of small
vectors compared to the difference of the angles of a small vector and a large
vector might be bigger even if the large vector ends up deviating from the
small vectors more significantly.

Revised versions of the muV algorithm were developed to cut down the
computational cost and the large amount of vectors that it tended to result.

30

The final algorithm was divided into two parts. First algorithm 4.3 finds all
the smallest musical vectors using W similarly to algorithm 4.2, only the
smallest vector is stored for each set of vectors that have the same direction.
This allows the reduction of the amount of comparisons needed to make as
W is sorted and the size of vectors with the same direction increases as the
algorithm iterates through the table. In addition we can set a window within
which we limit the computations. The size of this window, max_span is
defined as a time span in quarter notes.

Algorithm 4.3: Shortest muVs
1 input: W, D, tolerance ← 0.0001, merge ← 0.0001, max_span ← 8
2 output: muv
3 begin:
4 n← |W |
5 muvs ← { }
6 for i← 1, n− 1:
7 Vi ← []
8 for j ← i + 1, n:
9 if max_span and D[j][0]−D[i][0] > max_span:

10 break
11 vfw ←W [i][j]
12 same ← False
13 if |Vi| > 0:
14 foreach vi ∈ Vi:
15 if cosine(vfw, vi[0]) ≤ merge:
16 same ← True
17 break
18 if not same:
19 vb ← nil
20 kb ← nil
21 for k ← i− 1, 0:
22 if max_span and D[i][0]−D[k][0] > max_span:
23 break
24 vbw ←W [i][k]
25 if cosine(vbw ∗ −1, vfw) ≤ tolerance
26 vb ← vbw

27 kb ← k
28 break
29 if vb not nil:
30 Vi.append((vfw, vb, kb))
31 if !(i ∈ muvs):
32 muvs[i]← set()
33 foreach (vj , vk, kb) ∈ Vi:
34 muvs[i].add((vj [0], vj [1]))
35 vb ← vk ∗ −1
36 if !(kb ∈ muv):
37 muv[kb]← set()
38 muvs[kb].add((vb, kb))
39 return muv
40 end

These shortest musical vectors can be thought of as the components
of all the longer vectors. As the musical vectors defined to be relevant in
AGM were the sum vectors of all the components with similar direction

31

the following algorithm 4.4, that calculates these using the results from the
Shortest muV s -algorithm, was developed. This algorithm uses vectors from
algorithm 4.3 as input. The vectors are stored in a hash table using the
starting point i of each vector as a key. The algorithm iterates for each
vector’s starting point the column i of the vector table W starting from the
largest vector at the end of the column. An optional window can be defined
by setting the max_span parameter to larger than 0, in that case vectors
outside the window are not evaluated. When a vector that is within the
merge threshold calculated with cosine-distance is found, it is stored as a
descriptive muV in muvl and the computation for that input vector muvs[i]
is completed. If larger descriptive muV s are not found the original vector
muvs[i] is encountered and selected as the descriptive vector and the loop
for that input vector is completed. As the algorithm compares for a set of
input vectors, of size m all the subsequent vectors from W the worst-case
time-complexity of the algorithm is O(mn) where n is the size of the dataset
D from which W is computed.

Algorithm 4.4: Short to long muV s
1 input: muvs, W , D, merge ← 0.0001, max_span ← 0
2 output: muvl

3 begin:
4 muvl ← {}
5 n← |W |
6 foreach i ∈ keys(muvs):
7 Vi = set()
8 foreach vs ∈ muvs[i]:
9 vl ← nil

10 for j ← n− 1, i:
11 if vs = W [i][j]:
12 vl ←W [i][j]
13 break
14 else if max_span = 0 or D[j][0]−D[i][0] ≤ max_span:
15 if cosine(vs, W [i][j]) < merge:
16 if ||vs|| < ||W [i][j]||:
17 vl ←W [i][j]
18 else:
19 vl ← vs

20 break
21 if vl:
22 Vi.add((vl[0], vl[1]))
23 muvl[i] = Vi

24 return muvl

25 end

Figure 5 shows the difference between the outputs of the algorithm 4.1
(above), for computing all potential muV s, with using the combination of
algorithms 4.3 and 4.4 (below). The dataset is a longer section of music, an
excerpt of Tchaikovsky’s Swan Lake Act 4. Overlaid on the figures is a red
pitch contour.

32

18

9

2

3.

2.1.

Copyright	©	

Figure 4: An excerpt of Tchaikovsky’s Swan Lake Act 4.

0 10 20 30 40 50 60 70
Time

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

P
it

ch

0 10 20 30 40 50 60 70
Time

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

P
it

ch

Figure 5: Comparison between all potential muV s (above) and short and
descriptive muV s (below) from an excerpt of Tchaikovsky’s Swan Lake Act
4.

As two of the biggest issues of the presented algorithms are their running
times and the complexity and large quantity of the resulting data output

33

by them, another approach to the concept of computing vectors similar to
muV s was developed. It was inspired by the concept of auditory streaming
from Bregman’s Auditory Scene Analysis [1] which is referred to in AGM as
well.

Cambouropoulos [5] has studied different views of what ‘voice’ means and
how to describe the problem of voice separation. Listeners are thought to
be capable of perceiving multiple distinct voices in music. Cambouropoulos’
goal was to develop a systematic description of the cognitive task of voice
separation in timbrally undifferentiated music. This was based on an exam-
ination and the usage of well-established perceptual principles of auditory
streaming [1, 17] and resulted in a voice separation algorithm for a sequence
of musical elements. The algorithm incorporates principles of temporal and
pitch proximity with the addition of a synchronous note principle. The exper-
imental results suggest that a single algorithm can achieve good performance
in diverse musical textures, both homophonic and polyphonic, in terms of
identifying perceptually relevant voices/streams. This bears similarity to the
concepts of AGM and thus influenced the development of the algorithms
presented here. There is no direct relation as the presented algorithms are a
more simplified, ‘proof of concept’ version of similar ideas.

Algorithm 4.5, the streaming vectors -algorithm, only iterates through the
dataset D and calculates and selects the vectors by comparing the distances
between the closest points in the dataset. The data is assumed to be sorted
according to the onset times of the points. For each D[i]|i ∈ 0, |D| − 1 the
algorithm takes the vector to the next point vi = D[i+ 1]−D[i] and in an
inner loop compares it to following vectors vi = D[j] −D[i]|j ∈ i + 2, |D|
until an end condition is satisfied. For each vector the algorithm checks the
timespan dj = D[j][0]−D[i][0] and the magnitude of the vector mj = ||vj ||.
If the timespan is 0, we consider the vector as belonging to a chord and set
the magnitude to nil. Then for every vector vj the algorithm checks if they
belong to a chord, or have a magnitude or timespan smaller than that of
vi and collects these vectors. If the timespan or magnitude is smaller, the
values are stored to di and mi and following vectors are compared to those.
The algorithm then checks if it is at the end of the dataset or if the smallest
magnitude of previous non-chord vectors is smaller than than the timespan
of current vector and exits the inner loop.

Regarding the definitions of AGM the streaming vectors -algorithm
deviated more from the purpose of finding muV s as it most likely misses a
large number of musical vectors. It was more of an alternative approach to
finding relations between pitches that may be perceptually connected which
then could be connected to related larger muV s. The upside of the algorithm
was it’s reduced time complexity as an average case could be thought of as
being O(mn) where n is the size of the input and m is dependent of the
number of points considered to be neighbours. The instances of the worst
case O(n2) should be negligible when using musical works as input data.

34

Algorithm 4.5: Streaming Vectors
1 input: D
2 output: VS

3 begin:
4 n← |D|
5 i← −0
6 VS ← []
7 while i < n− 1:
8 vectors ← []
9 chord ← []

10 FINISHED ← False
11 j ← i + 1
12 vi = D[j]−D[i]
13 di = D[j][0]−D[i][0]
14 if di = 0:
15 chord.append([i, j])
16 mi ← nil
17 else:
18 vectors.append([vi[0], vi[1], i])
19 mi ← ||vi||
20 j ← j + 1
21 while j < n and not FINISHED:
22 vj ← D[j]−D[i]
23 mj ← ||vj ||
24 dj ← D[j][0] = D[i][0]
25 if dj = 0:
26 chord.append([i, j])
27 if mi = nil or mj < mi:
28 mi ← mj

29 j ← j + 1
30 if j ≥ n:
31 FINISHED ← True
32 else:
33 if mi = nil or mj < mi:
34 mi ← mj

35 vectors.append([vj [0], vj [1], i])
36 else if di ≥ dj :
37 vectors.append([vj [0], vj [1], i])
38 if di = 0 and dj > 0:
39 di ← dj

40 j ← j + 1
41 if j ≥ n or mi < D[j][0]−D[i][0]:
42 FINISHED ← True
43 if |vectors| = 0:
44 vectors.append([vi[0], vi[1], i])
45 if |chord| > 0:
46 chord_vectors ← []
47 for c ∈ chord:
48 i← c[0]
49 j ← c[1]
50 vi ← D[i]−D[j]
51 vj ← D[j]−D[i]
52 chord_vectors.append([vi[0], vj [0], j])
53 chord_vectors.append([vj [0], vi[0], i])
54 VS ← VS+chord_vectors
55 VS ← VS+vectors
56 i← i + 1
57 return VS

58 end

35

0 10 20 30 40 50 60 70
Time

65

70

75

80

P
it

ch

Figure 6: Streaming vectors and theirmuV s from an excerpt of Tchaikovsky’s
Swan Lake Act 4.

5 AGM software as a tool for music analysis
The algorithms developed for this thesis have been used in a set of tools
developed for music analysis. They were used for the calculations for intiCs
and muV s, plotting the vectors and intiC-curves, and assisting in music
analysis as it is described in AGM [19].

The general idea behind the toolkit is that the user opens a dataset
containing a musical work, for example from score sheets stored as files.
The user then picks segments from the dataset by defining the start- and
endpoints and the voice of the segment to be analysed. The parameter for
threshold-values of calculating muV s as described can be adjusted and the
software displays muV and intiC graphs for the selected segments. Typically
the analyses focus on monophonic melodies or similar material. Figures 1
and 2 demonstrated the use of intiCs to display the dynamic pitch ‘velocities’
from an excerpt of Stravinsky’s Rite of Spring.

36

	=	80	=	40	=	60	=	80
Copyright	©	

Figure 7: Example muV s of an excerpt from Anton Webern’s Op. 30

In figure 7 the muV s of a segment of Webern’s Op. 30 are shown. The
segment contains serial music composed with series of four pitches and their
variations. Here a music analyst studying AGM is especially interested in
the muV s that coincide with the beginnings and ends of each of the series,
shown in blue.

6 AGM and pattern discovery
There are several issues with computing these vectors and determining
whether they are perceptually significant or interesting musical vectors. First
of all, a large problem is the time complexity of the algorithms. In addition
the resulting set of vectors with the algorithms 4.3 and 4.4 in itself still
not intuitively suitable for purposes of music analysis for complete musical
works. The problem might be approached by adjusting parameters that
might result in smaller less dense sets of vectors. The threshold for finding
muV s could be increased so that vectors within larger angle θ are considered
redundant, or the span of x-axis in with we are searching for the vectors may
be shortened. These adjustments however can result in a trade-off between
finding perceptually interesting muV s and getting reasonably sized results

As an alternative approach to finding perceptually interesting vectors the
incorporation of repeating pattern discovery with the computation of muV s
was tried. This did not solve the issue of computational complexity, but
could be beneficial both for determining which muV s and which patterns
are perceptually interesting.

37

6.1 MuVs in repeating patterns

The shortest vector algorithm 4.3 finds all the musical vector components
that connect the points closest to each other along a musical vector sum. In
addition this set of short vectors Ms combined with the set of descriptive
sum vectors Ml covers different potentially interesting sets of vectors.

M [i] = Ms[i] ∪Ml[i] | 0 ≤ i ≤ |Ms|

The repeating patterns calculated using SIATEC and the list of TECs
which contains the <pattern, translator set> pairs was obtained. For each
TEC a list of themuV s that match each point of each instance of a translated
pattern was computed. For repeating patterns this means that there are
some patterns which can be represented, or covered, by musical vectors better
than others and some patterns that do not contain any musical vectors. With
the point of view of the musical vectors the results may be interpreted as
having vectors that appear multiple times in several overlapping patterns
and vectors that don’t appear in repeating patterns can be left out. The
significance of a vector could be defined simply as it being found with the
above algorithms. This concept can be further examined with the number of
times the vector, or a pattern, is found.

Instead of storing the muV s in a list like in algorithms 4.1-4, they were
stored in a hash table based dictionary, where the hash keys were calculated
from tuple p = (x, y), which is the starting point of the vector. This way it
was simple to associate the points of the patterns with the muV s. Using
musical vectors stored in a hash table muVD, the algorithm 6.1 iterates the
list of TECs and for each TEC collects the vectors whose starting and end
points match points in some instance of that pattern.

Algorithm 6.1: Collecting musical vectors for patterns
1 input: D, T EC, muVD

2 output: muVP

3 begin:
4 n← |T EC|
5 MP ← []
6 for i← 0, n:
7 VP ← []
8 foreach vt ∈ T EC[i][1]:
9 P ← D[T EC[i][0] + vt]

10 foreach j ∈ T EC[i][0]:
11 p← D[j]
12 if vt + p ∈MD:
13 foreach vmu ∈ muVD[vt + p]:
14 pmu ← p + vt + vmu

15 if pmu ∈ P :
16 VP .append(< p, vt, vmu >)
17 MP .append(VP)
18 end

38

6.2 Inspecting patterns based on muV s

Collecting all muV s in a hash table made it possible for example to sort
TECs based on how well their patterns matched with the muV s. Different
sorting schemes for the organisation of patterns were considered. Rating the
patterns based on

muV s per TEC = |MP [i]|
|TEC[i][0]||TEC[i][1]|

gave the highest score to the pattern that contains the most muV s in its
instances. These could be thought of as the largest perceptually significant
patterns regardless of other factors such as their overlap. When inspecting
single TECs these seem to be the most interesting ones as they may cover
most of the dataset and the high scoring patterns seem relate to musical
structures such as repetition of whole separate parts of the dataset, canon
and repetition in harmonies.

0 20 40 60 80 100

40

50

60

70

P
it

ch

0 20 40 60 80 100

40

50

60

70

0 20 40 60 80 100
Time

40

50

60

70

P
it

ch

0 20 40 60 80 100
Time

40

50

60

70

Figure 8: Bach:BWV425, patterns 0, 1, 6, 7, scored with ‘muV s per TEC’,
from 12477 TECs

A selection of patterns is displayed in figure 8. In this case the music
was represented with chromatic pitch numbers to help discern between the
notes in the patterns when inspecting the output. This might have resulted
in a less repeating patterns in the results. In the top left corner, the highest
scoring pattern corresponds to the repetitive quality of the chorale where
same sequences of notes are repeated 4 quarter notes, or one bar apart from
each other throughout the score. The second highest scoring pattern on top
right shows vocal harmonies, as the pattern instances are seven semitones,
i.e. a fifth, apart from each other. In addition the patterns contain multiple
muV s that show a stable repetition of pitch numbers 45 and 69, or pitches

39

A2 and A4, and muV s that from the beginning to the end of the score
point from 55 to 54 (G3, F#3), and from 60 to 61 (C4 to C#4). Patterns
2-5 which are not shown, overlapped with patterns 0 an 1, showing similar
qualities. The patterns 6 and 7 in the bottom of the figure display repetition
of different sections of the chorale.

The formula
muV s per instance = |MP [i]|

|TEC[i][1]|
gave the highest score to the TECs that had the highest ratio of muV s to
points in a pattern. Some of the results of this scoring are shown in figures
9 and 10, where two different musical works are displayed with different
number of ‘vectorised’ patterns at a time. The patterns are overlaid so that
the number of datapoints and vectors in pattern instances are emphasised
with the colour intensity of the graphs, different hues of the colours are
arbitrarily assigned to different patterns. These patterns are often small
and compact. The issue with this rating is that there is a lot of redundancy.
There are cases where numerous TECs cover exactly the same set of points
with different variations of the patterns. This is where the selection of the
patterns most differs from previous work on selecting significant patterns
[24, 23, 8]. On the other hand this could be thought of as a positive feature,
as because of the scoring of the TECs is the same, or they have scores closest
to each other they may be grouped together.

Figure 9: Palestrina:Gloria 15h, overlaid patterns 0-9, 10-39, 40-79, 0-79,
muV s per instance

When examining several of the differing, highest scoring TECs as a whole,
an interesting property becomes noticeable. The muV s of all the instances
of the patterns in the TECs start to cover the dataset in a compact and
almost minimally overlapping manner. That is to say there are only few sets

40

of muV s that cross each other, at least compared to the muV s that appear
multiple times in different patterns. Many of the highest scoring patterns
in this scheme consist of short repetitive sequences of temporally adjacent
notes within small intervals. The intervals and sequence sizes increased
as the ordered sets of patterns were traversed. Further along the scheme,
larger but still compact non-overlapping patterns can be found. The results
from this scheme seem somewhat related to the concept of milieu-territorial
assemblages of AGM.

Figure 10: Ryan’s Mammoth Collection: Merry Lads Of Ayer Reel, overlaid
patterns 0-9, 10-39, 40-79, 0-79, muV s per instance

Another alternative when inspecting the patterns in addition to the
scoring, could be to filter them out based on pattern length and the number
of occurrences.

6.3 Inspecting muV s using patterns

Because of the abundance of output of the musical vector algorithms, there
was a motivation to use pattern discovery to highlight and select vectors
most important to the whole dataset — a complete piece of musical work.
This was an alternate approach to the same issue as the selection of patterns
based on their musical vector content. Instead of determining the value of
the patterns based on vectors, the value of the vectors is determined based
on the patterns they appear in.

The output array of algorithm 6.1, MP , was iterated and for each muV
tuple m ∈MP [i]|i ∈ |MP | the starting point p = m[0] +m[1] was stored as a
key in a hierarchical dictionaryMC for counting the instances of the vectors in
different patterns. For eachMC [p] themuV in the tuple vm = m[2] was again
used as a key for a sub-dictionary to count the number of times the muV
appears in the dataset and it was stored inMC [p][vm]. To emphasise the effect

41

of the patterns the appearances of the vectors were counted by adding the
number of instances of each pattern: MC [p][vm]←MC [p][vm] + |TEC[i][1]|.

The results were then sorted based on the scoring they received from the
above algorithm and the best scoring vectors were selected. This is illustrated
in figure 11 where a selection of 1000 muV s (above) covers the dataset almost
completely. In addition all possible muV s are displayed coloured based on
their score (below). Vectors pointing down and forwards may for example
be thought to correspond to descending melodic passages and the numerous
horizontal vectors to the continuous repeating harmonies of the chorale. This
selection was indifferent to whether the vectors are ‘descriptive muV s’ or
their component vectors. It could be informative regarding the study of
AGM to only take into account the descriptive vectors.

0 10 20 30 40 50 60 70

50

60

70

P
it

ch

0 10 20 30 40 50 60 70
Time

50

60

70

P
it

ch

Figure 11: J.S. Bach, BWV340: muV s selected and organised based on their
appearance in patterns

6.4 Filtering vector table based on muV s

Both SIATEC and the algorithms for computing musical vectors are compu-
tationally expensive and we are interested in an intersection of their results
— the repeating patterns that contain muV s. That is why a logical step in
the system utilising the algorithms could be to do computations on data
that is only comprised of these patterns. One solution would be to compute
muV s of the point-sets of the resulting patterns of SIATEC as opposed to
computing the vectors of the original dataset, but this way we would not
be able to use vectors that are related to points outside of the patterns

42

themselves. Another approach is to eliminate the patterns that do not have
any vectors in them before running the SIATEC-algorithm. This can be done
by removing from the vector table V any patterns that do not have muV s
associated with them. In this option too we will loose pattern instances that
do not have muV s in them as some patterns might have a number of muV s
in one instance and none in other instances. In some cases it might be useful
to include such instances in the results.

As all the points in a pattern instance are next to each other in V , for
each pattern instance P we can check whether its points are in the muV
dictionary MD. If a point p ∈ P is a key in MD, for each vector v in MD[p]
we can check whether the end point of v is included in the rest of P .

It is likely that a set of patterns that contains muV s does not contain
all, or possibly even some of the most perceptually interesting patterns,
especially if the computation of muV s is limited by using the shortest vectors
or streaming vectors. This can be illustrated by comparing the outputs of
musical vector and streaming vector algorithms. Many of the vectors between
points close to each other in figure 6 are not present in either of the musical
vector graphs in figure 5. Further examples of different sets of vectorised
patterns are included in the results and shown in appendix B. It could be
a subject of further work to inspect whether this kind of filtering would be
of use outside the study of muV s and related patterns. The outputs of the
presented algorithms could be compared with the outputs of algorithms such
as COSIATEC, that are known to output perceptually significant patterns,
or with the patterns selected with the empirically validated formula in [8].

7 Results
The main issue of themuV algorithms was running time. The time complexity
of the naive version of the algorithm that collects all muV s by traversing
the vector table was O(n3) in any case. This was addressed by implementing
an algorithm 4.3 that first finds shortest muV s inside a timespan window.
The vectors of the output were then used as input for a second algorithm
4.4 which collected the descriptive muV s for each input vector. The time
complexity of the shortest vector algorithm was O(wn2), where w is the
average number of datapoints in a window. The vertical density of the
dataset could be thought of as affecting the complexity in this case. In the
worst-case if all the data points are within the window, for example they
happen at the same time, the complexity is actually O(n3). However as the
algorithm is supposed to be used for data where the datapoints are spread
somewhat evenly on the horizontal axis and the amount of datapoints within
the window is not dependant on n. The O(wn2) should be thought of as the
average-case complexity and for sane inputs is the relevant case. A window
that only contains a fixed amount of points was considered but this version

43

was selected as it was thought to be more intuitive and did not affect the
actual performance of the algorithm negatively. The time complexity of
algorithm 4.4 was O(mn) where m is the size of the output of algorithm 4.3.

Due to the fact that on larger musical works the performance of the
muV -algorithms started to scale better than SIATEC, and because the end
goal was to select patterns that contained muV s, it was relevant to try to
help shorten the computation time of SIATEC by first trying to remove the
patterns that did not contain any muV s. In an experimental setup first
SIA and muV -algorithms were run, the patterns that did not contain muV s
were removed from the vector table V and finally SIATEC was run on the
‘filtered’ V . This shortened the combined time of running the algorithms.
However this is slightly problematic as it is not known if a ratio of muV s
for each pattern should be used to discard patterns, and it is not yet clear
what parameters for computing muV s yields best results. When using these
algorithms together it would be important to take care in determining these
parameters. In addition there is no guarantee that perceptually significant
patterns are not lost when doing this.

The performance of the algorithms for different use cases was evaluated.
For analysing sections of music, such as melodies and themes, a sampling of
100 works from a corpus of folk songs, reels and jigs from ‘Ryan’s Mammoth
Collection of Fiddle Tunes’ included with the music21 software toolkit [13]
was used. The contents of the dataset were as described in the title and
contained short monophonic pieces of music. This sample corpus is referred
to as ‘Ryan’s’ in the results. The size of these sample datasets ranged from 53
to 203 datapoints, which was larger than any melody, motif or theme should
be. The average running time of the SIATEC algorithm for this dataset was
0.72s. Computing the musical vectors using the combination of algorithms
4.3 and 4.4 took 1.28s and the all muV s algorithm 4.1 on average 5.60s.
Due to the exponential nature of the algorithms the all muV s algorithm was
deemed unfeasible to use on larger datasets.

An examination of larger polyphonic works from the music21 database
revealed that when the number of TECs rose high enough, for example
over 10 000 TECs, the shortest muV algorithms started being noticeably
faster than the SIATEC algorithm. A random selection of 15 chorale works
by Bach and Palestrina was used as a secondary dataset and it is referred
to as ‘Chorales’. As further examples of using the algorithms with larger
musical works Prelude and Fugue in C Major by Johann Sebastian Bach
were included.

Running times, ranges of dataset sizes and resulting numbers of TECs
are shown in tables 1 and 2. For the datasets ‘Ryan’s’ and ‘Chorales’ the
average running times are included. The times are labelled as tT EC for
SIATEC, tfT EC for SIATEC on a filtered set of patterns and tmuV for musical
vectors. The muV s were computed for a window of 8 quarter notes and with
a threshold parameter of 0.0001. These parameters were selected to try to

44

maximise the amount of vectors within a feasible computation time. For the
filtered sets of patterns only patterns that contained at least one vector for
each point in the pattern were selected. The datasets were projected to use
the diatonic pitch number scheme so that the results would be more related
previous work on pattern discovery where the similar morphetic pitch [22] is
often used. In the first table the short and long muV s are used to filter the
vector table, showing that the running time tfT EC is slightly shorter for each
of the datasets. In the latter table the streaming vectors algorithm was used
and it performs clearly faster. However the resulting selection of TECs is
different for each algorithm. As the filtering of patterns was strict it is likely
that at least for the smaller datasets interesting patterns were left out.

Table 1: Results of computing short muV s and related TECs.

Ryan’s Chorales Prelude in C Fugue in C
n 53–204 134–597 614 790
TECs 242–3997 1453–8824 11779 20000
filtered TECs 13–565 209–3195 5765 13247
tT EC 0.72 s 26s 109 s 229 s
tfT EC 0.24 s 17s 85 s 223 s
tmuV 1.3 s 12s 46 s 159 s

Table 2: Results of computing streaming muV s and related TECs.

Ryan’s Chorales Prelude in C Fugue in C
filtered TECs 3–81 158–3057 1853 1152
tfT EC 0.31s 14s 46s 27s
tmuV 0.20s 7.3s 9.6s 41s

To further illustrate the selection of patterns using different schemes,
graphs using Bach’s Prelude and Fugue in C Major are included in appendix
B. The colourisation of the patterns in the figures is arbitrary as there
are too many patterns plotted over each other for a more accurate visual
differentiation. Vectors belonging to patterns in same TECs are in the same
colour and points that are in the same pattern instances are in the same
colour, but same colours are also used for multiple different TECs and pattern
instances.

In figure 12, using the ‘muV s per instance’ formula, 100 highest rated
distinct patterns and their muV s are shown covering the whole dataset.
Notably the prominence of broken arpeggiated chords and transpositions
between them are highlighted with this selection of patterns. Some obvious
repetitions are not shown with this scheme. This is seen in the first repeating
arpeggios where there are discontinuities with vectors that are along the

45

same line. These sections could be covered either by including more distinct
patterns, or by including the descriptive muV s where their components
are found. For the sake of clarity the descriptive muV s of each of their
components were not included in the examination of the outputs of the
algorithms. In figure 13 the highest rated pattern using the ‘muV s per TEC’
formula is shown. As the composition consists mostly of arpeggios, they
can be seen repeating exactly throughout this pattern that covers most of
the piece. Following high scoring patterns are variations of this. Patterns
containing streaming vectors and their muV s are seen in figure 14 where
the streaming vectors slightly better match the structure of the arpeggiated
chords than in figure 12.

For the ‘Fugue in C Major’, in figure 15 specifically, the patterns match
parts of the subject and the answers of the fugue. In figures 16 and 18 more
patterns within the themes and patterns along muV s between themes close
to each other are shown. In figure 18 the movement ascribed to some of the
muV s towards the end of the piece seems to be directed towards the final
high note. In figure 17 the large pattern of descending notes throughout the
piece matches melodies of the answers of the fugue.

The combination of the streaming vectors and their descriptive muV s
resulted in a different set of patterns from the purely muV based approach.
These are shown in appendix B, figures 14 and 19. The resulting sets of
patterns selected based on streaming vectors and component muV s, both
with the addition of their descriptive muV s differed. The former set was
more similar to what is described in AGM as the movement, or velocities, of
pitches and the latter to different perceptible units such as chord intervals
and notes comprising melodic passages. In addition the muV s computed
from streaming vectors often included those that coincided with repetitions
along the harmonies or the scale of the musical work.

8 Discussion and future work
The goals of this thesis were to implement algorithms for the music theoretical
concepts of AGM [19] and to study their usage in the context of selecting
perceptually interesting patterns output by pattern discovery algorithms
[24, 21]. Implementations of computing intiC-values and muV s were made
for music analysis tools and other computer aided music analytic tasks.
The usage of muV s to discover perceptually interesting patterns was an
experimental task as the approach was different from previous work on the
subject. The result was a novel approach to organising and selecting patterns.
The intersection of patterns and muV s was used for the organisation of
muV s as well.

The usefulness of themuV algorithms on the outlined tasks was evaluated
based on their performance regarding running time and by examining the

46

sorted outputs regarding the discovery of musically interesting patterns.
Apart from this manual inspection, which included graphs such as those
shown in this thesis, there was no further evaluation of the outputs produced
by the pattern selection as it was deemed outside the scope of this thesis.
There was no well established methodology for evaluating the significance of
the patterns as their selection differed from the aim of other such evaluations.
In other works it is usually desired that the patterns cover the dataset with
minimal overlap and the algorithms presented here were indifferent of that.
In addition previous work has focused on finding specifically patterns such
as melodies, themes and motifs that would be correlated with traditional
music analysis. However approaching such an analysis could be feasible if
either a method of removing overlapping sets of the patterns was added, or
if an algorithm for matching the patterns with the output of an algorithm
such as COSIATEC or patterns selected with the formula by Collins et al.
[8] was used.

Further additions to mitigate the time complexity issue could be devel-
oped. The vertical range of the musical datasets can be thought to be limited
to lowest and highest notes of the dataset. As vectors, directed upwards or
downwards at an angle from the x-axis, at some point of time or distance on
the x-axis, can not reach any other point in the set, we should stop trying to
find matching vectors when that point is reached. Or in the case of searching
for the longest vectors that would be the ideal point to start the search. This
could be done by indexing or partitioning the dataset along the time axis to
access that furthest point in the dataset a vector can reach.

The algorithms were implemented with Python as they are presented
in this thesis and the evaluations were run on a 4.2GHz Intel i5 processor.
Regarding their performance, writing the algorithms in a lower-level language
such as C or with methods more suitable for iterating arrays containing
numerical data should be considered.

Observing the results of the sorted patterns and vectors did show that the
approach could be useful. The first formula for selecting the patterns, ‘muV s
per TEC’, resulted in large patterns, which corresponded to perceptually
plausible musical phenomenon such as fugue and canon melodies, harmonies
and large grouping structures, scoring highest. The best scoring patterns
of the second formula, ‘muV s per instance’, on the other hand could be
described to resemble a hierarchical structure of perceptual connections,
where at first we have adjacent notes and intervals of chords, and later full
chords, motifs and phrases, which with a limited number of TECs cover
most of the musical work. This approach to structure could be useful in
developing novel methods of grouping analysis. In addition it resembled the
concept of milieu-territorial assemblages of AGM.

Similarly inspecting vectors by scoring them based on their appearance in
repeated patterns resulted in their hierarchical organisation. This could be
thought of a more accurate representation of the ‘assemblages’ as is it was a

47

definition of the organisation of the vectors. A selection of muV s computed
with an algorithm of choice presented in this thesis, with or without giving
them scores, could be added to a model of music in the same manner as the
translational vectors and patterns were used in [9] to retain additional large
scale structures corresponding to different musical phenomenon.

What was completely left out regarding AGM was the generative aspect.
For intiCs this could consist of the usage of intiC-curves for the generation or
modification of musical material. In the case of muV s their trajectories could
be used to predict unheard notes and thus generate new musical material.

Similarities with the concept of intiC, and by association with muV ,
could be found in existing works of computer aided musicology [3, 26]. This
is promising regarding the usage of the methods of AGM in the development
of such work. The algorithms presented in this thesis provide a way to
compute these context dependent temporal and pitch based relations in
music. Notably many of the cases, where low-level concepts similar to intiC
were used, were limited to monophonic music and replacing them with a
vector based approach could make it possible to expand these approaches to
polyphonic music represented with multidimensional point-set data.

References
[1] Bregman, Albert S: Auditory scene analysis: The perceptual organization

of sound. MIT press, 1994.

[2] Cambouropoulos, Emilios: Towards a general computational theory of
musical structure. PhD thesis, 1998.

[3] Cambouropoulos, Emilios: The local boundary detection model (lbdm)
and its application in the study of expressive timing. In ICMC, 2001.

[4] Cambouropoulos, Emilios:Musical parallelism and melodic segmentation.
Music Perception: An Interdisciplinary Journal, 23(3):249–268, 2006.

[5] Cambouropoulos, Emilios: Voice and stream: Perceptual and computa-
tional modeling of voice separation. Music Perception: An Interdisci-
plinary Journal, 26(1):75–94, 2008.

[6] Collins, Tom: Improved methods for pattern discovery in music, with
applications in automated stylistic composition. PhD thesis, The Open
University, 2011.

[7] Collins, Tom, Arzt, Andreas, Flossmann, Sebastian, and Widmer, Ger-
hard: Siarct-cfp: Improving precision and the discovery of inexact mu-
sical patterns in point-set representations. In ISMIR, pages 549–554,
2013.

48

[8] Collins, Tom, Laney, Robin, Willis, Alistair, and Garthwaite, Paul H:
Modeling pattern importance in chopin’s mazurkas. Music Perception:
An Interdisciplinary Journal, 28(4):387–414, 2011.

[9] Collins, Tom, Laney, Robin, Willis, Alistair, and Garthwaite, Paul H:
Developing and evaluating computational models of musical style. AI
EDAM, 30(1):16–43, 2016.

[10] Collins, Tom, Thurlow, Jeremy, Laney, Robin, Willis, Alistair, and
Garthwaite, Paul: A comparative evaluation of algorithms for discovering
translational patterns in baroque keyboard works. 2010.

[11] Conklin, Darrell and Witten, Ian H: Multiple viewpoint systems for
music prediction. Journal of New Music Research, 24(1):51–73, 1995.

[12] Cope, David: Experiments in musical intelligence, volume 1. AR editions,
1996.

[13] Cuthbert, Michael Scott and Ariza, Christopher: music21: A toolkit for
computer-aided musicology and symbolic music data. 2010.

[14] Ferrand, Miguel, Nelson, Peter, and Wiggins, Geraint: Memory and
melodic density: a model for melody segmentation. In Proceedings of the
XIV Colloquium on Musical Informatics (XIV CIM 2003), pages 95–98,
2003.

[15] Forth, Jamie and Wiggins, Geraint A: An approach for identifying salient
repetition in multidimensional representations of polyphonic music. 2009.

[16] Hamanaka, Masatoshi, Hirata, Keiji, and Tojo, Satoshi: Implementing
“a generative theory of tonal music”. Journal of New Music Research,
35(4):249–277, 2006.

[17] Huron, David: Tone and voice: A derivation of the rules of voice-leading
from perceptual principles. Music Perception: An Interdisciplinary
Journal, 19(1):1–64, 2001.

[18] Janssen, Berit, De Haas, W Bas, Volk, Anja, and Van Kranenburg, Peter:
Finding repeated patterns in music: State of knowledge, challenges,
perspectives. In International Symposium on Computer Music Modeling
and Retrieval, pages 277–297. Springer, 2013.

[19] Laiho, Timo et al.: Perception, time and music analysis: An intro-
duction to analytic-generative methodology (agm). Studia musicologica
Universitatis Helsingiensis 23, 2013.

[20] Lerdahl, Fred and Jackendoff, Ray: A generative theory of tonal music.
MIT press, 1985.

49

[21] Meredith, David: Point-set algorithms for pattern discovery and pattern
matching in music. In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2006.

[22] Meredith, David: The ps13 pitch spelling algorithm. Journal of New
Music Research, 35(2):121–159, 2006.

[23] Meredith, David: Analysing music with point-set compression algorithms.
In Computational Music Analysis, pages 335–366. Springer, 2016.

[24] Meredith, David, Lemström, Kjell, and Wiggins, Geraint A: Algorithms
for discovering repeated patterns in multidimensional representations of
polyphonic music. Journal of New Music Research, 31(4):321–345, 2002.

[25] Pearce, Marcus, Müllensiefen, Daniel, and Wiggins, Geraint A: A com-
parison of statistical and rule-based models of melodic segmentation. In
ISMIR, pages 89–94, 2008.

[26] Pearce, Marcus T, Müllensiefen, Daniel, and Wiggins, Geraint A: The
role of expectation and probabilistic learning in auditory boundary per-
ception: A model comparison. Perception, 39(10):1367–1391, 2010.

[27] Pearce, Marcus T and Wiggins, Geraint A: Auditory expectation: The
information dynamics of music perception and cognition. Topics in
cognitive science, 4(4):625–652, 2012.

[28] Pearce, Marcus Thomas: The construction and evaluation of statistical
models of melodic structure in music perception and composition. PhD
thesis, City University London, 2005.

[29] Wiggins, G. A. & Smaill, A.: What can artificial intelligence bring to
the musician? pages 29–46, 2000.

50

A Python implementation of Structure Induction
Algorithms

1 import numpy as np
2
3 " " " Python implementation o f SIA us ing numpy . " " "
4 de f s i a (D) :
5 # Compute both vec to r t ab l e s from W
6 vt = D − D[: , np . newaxis]
7 n = len (vt)
8 W = np . array ([np . array ([[∗ y , i] f o r y in vt [i]]) f o r i

in range (n)])
9 V_indices = np . t r i u_ ind i c e s (W. shape [0] , 1)
10 V = W[V_indices]
11 # Sort V
12 V = V[np . l e x s o r t (np . t ranspose (V) [: : − 1])]
13 re turn D, W, V

1 " " " Python implementation o f SIATEC us ing numpy . " " "
2 de f s i a t e c (D, W, V) :
3 X = siatec_X (D, V)
4 Y = sort_X (X)
5 t e c s = s i a t e c_t e c s (D, Y, V, W)
6 return t e c s
7
8 " " " SIATEC: Computing ordered s e t X" " "
9 de f siatec_X (D, V) :
10 m = len (V)
11 X = []
12 i = 0
13 whi l e i <= m:
14 Q = []
15 j = i+1
16 whi l e j < m and np . a l l (V[j] [: 2] == V[i] [: 2]) :
17 Q. append (tup l e (D[i n t (V[j] [2])] − D[i n t (V[j

−1] [2])]))
18 j = j+1
19 X. append ((i , tup l e (Q)))
20 i = j
21 re turn X
22
23 de f sort_X (X) :
24 re turn so r t ed (X, key = lambda y : (l en (y [1]) , y [0]))

51

1 " " " Algorithm f o r gather ing the s e t o f pa t t e rns and t h e i r
t r a n s l a t o r s " " "

2 de f s i a t e c_t e c s (D, Y, V, W, indexes=True , min_patlen=2) :
3 r = len (Y)−1
4 m = len (V)
5 i = 0
6 t e c s = []
7 i f r > 0 :
8 whi l e True :
9 j = Y[i] [0]
10 I = []
11 whi l e j < m and (V[j] [: 2] == V[Y[i] [0]] [: 2]) .

a l l () :
12 I . append (i n t (V[j] [2]))
13 j = j+1
14 i f l en (I) >= min_patlen :
15 pattern = tec_pattern (D, I , indexes)
16 t r a n s l a t o r s = t e c_t r an s l a t o r s (W, D, I)
17 t e c s . append ([pattern , t r a n s l a t o r s])
18 whi l e True :
19 i = i+1
20 i f i > r or Y[i −1] [1] != Y[i] [1] :
21 break
22 i f i > r :
23 break
24 return t e c s
25
26 de f tec_pattern (D, I , indexes=False) :
27 i f indexes :
28 re turn I
29 e l s e :
30 p = len (I)
31 pattern = [D[I [0]]]
32 f o r k in range (1 , p) :
33 pattern . append (D[I [k]])
34 re turn np . array (pattern)
35
36 de f t e c_t r an s l a t o r s (W, D, I) :
37 p = len (I)
38 ve c t o r s = s e t (tup l e (x) f o r x in W[I [0]] [: , : 2])
39 i f p > 1 :
40 f o r i in range (1 , p) :
41 ve c t o r s = vec to r s & s e t (tup l e (x) f o r x in W[I [i

]] [: , : 2])
42 re turn ve c t o r s

52

B Examples of organised patterns and their musi-
cal vectors

Figure 12: J.S. Bach: Prelude in C Major, 100 highest rated patterns and
their vectors scored with ‘muV s per instance’ formula.

Figure 13: J.S. Bach: Prelude in C Major, highest rated pattern and its
vectors with ‘muV s per TEC’ formula.

53

Figure 14: J.S. Bach: Prelude in C Major, 100 highest rated patterns and
their vectors, based on the streaming vectors algorithm, scored with ‘muV s
per TEC’ formula.

Figure 15: J.S. Bach: Fugue in C Major, 100 highest rated patterns and
their vectors, scored with ‘muV s per instance’ formula.

Figure 16: J.S. Bach: Fugue in C Major, patterns 100-200 and their vectors,
scored with ‘muV s per instance’ formula.

54

Figure 17: J.S. Bach: Fugue in C Major, highest rated pattern and its
vectors, scored with ‘muV s per TEC’ formula.

Figure 18: J.S. Bach: Fugue in C Major, 100 highest rated patterns and
their vectors, with the minimum of three instances for a pattern, scored with
‘muV s per TECs’ formula.

55

Figure 19: J.S. Bach: Fugue in C Major, 100 highest rated patterns and
their vectors, based on the streaming vectors algorithm, scored with ‘muV s
per instance’ formula.

56

	Introduction
	Computational models of music
	Stylistic composition

	Geometric pattern discovery in music
	Repeated patterns in music
	Representation of music data
	Geometric representation
	Structure Induction Algorithms
	Perceptually significant repetitions
	Heuristics

	Further developments on the geometric pattern discovery algorithms
	Issues with Structure Induction Algorithms

	Analytic Generative Methodology (AGM)
	Interval-time complex (intiC)
	Musical vectors (muVs)
	Computing musical vectors

	AGM software as a tool for music analysis
	AGM and pattern discovery
	MuVs in repeating patterns
	Inspecting patterns based on muVs
	Inspecting muVs using patterns
	Filtering vector table based on muVs

	Results
	Discussion and future work
	References
	Python implementation of Structure Induction Algorithms
	Examples of organised patterns and their musical vectors

