
Assessing text readability and quality with language models

Yang Liu

Helsinki February 12, 2020

Master’s thesis

UNIVERSITY OF HELSINKI
Master’s Programme in Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/288487365?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Faculty of Science Computer Science

Yang Liu

Assessing text readability and quality with language models

Dorota Glowacka and Alan Medlar

Master’s thesis February 12, 2020 57 pages + 0 appendices

Text readability, text quality, language models, LSTM, GPT-2, case study

Automatic readability assessment is considered as a challenging task in NLP due to its high degree
of subjectivity. The majority prior work in assessing readability has focused on identifying the
level of education necessary for comprehension without the consideration of text quality, i.e., how
naturally the text flows from the perspective of a native speaker. Therefore, in this thesis, we aim
to use language models, trained on well-written prose, to measure not only text readability in terms
of comprehension but text quality.

In this thesis, we developed two word-level metrics based on the concordance of article text with
predictions made using language models to assess text readability and quality. We evaluate both
metrics on a set of corpora used for readability assessment or automated essay scoring (AES) by
measuring the correlation between scores assigned by our metrics and human raters. According
to the experimental results, our metrics are strongly correlated with text quality, which achieve
0.4-0.6 correlations on 7 out of 9 datasets. We demonstrate that GPT-2 surpasses other language
models, including the bigram model, LSTM, and bidirectional LSTM, on the task of estimating
text quality in a zero-shot setting, and GPT-2 perplexity-based measure is a reasonable indicator
for text quality evaluation.

ACM Computing Classification System (CCS):
Computing methodologies → Artificial intelligence → Natural language processing
Applied computing → Document management and text processing

Tiedekunta — Fakultet — Faculty Koulutusohjelma — Studieprogram — Study Programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Ohjaajat — Handledare — Supervisors

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI



ii

Contents

1 Introduction 1

2 Related work 2

2.1 Text readability assessment . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Traditional readability measures . . . . . . . . . . . . . . . . . 3

2.1.2 Cognitive and discourse features . . . . . . . . . . . . . . . . . 5

2.1.3 Language models . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Text quality assessment . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Shallow NLP techniques . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Full NLP techniques . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Deep learning techniques . . . . . . . . . . . . . . . . . . . . . 9

3 Language models 10

3.1 Language model basics . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.2 Evaluation of language models . . . . . . . . . . . . . . . . . . 12

3.2 Statistical language models . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Neural network based language models . . . . . . . . . . . . . . . . . 16

3.3.1 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.2 Neural network language model . . . . . . . . . . . . . . . . . 20

3.3.3 Recurrent neural network based language model . . . . . . . . 21

3.3.4 Attention mechanism and the Transformer . . . . . . . . . . . 24

3.3.5 Pre-trained language models . . . . . . . . . . . . . . . . . . . 26

4 Methodology 29

4.1 Dataset description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 The Guardian Corpus . . . . . . . . . . . . . . . . . . . . . . 30

4.1.2 The Newsela Corpus . . . . . . . . . . . . . . . . . . . . . . . 31



iii

4.1.3 The OneStopEnglish Corpus . . . . . . . . . . . . . . . . . . . 31

4.1.4 The WeeBit Corpus: . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.5 The IELTS Corpus . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.6 The ASAP Dataset . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Bigram language model . . . . . . . . . . . . . . . . . . . . . . 34

4.2.2 AWD-LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.3 Contextual bidirectional LSTM . . . . . . . . . . . . . . . . . 35

4.2.4 GPT-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.5 Training results . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Word-level metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.1 Word perplexity . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.2 Likelihood ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Correlation coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.1 Pearson correlation coefficient . . . . . . . . . . . . . . . . . . 38

4.4.2 Spearman’s rank correlation coefficient . . . . . . . . . . . . . 39

5 Experiments 39

5.1 Correlation experiments on text readability . . . . . . . . . . . . . . . 39

5.1.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Correlation experiments on text quality . . . . . . . . . . . . . . . . . 42

5.2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3.1 Word perplexity VS likelihood ratio . . . . . . . . . . . . . . . 46

5.3.2 A case study of text quality evaluation . . . . . . . . . . . . . 47

6 Conclusion and future work 49



iv

References 50



1

1 Introduction

Readability describes the complex relationship between a given text and the effort
that readers make to understand it. Nowadays, people are increasingly relying on
online materials to acquire knowledge. This greatly raises readers’ expectations for
the readability of materials. Take the largest Online Encyclopedia - Wikipedia as
an example, although Wikipedia has been shown to be highly accurate in terms of
factual content, it has been criticized for the quality of its writing, with many arti-
cles suffering from poor readability and style [1]. However, given the size of online
texts, identifying article readability to enable not only the selection of appropri-
ate materials for readers but editing suggestions for editors requires an automated
approach.

A majority of the prior work in assessing readability has focused on identifying
the level of education necessary for comprehension, which is generally expressed as
the American grade level (i.e. years of primary and secondary education) [2, 3, 4,
5]. But the problem we want to explore here does not only assess readability in
terms of comprehension, but in terms of style. Namely, do articles contain well-
written, idiomatic prose that reads naturally to a native speaker of English. This
is somehow similar to another task in literature called automated essay scoring
(AES) that evaluates either contextual accuracy or writing quality of articles by
automatically assigning goodness scores based on multiple criteria, such as word
choices, narrativity, organization, and so on [6]. In this thesis, we studied these
two aspects of readability, i.e., comprehension and style, which are referred to as
readability assessment and text quality evaluation separately.

In this thesis, we propose two readability metrics: average per word perplexity and
average likelihood ratio, based on the concordance of article text with predictions
made using neural language models. Our goal is not to develop a classifier for "good"
or "bad" writing, but to design metrics that allow us to rank documents, paragraphs
and sentences by the degree to which text conforms to a corpus of documents that
are assumed a priori to be highly readable and well-written. As both metrics are
based on language models, they are unsupervised and do not require any special
annotation.

In our experiments, the language model was trained using articles from The Guardian,
a British newspaper, that we believe are well-written because they are written by
professional journalists. Both metrics serve a dual purpose as they can be used to
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(i) rank documents from the least to most readable, allowing us to identify which
articles are most in need of attention in terms of writing quality and style and, (ii)
use highlighting on a per word basis in the article to help an editor identify whether
there are specific issues that should be fixed or that the entire article needs to be
rewritten.

In this work, we make the following contributions:

1. We take an unsupervised ranking-based approach that identifies how well ar-
ticles fit a model trained on well-written text. While existing approaches
to assess the writing readability and quality are mostly based on supervised
learning methods.

2. We demonstrate that our metrics are strongly correlated with text quality, i.e.,
whether an article is idiomatic and well-written, and have a weak correlation
with text readability in terms of comprehension.

3. We explored the suitability of different types of language models, including a
bigram model, LSTM, bidirectional LSTM, and GPT-2. We demonstrate that
GPT-2 achieves the performance far beyond other language models on text
quality assessment in a zero-shot setting.

This thesis consists of six chapters. Chapter 2 introduces the related works of both
tasks i.e. readability assessment and text quality evaluation. In Chapter 3, we focus
on the basis of language models and describes several widely used architectures
in language modeling. Chapter 4 dives into the method we use for the task of text
readability and quality evaluation. The description of datasets and language models
used for performing experiments are also included here. In Chapter 5, we describe
the experimental setup and analyze the results obtained. Chapter 6 contains the
conclusion and suggestions for future work.

2 Related work

As we discuss the measurements of both text readability and quality in this thesis,
it is necessary to introduce the related works and backgrounds in both fields. There-
fore, section 2.1 will describe the related works of text readability assessment while
we dedicated section 2.2 to the previous approaches to automated essay scoring.
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2.1 Text readability assessment

Readability describes a complex relation between a given text and the efforts that
readers make to understand it. The relation is considered to be associated with
multiple factors, including lexical simplicity, presentation style, discourse cohesion,
and background information [7]. Historically, interest in readability assessment in
terms of comprehension originated in education and the military [8, 9]. Nowadays,
in most cases, the research on readability assessment often identifies the level of
education necessary for comprehension [2, 10]. Due to the high degree of cognitive
complexity, readability assessment is considered as one of the most challenging tasks
and therefore has attracted researchers’ attention to explore automatic approaches
for it [2, 3, 10, 11].

A variety of approaches were investigated to find readability measures that corre-
late well with human perception over the past few decades. Traditional readability
measures were formulated by straightforward discrete features such as average sen-
tence length, word length and difficulty and so on. Among them, Dale-Chall [12],
Gunning’s Fog (FOG, [8]), Flesch-Kincaid [9], and SMOG (Simple Measure of Gob-
bledygook, [13]) indexes, as the most representative traditional formulas, will be
introduced in section 2.1.1. Instead of shallow features, some cognitively motivated
features and discourse features were adopted to classify the readability level of texts,
which will be described in section 2.1.2. As we mainly used language models to mea-
sure the readability in this thesis, we dedicated section 2.1.3 to the use of different
language models on readability evaluation.

2.1.1 Traditional readability measures

Traditional readability formulas use shallow linguistic features, including the number
of words, sentences and syllables, to output a readability score.

The first widely adopted readability measure, Dale-Chall readability formula (DCRF,
[12]), was proposed in 1948. DCRF utilizes a manually curated list of easy to un-
derstand words, with all others deemed to be "difficult" words, to measure the text
readability. It is calculated according to Equation 1:

DCRF = 0.1579(
C(Difficult words)
C(Total words)

× 100) + 0.0496
C(Total words)

C(Total sentences)
, (1)

where C is a counting function. If the percentage of difficult words is above 5%, we
should add 3.6365 to the raw score to obtain the adjusted score. When assessing
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texts, a higher Dale-Chall score indicates that the text is more difficult to read.

Subsequently, in 1952, Gunning [8] proposed the Gunning fog index (GFI), in order
to estimate the grade level required to understand text on the first reading. It was
formulated as follows:

GFI = 0.4× [
C(Total words)

C(Total sentences)
+ 100

C(Complex words)

C(Total words)
], (2)

where Complex words refers to words that consists of three or more syllables. In-
tuitively, the higher the GFI index, the less readable the text.

In 1975, Flesch-Kincaid readability tests were used to assess the readability of tech-
nical manuals in the United States military [9]. There were two tests: the Flesch
Reading Ease Score (FRES) and the Flesch-Kincaid Grade Level (FKGL). Both
tests utilized the total number of syllables, words and sentences to approximate the
reading ease score and corresponding grade level of a text. However, they employed
different weighting factors obtained by performing regression on a dataset of Naval
school passages [9]. Their formulas are listed below,

FRES = 206.835− 1.015
C(Total words)

C(Total sentences)
− 84.6

C(Total syllables)

C(Total words)
,

FKGL = 0.39
C(Total words)

C(Total sentences)
+ 11.8

C(Total syllables)

C(Total words)
− 15.59.

(3)

In the Flesch Reading Ease test, the higher FRES implies that the text is easier to
read. While in the Flesch–Kincaid Grade Level test, FKGL directly corresponds to
a U.S. grade level.

Similar to FKGL formula, SMOG (Simple Measure of Gobbledygook, [13]), is used
to estimate the years of education needed to comprehend the given texts adopting
the number of polysyllables and sentences as features. SMOG is calculated according
to the following formula:

SMOG = 1.0430

√
C(Polysyllables)× 30

C(Total sentences)
+ 3.1291, (4)

where C(Polysyllables) means the number of words that contain more than three
syllables. In practice, SMOG is only applicable if the text has more than 30 sentences
as it was normed on 30-sentence samples.

All readability assessment formulas cited above operate at the level of document,
whether that is a technical manual, book or web page. Based on the above formulas,
the use of shallow features will return the same score if we shuffled the order of
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words in each sentence. This suggests that traditional readability measures are
easily cheated. In addition, the parameters of these formulas were obtained using
some specific dataset and might not be transferable to other datasets [14].

2.1.2 Cognitive and discourse features

To overcome the deficiencies of traditional readability measures, multiple approaches
that used complex syntactic and semantic features to predict the readability level
have been proposed. These approaches usually require extensive feature engineering
and, therefore, can achieve much better results in readability assessment.

Feng et al.(2009, [3]) produced an automatic readability metric that is tailored to the
literacy skills of adults with intellectual disabilities (ID). They investigated multiple
discourse-level, cognitively motivated features that correlate with the readability
level for adults with ID, such as total number of nouns and name entities, number
of unique entities, and the average lexical chain span. They argued that the use of
audience-specific features can improve the accuracy of readability assessment on the
specific user group.

Recently, Mesgar and Strube (2018, [11]) proposed a local coherence model that
identifies whether adjacent sentences are semantically similar. They adopt a recur-
rent neural network (RNN) to represent semantic information that connects two
adjacent sentences and then employed a convolutional neural network (CNN) to en-
code the pattern of semantic information changes across sentences. As a result, the
model achieves new state-of-the-art results on the task of readability assessment.

Although the use of cognitive and discourse features improves the accuracy of read-
ability assessment, it has been criticized for the requirement of sophisticated manual
feature engineering [15].

2.1.3 Language models

It is well noted that language models can capture linguistic features well and, there-
fore, have been widely used to evaluate text readability.

Initially, researchers in computational linguistics have adopted statistical language
models that extract context information from texts to improve the accuracy of read-
ability assessment. In 2001, Si and Callan [2] classified scientific web pages of dif-
ferent grade levels based on a unigram language model. They built a reading level
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classifier by linearly combined a unigram model and surface linguistic features. It
was shown that their method surpasses the widely used Flesch-Kincaid readability
formula.

In the work of Schwarm and Ostendorf (2005 and 2009, [10, 16]), SVM-based de-
tectors that incorporate the perplexity from unigram, bigram and trigram language
models and other traditional features were created to perform readability assess-
ment. They investigated the influence of syntactic features and traditional lexical
features on estimating accuracy and explored the alternative regression model to
the SVM classifier in the context of limited annotated training data.

Later on, the introduction of neural language models has achieved better results
for the task of readability assessment. Azpiazu and Pera (2019, [15]) proposed
a multi-attentive long-short term memory (LSTM) architecture called Vec2Read
for automatic multilingual readability assessment. The model leveraged a multi-
attentive strategy to make the network concentrate on specific words, sentences,
and paragraphs that correlated with reading levels and then predicts probability
over reading levels based on attention scores. The use of attention mechanism yields
better results than the same LSTM architecture with traditional and deep learning
strategies.

Martinc et al. (2019, [7]) presented both supervised and unsupervised approaches
with multiple novel neural language models, such as LSTM and BERT (Bidirec-
tional Encoder Representations from Transformers, [17]), on readability estimation.
It was shown that the supervised approach they employed achieved better results
than traditional readability formulas and is transferable across languages. It is
worth mentioning that they directly used model perplexity as a metric for assessing
readability on an unsupervised setting, which coincided with our idea. However,
their perplexity-based measures were concluded as the worst measurements accord-
ing to their experimental results. In this thesis, we argue that perplexity is a strong
indicator of text quality evaluation.

2.2 Text quality assessment

Text quality assessment is a task to evaluate how well-written an essay or article is
by assigning a goodness score to it, which is often referred to as AES. AES aimed to
relieve the heavy work loads of educators or teachers in assessing large amounts of
essays and can be traced back to the 1960s when the first AES system Project Essay
Grade (PEG) was proposed [18]. Since then, researchers have considered AES as a
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regression, classification and preference ranking problem and utilized uncountable
statistics, machine learning and deep learning techniques to approach it [19, 20].

We can classify existing approaches for AES according to the level of NLP (short
for Natural language processing) techniques applied [6]. Based on this, three cate-
gories could be identified: shallow NLP refers to statistical techniques for shallow
linguistic features, i.e. lexical level features, full NLP involves more sophisticated
NLP techniques for not only lexical level but syntax, semantics and structure level
features, deep learning NLP involves advanced deep learning architectures, such
as RNN, CNN and neural attention models for automatic feature selection [6, 20, 21].

Therefore, in this section, we will follow these three categories to briefly introduce
the development of AES systems and approaches.

2.2.1 Shallow NLP techniques

The early AES systems mainly used statistical analysis of one or multiple shallow
linguistic features, i.e. lexical level features, such as keyword frequency or punctu-
ation counts. The PGE proposed by Page et al.(1966, [18]), the Intelligent Essay
Assessor (IEA) introduced by Thomas et al.(1997, [22]) and E-rater presented by
Burstein et al.(1998, [23]) are three of the most representative AES systems in this
category.

PEG predicted essay scores using regression with up to 30 parameters, such as
average word length, number of semicolons, and word rarity [18, 24]. As the first
AES system, despite critics arguing that computers cannot determine the writing
competence as well as humans does, it proved that the PEG score correlated well
with scores by human raters. However, PEG can only capture writing style rather
than contents of essays as only shallow linguistic features were used. Despite this,
PEG has been widely used due to its conceptual simplicity and limited computer
requirements[21, 25, 26].

IEA used latent semantic analysis (LSA, [22]) to grade essays automatically, which
was first designed for information retrieval to measure the similarity between docu-
ments. The underlying principle of LSA is to identify the semantic similarity between
the input document and indexing documents by converting documents into vectors
based on the frequency of indexed terms in the input document. Then, the IEA
system will assign a goodness score using the average score of several most similar
calibration documents. The number of calibration documents used is predefined as
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a hyper-parameter. Contrary to PEG, IEA can capture contents of essays instead
of writing style due to the nature of the LSA method. It is also reported a high
correlation between IEA scored and human scored essays [26].

Compared to PEG and IEA, E-rater has more sophisticated architecture which
contains three modules corresponding to syntactic variety, discourse structure, and
content analysis. Syntactic variety was represented using the ratio of complement,
subordinate, infinitive, and relative clause and occurrences of modal verbs per sen-
tence per essay. Discourse structure was similar to PEG but with up to 60 variables.
Content analysis aimed to measure the semantic similarity between essays, which
shares the same concept as the IEA system. It was shown that E-rater correlates
significantly with human raters [23]. E-rater is the superior choice for grading con-
tent and has been used to score the General Management Aptitude Test (GMAT)
[23, 26].

Other existing approaches, such as Larkey’s system (1998, [27]), formulated AES as
a classification task and applied the classical Naive Bayes model. Further, multino-
mial Bernoulli Naive Bayes was used to classify the categories of text quality[28].
Despite the fact that shallow features can hardly capture the semantic information,
it is consistently reported that multiple systems or approaches using shallow NLP
techniques could achieve 60% exact agreements with human raters [21, 6, 26].

2.2.2 Full NLP techniques

Due to the limitation of shallow features, early systems could not capture the dis-
course cohesion and semantic information when evaluating the text quality. As a
result, they are more likely to be tricked by some nonsense essays generated inten-
tionally. For example, IEA could be fooled to give a high score to a text that consists
of a sequence of relevant words without any structure [26].

Therefore, to eliminate the limitation, more complicated NLP tools were applied into
AES systems and approaches, including syntactic analyzers, rhetorical parsers, and
semantic analyzers. Rhetorical parsers aimed to determine the discourse structure
of texts [29]. Syntactic analyzers were used to identify sentence components and
analyze syntactic dependencies between them [30]. While semantic analyzers were
utilized to identify the function of each component in the text [6, 31].

C-rater (2001, [23]) and its advanced version E-rater (2006, [32]) are two most
popular systems that were benefited from these NLP tools. C-rater and E-rater
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are automated scoring systems that were designed for Educational Testing Service
(ETS), the largest nonprofit educational testing and assessment organization in En-
glish. Both of them made use of not only the lexical level features but more complex
syntactic features extracted from the training texts. As a result, they achieved high
percentage agreements (over 80% agreement) with human raters in both small-scale
and large-scale studies [6].

Subsequently, a new series of ranking-based methods were proposed, combined with
complex NLP tools. In 2011, Yannakoudakis et al. formulated the AES task as
a preference ranking problem [33]. It made use of hybrid features containing word
n-grams, part-of-speech n-grams, grammatical complexity, and parsing trees to rank
the order of essays based on the writing quality and then measured the correlation
between system scores and human graders’ scores. Further, Chen et al. [34] applied
a list-wise ranking technique into their system in order to reduce biases between
human raters and computer based systems by directly incorporated the agreements
term into the loss function. The features they utilized included syntactic variety,
sentence fluency, and prompt-specific features.

2.2.3 Deep learning techniques

Despite the fact that full NLP techniques based systems achieved fantastic per-
formance on AES, they required sophisticated manual feature engineering [6]. To
combat this issue, people began to explore more advanced approaches that made use
of state-of-the-art deep learning techniques to learn syntactic and semantic features
automatically.

It should be mentioned that there was no existing benchmarks that could be used
to uniformly evaluate AES systems until Shermis and Burstein presented the Auto-
mated Student Assessment Prize (ASAP) dataset in 2013 [19]. Subsequently, with
the emergence of powerful deep learning tools and the benchmark dataset, significant
progress have been made on the AES task.

In 2016, Alikaniotis et al. adopted a LSTM based language model to perform AES.
The model took the word embeddings that were learned by the word contributions
to text score as input, and obtained the essay expression using the last hidden states
of a two-layer bidirectional LSTM. The LSTM based model achieved excellent re-
sults, outperforming other commonly used systems [35]. Further, Taghipour and Ng
[36] explored several neural network models including LSTM, LSTM with attention
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mechanism, CNN combined with LSTM and bidirectional LSTM for the AES task.
Their method avoided a large amount of effort to perform feature engineering and
the best architecture, LSTM, outperformed a strong baseline by 5.6% in terms of
the Kappa coefficient.

Subsequently, CNN were also adopt for AES. Dong and Zhang (2016, [37]) employed
a hierarchical CNN on the AES task. It split texts into sentences and extracted
both sentence-level and text-level information using a two-layer CNN to obtain the
text representation. This method was demonstrated to outperform the baseline
approaches, such as Bayesian Linear Ridge Regression (BLRR) and Support Vec-
tor Regression (SVR), showing automatically learned features to be competitive to
handcrafted features. Dong et al.(2017, [20]) systematically investigated CNN and
LSTM on sentence-level and text-level representation respectively, and the effective-
ness of attention mechanism on automatically selecting more relevant n-grams and
sentences for the task. It was proved that the method outperforms the previous
methods and attention mechanism is particularly effective in the AES tasks.

Our work combines neural networks with an unsupervised ranking-based method to
provide further help for writing and editing. Results shows that our metrics strongly
correlate with quality scores graded by human raters.

3 Language models

Language modeling is an approach to understanding linguistic structures within
the language by learning from corpus data. The studies of language structures can
be traced back to two centuries ago [38]. Since then, linguists have accumulated
a large number of corpora to find syntactic rules of the language. These rules
were formalized into the grammar that we know today [39]. While grammar can
indeed recapitulate the structure and usage of the language, they cannot completely
identify all situations that occur in language use as people may sometimes speak
ungrammatically to meet their daily communication needs [40]. Therefore, in order
to address this problem, scientists have instead made use of statistics as a tool to
identify the common patterns within languages. More specifically, language models
could learn the probability distribution of words that occurred in a sequence from
corpus data. This kind of approach is called language modeling [41].

Language models are probabilistic models that assign probabilities to words or se-
quences. More specifically, given a corpus C, language models can learn the condi-
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tional probability distribution p(w|c), the probability of a word w appearing in the
context c. According to this, language models can be used to predict the probability
with each possible next word occurred and generate text by continuously sampling
from the probability distribution [38].

There are two main categories of language models: statistical language models
(SLM) and neural network based language models (NNLM). SLM was first proposed
in 1980, and then widely used in a variety of NLP tasks that rely on probability
of words or sequences [42]. For example, statistical language models were used
to assign a goodness score based on the probability that a sequence occurred and
therefore could suggest the most accurate translation for machine translation tasks
or the most likely transcription in speech recognition [43, 44, 45, 46]. However nowa-
days, powerful neural networks based language models have replaced the statistical
models and become dominant in NLP. These neural language models have achieved
state-of-the-art performance on a large amount of challenging NLP tasks like ma-
chine translation, speech recognition, and natural language inference [47, 48, 49, 50].
Here, we aim to introduce our new word-level metrics to assess the text readability
and quality. As the metrics we proposed are actually mathematical variants of the
word probability that language models output, it is greatly necessary to introduce
the theoretical background of language models before we delve into the details of
the metrics. In this chapter, the details of language model basics and the formulas
as well as architectures of multiple language models will be described.

3.1 Language model basics

In this section, we will introduce the flow of building a language model and its
evaluation, in order to help readers understand model details better. Section 2.1
describes language representation and the training process, while section 2.2 depicts
evaluation methods of language models in detail.

3.1.1 Introduction

Building a language model often requires three compulsory steps, which are process-
ing the corpus, training the language model, as well as fine-tuning and evaluating
the trained model. Assuming that we have a clean corpus that is ready for training
and we want to build a language model based on it, the first thing to do will be
splitting the text into tokens and build a vocabulary which is a list of all unique
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tokens in the corpus. This step is called tokenization.

Then, before feeding data into a language model, it is essential to encode tokens into
a readable format for a language model. However, different models require different
inputs. For statistical language models, encoding is not necessary. As for neural
language models which require the input sequence to be a vector or matrix, there
are two commonly used ways to encode tokens, which are called one-hot encoding
and word embedding.

One-hot encoding is a method to convert each token into a unique one-hot vector.
One-hot vector consists of all 0s, except for a single 1 in some position. For a
vocabulary of size N , the n-th one-hot vector is the vector whose n-th entry is 1 and
all other entries are 0s. Therefore, there would be a total of N one-hot vectors that
could represent all N unique tokens. These one-hot vectors could be either directly
fed into models or stacked as batches. One-hot encoding is easy to make and highly
interpretable for language model use. However, it leads to a higher level of sparsity
as the vocabulary size increases [41].

Another popular approach for encoding is word embedding, which was first intro-
duced in the 1960s [51]. Word embedding represents a set of techniques where
distributed representations of individual tokens are learned based on the usage of
tokens [52]. It is used to map unique tokens into vectors with a fixed length. These
vectors obtained by statistical or machine learning methods are supposed to capture
the semantic similarities between linguistic items. Word embedding does not only
address the sparsity issue of one-hot encoding but also provides semantic information
for language models. Therefore, a large amount of language models and downstream
NLP tasks take word embedding as the very first step to conduct [52, 53].

3.1.2 Evaluation of language models

Intuitively, we can evaluate the performance of a language model by measuring
the improvements that the model made on a specific NLP task. For example, in
speech recognition, we can compare the output of the speech recognizer with different
language models to see which language model leads to a more concise transcription.
This kind of end-to-end evaluation is called extrinsic evaluation [41]. Extrinsic
evaluation is considered to be the best way to evaluate language models because
they can better serve the tasks we are performing [41].

However, testing language models on larger downstream NLP tasks is often very
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expensive as those downstream NLP applications often have more complex architec-
tures [41]. Therefore, it is essential to instead create intrinsic evaluation metrics
that are independent of any application and directly measure the performance of a
language model. The most commonly used metric is called perplexity.

It is commonly used to evaluate a language model by computing the average per-
plexity on the test set. The perplexity describes the degree of uncertainty that the
model feels about the sequence of interest. It is defined as the normalized inverse of
the probability of that sequence under the language model. For a sequence of words
W = w1w2...wN that of size N , the perplexity (PP for short) is formulated as [41]:

PP (W ) = N

√
1

p(w1w2...wN)
. (5)

According to Equation 5, we can conclude that the higher the probability of a
sequence, the lower the perplexity. Basically, we expect that the language model is
confident of sequences that appeared in the corpus on which the model was trained.
That is to say, the probabilities of sequences in the corpus should be high and the
perplexity of those sequences should be low.

3.2 Statistical language models

Statistical language models directly model the conditional probability distribution
of a word given the words that precede it. That is to say, given a sequence of words
w1w2...wm, SLMs will compute the probability of p(wn|w1w2...wm−1) by calculating
the ratio of the number of times that the history sequence sold = w1w2...wm−1

followed by word wm to the number of times that sold occurs in the given corpus, as
shown in Equation 6 [41].

p(wm|w1w2...wm−1) =
C(w1w2...wm−1wm)

C(w1w2...wm−1)
, (6)

where the capital C stands for a counting function.

SLMs can also be used to compute the joint probability of an entire sequence ac-
cording to the chain rule of probability [41]:

p(w1w2...wm) = p(w1)p(w2|w1)p(w3|w1w2)...p(wm|w1w2...wm−1). (7)

With the ability to assign probabilities to words or sentences, SLMs are widely used
in speech or optical character recognition, spelling or grammatical error correction
as well as machine translation tasks [39, 41].
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It is intuitive that the relation between the very beginning word w1 and the last word
wm will be extremely weak as the length of the sequence increases. Therefore, we
assume that, for a word wm, its probability of appearing in the end of the sequence
w1w2...wm−1 only depends on n previous words rather than all previous words. Based
on it, Equation 6 and 7 will be converted into:

p(wm|w1w2...wm−1) ≈ p(wm|wm−n...wm−1), (8)

p(w1w2...wm) = p(wm−n)p(wm−n+1|wm−n)...p(wm|w1w2...wm−n). (9)

This kind of models are considered to have a sliding window of size n and are
called n-gram language models. Here, the n-gram is responsible for a sequence
of size n. Similarly, the bigram (or 2-gram) represents a two-word sequence and
trigram (also called 3-gram) stands for a sequence of three words or tokens [41].

As the size of the sliding window n increases, the complexity of the model and the
model size increases as well. For a corpus that has N unique tokens, if we want
to model the conditional probability that a sequence of size n − 1 followed by a
word wn, we have to count how many times that Nn n-grams and Nn−1 (n-1)-grams
appear in the corpus according to Equation 8 and 9. As a result, the model size will
be extremely large when n is a large number. Therefore, n is often smaller than 5
in practice.

When n = 1 (the uni-gram model), it is suggested that the probability of each word
only depends on its own probability in the given corpus. The Equation 9 is simplified
as p(w1w2...wm) = p(w1)p(w2)...p(wm). Despite the fact that the uni-gram model is
easy to use, it cannot capture contextual information compared to higher dimension
language models. The bi-gram model computes the conditional probability of a
sequence w1w2...wm−1 followed by a word wm by the conditional probability of a
word wn appearing after its previous word wn−1. Note that the bi-gram model is a
variant of the Markov model, which is a kind of classical probabilistic model used
for modeling randomly changing systems [41].

Despite the fact that model complexity increases as window size n and vocabulary
size N increase, it is understandable that higher-order n-gram models will do a
better job on language modeling on corpora that have suitable sizes. However,
other than the large increase of model complexity, higher-order n-gram models have
another problem called the curse of dimensionality [41, 39]. This term describes
the phenomenon that sparsity of the corpus increases as the model dimensionality
increases. Specially, it is difficult to accurately estimate the probability of n-grams
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that rarely or never appeared in the corpus, because those n-grams may be just
missing from the corpus as any corpus is limited. Therefore, it is not reasonable to
assign them an extremely low or even zero probabilities with the consideration of
generalization.

The method used to solve the sparsity problem in SLMs is called smoothing, which
gets rid of the extremely low or zero probabilities by adjusting the maximum like-
lihood estimator of language models [41]. Smoothing is utilized to deal with the
problem that n-grams did not appear in the training corpus but are in the unseen
test dataset. Before that, how do we address words from the test corpus that are
not in the vocabulary? Normally, we replace those words with an unkown marker
such as <UNK> and then treat <UNK> as a normal word. After that, we use
smoothing to solve those n-grams that the model did not see in the training corpus.

The most used smoothing methods are Laplace smoothing, add-k smoothing,
stupid backoff and Kneser-Ney smoothing. Laplace smoothing (also called
add-1 smoothing) is to add 1 to all counts of n-grams. Using bi-gram model as an
example, the conditional probability is modified as follows, where N represents for
the number of bi-grams in the corpus [41].

p(wn|wn−1) =
C(wn−1wn)

C(wn−1)
, (10)

p(wn|wn−1) =
C(wn−1wn) + 1

C(wn−1) +N
. (11)

In this way, all zero probabilities are convert to a small number 1
N+V

, assuming
that the vocabulary has size V . This is of benefit for estimating the probabilities of
sequences in test dataset. However, it is suggested that Laplace smoothing is not
a good choice for language models, because it will assign the same probabilities to
each unseen token. Despite this, it is considered as a baseline for other smoothing
methods in SLMs [41].

Add-k smoothing shares the same concept with Laplace smoothing. It instead adds
k to counts for n-grams as shown in the following [41]:

p(wn|wn−1) =
C(wn−1wn) + k

C(wn−1) + k ∗N
. (12)

It is often beneficial to fine-tune k by optimizing it on a validation set. Therefore,
add-k smoothing is considered a more flexible approach than add-1 smoothing. How-
ever, add-k smoothing suffers from the same deficiency of generating probabilities
with poor variance as the add-1 smoothing does [41, 54].
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The stupid backoff smoothing is quite a different approach compared to add-1 and
add-k smoothing, which substitute the probability of an n-gram with the proba-
bility of its corresponding (n-1)-gram if the n-gram rarely appears in the corpus.
Taking trigram model as an example, assuming that we want to compute the condi-
tional probability p(wn|wn−1wn−2) but the sequence wn−2wn−1wn are missing from
the corpus. What stupid backoff does is estimate the probability using the bigram
probability p(wn|wn− 1). This step is called backoff. Variants of stupid backoff,
such as Katz backoff and Good-Truing backoff generally perform well in prac-
tice but fail under some conditions. For example, if the sequence wn−2wn−1wn rarely
appears in a corpus, it is possible that the sequence is grammatically incorrect. How-
ever, the backoff-based approaches may consider that the corpus is too limited and
therefore cause an unsatisfactory result [39, 41].

The most widely used method for smoothing is called Kneser-Ney smoothing. The
basic idea behind this method is to discount the probability mass of n-grams by
subtracting some discounted rates dm, where dm is the difference of n-grams counts
in training and test sets. That is to say, if all n-grams that occur m times in training
set and appear m′ times on average in the test set, dm will be computed by m−m′.
Other than the discounting issue, the Kneser-Ney method also solves the problem
that some unigrams have high probability only because their corresponding n-grams
have large counts. It assumes that the continuation probability pcon(wi) of a word
wi is proportional to the number of n-grams that wi has appeared in. Final formulas
of Kneser-Ney smoothing for the bigram model are as follows [41]:

pkn(wi|wi−1) =
max(C(wi−1wi)− d, 0)

C(wi−1)
+ λ(wi−1)pcon(wi) (13)

pcon(wi) =
|v : C(vwi) > 0|

Σw′
i
|v : c(vw′i) > 0|

, (14)

where v represents some token in vocabulary V , while λ stands for the normalizing
constant of the continuation unigram model.

3.3 Neural network based language models

Despite the fact that SLMs such as n-gram model is highly interpretable and easy
to use, they suffered from the issue of sparsity and model complexity. In spite of
applying smoothing techniques and constraining the model degree, it is still difficult
for SLMs to capture the language patterns of given corpora due to the limitation
that only simple models can be used and the linear nature of the model itself.
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With the development of deep learning, researchers have started to consider ap-
plying neural networks, the core of deep learning, into language modeling. In
2001, the first neural network language model was proposed by Bengio et al. [51],
which obtained the performance far beyond the SLMs and addressed the curse of
dimensionality head on. From then, more and more deep learning based architec-
tures were invented to perform language modeling, such as CNN [55], RNN [56],
and LSTM [57]. More impressively, bidirectional language models with the concept
of collecting information from both left-side and right-side context were introduced
in order to capture the language pattern better [58]. Recently, large pre-trained
language models such as GPT-2 [59] and BERT [17] have been shown to surpass the
previous language models and also perform well on various challenging downstream
NLP tasks, such as natural language inference, question answering, and machine
translation.

In this section, we will give a brief introduction to neural networks, basic NNLMs,
such as RNN and LSTM based language models, and pre-trained language models,
including GPT-2 and BERT. As the prerequisite of pre-trained models, the attention
based architecture – Transformer will also be described here.

3.3.1 Neural networks

A neural network is a network of computing units called neurons. The name ’neuron’
was inspired by biology due to the similar functionality of the computing units and
human neurons as computational elements. Each computing unit takes vectors as
input, performs a transformation on it, and produces single output values. The
output y is calculated according to the following formula [60]:

z = w · x + b (15)

y = σ(z), (16)

where x is the input vector and w stands for the weight vector, while b is the bias
term. The Equation 15 performs the linear transformation that maps the input
vector x to a scalar z. The transformed scalar z is obtained by summing up the dot
product x ·w and the bias term b. The σ(.) in Equation 16 represents a non-linear
activation function, which defines the output value of the neuron.

The selection of activation function plays an essential role when implementing neural
networks and strongly depends on the task of interest. There are three popular
activation functions, including the sigmoid, the tanh, and the ReLU (rectified
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linear unit). The sigmoid function outputs values ranging from 0 to 1 and is mainly
used for classification tasks. The tanh maps the output into the range of [−1,+1],
and is considered better than the sigmoid function in practice as its output is zero
centered which makes optimization easier. The most straightforward activation
function, ReLU, outputs x when x is positive, and 0 otherwise. Three functions are
presented in Equation 17, 18 and 19 respectively. In modern neural networks, the
default recommendation is to use the ReLU [41].

sigmoid : y = σ(z) =
1

1 + e−z
(17)

tanh : y =
ez − e−z

ez + e−z
(18)

ReLU : y = max(x, 0) (19)

The quintessential example of neural networks is the feedforward network [60].
The feedforward network is a multi-layer neural network that performs computation
iteratively from one layer to the next without passing back. The structure of a three-
layer feedforward network is shown in Figure 1 [61]. The network is fully-connected,
which means that neurons between adjacent layers are pairwise connected [61].

Figure 1: A simple three-layer feedforward neural network: the network contains one
input layer, two hidden layers and one output layer. Each layer consists of multiple
units, represented by circles [61].

The core of the neural network is the hidden layer which takes a weighted sum of
its input and then apply a non-linear transformation to it [41]. The computation of
feedforward networks proceeded according Equation 20. Here, x and y stands for
the input and output vectors of the network separately, the superscript l represents
the l-th layer, W(l) and b(l) refer to the weight matrix and bias term of the l-th layer,
respectively, σ(·) means the activation functions, and the capital L is the number of
layers in the network. Note that each hidden layer could apply distinctive activation
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functions.

z(0) = x

z(l) = W(l) · z(l−1) + b(l)

a(l) = σ(z(l)) (20)

y = a(L)

The network shown in Figure 1 has a single output node and can perform binary
classification if the activation function of the last layer is the sigmoid function.
However, when trying to do a multi-class classification task, the softmax function
would be a priority choice. The softmax function can output normalized vectors of
real values that encode a probability distribution. Based on it, it is straightforward
to assign the most likely category to an input vector. The softmax function is
presented below:

softmax(zi) =
ezi∑d
j=1 e

zj
1 ≤ i ≤ d , (21)

where d is the number of categories, zi and zj represents for i-th and j-th entry of
vector z.

After knowing the structure of the feedforward neural network, the next step is
to learn how to train the network. Training neural networks means to find wight
matrices and bias terms (parameters of neural networks) that fits the training data
most appropriately. From this aspect, neural networks were considered as supervised
learning approaches. Therefore, we use the same method that is used in other
supervised learning models to find the most likely parameters. The first step is to
define a loss function, and then, we minimize the loss function using the gradient
descent optimization algorithm.

However, performing gradient descent requires the knowledge of gradient of the
loss function whose analytical expression is hard to get. The solution to this is an
algorithm called error backpropagation. The method computes the derivatives
of intermediate variables, such as z(l) and a(l) with respect to model parameters
and then makes use of chain rule to obtain the derivative of the model loss L with
respect to model parameters.

Finishing the model training and evaluation, we can utilize the trained neural net-
works to make predictions. Before that, there are some practical techniques that we
should pay attention to. Firstly, it is not allowed to initialize the gradient descent
with all the weights and biases assigned the value 0, because doing this will make
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hidden units symmetric and the model loses its non-linearity [60]. As a result, we
have to initialize the parameters with small random numbers. Secondly, it is always
helpful to fine-tune the hyper-parameters which are determined by the architecture
designer, such as the number of hidden units and layers [41]. In addition, sometimes
the architecture of neural networks we chose might be too complex to fit the data,
which leads to the problem of overfitting. One technique that is popularly adopted
to avoid overfitting is called dropout, which randomly drops some units and their
connections from the network during training [41].

3.3.2 Neural network language model

The concept of applying neural networks in language modeling was first proposed in
2001 by Begino et al [51]. The goal of their work is to fight the curse of dimensionality
of SLMs by learning a distributed representation for tokens. At the same time, the
model learns a probability distribution of word sequences in terms of the token
representations. The architecture of the neural language model is shown in Figure
2 [51].

Figure 2: The architecture of a probabilistic neural language model: the neural
language model contains a embedding layer that is represented as Martix C, a hidden
layer with tanh activation function, and an softmax output layer [51].

According to Figure 2, The embedding layer transforms the index of each input
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word into a feature vector of a predefined dimension. The resulting word vectors are
concatenated as the input of the tanh hidden layer. Thereafter, the softmax layer
maps the output vector of the hidden layer into a conditional probability distribution
over words in the vocabulary V . If we set an input sequence w1w2..wT , a mapping
function C that assigns feature vectors to words in V , and a function g that outputs
the conditional probability distribution p(wt|w1..wt−1), the model can be formulated
mathematically in Equation 22.

p(wt|w1..wt−1) ≈ p(wt|wt−n+1..wt−1) = g(C(wt−1), ..., C(wt−n+1)) (22)

It was shown that neural language models surpass n-gram language models by a
high margin [51, 56]. However, the model suffers from two major deficiencies: 1)
it fails to deal with the sequence of varying lengths and, 2) it is impossible to
capture important temporal properties of the language. To solve these problems,
the recurrent neural networks (RNN) were adopt by researchers in computational
linguistics.

3.3.3 Recurrent neural network based language model

Unlike feedforward neural networks, the recurrent neural architecture can recursively
process and leverage the information from the past when computing the current
state, and therefore have been widely used for modeling sequential data. Particu-
larly, RNNs have become a prominent choice for language modeling.

Figure 3: The structure of a general recurrent neural network: the left diagram
depicts the structure of a general RNN, which can be unfolded into a chain diagram
on the right side. An RNN contains a chunk of neural networks, A, which takes xt
and the past hidden state ht−1 as input and outputs the current state ht [62].

Figure 3 [62] illustrates the structure of a general RNN. The loop represents the
flow of information passing from one time step to the next. Mathematically, the
computation of the RNN is based on Equation 23 [60, 63].

ht = f(Wht−1 +Uxt + b) , (23)
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where f(.) represents the activation function of the neural network A, while matrices
W and U stand for the weight matrices for both input xt and previous hidden state
ht−1 in the hidden layer. It should be noted that a softmax layer that maps the
output ht to a conditional probability distribution will be added when applying
RNN into language modeling.

The intrinsic property of recurrence allows RNN to not only capture the temporal
nature of language but to eliminate the limitation on the length of input sequences.
This leads to incredible success in NLP [60]. However, despite the fact that RNN
is supposed to learn the long-term dependencies between the previous and recent
information, it was shown that the standard RNN is not capable of doing that as
the sequence length increases due to the vanishing gradient problem [63]. As a
result, the long short term memory (LSTM) network was proposed to overcome the
issue.

Figure 4: The structure of a LSTM network: the symbol of σ within a yellow box
stands for the operation of passing a gate. These symbols represent the input gate,
the forgetting gate, and the output gate from left to right [62].

LSTM shares the main concept from plain RNNs. As one of the most used variants
of RNN, LSTM considered more about the way to process the memory of previous
hidden states by adding three control gates: the input gate, the forgetting gate, and
the output gate respectively. The diagram of LSTM is shown in Fig.4 [62].

Combined with a set of formulas of LSTM (Equation 24), we illustrate the process
flow of an LSTM network here. Firstly, the states of three control gates are deter-
mined by the linear combination of input xt and the previous output ht−1. The use
of the sigmoid function (represented as σ) scaled all entries of gate states it, ft, ot
into the range between 0 to 1. Subsequently, the current information, c̃t, is com-
puted by xt and ht−1 with a tanh activation function, consistent with the calculation
in RNN. Most importantly, the current cell state is the linear combination of the
weighted current and previous information, it� c̃t and ft� c̃t−1. As the computation
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suggests, the input gate controls what new information is supposed to be kept in
the cell state and the forget gate decides what old information the network would
like to abandon. As the final step, the cell state is put through a tanh function,
which pushes the output values into the range between −1 and 1. Then, the result
is multiplied by the output gate state ot that determines what information should
be output [60, 62].

it = σ(W ixt + U iht−1)

ft = σ(W fxt + U fht−1)

ot = σ(W oxt + U oht−1)

c̃t = tanh(W cxt + U cht−1)

ct = it � c̃t + ft � c̃t−1
ht = ot � tanh(ct)

(24)

Although the computation of LSTM is complicated, its way of storing and processing
information is highly consistent with how human brains work [62]. As a result,
LSTM has achieved huge success in challenging tasks of language processing, such
as speech recognition and machine translation and, became the most popular choice
of neural architectures for language modeling [60].

Because of the superior performance, researchers have created many variants of
LSTM and employed them in language modeling. The AWD-LSTM (ASGD weight-
dropped LSTM) is one of the most representative architectures among those variants
[57]. AWD-LSTM adopts advanced regularization and optimization techniques to
not only avoid overfitting caused by the high degree of complexity of LSTM but to
achieve state-of-the-art results on benchmarks of language modeling [57]. Therefore,
we chose the AWD-LSTM as the representative of a number of LSTM-based language
models in our experiment.

It is worth mentioning that the bidirectional LSTM architecture is also used for
building language models [58]. The bidirectional LSTM, as the name suggests,
stands for a set of LSTM-based models that learn the conditional probability dis-
tribution of possible next words given contexts from both left and right sides. It
is suggested that these models benefit from the future information being provided
and have achieved significant performance in various of NLP tasks such as senti-
ment analysis even without fine-tuning [58]. Nevertheless, the bidirectional LSTM
language models are not capable of generating text due to the lack of the right-hand
context during generation. Here, we selected a representative bidirectional LSTM
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architecture, contextual bi-LSTM [58], to perform our experiment.

3.3.4 Attention mechanism and the Transformer

In recent years, incredible progress has been made in language modeling, thanks to
the introduction of the attention mechanism.

The concept of "attention" originated from the Seq2Seq (sequence-to-sequence)
model which, as the name suggests, represents a group of models that transform
the input sequence into another sequence [41]. The most intuitive example of the
transformation is machine translation between multiple languages. A Seq2Seq model
consists of an encoder that compresses the input sequence into a distributed context
vector, and a decoder which transforms the context vector into the target sequence.

The earliest Seq2Seq models used RNNs for both encoder and decoder. According
to what we learned about RNNs, the encoder will convert the input sequence into
a fixed-length vector from which the decoder generates the output sequence. The
limitation of the context vector is considered as a bottleneck that affects model
performance. In 2015, Bahdanau et al. proposed the attention mechanism to deal
with this issue [48].

Figure 5: The attention mechanism: the values, V , are weighted and summed up
by attention-weights that are obtained through a set of operations on the queries,
Q, and the keys, K [64].



25

The attention mechanism is used to search for a set of positions in the input sequence
where the most relevant information is concentrated. More specifically, a set of
alignment scores describing how relevant each input hidden state and output element
are will be learned while training the model. Fig.5 depicts the process flow of the
attention mechanism, in which the attention operation is considered as a retrieval
process [64, 65]. Based on the Figure 5, the operations are formulated by Equation
25, where dk is the dimension of matrix K and (a) represents the vector of attention-
weights. Through model training, the most likely parameters of the softmax layer
and possible middle layers can be obtained and then be used to calculate a vector
that aligns attention score for each value in V [65].

a = softmax(
QKT

sqrt(dk)
)

Attention(Q,K, V ) = aV

(25)

The attention mechanism makes better use of potential information of sequential
data, and therefore achieved comparable performance on the task of English-to-
French translation [48].

Subsequently, in 2017, a novel attention-based language model, the Transformer,
was proposed by Ashish et al. [64]. This model dispenses with complex RNN archi-
tectures entirely and is based solely on the attention mechanism. This architecture
surpasses complicated RNN-based models on machine translation tasks and requires
significantly less time to train. The structure of the Transformer is demonstrated in
Figure 6 [64].

As shown in Figure 6, both encoder and decoder of the Transformer are stacked
by six identical layers. Each layer in the encoder has two sub-layers that perform
multi-head attention and vector transformation respectively. A residual connection
is employed in each of the sub-layers. Different from each encoder layer, a middle
sub-layer that performs multi-head attention over the output of the encoder stack
is inserted in each decoder layer.

It should be noted that the incredible performance achieved by Transformer benefits
from the use of a new technique called multi-head attention. Different from the
standard attention mechanism, multi-head attention repeatedly applies the scaled
dot-product attention (the standard attention) on linear projections of Q,K, V mul-
tiple times. This allows the system to learn the attention weights from different
representations of Q,K, V , which yields better performance. Figure 7 shows the
structure of multi-head attention, and multi-head attention is written as Equation
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Figure 6: The structure of the Transformer: the stack on the left-side is the encoder
while decoder is placed on the right [64].

26, where WK
i ,W

K
i ,W

V
i are parameter matrices that are used to unify the dimen-

sions of projections of matrices Q,K, V [64].

MultiHead(Q,K, V ) = Concat(head1, ..., headh)WO

headi = Attention(QWK
i , KW

K
i , V W

V
i ) (26)

3.3.5 Pre-trained language models

It is worth mentioning that the great thing about the Transformer is not only its
superior performance, but the fact that it has also led to the birth of two powerful
pre-trained language models, BERT (2018, [17]) and GPT-2 (2019, [59]). BERT is
a multi-layer bidirectional Transformer encoder. While GPT-2, the second version
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Figure 7: Multi-Head Attention consists of several parallel scaled dot-product at-
tention layers [64].

of the OpenAI Generative Pre-training Transformer (2018, [66]), is a multi-layer
Transformer decoder. Both BERT and GPT-2 are pre-trained on a giant collection
of free online corpora. BERT was pre-trained on the BooksCorpus (800M words)
and English Wikipedia (2,500M words), while GPT-2 was pre-trained on around
40GB of Internet text [59, 17]. They have achieved significant performance on
multiple downstream NLP tasks, such as question answering, textual entailment
and sentiment analysis by simply fine-tuning [17, 66, 59].

Basically, the language model pre-training aims to transfer the pre-trained language
representations to downstream tasks in order to ease the difficulty of solving chal-
lenging NLP problems [17]. There are two strategies used by existing pre-trained
language models: feature-based and fine-tuning. The most famous feature-based
model is ELMo ((Embeddings from Language Models, 2018, [67]), which adopts
pre-trained language representations on task-customized architectures and has sig-
nificantly improved the model performance. The fine-tuning approaches, such as
BERT and GPT-2, trained huge language models that can be reused by down-
stream tasks with little changes in model architectures [17]. Here, we chose to use
the fine-tuning based model to get rid of the high level of complexity of finding
optimal model architectures required by the feature-based approaches.

As the first fine-tuning based pre-trained model, OpenAI GPT [66] pre-trains a lan-
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guage model on a giant collection of free online corpora at the first stage to capture
the linguistic information. This step is performed in an unsupervised manner, which
avoids the need for gathering a large labeled dataset. As the second step, the pre-
trained language model is fine-tuned over a small task-customized dataset to ensure
good performance on a specific task.

Figure 8: The architecture of the OpenAI GPT: the model contains a embedding
layer, 12 blocks of the Transformer decoder, and a Softmax layer [66] .

The architecture of GPT is shown in Figure 8 [66]. The model takes embeddings of
texts as input and outputs a distribution over the vocabulary after passing through
12 blocks of the Transformer decoder and a Softmax layer. As a supplement, the
task-aware input transformations will be performed during the fine-tuning stage, in
order to make sure the suitability of the pre-trained model for the target task [66].

Although it was demonstrated that GPT has incredible success in a wide range
of benchmarks for natural language understanding, it may be limited by its uni-
directional nature, which causes the ineffective utilization of the training data. Sev-
eral months after the birth of GPT, a bi-directional pre-trained model, BERT, came
out and beat its ancestor [17].
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Instead of using the traditional method of training a language model, BERT adopts
two auxiliary tasks: mask language modeling and next sentence prediction, to en-
courage better bi-directional prediction and sentence-level understanding. After
training, the pre-trained BERT is fine-tuned by adding an extra output layer to
suits the target task. BERT has achieved new state-of-the-art results on multiple
downstream tasks, such as question answering and language inference [17].

Subsequently, a much larger and powerful pre-trained language model, GPT-2, was
proposed by Radford et al [59]. GPT-2 inherits the architecture from GPT and is
10 times larger than GPT with 1.5 billion parameters. At the same time, it was pre-
trained on a more than 10 times larger dataset to void overfitting. GPT-2 achieves
state of the art results on 7 out of 8 benchmarks in different NLP tasks, including
Penn Tree Bank, WikiText-2, Winograd Schema Challenge, and so on, in a zero-shot
setting – without any fine-tuning. This property makes GPT-2 prominent among
pre-trained language models [59].

Our choice of pre-trained language models finally settled on GPT-2 due to its po-
tential of performing well on multiple language understanding tasks in a zero-shot
setting.

4 Methodology

We used an unsupervised ranking-based method to explore if language models can
be used to measure the text readability and text quality.

Our method is based on two hypotheses: i) language models trained on a well-
written corpus will be less perplexed on articles that are simple and well-written, ii)
the more predictable the words in the article are, the more readable and well-written
the article is.

Based on the hypotheses, we proposed two metrics: average per word perplexity and
average likelihood ratio, that we thought can measure how well a language model
predicts text, to assess text readability and text quality. Here, we investigated the
following questions:

1. Whether the metrics correlate well with readability scores or quality scores
that are assigned by human raters.

2. What kind of language models can capture the characteristics of well-written
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articles and therefore can be used to assess writing competence of articles.

To find the answer to the above questions, we performed multiple correlation ex-
periments on various language models, such as bigram, LSTM, bidirectional LSTM
and GPT-2. These language models were trained on the Guardian corpus, a British
newspaper, that we thought is well-written. Further, we used three corpora, Newsela
[4], OneStopEnglish [5] and Weebit [68] that are widely used in text readability
studies, in order to verify the relation between text readability and the metrics. As
for the study of text quality, we used the self-collected IELTS corpus and another
ASAP corpus to measure the correlation between pre-assigned quality scores and
the metrics.

In this chapter, the details of datasets and model architectures used in this thesis
will be described in Chapter 4.1 and 4.2, respectively. Chapter 4.3 will demonstrate
the intuitive derivation of the metrics, word perplexity and word ratio, followed by
the introduction to the correlation coefficients that we used to evaluate our metrics
in Chapter 4.4.

4.1 Dataset description

We used 6 corpora in total. The language models were trained using news arti-
cles from The Guardian, a British newspaper. We assume that these articles are
well-written because they were written by journalists, who write for a living. Exper-
iments for readability assessment were conducted on the Newsela, OneStopEnglish
and WeeBit corpora, which are the three most popular datasets used for assessing
readability and text simplification tasks. Besides, we adopted the IELTS corpus and
the ASAP++ dataset to estimate the performance of text quality evaluation.

4.1.1 The Guardian Corpus

It is common for language models to be trained on English Wikipedia. However, as it
has been criticized for the writing quality of Wikipedia articles [1], we instead decided
to create our own corpus of well-written text. For this purpose, we downloaded news
articles from The Guardian, a UK newspaper. Articles from newspapers are written
by journalists, who are trained to write clearly and concisely. In addition, newspaper
articles will have been checked by several editors for correctness and to achieve a
consistent style prior to publication.
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We crawled 20,000 news articles (May 12, 2019 - September 17, 2019) from four
categories (news, culture, sport and lifestyle) of The Guardian’s website. Each cat-
egory contains 5,000 articles (downloaded September 18th, 2019). Each article was
pre-processed by removing non-ascii characters and setting text to lowercase. Sub-
sequently, we shuffled the ordering of the articles and split the corpus into training,
validation and test sets in the proportions, 80%, 10% and 10%, respectively.

4.1.2 The Newsela Corpus

The Newsela corpus contains articles intended for students of various age groups
and is widely used to assess text complexity and to evaluate the reading ability of
students [4]. Here, we used the latest version of Newsela (from January 9th, 2016),
which contains 10,786 articles, each of which is supplemented by up to five simplified
versions of the same article. Simplified articles were written by experienced editors
in order to make them easier to understand for students at different grade levels. We
filtered out non-English articles and deleted those that did not have corresponding
simplified versions. Of the remaining 9,565 articles, 28 articles had 3 simplified
versions, 1,840 had 4 simplified versions, and the remaining 42 had 5 simplified
versions.

4.1.3 The OneStopEnglish Corpus

The OneStopEnglish corpus was created by Vajjala et al. in 2016 and became pub-
licly available in 2018 for automatic readability assessment and text simplification
tasks [5]. The dataset contains 567 articles from 2013-2016 from the OneStopEnglish
website. As an English language learning resources website, the OneStopEnglish
website is mainly aimed at second language learners. The articles on the website are
sourced from The Guardian and have been rewritten by experienced teachers into
three versions, namely advanced, intermediate and elementary. This means that the
corpus contains 3 different versions of 189 articles.

4.1.4 The WeeBit Corpus:

The WeeBit corpus was first used in the study of second language readability clas-
sification by Vajjala in 2012 [68]. The data was sourced from two websites: the
Weekly Reader and BBC Bitesize, which are aimed at audiences of different ages.
The articles from these two websites are merged and then divided into 5 categories
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that correspond to the 7-8, 8-9, 9-10, 10-14, 14-16 age groups. Since there are mul-
tiple broken files in the dataset, we did a series of pre-processing steps, including
removing empty and duplicate files, deleting files that containing anomalous text,
and fixing coding issues. At the same time, in order to balance the number of arti-
cles in each category, we downsampled the group of age 14-16 which has the largest
number of articles. In the end, we obtained a corpus that contains 3,096 articles.

4.1.5 The IELTS Corpus

We crawled 107 scored essays from the IELTS Academic test from IELT-Blog.com.
The website provides various materials for students who aim to obtain good grades
in IELTS Academic test. The IELTS academic test is a well-known English test
among second language learners, especially among university students who desire to
study in countries whose local language is English. The test consists of four parts:
listening, speaking, reading and writing. As one of the hardest parts of the test,
writing requires students to compose an essay of 250-350 words on a given topic.
The grade ranges from 1 to 9, where band 9, the highest score, represents that the
essay has a high degree of quality, while band 1 suggests that the essay uses very
limited vocabulary and basically fails to convey any information.

Here, the 107 essays we used were scored from 5 to 9. The essay that has higher
grade is considered to have better quality and be well-written. It should be noted
that our dataset is imbalanced due to the limited access to scored essays of the
IELTS test online.

4.1.6 The ASAP Dataset

The Automated Student Assessment Prize’s dataset (ASAP) was first introduced by
Shermis and Burstein in 2013 for automated essay evaluation [19]. After that, ASAP
is widely used for evaluating the score of essays and have become a benchmark of
automated essay scoring (AES).

The original ASAP dataset consists of 8 subsets that contains essays written over 8
prompts (given topics). The whole dataset includes 12,978 essays that contain 150 -
500 words. Each essay was double-graded by at least one and up to three proficient
evaluators based on the overall quality of an essay. However, as our work aims to
prove the relation between metrics we proposed and text quality which relates to a
variety of aspects to consider, we assumed that the overall score is not enough for
our use. Fortunately, in 2018, Mathias and Bhattacharyya [69] supplemented the
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dataset by adding extra annotations (i.e. scores for different attributes of the essays,
such as content, word choice, organization, sentence fluency, etc.). The new dataset
is called ASAP++.

It should be noted that despite the fact that the ASAP++ dataset is considered as a
whole, its 8 subsets adopt different sets of attributes and had different rating scales
for each attribute. Therefore, we treated the ASAP++ as 8 separated datasets. For
each set, we carefully selected an existing attribute that is most relevant to text
quality to represent the quality scores of an essay given by human raters. More
specifically, for sets 1, 2, and 8, we choose the attribute of sentence fluency while we
use the attribute of style for set 7. And for sets 3 - 6, the attribute of narrativity is
selected. The detailed information of each subset are listed in Table 1.

Table 1: The grade level, score scales, average length, and the number of essays in
the ASAP++ dataset

Subset Grade level Score range Average length #Essays
set 1 8 1-6 350 words 1,785
set 2 10 1-6 350 words 1,800
set 3 10 0-3 150 words 1,726
set 4 10 0-3 150 words 1,772
set 5 8 0-4 150 words 1,805
set 6 10 0-4 150 words 1,800
set 7 7 0-3 250 words 1,730
set 8 10 1-6 650 words 918

4.2 Model description

To explore the impact of different language models on assessing text readability and
quality, we used 4 language models that have different levels of complexity. Firstly,
we used a bigram model as the baseline due to its simplexity and interpretability.
Next, LSTM and bidirectional LSTM based language models that can capture se-
mantic and syntactic information of language were selected. Last, but not least,
we utilized the state-of-the-art GPT-2 language models to perform the experiments.
We expect to show the difference of assessment ability due to distinctive competence
of language models.
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4.2.1 Bigram language model

The perplexity of the statistical language model is often presented as an important
feature in papers that explored text readability in terms of simplicity [2, 10]. This
seems to partially prove that the perplexity of SLMs is closely related to text read-
ability. At the same time, with the consideration of model complexity, we decided to
use a bigram model as it could capture simple context information with less sparsity
and is also easy to implement. To handle the zero frequency problem brought by
SLMs itself, we incorporated the add-0.5 smoothing to the bigram model.

4.2.2 AWD-LSTM

The LSTM architecture we used here is a variant of AWD-LSTM that was proposed
by Merity et al. in 2017 [57]. AWD-LSTM stands for ASGDWeight-Dropped LSTM,
which used DropConnect [53] and a non-monotonically triggered average stochastic
gradient descent (SGD). These two techniques made the AWD-LSTM dominate in
LSTM-based language modeling.

DropConnect [53] is an advanced regularization technique to avoid over-fitting of
neural networks. Compared to the traditional regularization method Dropout, Drop-
Connect instead sets randomly selected subsets of hidden to hidden weights to zero.
It was empirically demonstrated that DropConnect is more efficient for regulariza-
tion of RNN models [53].

On the other hand, non-monotonically triggered average SGD, a variant of the
average SGD, represents the technique that switches SGD optimizer to average SGD
only when the validation loss fails to drop in multiple cycles. The number of cycles
is pre-defined and we used 5 cycles as its author suggested.

In our use, despite the fact that it was suggested that SGD optimization outperforms
other techniques, such as Adam, momentum SGD, and RMSProp on the task of
language modeling [70], we found that Adam optimization can help the model to
converge to an optimal result faster. Therefore, we used a three-layer LSTM with
weight-drop applied to perform language modeling. The model was trained in 300
epochs and converged after around 150 epochs.
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4.2.3 Contextual bidirectional LSTM

The contextual BLSTM (cBLSTM for short) is based on the bi-directional LSTM
(BLSTM) architecture [58]. As we mentioned before (section 3.3.3), BLSTM pre-
dicts each word using both left and right sides contexts, which provides more con-
textual information for language modeling. However, it was demonstrated that the
traditional BLSTM will cause the problem of circular loops in sequence prediction.
Take a simple sentence "<BOS> How are you <EOS>" as an example, at index 1,
the forward LSTM will predict the word "are" while the backward LSTM will take
"are" as the input. To solve the problem, the cBLSTM was proposed in 2017 for
the sentiment analysis task [58].

Here, we used a one-layer cBLSTM that has 128 hidden units to build the language
model. Even though we did not perform fine-tuning on the model, it obtained lower
validation and test loss compared to the unidirectional LSTM we used. However,
due to the higher level of model complexity, the model seems to overfit after 20
epochs.

4.2.4 GPT-2

Recently, language modeling has benefitted from the development of transfer learn-
ing [66, 17]. Among two most powerful pre-trained language models, BERT and
GPT-2, we chose to use GPT-2 due to its state-of-the-art performance on generat-
ing coherent text [59].

Currently, there are three publicly available versions of GPT-2 called GPT2-small,
GPT2-medium, and GPT2-large. As the name suggests, three versions have model
sizes from small to large. Due to the limitation of computing resources, we only
trained the smallest GPT-2 on the Guardian corpus in 20 epochs. That is to say, the
GPT2-medium and GPT2-large have been directly used to perform the evaluation.

4.2.5 Training results

In this subsection, we describe the training result of language models. The number
of parameters, validation and test perplexity of each model are shown in Table 2.

As we can see from Table 2, the simplest bigram model obtained an extremely
high validation perplexity compared to other NNLMs. It suggestes that the bigram
model did not capture the pattern of well-written text. Further, the fine-tuned WD-
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Table 2: The number of parameters, validation and test perplexity of each language
model

Model Parameters Validation Test
Bigram model 2.19M 2024.41 1984.89
AWD-LSTM 95.39M 79.40 78.49

Contextual-biLSTM 158M 73.42 71.41
GPT-2 small 124M 19.99 19.75

GPT-2 medium 355M 23.08 22.80
GPT-2 large 774M 19.99 19.80

LSTM and cBLSTM had similar validation perplexity. We can conjecture that they
might have similar performance on inferring well-written text that has the same
distribution as the training set.

As for the three GPT-2 models, they largely outperformed the LSTM based models
and the bigram model. Based on this, we infer that GPT-2 models might be the
superior choice for capturing the pattern of well-written text. Despite the fact that
GPT2-large was not trained on the Guardian corpus, it performs as well as the
trained GPT2-small on the validation set. After training, GPT2-small performs
better than the untrained GPT2-medium on both validation and test sets. This
suggests that pre-trained larger scale GPT-2 model has strong generalization ability
to infer language.

4.3 Word-level metrics

Imagine that you are reading an essay, it might be distracting when you see some
unexpected words in the text. These words may be words that you are not familiar
with or words that are grammatically incorrect or misspelled. Whatever they are,
these unpredictable words have great potential to lead us to think that the article
is difficult to read. On the contrary, when there are no words in the article that
surprise you or make you feel uncomfortable, we often find the article highly readable
and well-written. This intuitive feeling inspired us to assess text readability and
quality by measuring how well a well-trained language model will predict each word
appearing in the text. Here, we assume that the well-trained language model is able
to determine if the use of words in a text is reasonable like human does.

Based on this, we proposed two metrics: average word perplexity and average likeli-
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hood ratio, that largely depend on the probability of a word appearing in the text to
assess text readability and quality. Note that both word perplexity and word ratio
are word-level metrics that enable us to highlight issues for editing.

4.3.1 Word perplexity

The word perplexity is derived from Equation 5 by substitute the sequence length
to 1. The formula of word perplexity is as follows.

WP (w) =
1

p(w)
, (27)

where w represents the word of interest. However, the value of perplexity might be
extremely large when the probability p is close to 0. Therefore, we represent the
word perplexity in log format as WPlog:

WP log(w) = −log(p(w)) (28)

To measure the perplexity on the whole sequence or article that has N tokens, we
calculate the mean of word perplexity as in Equation 29.

WPmean =
1

N

N∑
n=1

WPlog(wn) (29)

The word perplexity strongly depends on the word probability predicted by the
language model. Therefore, word perplexity could demonstrate how likely a word
appears in a specific position of a sequence. Note that because of the inverse in
Equation 27, the higher the word probability, the lower the word perplexity. This
suggests that the lower the average word perplexity is, the better the model will
predict the article.

4.3.2 Likelihood ratio

The likelihood ratio, also called word ratio in this thesis, is the ratio of the word
probability and the maximum probability of any word appearing in the position of
interest. The formula is written as follows:

LR =
p(w)

max1≤v≤V p(wv)
, (30)
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where p(w) represents the probability of the word w and V stands for the vocabulary
size. Similarly, we use the mean of likelihood ratio of each word to evaluate the
uncertainty of the whole text that has N tokens.

LRmean =
1

N

N∑
n=1

p(wn)

max1≤v≤V p(wv)
(31)

The likelihood ratio ranges from 0 to 1. When likelihood ratio equals to 1, the
current word will be considered as the most likely word by the language model. As
opposed to word perplexity, likelihood ratio is positively related to the predicted
probability and, therefore, the higher the average likelihood ratio, the less perplexed
the language model feels about the text.

4.4 Correlation coefficients

To test our assessment method, we measured the correlation coefficient between
the human rater scores and the two metrics. There are two mostly used correlation
measures, Pearson correlation coefficient (PCC) and Spearman’s rank correlation co-
efficient (SRCC). The Pearson coefficient can measure the linear correlation between
two continuous variables X and Y [71], while SRCC, a robust non-parametric mea-
sure, can identify the statistical dependence between the rankings of two variables
[6]. Despite the fact that PCC has been widely used to evaluate the performance
of readability assessment systems and AES systems [7, 6, 33], we argue that PCC
is not suitable to measure the correlation as discrete variables are involved, such
as grade levels or quality scores in our experiments. Also, it is shown that PCC is
neither distributionally robust nor outlier resistant [72, 73]. As a result, we chose
the Spearman coefficient as the correlation measure in our experiment.

4.4.1 Pearson correlation coefficient

Pearson correlation coefficient is a measure of linear correlation between two vari-
ables X and Y . It is defined as the covariance of two variables divided by the
product of their standard deviation [71]:

ρ(X, Y ) =
cov(X, Y )

σXσY
(32)

Here, σ represents the standard deviation while cov(X, Y ) stands for the covariance
of variables X and Y . According to the Cauchy–Schwarz inequality, ρX,Y has the
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value between -1 and +1, where -1 refers to total negative correlation, +1 represents
the total positive linear correlation, while 0 stands for no linear correlation [73].

4.4.2 Spearman’s rank correlation coefficient

Spearman’s rank correlation coefficient, a robust non-parametric metric, is defined as
the Pearson coefficient between rank variables. Unlike PCC that evaluate the linear
relationship between variables, SRCC can instead measure the monotonicity between
two variables. For variables X and Y , we first need to obtain their corresponding
ranking variables X ′ and Y ′, in order to calculate the SRCC. Subsequently, we could
compute the SRCC using the PCC between the variables:

rs(X, Y ) = ρ(X ′, Y ′) . (33)

SRCC has ranges from -1 and +1. The Spearman correlation of -1 (or +1) occurs
only when each variable is a perfect monotonically decreasing (or increasing) func-
tion of the other, while 0 coefficient suggests that there is no monotonicity of the
relationship between two variables.

5 Experiments

We performed correlation experiments on both tasks to evaluate how much our
metrics correlate with scores rated by human annotators. In this chapter, we depict
the experimental details for both tasks, i.e., readability assessment and text quality
evaluation in subsections 5.1 and 5.2, respectively. Subsequently, more detailed
discussion on the comparison between metrics are presented in 5.3, followed by a
case study to show the effectiveness of our methods on text quality evaluation.

5.1 Correlation experiments on text readability

The basic idea of the experiment is to directly evaluate the correlation between our
metrics and the ground-truth scores (i.e. scores given by human raters). In the
datasets used for readability evaluation, ground-truth scores are usually the grade
levels of texts. And the readability scores we obtained are computed based on
the outputs of language models, according to Equations 27-31. What we expected
are strong positive and negative correlations between the ground-truth scores and
readability scores of word perplexity and likelihood ratio.
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5.1.1 Experimental setup

We evaluated the effectiveness of our metrics, word perplexity and likelihood ra-
tio, using the Newsela, OneStopEnglish, and WeeBit. We employed four different
architectures of language models, the bigram model, AWD-LSTM, contextual bidi-
rectional LSTM, and GPT-2, in the experiments. These language models were
trained on the Guardian corpus that contains well-written articles. By doing this,
we believe that the trained language models can capture the characteristics of highly
readable articles and, therefore, can be used to evaluate text readability.

We used SRCC to measure the correlation between our metrics and grade levels.
Larger absolute values of correlation coefficients indicate stronger correlations. As
a comparison, we also computed the correlations between grade levels and multiple
traditional readability measures, including FKGL, GFI, ARI, SMOG and Dale-Chall
score. The average sentence length and article length are used as baselines.

In addition, to further explore the impact of model size and training on the read-
ability assessment method, we included four different versions of GPT-2: GPT-2
train, GPT-2 small, GPT-2 medium and GPT-2 large. Here, GPT-2 small, medium
and large represent three released architectures of GPT-2, while GPT-2 train refers
to a GPT-2 small trained on the Guardian corpus.

5.1.2 Results

The results of the correlation experiments for the task of readability evaluation are
presented in Table 3.

The metrics we proposed achieved lower correlation than traditional readability
measures. The highest correlation achieved by our method on the Newsela corpus
is ρ = 0.2567 (by GPT2-small), which is much lower than 0.9459 obtained by the
traditional measure – GFI. The best coefficients achieved by the proposed measures
on the other two datasets are slightly higher. On the Weebit corpus, the best result
of our method is achieved by GPT2-large (ρ = 0.3527), while the GFI ended up with
much better result (ρ = 0.6195). Similarly, average perplexity measure of GPT2-
small yielded ρ = 0.3241 on the OneStopEnglish corpus, while 0.6802 is achieved
by one of the baseline metrics – the essay length, as the highest.

Further, we found that both perplexity-based and ratio-based measures perform
inconsistently over the three corpora. On the one hand, the perplexity-based mea-
sures have negative correlations with labeled grade levels. The bigram perplexity
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Table 3: Spearman’s rank correlation coefficients between grade levels and word
perplexity, likelihood ratio, traditional readability measures.

Model Metric Newsela Weebit OneStop
Bigram model

Word perplexity

0.2346 -0.0858 0.2544
AWD-LSTM 0.0919 0.0379 0.2386

Contextual-biLSTM -0.4355 -0.1059 0.0725
GPT-2 train 0.2071 0.1853 0.2759
GPT-2 small 0.2567 0.3294 0.3241

GPT-2 medium 0.2085 0.3428 0.2633
GPT-2 large 0.2276 0.3527 0.2867
Bigram model

Likelihood ratio

0.04816 -0.0428 0.0137
AWD-LSTM -0.2685 -0.1141 -0.2346

Contextual-biLSTM 0.2670 0.2129 0.0608
GPT-2 train -0.1202 -0.2128 -0.1812
GPT-2 small -0.1787 -0.3257 -0.2589

GPT-2 medium -0.1401 -0.3293 -0.1835
GPT-2 large -0.1542 -0.3402 -0.2091

Traditional measures

Flesch-Kincaid grade 0.9310 0.6009 0.5721
Gunning Fog 0.9459 0.6195 0.6556

Automated index 0.9367 0.4847 0.5880
Smog index 0.8864 0.4598 0.5195

Dale-Chall score 0.8884 0.5029 0.6516
Average sent. length 0.9393 0.5486 0.5970

Essay length 0.6979 0.0599 0.6802

measure obtained ρ of -0.0858 on the Weebit corpus, and the C-biLSTM perplexity
scores are negatively correlated with readability scores on both Newsela and Weebit
corpora. In addition, the AWD-LSTM perplexity measure achieved the lowest corre-
lation on both Newsela and Weebit datasets (ρ of 0.0919 and 0.0370, respectively).
On the other hand, ratio-based measures similarly achieved positive correlations. C-
biLSTM ratio measure is positively correlated with readability scores on all datasets,
while the bigram measure obtained positive correlations on both Newsela andWeebit
corpora.

However, we observed that four GPT-2 measures perform consistently across dif-
ferent corpora. These four measures achieved 0.20 – 0.35 ρ values with respect to
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the average word perplexity and -0.12 – -0.34 to the mean likelihood ratio. As the
GPT-2 has a well-designed architecture and is pre-trained on a large collection of
online texts, it is much more powerful compared to other language models in terms
of language understanding and inference. Other language models are only trained on
the Guardian corpus,which may be too small for the models to capture the charac-
teristics of well-written texts, and therefore failed the task of readability assessment.
Also, the Guardian articles are aimed at adults, so language models trained on it
may not be able to identify the grade levels of articles targeting students. Despite
the low correlation coefficients achieved by four GPT-2 measures, we think that the
consistency between them supports our assumption to some extent.

In fact, we found that the grade levels in three corpora, particularly in the Newsela
corpus, strongly correlate with traditional readability measures. We suspect that
these corpora were built under the guidance of traditional readability formulas by
replacing complicated words and using short sentences. This somehow disrupts the
coherence of articles in the dataset. It is well noted that the language model can
capture not only shallow-level lexical information but deeper linguistic features such
as discourse cohesion of texts, which suggests that all these features are considered
by the language model when determining how predictable the next word is given
the previous context. Therefore, the well-trained language model is very likely to
be more perplexed on articles from lower grade levels due to their poor coherence (a
cased study shows this in Section 5.3.3). This yields weak correlations between our
metrics and grade levels of articles. Under such consideration, we argue that our
metrics, word perplexity and likelihood ratio, are not viable indicators for readability
assessment in terms of comprehension.

5.2 Correlation experiments on text quality

In this section, we describe the correlation experiments for the task of text quality
evaluation. Similar to readability assessment, we compute the word perplexity and
likelihood ratio of each essay using language models based on Equations 27-31, and
we then measure the correlations between two metrics and quality scores graded
by human raters. As we hypothesize that language models trained on well-written
articles are less perplexed with well-written essays, we expect that the word perplex-
ity and annotated quality scores will show a strongly negative correlation. And in
contrast, the likelihood ratio is supposed to positively correlate with ground-truth
scores.



43

5.2.1 Experimental setup

We adopt the same set of language models used for assessing text readability to
calculate two metrics on two corpora, the IELTS corpus and ASAP++ (see details
in Section 4.1). Then, we measure how our metrics correlate with annotated quality
scores using SRCC. As the IELTS corpus contains only 104 examples, we verify
the significance of obtained correlation coefficients by checking if the P-value is less
than 0.05. We selected the article length as the baseline here for the performance
comparison.

5.2.2 Results

Table 4 shows the results on the IELTs corpus. And results of correlation experi-
ments on the ASAP++ dataset are presented in Tables 5 and 6.

Table 4: Spearman’s rank correlation coefficients between text quality scores and
word perplexity, likelihood ratio on the IELTs corpus.

Model/Metric Word Perplexity Likelihood ratio
Bigram model 0.4819 0.1163
AWD-LSTM -0.0213 0.08225

Contextual-biLSTM 0.1177 -0.1059
GPT-2 train -0.5680 0.4771
GPT-2 small -0.5530 0.4550

GPT-2 medium -0.5956 0.5000
GPT-2 large -0.5844 0.5118
Article length 0.3764

As we can see, the correlation coefficients of all GPT-2 measures achieve high cor-
relations over almost all datasets, while other model-based measures perform in-
consistently across different corpora. On the IELTs corpus, the highest correlation
is ρ of 0.5950 that was achieved by GPT-2 medium perplexity-based measure. In
the following four sets of the ASAP++: 2, 3, 5, 6, the best correlation coefficients
are slightly lower but still over 0.5. Similarly, the GPT-2 word perplexity measures
attained good results on ASAP++ 1 and 4 (ρ of 0.4190 and 0.4868, respectively).
The worst performance is obtained on the remaining two sets ASAP++ 7 and 8,
which have ρ of 0.3360 and 0.2295, respectively. Overall, GPT-2 based measures
achieved convincing results on 7 out of total 9 datasets, which suggests that the
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proposed metrics are reasonable indicators of text quality.

Table 5: Spearman’s rank correlation coefficients between quality scores and word
perplexity, likelihood ratio on ASAP++ subsets 1-4. Score with a ’∗’ mark represent
that the correlation is not statistically significant.

Model Metric set 1 set 2 set 3 set 4
Bigram model

Word perplexity

0.0763 -0.0707 0.2064 0.3101
AWD-LSTM -0.2347 -0.3784 -0.1608 0.0110∗

Contextual-biLSTM -0.0727 -0.1067 -0.1493 0.0269∗

GPT-2 train -0.4140 -0.5037 -0.4485 -0.5299
GPT-2 small -0.4006 -0.4736 -0.4550 -0.5472

GPT-2 medium -0.4190 -0.4807 -0.4787 -0.5683
GPT-2 large -0.4074 -0.4639 -0.4868 -0.5760
Bigram model

Likelihood ratio

0.2703 0.3172 -0.0203∗ 0.0387∗

AWD-LSTM 0.3604 0.4745 0.1175 0.1629
Contextual-biLSTM 0.0673 -0.0252∗ 0.1831 0.2609

GPT-2 train 0.3739 0.4256 0.3433 0.5365
GPT-2 small 0.3747 0.4094 0.4123 0.5857

GPT-2 medium 0.3912 0.4317 0.4316 0.5881
GPT-2 large 0.3811 0.4202 0.4395 0.5856

/ Article length 0.6026 0.4797 0.6725 0.6943

Similar to the analysis for the readability experiments, we infer that the poor per-
formance of other language models is caused by either the training dataset or the
model architectures we used is not appropriate for the task of interest.

We compared the correlation coefficients achieved by our metrics with the baseline
metric – article length. However, except for the IELTs corpus and ASAP++ set 2,
the baseline metric exceeds proposed metrics by 8.3% to 68.6%. We think this is
due to the inherent shortcomings of our metrics and the uncertainty of the language
model itself. As stated in Section 5.2.3, word perplexity only uses single element
from the predicted probability distribution, making it less representative for the
whole distribution. The likelihood ratio is invalid in some specific contexts. These
deficiencies are very likely to affect the accuracy for text quality evaluation. Despite
this, our work fully demonstrates the potential of using distributed representations
output by a well-trained language model to identify the text quality. We believe
that the performance of our method can be further improved with more powerful
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language models and well-designed metrics.

Table 6: Spearman’s rank correlation coefficients between quality scores and word
perplexity, likelihood ratio on ASAP++ subsets 5-8. Score with a ’∗’ mark represent
that the correlation is not statistically significant.

Model Metric set 5 set 6 set 7 set 8
Bigram model

Word perplexity

0.2891 0.1758 0.2363 0.1668
AWD-LSTM -0.1049 -0.1505 0.0694 0.0035∗

Contextual-biLSTM -0.1599 -0.0467 0.0623∗ 0.1499
GPT-2 train -0.5006 -0.5127 -0.3360 -0.2065
GPT-2 small -0.4953 -0.5227 -0.3186 -0.1954

GPT-2 medium -0.5166 -0.5390 -0.3239 -0.2048
GPT-2 large -0.5220 -0.5434 -0.3273 -0.1831
Bigram model

Likelihood ratio

-0.0815 0.0793 -0.0521 0.2172
AWD-LSTM 0.1177 0.2130 -0.0114∗ 0.1815

Contextual-biLSTM 0.1559 0.1352 0.1858 0.0074∗

GPT-2 train 0.4102 0.4037 0.2724 0.2039
GPT-2 small 0.4337 0.4358 0.2848 0.2156

GPT-2 medium 0.4596 0.4571 0.2949 0.2295
GPT-2 large 0.4656 0.4642 0.2938 0.2254

/ Article length 0.6827 0.5887 0.5666 0.3747

We further explore the impact of model capacity and training by comparing the
results obtained by four GPT-2 based models on 9 datasets. For both perplexity-
based and ratio-based measures, the correlations of GPT-2 train measures do not
increase significantly compared to that of GPT-2 small measures. Instead, correla-
tion coefficients decline on three datasets after training. Therefore, it is difficult to
say that using language models that are trained on well-written articles will improve
the evaluation accuracy. At the same time, we observe that GPT-2 medium mea-
sures achieved better correlations than GPT-2 small measures on all datasets, while
GPT-2 large measures are sometimes even weaker than GPT-2 small measures. De-
spite this, we still believe that larger capacity of language models does improve the
evaluation performance. It is suggested that three versions of GPT-2 are underfit-
ting given their large architectures. Therefore, the degraded performance of GPT-2
large is most likely to be caused by its higher degree of underfitting, in our opinion.

To summarize, it is demonstrated that proposed measures with GPT-2 are strongly
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correlated with text quality scores rated by human annotators. Despite the fact
that not all correlations are significantly strong, our work suggests that distributed
representations output by pre-trained language models have the capacity for deter-
mining the text quality in a direct form. By showing that GPT-2 measures performs
similarly well on 7 out of 9 datasets in a zero-shot setting, we demonstrate the high
degree of transferability of our method in text quality evaluation.

5.3 Discussion

In this chapter, we further discuss the difference between the proposed metrics in
Section 5.3.1. A case study of text quality evaluation is performed in Section 5.3.2.

5.3.1 Word perplexity VS likelihood ratio

Two metrics, word perplexity and likelihood ratio, are proposed to measure the
concordance of article text with predictions made using neural language models.
The motivation for using word perplexity originated from the fact that perplexity
is widely used to measure the fitness between a language model and its input texts.
Referring to the definition of perplexity, word perplexity is directly formulated as
the inverse of the probability of the target word predicted by a language model.
However, it may not be a good summary of the whole distribution that the lan-
guage model outputs as it only uses one element from the distribution vector. More
specifically, word perplexity cannot distinguish between distributions that have the
same probability for target words.

Inspired by this, we proposed the likelihood ratio that is the ratio of word probability
and maximum probability in the distribution that a language model outputs as a
more accurate indicator. Intuitively, we think that the maximum value indicates
the predictive ability of a language model. By dividing the maximum value of the
whole distribution, the metric reduces the bias brought by the language model itself
to some extent.

We infer that two metrics are intrinsically related. Our experiments verified this
assumption. It was demonstrated that two metrics have a strong negative linear
relationship on multiple datasets we used. Without loss of generality, the scatter
plot of word perplexity and likelihood ratio of articles from the ASAP++ dataset is
shown in Figure 9.
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Figure 9: Relationship between word perplexity and likelihood ratio: x-axis and
y-axis represent the average likelihood ratio and average word perplexity of each
article in ASAP++. The straight line shows the linear correlation between two
variables.

Despite that we thought likelihood ratio is a better metric, our experiments shows
that perplexity-based measures usually achieved higher correlations than ratio-based
measures. This may be because we did not consider the uncertainty of language
models when using likelihood ratio to measure how well the article fits the language
model. Consider the situation that a language model obtains equally low probability
for each possible next word at a certain position, it is intuitive to say that the
language model is bad at predicting the next word in this context and the predicted
probability distribution is actually not trustworthy. Under this circumstance, the
likelihood ratio reaches its maximum of 1. However, it is obvious that this high
ratio value is not able to indicate how predictable the target word is and therefore
is invalid in this case.

5.3.2 A case study of text quality evaluation

To intuitively show the effectiveness of our metrics, we selected two short articles
from Simple English Wikipedia for a case study of text quality evaluation. Sim-
ple English Wikipedia, as the name suggests, is a simple version of the regular
Wikipedia. Its articles are written at a basic level of English and aim at both chil-
dren and English learners. Two samples we chose are shown in Figure 10. We refer
two articles as ’Ronald article’ and ’Grendel article’, respectively, based on their
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topics.

Figure 10: Two samples selected from Simple English Wikipedia. The first sample
talks about the ’Ronald Reagan Federal Building and Courthouse’, and the second
article has the topic of ’Grendel’.

The articles we selected are good examples for demonstration due to their simplicity
and shortness. Moreover, two articles are of similar length (62 tokens vs 68 tokens)
and have a similar number of name entities (10 vs 8). This largely eliminates the
effect of other factors on article quality evaluation and, therefore, make our analysis
more accurate.

Intuitively, the Ronald article consists of multiple short sentences and is considered
to be badly written by a native English speaker. In contrast, the Grendel article
is well-structured and considered to be well-written. For all language models, the
Grendel article obtained lower word perplexity, as shown in Table 7.

Table 7: Average word perplexity of two articles
Model Ronald article Grendel article

Bigram model 8.4378 7.1046
AWD-LSTM 6.0633 5.3087

Contextual-biLSTM 12.5675 12.4382
GPT-2 large 2.7860 2.6157

The result indicates that all language models we used feel less perplexed about
Grendel article and consider it has better narrativity than Ronald article. This is
in line with our intuition. As a comparison, we also measure the grade level of two
samples using GFI, without loss of generality. The resulted grade levels for Ronald
article and Grendel article are 8.04 and 10.0, respectively. Indeed, it is reasonable
that the grade level of Ronald article is lower than that of the Grendel article, as it
contains only simple and short sentences. However, this result is exactly the opposite
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to our quality evaluation result, which suggests that our metric is somehow difficult
to identify the simplicity of an article.

6 Conclusion and future work

In this thesis, we aimed to find an efficient way to evaluate whether an essay is
readable and well-written, with the help of language models. Our work was based
on the intuitive hypothesis that language models trained on a well-written corpus
will be less perplexed on articles that are simple and well-written and can, therefore,
determine how readable and well-written an article is. According to this, we pro-
posed two word-level metrics, word perplexity and likelihood ratio that can identify
how well articles fit a language model trained on well-written text, as the measure-
ments of text readability and quality. We also explored the suitability of different
kinds of language models, including a statistical bigram model, unidirectional and
bidirectional LSTM models as well as attention-based GPT-2, for the task of text
evaluation. To investigate the effectiveness of the metrics we proposed, we used
Spearman’s rank correlation coefficient to measure how our metrics correlate with
scores annotated by human raters on multiple datasets that are widely used for
readability assessment and text quality evaluation.

We tested our metrics on two tasks, i.e. readability assessment and text quality
evaluation, separately. For assessing readability in terms of simplexity, we found
that the performance of the bigram model, LSTM and bidirectional LSTM varies
dramatically over the three corpora: Newsela, Weebit and OneStopEnglish. The
inconsistent results indicated that these models did not fit the task well. Despite
the fact that four versions of GPT-2 perform consistently on these three sets, the
correlations between both of our metrics and real grade levels are quite weak. We
also noticed that our metrics lag far behind traditional readability measures. These
facts suggest that our method is not a good fit for the task of readability estimation.

Conversely, the same method achieved much better performance in the evaluation
of text quality. Although other types of language models still failed, all 4 versions of
GPT-2 achieve fairly high correlations on 7 out of 9 datasets (including the IELTS
set and 8 subsets of ASAP++). The absolute values of coefficients range from 0.4
to 0.6. We demonstrated that even though both metrics obtained by GPT-2 are
suitable measures for the text quality, the word perplexity exceeds the likelihood
ratio in most cases.
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In future work, we think there are three major issues that require more explorations.
Firstly, our experiments shows that GPT-2 is better compared to LSTM models
and bigram models on both tasks. And we are interested in figuring out why this
happened. Secondly, we want to further investigate the impact of name entities for
the task of text quality evaluation. This may help us to improve the performance
of our method. Finally, as the goal of the project, we would like to build an editing
assistant system using the proposed two word-level metrics, enabling highlight issues
directly to editors in the future.
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