
New Production System for Finnish Meteorological Institute

Santeri Horttanainen

Helsinki January 16, 2019

UNIVERSITY OF HELSINKI

Department of Computer Science

Faculty of Science Department of Computer Science

Santeri Horttanainen

New Production System for Finnish Meteorological Institute

Computer Science

January 16, 2019 85 pages + 2 appendices

Distributed Systems, Production Systems, Software Architecture, Software Engineering

This thesis presents the plans for replacing the production system of Finnish Meteorological Institute

(FMI). It begins with a review of the state of the art in distributed systems research, and ends with

a design for the replacement production system that is reliable, scalable, and maintainable.

The subject production system is a framework for managing the production of di�erent weather

predictions and models. We use this framework to abstract away the actual execution of work from

its description. This way the di�erent production processes become easily monitored and con�gured

through the production system.

Since the amount of data processed by this system is too much for a single computer to handle,

we have distributed the production system. Thus we are not dealing with just a framework for

production but with a distributed system and hence a solid understanding of distributed systems

theory is required in order to replace this production system.

The �rst part of this thesis lays the groundwork for replacing the distributed production system:

a review of the state of the art in distributed systems research. It is a concise document of its

own which presents the essentials of distributed systems in a clear manner. This part can be used

separately from the rest of this thesis as a short introduction to distributed systems.

Second part of this thesis presents the subject production system, the need for its replacement, and

our design for the new production system that is maintainable, performant, available, reliable, and

scalable. We go even further than simply giving a design for this replacement production system,

and instead present a practical plan to implement the new production system with Kubernetes,

Brigade, and Riak CS.

ACM Computing Classi�cation System (CCS):

Computer systems organization → Distributed Architectures → Cloud computing

Software and its engineering→ Software organization and properties→ Software system structures

→ Distributed systems organizing principles → Cloud computing

Tiedekunta � Fakultet � Faculty Laitos � Institution � Department

Tekijä � Författare � Author

Työn nimi � Arbetets titel � Title

Oppiaine � Läroämne � Subject

Työn laji � Arbetets art � Level Aika � Datum � Month and year Sivumäärä � Sidoantal � Number of pages

Tiivistelmä � Referat � Abstract

Avainsanat � Nyckelord � Keywords

Säilytyspaikka � Förvaringsställe � Where deposited

Muita tietoja � övriga uppgifter � Additional information

HELSINGIN YLIOPISTO � HELSINGFORS UNIVERSITET � UNIVERSITY OF HELSINKI

ii

Contents

1 Introduction 1

2 A Brief Review of Production Systems 3

3 A Brief Review of Distributed Systems 4

3.1 De�nition . 4

3.2 Designing for Reliability, Scalability, and Maintainability 4

3.2.1 Reliability . 5

3.2.2 Scalability . 5

3.2.3 Maintainability . 5

3.3 Di�culties . 6

3.3.1 Partial Failures . 6

3.3.2 Unreliable Networks . 7

3.3.3 Unreliable Clocks . 7

4 Fundamental Properties of Distributed Systems 9

4.1 Replication . 9

4.1.1 Asynchronous Versus Synchronous Replication 9

4.1.2 Single-Leader Replication . 10

4.1.3 Multi-Leader Replication . 10

4.1.4 Leaderless Replication . 12

4.2 Handling Write Con�icts . 14

4.2.1 Detecting Concurrency . 15

4.2.2 Detecting Con�icts . 18

4.2.3 Resolving Con�icts . 19

4.3 Sharding . 23

4.3.1 E�ective Sharding . 24

4.3.2 Sharding Key-Value Data . 25

iii

4.4 Consistency . 27

4.4.1 Linearisability . 27

4.4.2 Serialisability . 29

4.4.3 Sequential Consistency . 31

4.4.4 Causal Consistency . 32

4.4.5 Eventual Consistency . 34

4.4.6 Session Based Consistency . 34

4.5 Fault-Tolerant Consensus . 35

4.5.1 Applications . 36

4.5.2 Implementations . 36

4.5.3 Summary of Fault-Tolerant Consensus 38

5 Trade-o�s and Impossibility Results 39

5.1 FLP . 39

5.2 CAP . 41

5.3 PACELC . 43

5.4 Harvest and Yield . 45

5.5 Delay-Sensitivity Framework . 46

6 Avoiding Coordination 49

6.1 CALM Principle . 49

6.2 CRDTs . 50

6.3 Invariant Con�uence . 51

7 Building a Maintainable Distributed System 53

7.1 Service-Level Monitoring . 53

7.2 Logging . 54

7.3 Debugging Distributed Systems . 54

7.4 Platform-Level Monitoring . 55

7.5 Back-Pressure . 55

iv

7.6 Containers . 55

7.7 Container Orchestration . 56

7.8 Architecture . 57

8 Current Production System 59

8.1 Description of the Current System . 59

8.2 Shortcomings of the Current System 60

9 New Production System 62

9.1 Requirements for the new System . 62

9.1.1 Requirements From the Shortcomings of the Current System . 62

9.1.2 Requirements From Experience With the Current System . . . 62

9.1.3 Non-Requirements for the new System 63

9.2 Design for the new System . 63

9.2.1 Designing Distributed Systems 63

9.2.2 Architecture . 65

9.2.3 Task Pool . 66

9.2.4 Master . 67

9.2.5 Distributed Object Store . 67

9.2.6 Maintainability . 69

9.3 Implementation . 70

9.3.1 Kubernetes . 71

9.3.2 Brigade . 72

9.3.3 Riak CS . 73

9.3.4 Image Registry . 73

10 Conclusions 74

10.1 Summary of Contributions . 74

10.2 Future Research . 74

v

References 76

Appendices

1 Container Orchestration Platform Comparison

2 Distributed Object Storage Comparison

1

1 Introduction

The main subject of this thesis is the replacement of a legacy production system used

at FMI. This system processes raw telemetry data, weather predictions, and weather

models and turns them into other weather predictions and models. Conceptually

the system under consideration is very simple: data comes in, data comes out.

Nevertheless, the implementation is far from simple because of the amount of data

processed each day. A single machine would simply be insu�cient. This is why

the production system is actually a network of hundreds of computers working in

unison. To replace this system a solid understanding on distributed systems is �rst

required.

The current production system is problematic in several ways. Load is balanced

manually, there is no replication, and the input/output (I/O) of the central Network

File System (NFS) cluster is already becoming a bottleneck. The lack of automatic

load balancing makes the operability of the system di�cult. Whenever a task is

added to the system the operator has to make the di�cult decision of choosing

the worker it is assigned to. Moreover, this often causes the system to become

unbalanced. The lack of replication leads to the system being very vulnerable: if a

component fails we lose all its functionality. The unavailability of a single worker

means that its tasks will not be executed until that worker becomes available again.

The limited I/O of the NFS cluster is a problem by itself, but in the distributed

systems sense this leads to an another problem: since all the data is accessed through

a central cluster, the scalability of the system is limited by this bottleneck.

But there is an even more pressing need to update the current production system:

The open data movement is catching on, meaning that new interesting data is made

available around the world. But currently we are only able to access a subset of

this data: data that is either su�ciently small or updated not too frequently. The

reason is that currently all data to be processed by the current system needs �rst

to be downloaded to the central NFS cluster. This means that we are restricted by

the size and update frequency of the data: there is simply no point in processing

data that is stale by the time its download is done. We need to change the current

solution so that tasks can be sent to the data rather than the other way around.

The main contributions of this thesis are the design for the replacement production

system and the preliminary research on distributed systems theory, which may be

used as a short introduction to distributed systems. The design for the new produc-

2

tion system counters the shortcomings of the current one and is designed to be as

simple as possible, to ensure maintainability in the future. To accompany the design

of the new production system, we compared several o�-the-shelf software products

to �nd the most suitable ones for actual implementation of the new design.

The remainder of this thesis is organised as follows: Section 2 presents background

information on production systems. Section 3 presents background information

on distributed systems. Section 4 reviews the state of the art in distributed sys-

tems. Section 8 outlines the problem with the current production system. Section 9

presents the design for the replacement production system and describes how the

design can be implemented with o�-the-shelf software. Finally, section 10 provides

conclusions and suggestions for future work.

3

2 A Brief Review of Production Systems

The term production system is unfortunately fairly ambiguous. Speci�cally, the

subject production system of this thesis should not be confused with production

rule system (sometimes shortened to just production system), a branch of arti�cial

intelligence [1]. The production system under consideration is more like the Toyota

Production System (TPS) [2], but instead of cars the production system produces

di�erent kinds of data such as weather forecast models, animations, and pictures.

De�nition 1. Production system is a system that controls production processes [3,

Chapter 2]. Speci�cally, a production system controls resources such as humans,

premises, machines, and equipment to transform input materials into desired output

products [3, Chapter 2].

Informally, a production system is a framework for managing production. The idea

behind production system is to require operators to make their processes of produc-

tion �t into the framework. This results in di�ering work�ows becoming more similar

to each other, which helps in their management and monitoring. Consequently, us-

ing a production system enables operators to quickly respond to changes: operators

no longer need to change each production process individually, since all production

processes are �t to the framework, operators can quickly change the direction of the

whole production by changing the con�gurations of the framework. Similarly pro-

duction system also enables operators to easily monitor the performance of di�erent

work�ows.

4

3 A Brief Review of Distributed Systems

This section gives background information on distributed systems for readers not

already familiar with the subject. First, subsection 3.1 presents a de�nition for a

distributed system. Next, subsection 3.2 describes a set of goals we should aim

for when designing a distributed system. Finally, subsection 3.3 explains why dis-

tributed systems are di�cult to implement.

3.1 De�nition

The word distributed in distributed systems comes from geographic distribution [4,

Chapter 1]. This geographic distribution might mean anything from computers that

are separated by only a few centimeters (e.g. servers placed in a rack and connected

via a local area network (LAN)) to thousands of kilometers (e.g. data centres forming

an overlay network over a wide area network (WAN)).

De�nition 2. Distributed system is a collection of independent networked comput-

ers appearing to its users as a single coherent system [4, Chapter 1].

Distributed systems should not be grouped together with parallel computing systems

of high performance computing (HPC). In parallel computing systems nodes are cen-

tral processing unit (CPU) cores whereas in distributed systems nodes are complete

computers with their own random-access memory (RAM), disks, and multi-core

CPUs. This makes the computing units (nodes) of distributed systems a lot more au-

tonomous than the computing units (CPUs) of parallel computing systems. Another

aspect where parallel computing systems greatly di�er from distributed systems is

how much more closely connected the nodes are in parallel computing systems. In-

stead of being connected via a LAN (or via a WAN) nodes in parallel computing

systems are connected via a bus. Moreover, nodes in parallel computing systems

frequently share RAM and a master clock, making synchronised computation easy

and fast. Contrastingly, nodes in distributed systems rarely share anything besides

the network connecting them.

3.2 Designing for Reliability, Scalability, and Maintainability

Before designing a distributed system, we need a clear set of goals to aim for. Since

the matter of distributed systems is a complicated subject, it is best to keep these

5

goals simple. When designing a distributed system, we are looking for reliability,

scalability, and maintainability. Rest of this thesis is about ful�lling these goals.

3.2.1 Reliability

We want distributed systems to be reliable: to tolerate hardware and software faults

as well as human errors to the extent that is possible. Understanding the di�erence

between fault and failure is key to understanding reliability [5]. A system is said to

have encountered a failure if it deviates from its speci�cation for a period of time [5].

A fault, on the other hand, is the cause of a failure [5]: a fault of a component, a

subsystem, or a another system interacting with the considered (failed) system. If a

system with faults can continue to provide its service, its said to be fault-tolerant [5].

The more fault-tolerant a system is, the more reliable it is.

3.2.2 Scalability

We want distributed systems to be scalable: to be able to cope with increased load.

A scalable system handles the addition of users, data, or geographical distance

without an obvious loss in performance [6].

The better a system scales with size, the more linearly its performance increases

with number of nodes [7, Chapter 1]. For example, a system of n nodes that needs

O(n2) messages for every decision does not scale well with its size since a small

increase of one node (n+ 1) would translate into an exponential increase ((n+ 1)2)

in messages required for reaching a decision.

Geographical scalability is the ability of the system to handle gracefully the grow-

ing latencies caused by the increasing distances between the farthest nodes in the

system [6]. Geographical scaling is important to acknowledge because reasonable

approaches in a high-speed, low-latency LAN might perform poorly in WAN.

3.2.3 Maintainability

Majority of the cost of software is not in its initial deployment, but in its ongoing

maintenance [7, Chapter 1]. This is doubly more so for distributed systems, which

are complex by nature and hence keeping them maintainable is of utmost impor-

tance. Good maintainability can be achieved by two design principles: operability

and simplicity.

6

Operability measures how easy it is for the operators to run the system smoothly

(and to know when it is not doing so). Techniques to achieve good operability

include: providing good visibility into the internals of the system (good monitor-

ing, logging, and debugging equipment) [7, Chapter 1], enabling rolling updates

(e.g. through fault-tolerance at the node-level) [8, Chapter 7], and providing good

integration with standard tools [7, Chapter 1].

Simplicity of system indicates how easy it is for new operators to understand it [7].

The most e�ective way to achieving simplicity is to emphasise good design decisions

in the system architecture and to continuously look for handy abstractions to hide

away the complex implementation details behind a simple-to-understand facade [7,

Chapter 1].

3.3 Di�culties

Possibility of partial failures is the de�ning characteristic of distributed systems.

Any operation involving multiple nodes might or might not work, or it might even

work on only some subset of the nodes, leading to an inconsistent system. Detecting

these faults is hard since the network connecting the nodes may occasionally drop,

reorder, and arbitrarily delay messages. Consequently, what might look like a failure,

might equally well be a complete success, or something �rst appearing to be a success

might later be revealed to have actually failed. Therefore, it is very hard for the

nodes in distributed systems to agree on anything, not even on the time.

3.3.1 Partial Failures

Distributed systems fail frequently and often partially [9]. An individual computer

with well written software is usually either fully functional or entirely broken [7,

Chapter 8]. Unfortunately, this is not the case for distributed systems: there may

well be some parts in the system that are broken, even though other parts of the

system are perfectly �ne. Network switches fail, garbage collector (GC) pauses cause

leaders to disappear, failing components cause nodes to become unavailable, some

writes seem to succeed but actually fail at the receiving end, and individual staggers

cause whole clusters to crawl [9]. What makes partial failures di�cult to handle, is

that they are non-deterministic: any operation involving multiple nodes may work

�ne most of the time, but sometimes suddenly fail [7, Chapter 8]. Such failures

are so common for systems of scale that dealing with them should be considered as

7

standard mode of operation [10, 11].

3.3.2 Unreliable Networks

Networks are unreliable [12, 13]. There are plenty of things that can cause networks

to fail and in surprising ways [7, Chapter 8]. Sometimes sharks damage undersea

network cables by biting them [14]. Sometimes an update for a network switch

causes the whole network topology to change in a way that causes packets to stall

for more than a minute [15]. Sometimes a network interface just starts dropping all

inbound packets while outbound tra�c remains una�ected [16]. And sometimes a

maintenance miscon�guration causes a whole data centre to become unavailable [17].

But most often the reason is a failing network switch.

Networks are asynchronous. They make no guarantees about when a message will

arrive or whether it will arrive at all. Thus, it is impossible to know if a message was

received without receiving an acknowledgement, and if acknowledgement is never

received, it is impossible to know why [7, Chapter 8]. Missing acknowledgement

may mean any of the following things: the message got lost, the message is still

on its way, the message was delivered but the recipient failed to reply with an

acknowledgement, the message was received but the acknowledgement got lost, or

the acknowledgement is still on its way.

This uncertainty of the network makes failure detection di�cult. In a system where

messages and their acknowledgements may get lost, the only way to detect a failure

is by timeout [7, Chapter 8]. But since messages may also be arbitrarily delayed,

choosing the correct value for this timeout is di�cult. A long timeout increases

the certainty of correctly detecting a fault. But the longer we set the timeout, the

slower the system becomes at detecting failures. A short timeout, on the other

hand, makes the system faster at reacting to failures but with the increased risk of

declaring delayed messages as failures.

3.3.3 Unreliable Clocks

Each node has its own clock, usually a quartz crystal oscillator, but unfortunately

such hardware devices are never perfectly accurate [7, Chapter 8]. They always run

slightly faster or slower than they should (i.e. they drift). Consequently, each node

has its own notion of time.

Since clocks drift, they need to be frequently synchronised. But unfortunately the

8

available synchronisation methods are not very accurate either. Their synchronisa-

tion accuracy is limited by the uncertainty of network latency. For example, one

study showed a typical root mean square (RMS) value of 35 ms synchronisation error

for Network Time Protocol (NTP) (a very common clock synchronisation mecha-

nism) when synchronising over internet [18].

Not only are hardware clocks impossible to keep synchronised, but they might some-

times go backward or suddenly jump forward. This happens when a clock is forcibly

reset because of drifting too much apart from the clock of its reference NTP clus-

ter [7, Chapter 8].

9

4 Fundamental Properties of Distributed Systems

In this section we present the fundamental properties of distributed systems as is

relevant to the scope of this thesis. We start by going over di�erent replication

strategies in subsection 4.1. Next, we move to discuss ways to detect and to handle

con�icts in subsection 4.2. Then, we discuss di�erent sharding strategies and how

they complement replication in subsection 4.3. Next, we discuss the di�erences

between various consistency models in subsection 4.4. Lastly, we �nish by discussing

fault-tolerant consensus and its applications in subsection 4.5.

4.1 Replication

Replication is the act of copying a dataset, or a shard of a dataset, across multiple

nodes. These copies are called replicas, which are usually divided into two groups:

leaders and followers (except for leaderless replication which does not make this

distinction). Leaders di�er from followers in that they can accept writes whereas

followers can only accept reads.

Replication improves availability by allowing a system to continue to work even if

parts of it have failed. Speci�cally, if a shard is replicated to n nodes it becomes

unavailable only after every one of these n nodes has failed. Additionally, replication

improves performance by enabling more nodes to handle requests made to a shard.

Lastly, replication reduces latency by enabling a replica to be placed geographically

close to users located far away.

4.1.1 Asynchronous Versus Synchronous Replication

Whenever a leader accepts a write, the write must be eventually replicated to all

followers in order for the system to remain consistent. And sooner or later, the leader

has to acknowledge the write to satisfy its origin. The sooner the acknowledgement

arrives, the sooner the waiting process can continue with its other responsibilities.

This is where the decision between asynchronous and synchronous replication comes

to play. Asynchronous replication means acknowledging a write immediately, before

waiting for the replication to be done, whereas in synchronous replication the write

is only acknowledged after it has been replicated to all synchronous followers.

The advantage of synchronous replication is that the follower is kept consistent with

the leader: if the leader fails there remains an up-to-date replica which can then

10

be promoted to be the new leader [7, Chapter 5]. But synchronous replication also

has its downsides. For example, if the follower becomes unavailable, the leader is

forced to wait until it becomes available again preventing the leader from accepting

new writes [7, Chapter 5]. In addition, the additional replication delay increases the

latency of the system.

The advantage of asynchronous replication is faster write response times. Since

replication is done in the background, the leader is able to respond immediately.

Moreover, asynchronous replication enables leader to continue to accept writes even

if all its followers become unavailable. But asynchronous replication also has a

downside: if the leader crashes after accepting a couple of writes, while its followers

have been unavailable during these writes, then there is a real chance that these

writes become lost forever.

4.1.2 Single-Leader Replication

In single-leader replication there is only one leader per shard, which makes this

replication strategy con�ict-free: without competing leaders there can be no con-

�icts (see subsection 4.2). Consequently, single-leader replication often leads to

considerably simpler design than multi-leader or leaderless replication since it does

not require complex con�ict handling strategies.

The major disadvantages of single-leader replication are its relatively poor write

availability and performance when compared with other replication strategies. Since

there is only one leader per shard, its write availability is completely dependent on

its leaders availability: if leader becomes unavailable for any reason it will render

the whole shard unavailable for writes [7, Chapter 5]. Additionally, because only one

node can hold the leader of a replica, the throughput at which the shard can accept

writes is limited to the capacity of that particular node. However, this problem can

often be alleviated (or completely mitigated) with a sharding strategy that properly

captures the communication pattern of the service (see subsection 4.3). As a rule of

thumb: the write performance of single-leader replication should not be a problem

if writes are mostly consecutive per shard [19].

4.1.3 Multi-Leader Replication

Multi-leader replication provides better write performance and availability than

single-leader replication. In multi-leader replication writes can be concurrently ac-

11

cepted by as many nodes as there are leaders, which can signi�cantly increase the

write throughput of the system when compared with single-leader replication where

writes are consecutively applied by only one node at a time. Moreover, having mul-

tiple leaders improves write availability: a shard becomes unavailable for writes only

after all of its leaders have become unavailable, whereas with single-leader replication

only one leader failure is too much.

It usually does not make sense to employ multi-leader replication in intra-data centre

services because its complexity often outweighs the added bene�ts [7, Chapter 5].

But sometimes multi-leader replication is required, like when o�ine operation is

required or when a service spans multiple data centres.

Multi-leader replication provides better write performance than single-leader repli-

cation in inter-data centre services. For example, if there is only one leader per

shard in an inter-data centre service, then the leader of each shard can reside in

only one of the data centres at a time. Consequently, all writes originating from

other data centres have to be forwarded to the data centre holding the leader, sig-

ni�cantly increasing the write latency. This may possibly even nullify the bene�ts

of having multiple data centres in the �rst place [7, Chapter 5]. In contrast, with a

multi-leader system we could assign a leader to each data centre enabling them to

accept writes independently of each other.

Multi-leader replication generally provides better write availability than single-leader

replication for inter-data centre services. For example, consider a network partition

that temporarily prevents communication between some data centres. In single-

leader systems only the data centre holding the leader could continue to accept

writes, but clients of other data centres would experience write unavailability. Con-

trastingly, systems with multi-leader replication could continue to accept writes

regardless of such partitions.

Multi-leader replication is also better suitable for o�ine operation than single-leader

replication. Mobile devices are constantly going to and coming from o�ine because

of geographic variations in network availability and to save power. In such systems,

replication is done only between online replicas: every time a replica becomes online

it synchronises itself with other online replicas. Such o�ine operation is not possible

with single-leader replication since the follower replicas would be forced to wait for

the leader to become online before accepting any writes [20]. In fact, all devices

capable of o�ine operation have to be leaders as well in order to be able to accept

writes autonomously.

12

But multi-leader replication has one great downside. Having multiple leaders means

the ability to accept writes concurrently, but sometimes these writes con�ict. Conse-

quently, multi-leader systems require mechanisms to detect and to resolve occasional

write con�icts. Unfortunately, this adds a lot of complexity (see subsection 4.2).

4.1.4 Leaderless Replication

In the replication strategies considered so far, only leaders have been allowed to

accept writes, but what happens when there are no leaders? Replication without

leaders is called leaderless replication [7, Chapter 5]. Unlike in multi-leader replica-

tion, where only leaders are allowed to accept writes, in leaderless replication every

replica is allowed to accept writes. Although the preceding description might sound

like multi-leader replication with every node designated as a leader, there are impor-

tant di�erences. For starters, in multi-leader replication leaders can accept requests

independently of each other, but in leaderless replication a quorum of replicas is

always required to participate. In the following paragraphs we will discuss these

di�erences in more detail.

Systems using leaderless replication are said to be quorum systems: in order for a

request to succeed, a precon�gured amount of replicas (the quorum) is required to

vote in favour of accepting the request [10]. This vote is usually done by forward-

ing each request to a shard to all replicas of that shard. In Dynamo, Amazon's

distributed key-value store built on leaderless replication, this forwarding is done

through a designated coordinator replica [10]: the client sends their request to some

node in their Dynamo instance, the receiving node then forwards the request to

the coordinator replica of the related partition, the coordinator sends the request

to all remaining replicas, and �nally decides on the result according to content and

number of received replies.

So a request is rejected if it can not reach enough replicas, but how does the sys-

tem tolerate writes that reach just enough replicas? Would not a single unavailable

replica lead to a inconsistent replica state? Dynamo solves this problem by employ-

ing a technique called read repair: a minority of replicas can diverge during writes,

due to temporary failures, but get reconciled during reads (see subsection 4.2).

Because of the combination of quorum rules with read repair, leaderless replication

can tolerate some unavailable replicas and thus be highly available. But exactly how

many unavailable replicas can a leaderless replica set tolerate? The answer lies in

13

the balance between the overall number of replicas N , the number replicas required

to participate in writes W , and the number of replicas required to participate in

reads R. Now, if we manage to arrange votes so that two consecutive successful

votes always have one replica in common, it is guaranteed that all inconsistencies

are eventually discovered during read repair, since at least one of the nodes is always

guaranteed to be up-to-date. Thus in order to guarantee successful read repairs, we

have to set R and W such that R + W > N [7, Chapter 5]. In contrast, setting

R and W to smaller values, such that R + W ≤ N , can lead to failed read repair

(a stale value is returned). Systems with low latency requirements can bene�t from

the latter setting since the lowered quorum requirements directly translate to less

replicas having to be waited upon. A good starting con�guration of (N,R,W) for

many applications is (3,2,2) [10].

A system that requires at least W and R replicas to participate during writes and

reads is said to employ strict quorum, but there is yet another (more available) tech-

nique called sloppy quorum. Therefore a system using strict quorum can tolerate

the unavailability of N−W or N−R replicas depending on the request. Employing

strict quorum also grants the system the ability to tolerate individual stragglers since

it makes returning possible as soon as R or W replicas have responded. But using

strict quorums fails in situations where a large number of nodes become unavailable

(e.g. because of a network partition). Consequently, Dynamo employs sloppy quo-

rums instead of enforcing strict quorums: reads and writes still require R and W

successful responses respectively, but those may include nodes that are not in the

original designated N `home' nodes [10].

When network interruption is over, any writes placed at temporary nodes by sloppy

quorum are handed back to their designated home nodes by hinted hando� [10].

It is also possible for the hinted replicas to become unavailable before the hinted

hando�. To prevent this possible unavailability of hinted replicas, and other such

threats, from weakening the durability of the system, Dynamo uses an anti-entropy

protocol to keep the replicas synchronized [10]. An anti-entropy protocol can be any

background process that constantly looks for di�erences between replicas and copies

any missing data from one node to another.

When compared with multi-leader replication, leaderless replication can o�er better

write availability. But leaderless replication is often ill-suited for services where

con�icts are hard to reconcile, or for services where a stronger consistency model

than causal consistency is required.

14

4.2 Handling Write Con�icts

Whenever there are two or more leaders acting concurrently on the same shard,

there is the possibility of write con�ict [19]. Consider Figure 1, where a meeting

room for a particular date is being scheduled simultaneously by two users. Since

the requests are simultaneous, the asynchronous replication can not reach either of

the leaders before they apply their respective writes. Later, when the reservation is

asynchronously replicated the con�ict is �nally noticed.

Client A

Client B

Node 1

Node 2

reserve x for A

reserve x for B

conflict

conflict

timereserved

reserved

Figure 1: A write con�ict caused by two concurrent writes.

Generally the best approach to write con�icts is to avoid them in the �rst place [19].

This can be as easy as choosing single-leader replication over the other replica-

tion strategies. But sometimes having multiple leaders to a shard is necessary. In

such systems the possibility of con�ict usually remains, but its likelihood can be

reduced. For example, tightening the consistency requirements of the system can

reduce the rate at which con�icts happen (see subsection 4.4). Another approach

is to check if further sharding would better match the concurrency patterns of the

system (see subsection 4.3). Furthermore, the allowed operations on the replicas

can be designed in such a way that avoids con�icts altogether (see subsection 6.2).

Even reverting back to synchronous replication, where con�icting writes are simply

dropped should be considered [19].

Nevertheless, if there is even a slight chance of con�ict, it will eventually happen [20].

Thus a robust con�ict handling strategy is always needed to detect and handle write

con�icts in a convergent way.

15

4.2.1 Detecting Concurrency

Not all concurrent writes are con�icts (e.g. the clients in Figure 1 might be reserving

the same room for di�erent dates), but con�icting writes most certainly happen

during concurrent operation. It is thus essential to be able to detect concurrency in

order to detect con�icts.

Strangely enough, detecting concurrency begins by trying to order events. For ex-

ample, maintaining invariants usually requires some knowledge on the order in which

operations occurred: a large withdrawal should only be possible after a su�cient de-

posit. The order in which we make deposits and withdrawals on our bank accounts

should be clear to us (after all we are very synchronous), but usually it is not clear

for the receiving system. In fact, the unpredictable delays between the components

of a distributed system make it impossible to determine a natural total order for oc-

curring events [19]. Therefore events are not ordered by natural total ordering, but

by partial ordering in the form of happens before relations [21]. We say that two

operations are concurrent when neither can be determined to be happened before

the another [21].

De�nition 3. Operation ai happens before operation bj when i = j and ai is

submitted before bj, or when i 6= j and bj is submitted after j has executed ai, or

when there exists an operation ck, such that ai happens before ck and ck happens

before bj,

where i and j are the sites that submitted operations ai, bj, and ck respectively [21].

De�nition 4. Operations ai and bj are concurrent if neither of them happened

before the other [21].

Next we present some of the most important algorithms used to order operations in

asynchronous environments. As a side note, when we speak about the `size' require-

ment of an algorithm we mean its memory footprint, the amount of information

required to be stored about the events to determine their order. In other words, the

smaller the size requirement of an approach is, the better it performs. For example,

less information attached to an operation means less network load and less ordering

information to be inspected; moreover, smaller size requirement naturally means

less wasted memory to store this information on each server.

Causal history. One way to detect `happens before' relations is to attach to an

operation all the identi�ers of preceding operations [22]. This method is called

16

causal history. In causal history we determine if operation oi happened before oj by

inspecting if oi appears in the predecessors of oj. Causal history has the advantage

of being insensitive to the number of replicas, but its size grows with the amount of

past operations [19]. In addition, for causal history to work properly, all operations

have to be globally uniquely identi�able [23].

Version vectors. A somewhat newer, more popular way to detect `happens be-

fore' relations is the use of version vectors. Version vectors are simply arrays of

logical clocks. One clock for every source of concurrent events in the system [24].

Version vectors can be used to track causality in the system as follows [24]: First,

each shard is accompanied with a version vector. Second, whenever a request is send

to a shard, the sender must attach its related version vector to the request. Third,

each time a node updates its local replica it increments its counter in the related

version vector. Fourth, whenever an applicable request (a request is applicable if

the version vector attached to the request is greater than or equal to the local vector

in every element) to a replica is received, the receiver updates each element in the

version vector of its local replica to be the maximum of the local and the received

vector, and concludes by incrementing its counter by one, or, if the received request

is not applicable the request is marked as concurrent and handled accordingly.

The downside of version vectors is that their size grows linearly with the number

concurrently acting entities on the associated shard [23]. To illustrate, consider a

multi-leader system, where clients can only modify their own data. In such a system

the only source of concurrency are the leaders, which makes the size of version

vectors same as the number of leaders. Unfortunately, it is far more usual for real

world services to have concurrent clients, which increases the size of the version

vectors to the number of clients.

Dotted version vectors. Further research on version vectors resulted in discovery

of dotted version vectors [23]. This fairly new technique allows lossless representa-

tion of causality while only requiring an element per leader, even in the case of

concurrent clients [23]. Although the improvement is potentially huge, the dotted

version vectors di�er only slightly from ordinary version vectors: whereas version

vectors compress causal histories by representing only the last sequence number in a

range of events, dotted version vectors are able to additionally represent individual

events, that fall outside such ranges [23].

17

Lamport timestamps. Lamport timestamps are integers attached to replicas,

used to indicate the number of operations applied to that replica [21]. Lamport

timestamps are in fact predecessors to version vectors and are used very similarly,

but with an important di�erence: instead of holding counters for every source of

concurrency, Lamport timestamps hold only a single counter [21].

The algorithm to produce and to maintain Lamport timestamps works as follows[21]:

First, every shard is timestamped and their replicas share that initial timestamp.

Second, whenever a request to a replica is sent, the sender must attach its associated

timestamp with the request. Third, whenever a node updates its local replica, it

must increment the associated lamport timestamp by one. Finally, upon receiving

an applicable request, the receiver must update the Lamport timestamps of the

related replica to be the maximum of the original and the received timestamp. A

request is applicable if the received timestamp is greater than or equal to the local

timestamp.

The advantage with Lamport timestamps is their minimal size requirement, but this

advantage comes with a cost: they can not capture causality. For example, even if

we know that ta < tc and tb < tc we can not determine which of the operations a

and b initiated the operation c by examining the timestamps ta, tb, and tc alone.

Real-time clocks. Timestamps generated by real-time clock (RTC)s can also be

used to order events in distributed systems and they do have one advantage over

their logical counterparts [19]. Notably, RTCs can detect relations that happen

via a �hidden channel� [21]. For example, an user submits an operation a with

his laptop pca, walks over to an another computer pcb to submit operation b, and

continues on with his daily routines. From the user's point of view, it is obvious that

a happened before b, but this might not be so for the underlying system receiving

the operations. After all, computers pca and pcb may not exchange any messages

between the operations, rendering possible Lamport timestamps useless in ordering

them. But if the operations were timestamped by RTCs (and the clocks su�ciently

synchronised), it would be easy for the service to order the operations [21].

Unfortunately, small di�erences in their hardware causes RTCs to drift apart, mak-

ing frequent synchronisations a necessity, and the synchronisation algorithms are not

perfect either (see subsection 3.3). Thus we should take into consideration both the

clock drift and the inaccuracy of the synchronisation algorithm, when using RTC

timestamps. We denote the combined uncertainty of synchronisation and clock drift

18

by u. Because of this uncertainty u, it is wrong to timestamp an operation with

an exact time t. Instead we should use uncertainty intervals [t− u, t+ u] as times-

tamps. Sadly most systems do not expose this interval to the use of the developers

and instead only report the timestamp t [7, Chapter 8].

However, TrueTime in Google Spanner is an exception and explicitly reports the

uncertainty interval of a local clock [25]. By reporting this uncertainty interval,

spanner is able to correctly order events and detect concurrent ones. This follows

from the observation, that if two events a and b have non-overlapping uncertainty

intervals of [astart, aend] and [bstart, bend] where aend < bstart, then with certainty a

happened before b. On the other hand, if these intervals had even a slight overlap,

we are unsure which event happened �rst and thus conclude them to be concurrent.

Spanner ensures causality of read-write transactions by waiting to the end of un-

certainty interval before committing a transaction [25]. This wait ensures that any

other transaction that may read the data is at su�ciently later time to avoid their

uncertainty intervals from overlapping [25]. To mitigate this wait, Spanner needs to

keep the uncertainty intervals as small as possible, and solves this by using multiple

modern clock references (Global Positioning System (GPS) and atomic clocks) [25].

With these modern clock references Spanner has been reported to being able to

synchronize clocks to within 7 ms in production [25].

4.2.2 Detecting Con�icts

Even equipped with the latest advancements in concurrency detection, we still need

to weed out the con�icting operations from non-con�icting ones. After all the mere

concurrency of two operations does not necessitate their con�ict, but instead does

indicate its possibility. Consider two concurrent requests incrementing a counter: if

the requests contained the new state of the counter following the increment (same

for both since they are concurrent), they would con�ict, since the other increment

would be lost; however, if the requests alternatively contained the change to the

counter (e.g. +1) there would be no write con�ict.

Semantic con�ict detection. We say that an operation is in con�ict when its

precondition is unsatis�ed, given the state of the replica after applying all operations

preceding the con�icting operation [19]. For the system to verify the precondition of

an operation, it needs knowledge on the semantics of the application the operation

originated from. Such con�ict detection is called semantic con�ict detection.

19

Di�erent applications have di�erent notions on what it means to con�ict; thus, in

order for semantic con�ict detection to work, it must provide the application layer

the means to de�ne what they consider as con�icting [26]. For example, Bayou, a

weakly connected replicated storage system, uses dependency checks for automatic

con�ict detection [26]. These dependency checks are application speci�c routines

attached to every write request submitted into the system. This enables application

to indicate, for each write request, how Bayou should detect con�icts involving the

write [26]. In more detail, a dependency check is an application supplied query to

the state of the local replica accompanied with the expected result. If the check

fails, the write is not performed and the related merge procedure is invoked.

Syntactic con�ict detection. Con�ict detection without semantic knowledge is

called syntactic con�ict detection [19]. In contrast to semantic con�ict detection, all

concurrent operations are considered as con�icting [19]. As an example of syntactic

con�ict detection, lets revisit the situation in Figure 1, where two users simultane-

ously schedule a particular meeting room, but this time for di�erent dates. Lets

assume the system uses version vectors to order operations. Thus, when the concur-

rency of the reservations is detected upon comparison of their version vectors, the

system marks them (falsely) as con�icting and passes them over to con�ict handling.

Because syntactic con�ict detection lacks knowledge on the application semantics,

it has the obvious downside of unnecessarily treating some actually non-con�icting

operations as con�icts [19]. However, syntactic con�ict detection might be desirable

for applications with few concurrent operations, or if simple and generic solution

is desired [19]. Moreover, syntactic con�ict detection might sometimes be the only

option because the needed semantic knowledge is simply unattainable (e.g. because

of encryption) [27].

4.2.3 Resolving Con�icts

When con�icts occur, they need to be globally resolved, or the system risks becoming

inconsistent. Con�icting writes always reach each other in di�erent order at di�erent

nodes, and usually the `later' write is the one interpreted as con�icting. This leads

to a di�erent write being interpreted as con�icting depending on the node. Thus,

not only do we have to deal with the `con�icting write', but with all writes in con�ict

to ensure one global order they are applied in. A carefully crafted con�ict resolving

strategy is thus needed in order for con�icting writes to eventually converge.

20

There are two approaches to con�ict resolution: automatic and manual [19]. Au-

tomatic con�ict resolution is usually done by an application speci�c routine which

takes two (or more) versions of a replica and automatically merges them, creating a

new version. In manual con�ict resolution, the con�icting versions are presented to

the user, who is then responsible to resolve the con�ict and to resubmit the resolved

replica back into the system. We are mainly interested in automatic con�ict resolu-

tion, but as an example of an excellent use case for manual con�ict resolution, we

want to mention distributed version control systems, such as Git [28], where manual

con�ict resolution is used to solve merge con�icts.

Last write wins. Perhaps the easiest automatic con�ict resolution strategy to

implement is last-write-wins (LWW). In LWW potential con�icts are simply ignored

by overwriting them with `later' writes [19]. We wrote `later', because after all we

are talking about concurrent operations, meaning the system has actually no idea

which of the writes is the `later' one. However, we can arbitrarily order concurrent

operations, by timestamping them at the receiving leaders, and by insisting that the

one with the biggest timestamp is `later' than the others. We want to stress, that

these timestamps are only used to order operations deemed con�icting. The actual

ordering of operations could be done e.g. by version vectors.

LWW is very simple to implement and adds very little overhead to the existing

system [23]. Unlike many other automatic con�ict resolution techniques, LWW

does not require multiple versions of replicas to be stored, merge procedures, or

writes to provide context. However, LWW has the obvious downside of being prone

to lose data [7, Chapter 5]: whenever there are concurrent writes, only one of them

will be applied, and others quietly discarded (even if they were reported as successes

to their clients).

Lets revisit the meeting room booking example, where two clients are reserving the

same meeting room for the same date, but this time with version vectors for con�ict

detection and LWW for con�ict resolution. As was before, the clients simultaneously

submit their reservations to di�erent leaders but this time the leaders timestamp

the writes with their local clocks. Later, when the version vectors of the writes are

checked, the con�ict is detected and resolved by keeping only the write with the

most recent timestamp.

21

Con�ict resolution in Bayou. Bayou expects applications to submit a merge

procedure alongside each write for automatic con�ict detection [26]. This mecha-

nism permits applications to indicate for each write request, what steps should be

taken to resolve any con�icts found during the related dependency check [26]. In

more detail, if the accompanying dependency check fails, the write is not performed

and the related merge procedure is invoked. This merge procedure is a general

program, written in a high-level, interpreted language [26]. The responsibility of

this procedure is to resolve any con�icts found during the dependency check and to

produce a revised update to apply [26]. Finally, if the merge procedure itself fails,

the error is logged and handed over to manual con�ict resolution [26].

Lets revisit the meeting room example again, but this time with con�ict detection

and resolution strategies similar to the ones used in Bayou. The reservations are still

concurrent and con�icting, but this time the clients pass a dependency check and

a merge procedure alongside their requests. Considering the nature of the request,

the dependency check should be a query that checks if the meeting room is available

for the date the client is trying to reserve. Similarly, the merge procedure could

be a collection of reservations for other dates and other meeting rooms, selected by

the client as secondary choices in the case of a con�icting reservation. Now with

each request being accompanied with these checks and procedures, the leaders can

just apply the requests and later when the con�ict is detected apply the merge

procedure of the con�icting write. But it is important to notice that the con�icting

reservation is di�erent at di�erent leaders depending on the order in which these

reservations are applied. This leads to inconsistencies since each leader applies the

merge procedure of a di�erent reservation. Thus, these writes are treated as tentative

until they have been numbered by a central authority issuing globally monotonically

increasing identi�er (ID)s. When a leader learns the ID of a reservation it has

applied it reapplies all the tentative reservations it is holding according to their

IDs. A leader commits a tentative write only after it has received and applied all

the writes preceding the tentative write. This way all leaders are guaranteed to

eventually apply all reservations in the same order leading to a consistent system.

Con�ict resolution in Bayou is very powerful but it does incur some overhead. Due to

the merge procedures, Bayou can use application speci�c knowledge when resolving

con�icts and is thus able to solve con�icts that occur either far away from the user

or long after the user has gone o�ine [26]. For example, when requesting a meeting

room for a particular date, the application could ask the user if some another date

would also su�ce in the event of a double booking. Because of these secondary dates,

22

the user does not have to wait for the booking to fail or succeed: whenever a con�ict

occurs, Bayou simply applies the merge procedure on the con�icting replica. Being

this �exible adds some overhead: the combined length of the dependency check

and merge procedure can be many times the length of the actual write itself [26]!

In addition, these procedures have to be invoked every time a write is received or

replicated, adding some computational overhead.

Read repair in Dynamo. Amazon's Dynamo uses a technique called read repair

to detect and to resolve con�icts [10]. Like was already discussed, Dynamo uses

quorum reads and writes to ensure consistency across its replicas. Depending on

how these quorums are con�gured, a write might not reach all of the replicas. Thus,

at any given moment there might be multiple versions of a replica inside a Dynamo

instance [10]. It is entirely possible for these di�ering versions to further diverge if

the quorums are con�gured to low enough values. Dynamo solves this issue by a

technique called read repair. Whenever multiple versions of a replica arise during

a read, dynamo tries to syntactically reconcile the versions if they are causally

related. If the versions are no longer causally related, Dynamo passes them with

the corresponding version context to the client application for reconciliation [10].

Finally, when the client has reconciled the con�icting versions, its next write will

cause the divergent branches to collapse into a single one [10].

Let us revisit the meeting room example once more, but now with leaderless repli-

cation. Let us assume there are N replicas, one of which is the coordinator, and

R and W quorum requirements for reads and writes respectively. To indicate the

state of the meeting room booking system the client is aware of, they pass alongside

each reservation the version vector they received with the last read. The coordinator

replica handles all requests: it updates the version vector of received reservation,

writes the reservation locally, and �nally passes the reservation (along with its up-

dated version vector) to the rest of the replicas. As soon as W − 1 of the replicas

respond the write is considered successful. If a node receives a reservation that can

be deemed causally related to its local state, it applies the reservation and discards

the old version, and if not, it stores both versions. These con�icts are then reconciled

by read repair: either syntactically at the coordinator node (if the di�erent versions

prove to be causally related) or semantically at the client. This means that a client

wanting to be sure of their reservation, would have to check if their reservation was

successful, and if not, solve the con�ict (e.g. by picking another date or room) and

write the reconciled state back to the system.

23

4.3 Sharding

Sharding is the act of breaking down a dataset into more manageable, non-overlapping

pieces called shards. To understand the role of sharding in distributed systems let

us consider how it complements replication. First o�, sharding designates the unit

of replication: when deciding on how many shards a dataset should be divided into,

we actually decide on the replica sizes. Having too few shards causes replicas to be

large, which can translate into the nodes reaching their compute or storage capacity.

Sharding thus complements replication by making existing replicas more manage-

able [6]. Of course reducing existing shard sizes increases their number, requiring

(enabling) new nodes to be added into the system as replica groups to handle the

newly introduced shards.

Sharding improves scalability. Since shards do not overlap, a request to a shard can

be handled in isolation from others. This isolation directly translates into improved

scalability. For example, consider a shard that has only one leader and multiple

followers. Scaling against the read throughput of such a shard is easy: all that is

required is to add more followers to share the load. But adding more followers does

not help in scaling against the write throughput. More leaders are needed instead.

But the application at hand might be such where concurrent writes to a shard are

not easily handled. This is where the isolation of shards comes in to play: by further

breaking down the original shard, these new shards can be governed by new leaders

in isolation of each other. Indeed, further sharding reduces tra�c on any given shard

by a factor of N , where N is the number of new shards [29].

Sharding also improves availability. Since shards are isolated, the unavailability of

one does not a�ect the availability of others [30]. For example, if a network partition

caused every replica of a particular shard to become unavailable, only that part of

the dataset would in turn become unavailable.

Sharding can be used to improve performance by reducing write con�icts. A good

sharding strategy not only looks into the shard sizes, but into the applications access

patterns: by isolating concurrent operations to di�erent shards, sharding can reduce

the rate at which write con�icts occur [19]. In fact, sharding can be seen as a speci�c

case of a more general pattern: coordination avoiding (see section 6). For example,

consider a multi-leader system, which su�ers from poor performance because of

high-con�ict rate caused by too many concurrent users per shard. One possible

solution could be to reduce the amount of users acting concurrently on any one

shard by further sharding. If possible, we could take this approach to the extreme,

24

and assign every user to their own shard (e�ectively turning the multi-leader system

into a single-leader one) cancelling out any possibility of a write con�ict.

But sharding also has its downsides. Transactions across several shards might be

hard to reason about: if a transaction succeeds in one shard but fails in another, what

will follow? Consequently, some popular systems forbid cross-shard transactions

entirely [10, 31]. Another downside of sharding is the additional need for request

routing [7, Chapter 6]: when every node is no longer a copy of the others, we

have to have some system in place to route requests to their respective shards.

Lastly, sharding requires occasional rebalancing. After all, as time passes things

change: request throughput �uctuates, some shards grow, some may diminish, and

some replicas become unavailable. Rebalancing might require operator intervention

(manual rebalancing) or additional mechanisms to be implemented for automatic

rebalancing.

4.3.1 E�ective Sharding

Choosing the right sharding strategy starts by de�ning what constitutes a shard.

For instance, Google File System (GFS) [11] uses �le chunks as shards (chunks

are equivalent to blocks used in ordinary �lesystems). Other services, such as Dy-

namo [10], BigTable [31], and COPS [32] use ranges of key-value pairs as shards. In

contrast, PNUTS [33] uses simpli�ed relational database tablets as shards.

Shards should be large enough to avoid the overhead of having to manage many

small shards. For example, GFS uses 64 MB chunk size, which is much larger than

the default block size used in ordinary �le systems (often 4 KB), to reduce overhead

at the master node [11]. Because of this large chunk size clients need to interact less

with the master node. In GFS, to operate on a chunk, client only needs to know

the location of the chunk. Only if the location is unknown, does the client ask for

it from the master. Thus all subsequent operations on a given chunk require only

one initial request to the master [11]. This is where the large chunk size comes to

play: since chunks are large, it is more likely that clients need to interact less with

di�erent chunks, and thus, less with the master [11]. Furthermore, this large chunk

size enables clients to cache all the required chunk location information for a multi-

TB working set [11]. Therefore, network bandwidth is spared for actual read/write

tra�c and the master can concentrate on its duties. Lastly, the large chunk size

means less chunks, which translates into less metadata, enabling master to keep it

all in memory [11].

25

While shards should be large to avoid overhead, they should simultaneously be small

enough to avoid unnecessary hot spots and write con�icts. For instance, the large

chunk size used in GFS can lead to hot spots when dealing with many small �les.

Because of the large chunk size, small �les consist of only a few chunks, usually

just one. Consequently, if many clients become interested in some small �le, it is

highly likely that their requests concentrate on only a few nodes. Depending on

the intensity of this tra�c, these nodes might become hot spots [11]. Moreover,

an unnecessarily large chunk size can lead to increased con�ict rate [19]. This

happens because number of requests to a shard is roughly inversely proportional to

the number of shards in the system; thus a few large shards tend to receive more

concurrent requests than many small ones [19, 29].

4.3.2 Sharding Key-Value Data

So we now understand the bene�ts of sharding and have an idea on how shard

size a�ects the system, but we are still missing a key piece of information: how to

decide which data to store on which nodes? The goal is to spread the data and the

related tra�c evenly across the system [7, Chapter 6]. A defective (or otherwise

ill-�tted) sharding strategy can lead to skewed data distribution, where some shards

receive more data or query tra�c than others. In the worst case scenario, all of

the load could end up in just one shard, causing rest of the nodes to idle. Shards

with disproportionate load are called hot spots [7, Chapter 6]. To avoid these

hot spots, we have to be aware of how data is accessed and pick the sharding

strategy accordingly. If the data is accessed in ranges, key range sharding should be

considered, and if not, hash sharding should be chosen.

Key range sharding. In key range sharding, a shard is assigned all keys from one

minimum value up to some maximum; the next shard continues from there [7, Chap-

ter 6]. Each shard is thus a sorted range of keys, which has the advantage of making

range scans e�cient and easy to implement [7, Chapter 6]. This approach, however,

may lead to hot spots if the application is only interested in certain ranges [7, Chap-

ter 6]. For example, suppose an application is only interested in the latest data, and

the data is key range sharded by timestamp. Since the application is only interested

in the latest data (which may reside in a single shard), we risk nodes holding the

replicas of this shard becoming hot spots.

Google's BigTable is a good example of a system that employs key range sharding

26

for great results. BigTable is a sparse, distributed, persistent multidimensional

lexicographically sorted map [31]. A BigTable cluster holds a number of tables,

which consist of tablets. Each tablet contains all data associated with a row range.

Initially each table consist of just one tablet, but as a table grows, it is automatically

split into multiple tablets, which are then distributed among tablet servers [31]. An

interesting feature of BigTable is that row keys can be arbitrary strings (up to 64

KB in size), which paired with the lexicographical ordering gives an application

freedom to have their data stored in a way that matches its access patterns [31].

For example, Google Earth uses BigTable to serve high-resolution satellite imagery

of the surface of the world. Google Earth utilises the lexicographical row order of

the BigTable by using row keys that put adjacent geographic segments near each

other [31].

Hash sharding. Like in key range sharding, shards in hash sharding constitute

of rows of keys, but with an important di�erence: each key is hashed before assign-

ment [7, Chapter 6]. This seemingly tiny di�erence makes hash sharding e�ectively

the exact opposite of key range sharding: the hashing ensures that similar keys

are no longer stored in near vicinity of each other, defending against hot spots [7,

Chapter 6]. As a consequence, all possible order the original keys may have had is

destroyed (a good hash function turns adjacent keys into completely di�erent ones!),

making hash sharding a poor choice for applications interested in ranges of keys.

Amazon's Dynamo, a highly scalable, always writeable, key-value store, is a perfect

example of successful application of hash sharding for great results [10]. Dynamo

was designed as a primary-key access store, because that was the query model many

of Amazon's core services could work with [10]. Because even the slightest outage

has signi�cant �nancial consequences and impacts customer trust, Dynamo was

designed to satisfy very stringent service-level agreement (SLA), requiring it to stay

virtually always available [10]. To satisfy such a SLA, an even distribution of keys

was absolutely necessary and thus hash sharding was chosen as the sharding strategy

for Dynamo.

To be more speci�c, Dynamo employs a hash sharding technique called consistent

hashing to minimise the impact of a departing node. At Amazon's scale, some part

of their network and server components is always failing at any given moment [10].

This means frequent reassignment of keys from failing nodes to available ones. To

minimise the performance impact of node departures, consistent hashing [34] was

27

chosen as the basis for the sharding strategy used in Dynamo, since it restricts

the impact of node departures to their immediate neighbours [10]. This sharding

strategy works as follows: the hash function maps each key to a point on an edge of a

ring, each node is similarly mapped to the same ring, and �nally each of the mapped

nodes is assigned with the keys between it and its preceding neighbour [34]. Thus

every node is responsible for an arc on the ring. Dynamo extends consistent hashing

by using virtual nodes instead of physical ones to better suit its heterogeneous

network of nodes [10]. Each physical node is assigned virtual nodes according to its

capacity, which are then assigned to random positions on the ring.

4.4 Consistency

Every time a leader accepts a write, the introduced changes become available at

the followers only after successful replication has taken place. Depending on the

implementation this could be almost instantaneous, or take an inde�nite amount

of time [26]. Therefore, if we were to stop a distributed system, we would be very

likely to see inconsistencies among its replicas. These inconsistencies are always

present regardless of the replication strategy used [7, Chapter 9]. For such a system

to appear consistent, some kind of an abstraction is required between replicas and

request handling. We call this abstraction the consistency model. There are many

di�erent consistency models o�ering di�erent consistency levels, meaning how con-

sistent the system appears to be. In the rest of this subsection, we present a handful

of consistency models, picked solely to support later discussion on distributed sys-

tem trade-o�s in section 5. The consistency models presented are in rough order

from strongest to weakest, but slight deviations from that order were made, because

some of the models are only sensible to discuss after others. The actual order is:

linearisability, sequential consistency, causal consistency, session based consistency,

and �nally eventual consistency.

4.4.1 Linearisability

We say that a set of concurrent operations is linearisable if its result is equivalent

to a legal sequential computation of that same set [35]. In other words, all opera-

tions should appear to take e�ect instantaneously and the order of non-concurrent

operations should be preserved [35]. Consequently, the outcomes of concurrent op-

erations are restricted: if all operations should appear to take e�ect instantaneously,

28

concurrent operations have to be arbitrarily ordered.

To better understand how linearisability restricts outcomes of concurrent operations,

consider the request diagram depicted in Figure 2. In the �gure, each bar is a request

made by a client, where the start of a bar indicates the sending, and the end the

receiving of the corresponding response. Notice how in this request diagram, the

reads concurrent with the write may return either the new or the old value. Thus

the operations do not appear to take e�ect instantaneously, and we can conclude

this system to not be linearisable.

read(x) = 0

read(x) = 0 or 1

read(x) = 0 or 1

read(x) = 0 or 1

read(x) = 1

write(x, 1) = ok

Client A

Client B

Client C

time

Figure 2: A read request concurrent with a write may return either the new or the

old value.

In contrast, consider the request diagram of Figure 3, produced by an another ser-

vice. In this �gure, as soon as the �rst read returns the new value all the subsequent

reads must do the same, until another write takes place. Thus the operations appear

to take place instantaneously and we can determine this service to be linearisable.

read(x) = 0

read(x) = 0

read(x) = 1

read(x) = 1

read(x) = 1

write(x, 1) = ok

Client A

Client B

Client C

time

read(x) = 0

the write takes effect

Figure 3: After a read returns the new value, all subsequent reads must do the same.

Implementing linearisability from scratch is di�cult work: we would be �rst required

to come up with a fault-tolerant consensus protocol (see subsection 4.5), which is a

feat in itself. However, several such protocols already exist and it would be best to

29

leverage one of them. As soon as the consensus protocol is in place, linearisability

can be implemented on top of it by voting for the global order in which each arriving

request is to be served. One way to achieve this global service order is by proposing

each received request until they have been accepted with consensus.

Linearisability is implemented through rounds of fault-tolerant consensus (see sub-

section 4.5). Each request is proposed to be served, but is only applied after its

place at global order of operations is decided upon. Sounds simple, but there is

actually a lot going under the hood: before a request can be applied, it �rst needs

to reach at least the majority of the replicas, which then have to reach a decision

together. Hence, a lot of communication is required to apply even a single request,

which brings us to the downsides linearisability.

Linearisability su�ers of poor throughput, response times, and availability. Every

one of these downsides is a direct consequence of the high coordination requirements

of the underlying consensus protocol. First, since a request can be served only af-

ter the majority has decided so, the availability of each node depends on it being

connected to at least the remaining majority (see subsection 5.2). Second, because

requests are e�ectively serialised (their order is globally decided upon), throughput

is limited to serialised execution. Third, since serving each request requires com-

munication between at least the majority of replicas, response times are at best

proportional to the round-trip time (RTT) to the slowest responding replica.

4.4.2 Serialisability

Concurrent execution of a set of transactions is serialisable if there exists an equiva-

lent serial execution of the said set [36]. This is important because serial execution

is always con�ict-free. In other words, serialisability is a guarantee against con-

�icts: whenever we can �nd a serialisable way to concurrently execute some trans-

actions, we are additionally guarded against con�icts. Serialisability, however, does

not impose real-time ordering constraints [36]. Nor does it imply any deterministic

order [36].

Simplest way to implement serialisability is through actual serial execution [7, Chap-

ter 7]. In serial execution, each shard is assigned a dedicated CPU core, through

which all of its transactions must be executed [7, Chapter 7]. Interestingly, serial ex-

ecution has only recently become a viable way of providing serialisability [37]. But

to keep throughput acceptable, all transactions in these systems have to be kept

30

small and fast to avoid occasional slow ones from stalling entire shards [7, Chap-

ter 7]. Similarly, cross-shard transactions should also be avoided to prevent slow

cross-shard transactions from causing stalls across multiple shards [7, Chapter 7].

In conclusion, serial execution has become a viable way to provide serialisability,

but these implementations rely on the transactions being small and fast in order to

provide good throughput.

For many decades there was only one widely used method to implement serializabil-

ity: two-phase locking [7, Chapter 7]. In two-phase locking, every object is assigned

a lock, which has to be acquired before access to the object is granted. Concurrent

reads are made possible by allowing read transactions to acquire locks in shared

mode, but write transactions are required to acquire locks in exclusive mode [7,

Chapter 7]. These exclusive mode acquires work as follows: if the lock is already

acquired in shared mode, the transaction holding the lock in exclusive mode has to

wait for the reading transactions to release the lock; additionally, if another transac-

tion tries to acquire the lock, while it is already held in exclusive mode, it has to wait

for the lock to be released. Serialisability implemented through two-phase locking

has the advantage of concurrent reads, but its throughput is hindered by the lock

acquiring and releasing overhead. Another great disadvantage of two-phase locking

is the overall reduced concurrency: whenever two transactions try to do something

that might end up in a race condition, one of the transactions is forced to wait for

the other one to complete [7, Chapter 7].

Lastly, serialisability can be implemented using Serialisable Snapshot Isolation (SSI),

a fairly new extension over Snapshot Isolation (SI) [38]. To understand SSI, its

best to start by understanding SI. The core idea behind SI is the snapshot: when-

ever a write commits it creates a snapshot, a timestamped version of the modi�ed

data. These snapshots are then used to isolate reads from writes. Each received

transaction is assigned a timestamp, that is used to determine which snapshot the

transaction should see. Consequently, a transaction may not see the most recent

version of data, but instead it sees a version that was written by the last trans-

action to commit before its timestamp [38]. In addition, SI enforces a restriction

called �First-Committer-Wins� which prevents transactions from modifying data if

another concurrent transaction has already modi�ed it and commited. But SI by

itself can not be used to implement serialisability, because it can not guarantee all

executions to be serialisable [39].

Now that we understand SI, SSI is fairly simple to explain. SSI is like SI but with

31

added book-keeping that enables it to dynamically detect and abort transactions

where a non-serialisable execution could occur [38]. This is achieved by maintaining a

serialisation graph and by looking for certain anti-dependency [40] patterns between

on-going transactions [38].

When compared with two-phase locking and serial execution, SSI seems to have

the least drawbacks and would thus be our choice to implement serialisability. The

advantage of SSI over two-phase locking is that in SSI one transaction does not have

to wait for locks held by another transaction. Compared with serial execution, the

advantage of SSI is that its throughput per shard is not limited to a single CPU core.

SSI does, however, have its own problems. The performance of SSI is signi�cantly

a�ected by the number of transaction aborts and by the overhead resulting from

having to maintain the dependency graph [7, Chapter 7]. SSI also requires read-write

transactions to be fairly small and fast, since long running read-write transactions

are likely to run into con�ict and abort [7, Chapter 7]. Like two-phase locking, SSI

su�ers from poor availability: to apply a transaction, a node has to be connected

to majority of the replicas to be aware of other transactions in the system. On the

other hand, in serial execution a node only needs to stay connected to one node

(the one with the dedicated CPU core of the shard) to continue to accept writes,

but this approach introduces a single point of failure (what if the node holding the

dedicated core becomes unavailable?).

4.4.3 Sequential Consistency

Sequential consistency requires execution of concurrent operations to be equivalent

to some serial execution, which order is consistent with the order seen at individual

processes [41].

To understand sequential consistency it is best to compare it with linearisability.

Firstly, linearisability is more convenient to use because it preserves real-time order-

ing of operations, and hence it corresponds more naturally to the notion of atomic

execution of operations [35]. In contrast, sequential consistency only requires the

order to be be consistent with the views of individual processes, which may dif-

fer. Secondly, linearisability is composable, whereas sequential consistency is not:

if operations on each object are linearisable, then all operations in the system are

linearisable [35]. Thus we can conclude sequential consistency to be considerably

weaker than linearisability. In fact, it is just weak enough to be implemented with

reduced coordination either on writes or on reads (see section 5).

32

Sequential consistency can be implemented with reduced coordination on either

writes or reads to such an extent that the chosen class of transactions can return

immediately [42]. For example, fast reads can be achieved by instructing each node

to hold a local copy of every replica against which the reads are to be performed.

This enables reads to return immediately, but to ensure sequential consistency writes

must be implemented to be linearisable. The usual approach is to use atomic broad-

cast [43] for writes. Atomic broadcast works as follows: each broadcasted write is

marked as pending, replicas apply every write they receive by atomic broadcast, and

�nally, pending writes are acknowledged to their clients only after the node receives

its copy from the atomic broadcast service. Implementing sequential consistency

with fast writes is very similar, but with the appropriate changes [42].

Albeit being weaker than linearisability, sequential consistency is still a relatively

strong consistency guarantee. Depending on the implementation it can provide high

availability and throughput for either writes or reads, but not for both (see sub-

section 5.5). It is a solid choice for services with a disproportionate read/write

ratio since the overall response times can be lowered by choosing an implementa-

tion that correctly re�ects this ratio. For example, let us assume a system, which

receives read-heavy query tra�c, e.g. roughly 10% of requests to this system are

writes. Let us further assume that in this system a linearisable operation takes 2

seconds to complete on average. Now if the system was completely linearisable, the

average operation completion time would be 2 seconds. On the other hand, if the

system was sequentially consistent we could choose between linearisable reads and

writes. Choosing linearisable reads would make the average operation completion

time to be 1.8 seconds ((90 ∗ 2s+ 10 ∗ 0s)/100 = 1.8s). Similarly, choosing linearis-

able writes would make the average operation completion time to be 0.2 seconds

((10 ∗ 2s+90 ∗ 0s)/100 = 0.2s). Thus, for this particular example system, the aver-

age operation completion time can be lowered from 1.8 seconds to 0.2 seconds just

by selecting the sequential consistency implementation according to the read/write

ratio of the query tra�c.

4.4.4 Causal Consistency

In causal consistency, all potentially causally related operations are guaranteed to

be seen by every process in the same order [44]. But there is no such guaran-

tee for concurrent operations, which may be seen to take place in di�erent order

between di�erent processes [44]. Interestingly, causal consistency requires so little

33

coordination, that it can return instantly for both reads and writes. It is in fact

the strongest consistency model that can stay available for reads and writes during

network partitions (see subsection 5.5).

In causal consistency implementations each node in the system maintains a set of

writes, which can be safely locally modi�ed and read from [45]. Whenever a new

remote write arrives from another node in the system, its metadata is checked to

ensure that its causal dependencies are satis�ed by the local set of writes [45]. If the

dependencies are satis�ed, the agent applies the write, and if not, the node waits

until the missing dependencies have been applied [45]. A write becomes visible only

after it has been applied to the local set of writes, against which reads are performed.

To ensure that clients can always view their latest writes, despite the replication lag,

clients should be assigned with a preferred node, through which their requests are

always spread into the system. This way there is always an `up-to-date' node in the

system from each client's perspective.

Although causal consistency can o�er immediate return for both writes and reads,

it still has some downsides, like the trade-o� between write throughput and the time

it takes for these writes to become visible [45]. This trade-o� exists because causally

consistent replicas have to defer from applying writes until their dependencies have

been applied, but the replicas can only apply these missing dependencies according

to their individual throughputs [45]. Hence the trade-o�: an increase in write tra�c

causes an increase in the time it takes for these writes to become visible.

As an another downside, causal consistency does not scale well against through-

put [45]. For example, consider a causally consistent system of two replicas with

equal apply-capacities of A. Under normal operation the tra�c at each replica

should be a mixture of new and replicated writes, with the combined throughput

staying below A to avoid operations from queueing up. In other words, to avoid

operations from queueing up, the aggregate write throughput of the system should

be limited to the apply-capacity of its poorest replica (A in this case)! Thus, to scale

out a causally consistent system, each replica should be scaled up accordingly [45].

More precisely, scaling the number of replicas from N to M requires upwards scaling

of replicas by O(M2/N2) in apply-capacity [45].

34

4.4.5 Eventual Consistency

The only guarantee of eventual consistency is that if new writes stop arriving each

replica will eventually receive them all [46]. Eventual consistency does not make

any ordering guarantees. Instead, an eventually consistent system can show states

produced by any possible subset of submitted operations [46].

To understand how serious this complete lack of ordering guarantees is, consider

an eventually consistent system with just a single client making a single request.

Now, on subsequent reads the client may sometimes see the e�ects of the write and

sometimes not. The result depends on if the read reaches an up-to-date node or not.

Despite its weaknesses, eventual consistency can sometimes be desirable because of

its high throughput. Moreover, an eventually consistent system can stay available

as long as a single node in the system stays available. Even its lack of ordering

guarantees can be alleviated by careful design (see subsection 6.2), but this usually

limits the type of operations the service can accept.

4.4.6 Session Based Consistency

Session based consistency was designed to solve the lack of ordering guarantees of

eventual consistency while still mimicking its great performance and availability

properties [47]. The core idea behind session based consistency is to provide each

client a view of an inconsistent system that is still consistent with the client's actions

(session) [47].

Session based consistency comes in four di�erent guarantees: Read your writes

(RYW), Monotonic reads (MR), Writes follow reads (WFR), and Monotonic writes

(MW). RYW guarantees that e�ects of any writes are visible to later reads within

a session [47]. MR guarantees that consecutive reads show the state of the system

to be increasingly up-to-date; a read may never return a staler result than some

previous read [47]. WFR guarantees that new writes are ordered after any writes

whose e�ects were seen by previous reads within the session [47]. This guarantee

di�ers from RYW and MR in that it spans outside a single session: the order of

writes within some session is guaranteed to be same for other sessions as well [47].

Finally, MW simply guarantees that within a session new writes are applied after

earlier ones [47].

Session based consistency guarantees can be implemented with very little added

35

coordination [47]. In session based consistency, each write is assigned an identi�er,

and every request is required to include identi�ers of relevant writes within the

session [47]. The actual session guarantees are then provided by a session manager,

which basically chooses what replicas to pass client's requests to [47]. One possible

location for the session manager is the client stub that the client uses to connect

to available servers. This way the session manager can provide the RYW and MR

guarantees by connecting the client only to replicas that advertise having seen the

writes with the required identi�ers [47]. The WFR and MW guarantees can be

implemented by further requiring the replicas to order new writes after old ones and

to preserve the write order during anti-entropy (anti-entropy is the act of seeking and

updating stale replicas; usually done in the background by a dedicated process) [47].

Session based consistency o�ers high-availability, scalability, and disconnected op-

eration, while being relatively simple to implement [47]. Session based consistency

is also very �exible because of its four di�erent consistency guarantees that can be

balanced accordingly to the characteristics of each operation. Consequently, an ap-

plication build on top of session based consistency can select di�erent consistency

requirements for each type of operation [47]. It is even possible to combine several

of these guarantees if needed [47].

4.5 Fault-Tolerant Consensus

Reaching agreement among remote processes is one of the most fundamental prob-

lems in distributed computing [48]. This is called the consensus problem and is

normally formalised as follows: although each node is free to propose any action

(e.g. an operation it wants to apply), they still must decide on one of the proposed

by consensus [7, Chapter 9].

A fault-tolerant consensus algorithm must satisfy the termination, validity, integrity,

and agreement properties [49, Chapter 5]. By termination we require all correct

processes to eventually decide. The validity property is necessary to enforce non-

triviality: processes may only decide on proposed values. By integrity we mean that

all processes must decide on at most one value. Lastly, by agreement we require all

processes to decide uniformly: no two processes decide di�erently.

Agreement and integrity properties together form the heart of the consensus al-

gorithm, while termination and validity ensure its usefulness. If we only required

agreement and integrity from a consensus algorithm, the result would be an algo-

36

rithm where all processes would decide uniformly on some single value. But by

requiring only agreement and integrity, we can not guarantee this algorithm to ever

reach a decision. Some of the processes may stall inde�nitely. Hence, by requiring

termination we ensure that decision is eventually reached. But this decision might

be anything. For example, we could trivially satisfy agreement, integrity, and termi-

nation requirements by an algorithm devised to always decide on some �xed value.

So by further requiring validity we rule out such trivial solutions.

4.5.1 Applications

Some consensus algorithms, such as Raft [50] and ZooKeeper Atomic Broadcast

(ZAB) [51], do not directly reach consensus by deciding on individual proposals,

but instead decide on the order in which the proposed operations are applied [7,

Chapter 9]. In other words, they solve total order broadcast, in which messages

are delivered exactly once, in the same order, and to all nodes [52]. Total order

broadcast is equivalent to fault-tolerant consensus, since either can be implemented

on top of the another [53]. For example, total order broadcast can be implemented

on top of rounds of fault-tolerant consensus, where in each round nodes may propose

messages to be send and by consensus decide on the order they are received [53].

In subsubsection 4.4.1 we brie�y remarked on how linearisability requires fault-

tolerant consensus. To be more exact, linearisability implementations often rely on

total order broadcast. Conceptually it is rather simple: every received request is

�rst sent by total order broadcast to all other replicas and is only applied after the

node receives it back by total order broadcast. This way all nodes have seen and

accepted the request and its position in the global order of operations.

In order to avoid the so called split-brain problem, single-leader replication imple-

mentations have to ensure that at most one of the replicas can be leader at a time [7,

Chapter 5]. In other words, the replicas have to elect the leader by consensus: when-

ever the connection to leader is lost, the followers start to propose leader candidates

and by consensus decide on one.

4.5.2 Implementations

In subsection 4.1 we discussed how single-leader replication limits accepting of writes

to a single node, the leader. Nevertheless, this also means that the leader decides on

the order in which writes are applied and replicated, a situation e�ectively equivalent

37

to total order broadcast.

But if single-leader replication is essentially total order broadcast, which is itself

equivalent to fault-tolerant consensus, does this mean that fault-tolerant consensus

can be simply implemented on top of single-leader replication? Unfortunately, the

answer is no. Leader election would still have to be done through fault-tolerant

consensus [7, Chapter 9]. So in order to elect a leader, we would need a leader to

begin with.

Many fault-tolerant consensus implementations use internally a leader in some form

or another, but they make no guarantees of the uniqueness of the leader [54, 50, 51].

Rather, they are able to make a weaker promise. The operation of each of these

algorithms is divided into epochs, and inside each epoch the leader is guaranteed to

be unique [7, Chapter 9].

Each epoch is assigned an epoch number which are monotonically increased by each

internal leader election. A leader election is held whenever the leader is thought

to be dead. Just like in single-leader replication, the successor is selected by vote,

but is additionally assigned with the epoch number of the election. To guarantee

the monotonic increase of epoch numbers, the new epoch number is always chosen

so that is larger than any other known epoch number. This works since in order

for an election to succeed the majority has to be present, and therefore at least one

of the nodes must have participated in the latest successful election and thus know

the previous largest epoch number. It is important that the epoch numbers are

monotonically increasing, since they are used to solve con�icts between leaders of

di�erent epochs [7, Chapter 9].

To prevent leaders of old epochs from introducing con�icts, they are required to

con�rm their leadership by vote before each decision [7, Chapter 9]. This works

by the leader proposing its epoch number before each decision [7, Chapter 9]. The

leadership is then con�rmed if the leader does not learn of a higher epoch number

from the majority. The followers only accept proposals if they do not know about a

leader with a higher epoch number.

The uniqueness of leader between epochs is hence guaranteed by two kinds of voting:

leader elections and proposals [7, Chapter 9]. The key insight is that at least one

node in each successful vote is guaranteed to have participated in the previous

successful vote since all successful votes require majority. Hence, in every vote there

either is at least one node which knows the previous epoch number, or the vote

fails because it did not reach the majority. Thus, even though the leader might

38

sometimes change, it is guaranteed to be unique between epochs.

4.5.3 Summary of Fault-Tolerant Consensus

Fault-tolerant consensus is an important breakthrough for distributed systems, since

it can guarantee termination (if at least majority stays available) and concrete safety

properties (agreement, integrity, and validity) despite of the unreliability of the

underlying system [7, Chapter 9]. Without fault-tolerant consensus there would not

be total order broadcast, nor linearisable systems. Even guaranteeing the uniqueness

of the elected leader, a fundamental need in single-leader replication, would be

impossible.

Fault-tolerant consensus, however, comes at a cost. First, during a network par-

tition, only the majority of the nodes can remain available for users. Second, in

environments with highly variable network delays, it often happens that nodes start

unnecessary elections, when they (falsely) believe the leader to have failed [7, Chap-

ter 9]. This can lead to performance problems since the system can end up spending

more time electing a new leader, than doing actual work. Third, voting for every

decision requires a lot of coordination, which can be too costly for systems that aim

to o�er high-availability or quick response times.

39

5 Trade-o�s and Impossibility Results

Designing a distributed system includes surprisingly many trade-o�s one has to be

aware of. In a world full of failures, it is simply impossible for a distributed system

to be highly available, strongly consistent, and partition tolerant at the same time.

We start by examining one of the most important distributed systems impossibil-

ity results, Fischer's, Lynch's, and Paterson's impossibility proof (FLP), in subsec-

tion 5.1. Next, in subsection 5.2 we move onto the Brewer's theorem (CAP) theorem

and explain why it is impossible for a distributed system to be simultaneously con-

sistent, available, and partition tolerant. Then, in subsection 5.3 we discuss Abadi's

extension to the CAP theorem (PACELC) an extension to CAP theorem. Next,

in subsection 5.4 we examine how designing for graceful degradation enables us to

build systems that do not have to choose either consistency or availability over the

another, but to make this choice on a more continuous axis, balancing the harvest

and yield of the system. Lastly, in subsection 5.5 we �nish by looking into delay-

sensitivity framework, which provides a tool to examine how tightly systems are

coupled to changes in network delay.

5.1 FLP

How many process failures can a completely asynchronous consensus protocol tol-

erate? None, states the FLP impossibility result, one of the most important results

in distributed systems theory [48].

The proof of the FLP is built upon a set of non-assumptions on the system model.

The system is assumed to be completely asynchronous: there are no assumptions

on relative speeds of processes, on synchronised clocks, on how long messages can

be delayed, nor on the order in which they might arrive [48]. Consequently, it is im-

possible for a process to tell if another is dead, or advancing really slowly [48]. They

continue to give this impossibility result even more weight, by assuming messages

to be delivered correctly and exactly once [48].

The proof for the FLP result is rather complicated and out of this thesis' scope,

but we still wish to present its outline. As the system is assumed to be completely

asynchronous, messages may get arbitrarily reordered, and therefore there exists

many di�erent possible runs for a single initial con�guration of messages [48].

Additionally, for every consensus protocol (that can supposedly tolerate a single

40

fault) there exists some initial con�guration of messages, where the outcome of the

system is not determined by the con�guration but by the order in which the messages

are received (�rst lemma: there exists a bivalent initial con�guration) [48].

Furthermore, if a consensus protocol starts from a bivalent con�guration and we

delay a message applicable to that con�guration, then the set of con�gurations

reachable through any sequence of messages where the delayed message is applied

last contains a bivalent con�guration (second lemma) [48].

A consensus protocol is partially correct if each reachable con�guration has at most

one decision value, and if each possible decision value is a decision value of some

reachable con�guration [48]. A process is non-faulty provided that it takes in�nitely

many steps during a run, and is faulty otherwise [48]. A run is admissible provided

that all messages sent to non-faulty processes are eventually received, and that at

most one process is faulty [48]. A run is a deciding run provided that at least some

process reaches a decision in that run [48]. Lastly, a consensus protocol is totally

correct in spite of one fault if it is partially correct and every admissible run is a

deciding run [48].

Now, lets assume an asynchronous consensus protocol P that is totally correct in

spite of one fault. Then by the �rst lemma there exists a bivalent con�guration C0 for

P . Now, according to the second lemma we can reach a bivalent con�guration C1 by

delaying the �rst applicable message to C0. Similarly, we can reach another bivalent

con�guration C2 from C1. And C3 from C2. Indeed, we can continue constructing

this admissible but non-deciding run forever and so it follows that P is not totally

correct in spite of one fault.

Theorem 1. The FLP result: No consensus protocol is totally correct in spite of

one fault [48].

It is sometimes claimed that FLP result is not applicable to real world because it is

proved on an unrealistic system model: the scenarios used to prove it never occur in

real world [55]. It is certainly true, that the FLP result does not hold in synchronous

systems (e.g. a LAN with a 30 second timeout to detect crashed processes), but there

is a trade-o� between reducing the probability of incorrect failure suspicions, and

fast reaction to process failures, a path which quickly leads back to the domain of

the FLP result. For example, consider a consensus algorithm deployed on a system,

where a 30 second timeout is used to detect failed processes. Since 30 seconds is

such a long time we can be fairly certain on the ability of the system to detect

failures correctly. Thus we can describe this system as adequately synchronous and

41

not worry about the FLP result. But 30 seconds is a long reaction time in case of a

failed process, e.g. the failure of the leader would cause the whole system to become

unavailable for at least these 30 seconds. In a time-critical application the natural

thing to do would be to reduce the timeout interval, but this would then increase

the probability of incorrect failure suspicions! If we continue this path, we will soon

cross the point where the probability of incorrect failure suspicions becomes non-

negligible, and where the system becomes asynchronous. And as soon as the system

becomes adequately asynchronous the FLP result start to hold again [55].

But what are the implications of FLP result? Does this result prevent the im-

plementation of fault-tolerant consensus protocols? Is it not the whole point of

fault-tolerant consensus to arrive at a decision despite of failures? Yes, there is still

life after the FLP result [55]. The FLP result simply states that consensus can not

be achieved in every possible run, that there exists some runs that that no consensus

protocol can handle [55].

The practical implications of the FLP result are simple. Algorithm designers should

better characterise the prevailing conditions that are required for reaching a decision

in their algorithms (e.g. is the system assumed to be partially synchronous, timed

asynchronous, or asynchronous with failure detectors) [55]. Even more importantly,

they should take into account that sometimes the system can not live up to these re-

quirements, and thus clearly state if their algorithm favours liveness or safety in such

situations [55]. Other practitioners should take the FLP result as a warning: relying

on a consensus algorithm, no matter how fault-tolerant, has the slight possibility of

having to give up either the liveness or safety of the system.

5.2 CAP

At The Symposium on Principles of Distributed Computing (PODC) 2000 Eric

Brewer made his famous CAP conjecture: it is impossible for a distributed system to

be simultaneously consistent, available, and partition tolerant [56]. Later, in 2002,

CAP conjecture was formally proved by Gilbert and Lynch, and became widely

known as the CAP theorem [56].

Theorem 2. CAP: in a network subject to partitions (P), it is impossible for any

distributed system, that maintains linearisable consistency (C), to be always available

(A) [56].

Since there exist many di�erent levels of consistency and availability, and di�erent

42

types of partitions, we must de�ne what is really meant by each of these before

going into the proof of the CAP theorem. First o�, consistency in CAP is de�ned as

linearisable [56]. Next, availability in CAP is a simple requirement that each request

must eventually receive a response [57]. A fast response is of course preferable to

a slow one, but in the context of the theorem, even a slow response is su�cient

to cause trouble [57]. Finally, by partitions it is meant that the communication is

unreliable: at any moment nodes can be partitioned into multiple groups that can

not communicate to each other. During these arbitrarily long time periods messages

can be delayed or sometimes lost forever [57].

Informally the proof of the CAP theorem is rather simple [56]. We illustrate the

idea of the proof by the following scenario. Let us assume that there exists an

algorithm A that is strongly consistent, available, and partition tolerant. Assume

that the network consist of at least two replicas, so that it can be split into two

disjoint, non-empty sets {G1, G2}. Next, assume that a partition occurs in such a

way that all messages between these two sets are lost. It follows that replicas in

both G1 and in G2 are unaware of any writes that may occur in the other set for

a particular key k. Now, further assume that a client requests to read the value of

k from a node g2 in G2. What value should the node respond with? It is possible

that no writes have been made to replicas in G1 after the partition, and the value

of k is still the last writes result v1. But it is equally possible that another such

a write has occurred after the partition changing the value of k to some v2, where

v1 6= v2. Since these scenarios are indistinguishable from the perspective of g2, it

can not determine whether to return value v1 or v2. Hence, A has to choose between

availability (possible returning a stale value) and consistency (to wait inde�nitely),

a scenario which contradicts our �rst assumption that there exists such an algorithm

A, that can remain strongly consistent and available despite of partitions.

The CAP theorem is an useful tool to have at hand. According to this theorem

most systems fell into either AP or CP category (during a partition they either give

up liveness or safety). It enables us to quickly categorise systems we deal with in

the real world and if they are suitable to our needs (by the CAP theorem we are

usually looking for a system that is either CP or AP).

As a quick example, let us see how Dynamo [10], Amazon's always writeable key-

value store [10], gets categorized according to the CAP theorem. Dynamo uses a

quorum based consistency protocol, sloppy quorum, which enables nodes to store

writes on behalf of unavailable ones. Therefore Dynamo is able to continue to stay

43

available even though the client's designated home replicas have become unavailable.

This naturally comes with a cost in consistency, and thus replicas are allowed to

diverge, a situation which is reconciled with occasional read repairs when needed [10].

So it comes with no surprise that Dynamo can be categorised as an AP system.

As an another example, let us next categorise PNUTS, Yahoo's distributed rela-

tional database. Since eventual consistency is too weak for Yahoo's web services,

PNUTS was designed to be per record sequentially consistent [33]. This means that

PNUTS has to give up accepting either writes or reads during a partition (see sub-

subsection 4.4.3). Since PNUTS is used mainly to serve content for Yahoo's web

services, it makes more sense for PNUTS to favour reads over writes, and thus writes

are restricted during major outages [33]. Therefore PNUTS reduces availability (for

writes) during partitions is thus a CP system.

The CAP theorem has also received its fair share of criticism over the years [58, 59].

Particularly, the original �2 out of 3� formulation of the theorem lead to much

confusion, and has been since deemed as misleading [60]. Firstly, the CAP theorem

prohibits just a tiny part of the design space: only linearisable consistency paired

with perfect availability is not possible in the presence of network partitions (which

are rare) [60]. Secondly, the choice between consistency and availability does not

have to be system wide, and instead can be done individually for each subsystem [57].

Finally, all of the three properties C, A, and P are more continuous than binary:

system can be available for a certain percentage of the time, consistency comes in

many levels, and even partitions di�er in their severity [60].

5.3 PACELC

Given that early distributed systems design was keenly focused on strong consis-

tency, it is natural to assume the CAP theorem as the major reason many distributed

systems architects started experimenting on weaker consistency models [59]. The

reasoning behind this assumption was that since every distributed system is build

upon an unreliable network they have to be designed with either reduced consistency

or availability [59]. But the CAP theorem applies only to a fraction of the operation

of a system; that is, when there is an actual partition in the system. Thus, baseline

operation of a system should not be a�ected by the CAP theorem, which makes

the assumption, that the CAP theorem was the reason behind a surge in weaker

consistency systems, �awed. But if the trend in weaker consistency models was not

motivated by the CAP theorem, then by what?

44

It turns out that latency is a critical factor in online transactions: even an increase

as small as 100 ms can dramatically reduce the probability that a customer will

continue to interact with the service or to return in the future [61]. Keeping this in

mind and considering that many of the important post CAP theorem distributed

systems, such as Dynamo, Cassandra [62], and PNUTS are designed as databases for

web services, it is no wonder that these systems aim for extremely low latencies [59].

But unfortunately, there is a fundamental trade-o� between consistency and la-

tency [59]. As a side note, latency is arguably same as availability since an unavail-

able system is essentially a system with extremely high latency, and thus a system

becomes more available as its latency reduces [59]. But let us return back to the

trade-o�. As we know by now, one of the reasons to replicate data is to avoid un-

availability caused by failing nodes. Therefore, in order to remain available systems

are required to replicate writes before anything bad happens to the node that ac-

cepted them. And as we already know, this replication is done according to the

consistency model of the system, which stipulates requirements such as the number

of followers needed to accept a write before it can be safely acknowledged. These

requirements get stricter as the consistency model gets stronger, causing the system

to become more latent in acknowledging writes (less available). Thus, tightening

consistency requirements increases the latency experienced at the client [59]. This

trade-o� between consistency and latency persists even when the system is under

normal operation and is thus separate from the trade-o� presented by the CAP

theorem.

Thus, many of the new distributed systems were designed with lowered consistency

requirements mainly to reduce their response times, not because of the CAP theo-

rem [59]. Consequently, a more complete portrayal of the space of potential trade-

o�s is required; one that takes the trade-o� between consistency and latency into

account.

De�nition 5. PACELC: if there is a partition (P), how does the system trade o�

availability and consistency (A and C); else (E), when the system is under normal

operation, how does the system trade o� latency (L) and consistency (C) [59]?

To become more familiar with this useful tool, lets analyse four di�erent distributed

systems from each trade-o� category of PACELC: PA/EL, PC/EC, PA/EC, and

PC/EL.

Dynamo is a PA/EL system [59]. We already found out, that according to the

CAP theorem, Dynamo is a PA system since it reduces consistency from quorums to

45

sloppy quorums during partitions. But even though quorum is a stronger consistency

guarantee than sloppy quorum, it is still a rather weak consistency model because

it allows inconsistencies to arise (a write reaching the quorum but not all of the

replicas). Dynamo thus risks occasional inconsistencies in order to avoid waiting on

staggering replicas, which makes it a PA/EL system [59].

BigTable [31] is a PC/EC system [59]. In BigTable, tablets are assigned to a single

tablet server at a time [31]. BigTable is thus unable to give up consistency to become

more available or less latent, which makes it a PC/EC system.

MongoDB [63] can be classi�ed as a PA/EC system [59]. Under normal operation it

guarantees reads and writes to be consistent [59]. However, if the master node gets

partitioned from the rest of the system, it stores all writes it has received but not

yet replicated in a local rollback directory [59]. Meanwhile, the rest of the system

elects a new leader to remain available [59]. Thus, the new master and the old

master become inconsistent until the rollback directory of the old master becomes

available again and is applied against the new master [59]. Hence, according to

PACELC, MongoDb can be classi�ed as a PA/EC system since a partition causes

more consistency than availability issues [59].

PNUTS is a PC/EL system [59]. We already analysed PNUTS with the CAP

theorem and concluded it to be a PC system since it does not lower its sequen-

tial consistency requirement during partitions. However, under normal operation

PNUTS favours availability over consistency, making it a PC/EL system [33].

5.4 Harvest and Yield

In practice many systems reduce consistency or availability instead of choosing one

entirely over the other [30]. Such systems remain available through graceful degrada-

tion of functionality. This degradation can be characterised as a trade-o� between

harvest and yield: in the presence of a fault there is typically a choice between

giving an imperfect response (reducing harvest) and providing no answer (reducing

yield) [30].

Yield is the fraction of queries that are completed [64]. It is an practical availability

metric that all practitioners should be familiar with. But even though yield measures

availability it should not be confused with the availability of CAP and PACELC.

Rather than giving the probability of a response during a fault, yield gives the long-

term probability of a response [30]. Yield is thus numerically very close to uptime,

46

but is more useful in practice since it directly maps to user experience [64]. Not all

downtime a�ects the user: being down for a couple of seconds during o�-peak and

peak times gives the same uptime, but vastly di�erent yields, because there might

be a many orders of magnitude di�erence in load [64].

De�nition 6. Yield = queries completed/queries o�ered [64],

Harvest is the fraction of data that is re�ected in a response [30]. For example,

assume a distributed database of 100 nodes where individual node faults are tol-

erated. Further assume that each of these nodes is assigned with a single shard

without replication. Therefore removing a node removes a proportional fraction

of the available data. Now consider a search engine that searches this database:

as nodes become unavailable the search results get increasingly inaccurate as the

available data diminishes. Thus the yield stays the same, but harvest is reduced.

De�nition 7. Harvest = available data/complete data [64].

To understand how harvest and yield apply to writes, consider an AP system that is

partitioned into two sets of nodes A and B. Since the system is an AP system each

of the sets can continue to stay available for their respective clients. But updates

sent to the system only a�ect the reachable set and remain unseen on the other

side of the partition. This is a form of reduced harvest: the available audience has

decreased. Now assume that a client of A wants to update some data that is only

reachable in B. Since there is no way for nodes in A to handle this request the only

solution left is to let the request fail (to reduce yield).

5.5 Delay-Sensitivity Framework

Availability of a service can be de�ned as the proportion of requests that meet

some latency bound (e.g. as described by the SLA of the service) [58]. With this

alternative de�nition for availability, we can measure the tolerance of a service to

network problems by analysing how its operation latency is a�ected by changes in

the network delay, and whether it can stay available according to its SLA [58]. This

method is called the delay-sensitivity framework and provides tools for reasoning

about trade-o�s between consistency and robustness to network faults [58].

To replace CAP with this latency-centric viewpoint we need to examine how oper-

ation latencies are a�ected at di�erent levels of consistency [58]. Fortunately, there

47

already exists several impossibility results providing lower bounds on the operation

latency as a function of network delay [58]. These results show that any algorithm

providing a particular consistency model can not perform better than some lower

bound [58].

Any algorithm relying on a linearisable read-write register with at least two readers

and one distinct writer, must have an operation latency of at least u/2 for both

reads and writes, where u is the uncertainty of delay, which can be as high as the

network delay d [42, 65]. In other words, linearisability requires operation latencies

of both reads and writes to be proportional to the network delay d [58]. Thus,

under linearisability read and write operations have a latency of O(d) making them

delay-sensitive, as their latency changes proportionally to the network delay [58].

Any algorithm relying on a sequentially consistent read-write register must have

r + w ≥ d, where r is the latency of a read operation, w the latency of a write

operation, and d the network delay [66]. Interestingly this result grants us some

degree of freedom when designing sequentially consistent systems. For example, we

can reduce the average operation latency of a write-heavy application by choosing

w = 0 and r ≥ d (and vice versa for read-heavy applications) [58]. To summarise,

sequential consistency allows either reads or writes to be delay-independent (O(1))
but requires the other class of operations to remain delay-sensitive (O(d)) [58].

But what is the strongest consistency model that enables all operations to be delay-

insensitive (o(1))? According to recent studies causal consistency meets this de-

scription [67, 68]. It follows that all of the weaker consistency models are also

delay-insensitive [58]. Nevertheless, this result does not make them obsolete. Better

performance is still a valid reason to pick a weaker consistency model [45]. But if

delay-insensitivity is the only requirement then causal consistency is the optimal

solution [58].

Since network delays vary between di�erent nodes, we have to choose carefully which

delay to use for O(d) when analysing a system with delay-sensitivity framework [58].

It is best to start by analysing the communication patterns of the system at hand

against its network topology. A very e�ective strategy is to split delay d into intra

data centre delay dlocal and inter data centre delay dremote, where dlocal � dremote.

This is why some systems have arrived to designs where di�erent consistency mod-

els are used for di�erent parts of the system. For example, in Cluster of Order-

Preserving Servers (COPS), a distributed key-value store, every operation is linearis-

able within a data centre (O(dlocal)), but the e�ects of these operations are replicated

48

with causal consistency across data centres (O(1)) [32]. Thus, even though COPS

contains delay-sensitive operations, none of them are delay-sensitive towards dremote.

This way clients of each data centre can enjoy linearisability with relatively low op-

eration latencies while COPS can stay highly scalable in respect to the number and

locations of its data centres [32].

It should be noted that although delay-insensitive algorithms are decoupled from

the network delay, replication still takes time proportionally to the delay [58]. In

other words, even though a delay-insensitive request is able to return in O(1) time,

it still takes O(d) for its results to become visible [58].

49

6 Avoiding Coordination

Minimising coordination is the key to maximising scalability, availability, and high

performance in distributed systems [69]. Coordination, the requirement for concur-

rent operations to communicate synchronously or otherwise wait for each other in

order to complete, is expensive [69]. But coordination-free execution is not always

safe: it might compromise application level correctness, or consistency [69]. For

example, in a banking application, concurrent and coordination-free withdrawals

can cause an account balance to become negative [69]. To prevent such undesirable

outcomes, the application must coordinate the execution of these operations [69].

Hence, in order to maximise the coordination avoidance of a system, we �rst need

know which parts of the system can safely work without coordination.

In subsection 6.1, we start with a discussion on consistency as logical monotonicity

(CALM) principle, a method used to reason about when distributed code can be

executed safely without coordination. Next, we move onto subsection 6.2 to discuss

commutative replicated data type (CRDT) and examine how by requiring concur-

rent operations to commute we can ensure eventual convergence and thus avoid

con�icts. Lastly, in subsection 6.3 we �nish with a discussion on invariant con�u-

ence (I-con�uence), a framework used to determine whether an application requires

coordination for correct execution.

6.1 CALM Principle

The CALM principle is a technique to help distributed systems programmers to

reason about the consistent behaviour of their code in the face of temporal non-

determinism, including the reordering and delay of messages and data across nodes [70].

It answers questions such as: Where in distributed system is eventual consistency

good enough? How can we be sure that these eventually consistent components do

not taint other parts of the software? How can we maintain such code?

A program can be guaranteed eventually consistent if its execution is independent of

any temporal non-determinism [70]. We call such programs order independent [70].

Monotonic programs�e.g. programs expressible via selection, projection, and join�

are order independent [70]. In such programs the �nal order of the input will never

cause any earlier output to be revoked [70]. Thus they can be implemented by

streaming algorithms that incrementally produce output as they receive input [70].

50

In other words, in a monotonic program, any true statement continues to be true as

new axioms, including new facts, are entered into the program [70]. On the other

hand, non-monotonic programs, e.g. programs that contain operators such as negate

or aggregate, always require some degree of coordination since they have to inspect

all of the input before any output can be produced [70].

Monotonic programs are easy to distribute: they can be implemented through

streaming algorithms that produce actionable outputs to consumers while toler-

ating message delay and reordering from producers [70]. In contrast, even simple

non-monotonic programs are di�cult to get right in distributed systems [70].

As an example, consider a program f(X, v) which purpose is to �nd out if the

minimum of set X is below value v (MIN(X) < v). Let us assume that the set X

is so large that it can not be processed by f as whole. Thus, we have to split X

into subsets X1, X2, . . . , Xn ⊂ X which we then input into f separately. To save

time we distribute the calls to f(Xi, v) which gives arise to the question: should the

invocations of f be coordinated or not? To answer this question we need to �nd

out if f is monotonic. By virtue of the semantics of MIN and <: once a subset Xi

satis�es MIN(Xi) < v, any superset of Xi, e.g. X, will also satisfy it [70]. This means

that f is indeed monotonic and thus X can be safely processed without coordination

as follows: f(X, v) = f(X1, v) ∨ f(X2, v) ∨ . . . ∨ f(Xn, v).

This brings us to the crux of the CALM principle: the tight relationship between

Consistency and Logical Monotonicity [70]. Monotonic programs guarantee eventual

consistency even when faced with temporal non-determinism [70].

We can use CALM principle to safely minimise coordination in distributed programs

by only coordinating the points of non-monotonicity [70]. A simple syntactic check

is a good start: if the program only contains monotonic operators it is monotonic

and can be implemented without coordination, regardless of any read-write depen-

dencies [70]. On the other hand, if non-monotonic symbols are found they may

require coordination to ensure consistency and should be treated accordingly [70].

6.2 CRDTs

The CRDTs are a family of data structures on which all concurrent operations

commute [71]. By ensuring non-concurrent operations to be delivered in causal

order and concurrent operations to commute, CRDTs are guaranteed to eventually

converge and never con�ict [72]. Thus, they require no coordination [71]. As a

51

result CRDTs can remain available and scalable even during high network latency

and partitions [72].

As an example, consider a website which hosts pictures that users can like or dislike.

The pictures are stored in a central repository together with their likes. Now let us

assume that by either liking or disliking a picture the client simply adds or subtracts

one from the local number of likes for a picture and sends this updated number to

the central repository. This approach is certainly simple but unfortunately is not

commutative: whenever a user likes or dislikes a picture the new number of likes

will disregard all possible likes and dislikes which might have taken place while the

user was contemplating whether to like the picture or not! In an implementation

such as this some kind of coordination among the clients would be required to

prevent likes or dislikes from becoming lost. Let us now consider another approach

that is commutative: instead of sending the updated number of likes to the central

repository, the client �rst updates the local number of likes and then proceeds to send

either plus (like) or minus (dislike) one to the central repository which then adds

the received plus or minus one to the number of likes stored at the repository. Now,

since both likes and dislikes commute we can conclude the pictures in this system

to be CRDTs and thus operations on them require no coordination to converge. To

receive the most up-to-date number of likes for a picture the client simply asks for

the central repository for this number.

6.3 Invariant Con�uence

I-con�uence is an another framework that can be used to determine whether an

application requires coordination for correct execution [69]. This is achieved by

enabling application developers to specify their correctness criteria in the form of

invariants [69]. After all, since the underlying distributed system has no idea what

the application considers as consistent, so why not let the application developer

decide?

Before going into I-con�uence, we must �rst de�ne what is meant by invariant valid

(I-valid) replica state and I−T reachable state. Replica state R is I-valid if and only

if I(R) = true, where I is an invariant speci�ed by the application developer [69].

Moreover, we say that a system is globally I-valid if and only if all of its replicas

are always I-valid [69]. An I−T reachable state is a state that can be reached with

an invariant I, a set of transactions T , and a merge function in such a way, that

each intermediate state produced by transaction execution or merge invocation is

52

also I-valid [69].

Now that we have de�ned I-validity and I−T reachable state, we are ready to de�ne

I-con�uence. A set of transactions is I-con�uent, with respect to invariant I if for

all I −T reachable states Di and Dj, with a common ancestor state, the merging of

Di and Dj is I-valid [69]. To put it more simply, I-con�uent transactions will never

lead to an invalid state (against invariant I) in any of the replicas, regardless of how

they are propagated in the system.

It can be shown that a globally I-valid system can execute a set of transactions

T with availability, convergence, and coordination-freedom if and only if T is I-

con�uent with respect to invariant I [69]. I-con�uence is thus a necessary and

su�cient condition for coordination-free, invariant preserving execution [69]. In

other words, if I-con�uence holds there exists a coordination-free, correct execution

path for the transactions; if not, there can be no implementation that guarantees

these properties for the provided invariants and transactions [69].

But I-con�uence is not a silver bullet. Firstly, simply because an application is

I-con�uent, it does not indicate that all of its implementations perform equally

well [69]. I-con�uence only guarantees that a coordination-free implementation ex-

ists [69]. Secondly, I-con�uence can only guard against violations of invariants that

are provided [69]. Developers are thus required to either guarantee the correctness

and completeness of their invariants, or to opt for more conservative analysis or

mechanism, such as employing serialisable transactions [69]. In practice, the �rst

option is seldom feasible.

53

7 Building a Maintainable Distributed System

Building a distributed system is always a complicated undertaking and the danger of

ending up with an unmaintainable system is real. Thus, it is of utmost importance

to keep the system as simple and operable as possible to minimise future costs.

In subsection 7.1, we start by a discussion on importance of service-level monitoring.

Next, in subsection 7.2 we discuss logs and the importance of log aggregation and

other logging practices. Then, in subsection 7.3 we examine di�erent distributed sys-

tems debugging approaches. Next, in subsection 7.4 we discuss how platform-level

monitoring complements service-level metrics. Then, in subsection 7.5 we explain

how back-pressure can help mitigating the risk of cascading failure. Next, in sub-

section 7.6 we discuss containers and their various bene�ts. Then, in subsection 7.7

we examine how handling of containers can be automated with container orchestra-

tion platforms. Lastly, in subsection 7.8 we �nish with a discussion on di�erences

between centralised and decentralised distributed system architectures.

7.1 Service-Level Monitoring

Service-level monitoring informs operators on how their system is changing over

time. Analysing long-term trends reveals important aspects like how fast a database

is growing or if the system really is slower than it was the previous week. Knowing

how the behaviour of the system is di�erent from the behaviour preceding a com-

ponent change illustrates the di�erence between successful engineering and failed

shamanism [9].

Service-level monitoring alerts operators when something breaks, but alerts can be

hard to get right. For example, alerting too eagerly can cause operators to dismiss

real situations as false positives, whereas alerting only in extreme situations usually

means alerting too late [8, Chapter 2]. It can be tricky to �nd the golden middle

way.

Service-level monitoring enables operators to set up dashboards. A good dashboard

is simple and informative: a quick glance should be enough to tell the operators if

the system is performing as expected. An informative dashboard can help operators

to discover problems even before the alerts begin to arise.

54

7.2 Logging

While service-level monitoring informs operators when something is wrong, logging

informs operators what is wrong. However, logs tend to get �lled with all sorts of

odd bits and bobs [9]. Thus, it is important not to over-emphasize something seen

in the log before its importance is checked against the monitoring metrics [9].

Since logs in distributed systems are product of many services, they tend to get

spread all over the system and in di�erent formats. Hence to avoid wasting operators'

e�orts logs should be aggregated to a central location in uni�ed format for easier

access and better intelligibility. Log aggregation also opens doors to other good

practices such as log rotation, analysis, search, and easier long term log storage.

7.3 Debugging Distributed Systems

Although service-level monitoring and logging helps operators to see when and what

is wrong in the system, they usually lack the required information to indicate why

something is wrong in the system [8, Chapter 2]. Consequently, we need tools to

understand the complex interactions between many programs, possibly running on

hundreds of servers [8, Chapter 2]. Distributed system tracing tools have been

proposed to ful�l this need [8, Chapter 2].

Black-box monitoring systems, such as WAP5 [73], treat the system as a collection of

black-boxes. They monitor the tra�c within the system and use statistical methods

to infer causal relations [8, Chapter 2]. This approach has the advantage of not

requiring any assistance from software infrastructure, but this advantage comes with

a cost in information accuracy [8, Chapter 2].

For better accuracy, instrumentation-based tracing schemes, such as Dapper [74],

Pip [75], and X-trace [76], are recommended [8, Chapter 2]. But these tools have

the downside of requiring all components of the system to be instrumented to collect

comprehensive data [8, Chapter 2]. More speci�cally, instrumentation-based tracing

relies on every record being explicitly tagged with a global identi�er that links it to

the original request [74].

55

7.4 Platform-Level Monitoring

Before we can begin to properly understand and analyse service-level metrics, we

must monitor the computing platform as well. Although the misbehaviour of a hard-

ware component can sometimes be inferred from service-level metrics, it is still an

indirect assessment [8, Chapter 2]. Furthermore, since distributed systems are often

designed to tolerate hardware-faults directly in the software, monitoring at these

levels can cause a vast number of underlying hardware problems to go unnoticed,

allowing them to build up until they can no longer be mitigated [8, Chapter 2]. At

that point the following disruption could be severe. Hence, in order to really under-

stand what is going on in the system, tools that continuously and directly monitor

the health of the computing platform are required in addition to the service level

metrics [8, Chapter 2].

7.5 Back-Pressure

Back-pressure is a feedback mechanism that enables systems to gracefully respond

to load rather than to collapse under it. It is about the signalling of failure from a

serving component to the requesting component and about how the requesting com-

ponent handles those signals to prevent them both from overloading [9]. This may

involve dropping new messages, or shipping errors back to the requester [9]. Time-

outs and exponential backo�s on connections to others systems are also important

features of back-pressure [9].

Without back-pressure, cascading failure becomes likely: a service that is not pre-

pared for the failure of another, tends to emit failures to other services depending

on it [9]. Moreover, the feedback provided by back-pressure is a very informative

metric to monitor.

7.6 Containers

In the recent years, the software industry has seen a dramatic rise in adoption of

container technology [77]. Containers are a packaging mechanism, that abstracts

applications from the environment they actually run in [78]. This abstraction en-

ables containerised applications to be deployed consistently, regardless of the target

environment.

Containers are often compared with virtual machines. Virtual machine is essentially

56

a guest operating system that runs on top of the host operating system with virtu-

alised access to the underlying hardware [78]. Similarly to virtual machines, we use

containers to package applications together with their dependencies into isolated en-

vironments. But instead of virtualising the hardware stack, containers virtualise at

the operating system level and run directly on top of the kernel [78]. Consequently,

containers are much lighter: they share the kernel, and most importantly they start

much faster and require only a fraction of the memory since they do not need to

boot an entire operating system [79].

Containers enable developers to create predictable environments that are isolated

from other applications and include all dependencies required for an application to

operate [78]. Moreover, the environment is guaranteed to be consistent no matter

where the container is ultimately deployed. This means that the developers can

spend less time debugging di�erences in environments, and more time shipping new

features for users.

Containers provide a higher level abstraction to process life cycle management [80].

Every container e�ectively exports three functions: start, stop, and pause [77]. Al-

though the interface is extremely limited, we can provide a �ner interface by pro-

gramming the container to host a web server at speci�c endpoints [77]. To the

outside direction we can expose application information, such as monitoring metrics

and logs [77]. And to the inside direction we can expose an interface for �ner life

cycle control. Most importantly, this �ner life cycle management interface enables

containers to be orchestrated across multiple nodes.

7.7 Container Orchestration

Container orchestration platforms are frameworks for integrating, deploying and

managing containers at scale. They work by having each node host an agent that

manages containers locally and advertises resources to the master node. The master

pools the advertised resources and uses this information to schedule deployments.

Besides where and when to deploy an application, the responsibilities of the master

include load rebalancing and exposing an interface for operators to monitor and

deploy their applications.

Container orchestration platforms e�ectively bind distributed hardware resources

into a single pool of resources [78]. With container orchestration in place, operators

no longer need to concern themselves with choosing a node to deploy their applica-

57

tion on. All that is required is to describe how the application should be deployed

and managed afterwards. The orchestration platform then ensures that the state

of the application stays as close as possible to the desired state by continuously

changing the state of the application towards its deployment description.

Table 1 is a comparison of some of the most popular container orchestration plat-

forms. From the compared platforms, Kubernetes and Docker Swarm Mode are pure

container orchestrator frameworks, while Nomad and DC/OS provide other features

as well.

7.8 Architecture

There are basically two types of distributed system architectures: centralised and

decentralised. Centralised architectures are coordinated by a single dedicated coor-

dinator, often called as the master. Alternatively, in decentralised architectures the

coordination logic is spread among the system in such a way that the components

of the system are able to make decisions together or autonomously.

The greatest advantage of centralised architectures is their simplicity. Since there

is only one coordinator, it can have global knowledge on the state of the system

and thus make sophisticated decisions [11]. For example, GFS is coordinated by a

centralised master [11]. The master maintains a table containing mappings from �les

to chunks and locations of each of these chunks and their replicas [11]. The master

populates this tablet at startup by polling the chunk servers for the chunks they

are holding. As the master makes all the chunk placement decisions it is relatively

simple to keep this table up-to-date: all that is required is to monitor the chunk

servers with heartbeat messages and modifying the tablet accordingly [11]. Because

of this global knowledge, the master can make sophisticated decisions on aspects

like which chunks to re-replicate, where to create new ones, and if rebalancing is

required [11].

As the slowness or failure of the master can cause the whole system to stall, it is

important to avoid involving the master in too intensive or too many operations [11,

31]. For example, GFS avoids overwhelming the master by limiting its involvement

in data transfers [11]. When a client wants to read or write to a chunk, it only

contacts the master if it does not already know the location of the chunk. Client

caches this information and sends all subsequent requests directly to the leader

replica of the chunk, which in turn replicates all the changes to the follower chunks

58

without contacting the master.

Even though centralised architecture introduces a single point of failure into the

system, the risk stays relatively low. After all, even though distributed systems are

often experiencing faults of some sort, the individual nodes are still very reliable. The

problems come from the sheer number of machines: the mean time between failures

(MTBF) of some component is always due. Thus, although faults are common, the

failure of the master remains unlikely [81].

By comparison, decentralised architectures do not have to design around bottleneck-

ing the master, but need additional protocols for agreeing on the state of the system

and for avoiding con�icts. These protocols mixed with the distributed coordination

logic can make decentralised architectures complex and hard to reason about.

59

8 Current Production System

In this section the shortcomings of the current production system are laid out. We

start by describing the system in su�cient detail in subsection 8.1 and end with and

examination of its various problems in subsection 8.2.

8.1 Description of the Current System

The subject production system is a framework for turning raw telemetry data,

weather predictions, and weather models into other weather predictions and mod-

els. This framework is required to abstract away the actual production from its

description. This way the di�erent production processes become easily monitored

and con�gured through the production system.

The current production system consist of roughly 100 servers connected via a high-

speed LAN. The system has about 10000 tasks, around half of which are launched,

monitored, and managed by ecFlow [82], and the rest by a similar in-house solution.

These tasks access and store all their data through a central on-premises NFS cluster.

We monitor the infrastructure with Nagios [83].

EcFlow is centralised work �ow framework that can run large numbers of jobs with

various triggers. In a nutshell ecFlow works as follows: the master (ecFlow server)

periodically checks if tasks should trigger and instructs the nodes holding the tasks

to execute them.

The task trigger information is passed to the ecFlow server by a suite de�nition

�le. EcFlow server scans this �le every minute and launches all tasks which trigger.

A trigger can be basically anything, but most often we use checks to see if some

relevant data has changed or if some other task has �nished. Tasks that need to be

run in speci�c dates or intervals can be made into cron jobs.

The suite de�nition includes the tasks' triggers but not the tasks themselves. In-

stead, the tasks are de�ned in ecf scripts which are basically shell scripts with

additional work �ow management commands. The locations of each ecf script is

stored in the suite de�nition. Upon triggering a task, ecFlow server instructs its

home node to execute it.

The in-house solution is very similar to the ecFlow framework but relies entirely on

cron, ssh, and shell scripts. Instead of a suite de�nition the tasks are located in

a single folder that gets polled every minute by a cron job. Each of the tasks in

60

this folder is named after the data that triggers it. Speci�cally, the �lename of a

task is the pathname to the folder where its input data is stored. Every time the

cron job executes it scans the folder containing the tasks, parses the task names into

pathnames, checks if the folders pointed by these pathnames contain new data, and

executes tasks accordingly. These tasks are ordinary shell scripts containing remote

instructions to workers (chosen when the tasks were written). All tasks are retried

N times, but if they remain unsuccessful a noti�cation is made via Nagios.

We store all data in a central on-premises NFS cluster. The data is organised by

its source and type into a hierarchical folder structure, where each data source has

its own folder. Whenever new data is produced (or arrives), it is timestamped and

stored at some designated folder of the data source.

We have several monitoring systems installed for di�erent metrics. The ecFlow half

of the production system is exposed though the graphical user interface (GUI) client

of ecFlow, which shows the state of all ecFlow tasks with one minute granularity.

Unfortunately, this kind of task tracking is completely lacking from the in-house

solution. In addition to the GUI, we monitor the tra�c at the outward facing

servers with pingdom [84], the health of the computing-platform with Nagios, and

the performance of applications with New Relic [85].

8.2 Shortcomings of the Current System

The greatest problem with the current production system is how the task are as-

signed statically. Thus, load balancing relies solely on the operators' expertise to

select the workers to handle new tasks. This choice is especially hard since it is

practically impossible to know beforehand the load at di�erent workers at the time

the new task is executed. An unfortunate guess can lead to the task being assigned

to a node that is maximised out every time the task is triggered.

An another problem with the system is that it lacks redundancy. Neither the ecFlow

framework nor the in-house system is �exible enough to allow for task replication.

Consequently, whenever a worker node becomes unavailable, its tasks are not exe-

cuted until it recovers.

In addition, the I/O throughput of the on-premise NFS cluster is slowly turning into

a bottleneck. Until now, we have managed to scale the system by simply adding

more worker nodes. This approach has so far worked well and given us linear scaling

since the workers work in isolation. But despite this isolation the workers still have

61

to compete on the I/O of the NFS cluster. Consequently, we can no longer expect

linear scaling in the future.

The I/O throughput is not the only problem with the shared NFS cluster. The whole

approach of using a shared �le system as a object store is somewhat problematic.

Firstly, in �le systems the data access can only be controlled through permission

�ags. This means that in the system a miscon�gured task might corrupt the data

another if we are not careful. Secondly, the way we access data directly from the �le

system makes the tasks highly coupled to speci�c paths on the �le system. Hence, if

we want to relocate data we are forced to change the related tasks as well. Thirdly,

since we directly use �le system, the only way for us to locate and organise data is

by pathname. This forces us to use clumsy timestamping practices to prevent new

data from overwriting old data: each data is timestamped by appending its creation

time to its pathname. Unfortunately, since some data sources are not governed

by us, these data sources might format their timestamps di�erently, and thus the

only general way to �nd the most recent data of each data source is to completely

disregard the timestamps, and instead ask the �le system for the last modi�ed �le

in the folder. Fourthly, �le systems lack hooking capabilities to inform external

systems when new data has arrived. Consequently, we have resorted to poll the

data source folders for changes, which certainly does not help with the limited I/O

capacity of the NFS cluster.

The current production system moves data to the tasks rather than the other way

around. So far this has been su�cient since most of the data is produced in-house

and made directly available in the on-premise NFS cluster. And until now, most of

the data produced outside has been either su�ciently small or produced so infre-

quently, that downloading it to the NFS cluster has not been a problem. But the

recent developments in open data movement have made available a plethora of new

data, some of which are too large or too frequently produced to be downloaded here.

62

9 New Production System

We start laying out the requirements for the new production system in subsec-

tion 9.1. Next, we design the new production system according to its requirements

in subsection 9.2. Lastly, we �nish by presenting a practical implementation of

this design in subsection 9.3. We do not claim that the presented solution is opti-

mal. Rather, the presented solution is simply one design we arrived at by using the

knowledge gathered from the research done for this study.

9.1 Requirements for the new System

This subsection contains the requirements for the new production system. These

requirements are mostly based on our experience with the current system. We have

also listed the non-requirements of our system: features usually required of similar

systems but not required of the system at hand.

9.1.1 Requirements From the Shortcomings of the Current System

The following is a list of requirements based on the shortcomings of the current

system. By ful�lling these requirements, the new production system should avoid

the shortcomings of the current system.

1. To avoid the complexity of statical load balancing, the new system must have

dynamic load balancing.

2. To avoid the problem of central NFS cluster becoming a bottleneck, the new

database solution for the new system must tolerate greater read/write tra�c.

3. To avoid large �les, the new database must split large �les into more manage-

able �le chunks.

9.1.2 Requirements From Experience With the Current System

The following is a list of requirements based on our experience with the current

system.

1. The production system should be split into three separate components: database,

task pool, and coordinator.

63

2. Most of the tasks in the system are only interested in the newest data, indi-

cating that the new database should be distributed evenly to avoid hot spots

from forming.

9.1.3 Non-Requirements for the new System

The following is a list non-requirements for the new production system: features

usually required of similar systems but not required of the new production system.

1. It is OK for the system to stop production for short periods of time since there

are no dependent real-time systems.

2. Almost all �les in the system are `write once read many' by nature indicating

that write con�icts in our new database are going to be a rarity.

3. New tasks are added into the system on a weekly basis indicating that the

write tra�c to the task pool is going to be very light.

9.2 Design for the new System

In this subsection we apply the distributed systems theory to design the new pro-

duction system according to its requirements.

9.2.1 Designing Distributed Systems

This subsection presents the result of our e�orts in converting distributed systems

theory into practice. Although most of the theory is straightforward, there is so

much of it and it so intertwined that we had hard time trying to decide where

to begin with it. The following is an overview of what is involved in designing

distributed systems in general.

Before starting to design any distributed system we must �rst know what is theoret-

ically possible: to this end we use the impossibility results and trade-o�s discussed

in section 5. The FLP impossibility result, although important for distributed sys-

tems theoreticians, does not have much e�ect to designing distributed systems in

practice. The CAP theorem shows that under network partitions we have to give

up either availability or strong consistency. PACELC extends this result by point-

ing out that under normal operation we can have either low latency responses or

64

strong consistency, but not both. Harvest and yield points out that if we design the

system to gracefully degrade under partial failures, the choice between availability

and consistency does not have to mutually exclusive. Finally, the delay-sensitivity

framework shows how stronger consistency models are more sensitive to changes in

network delay than weaker ones.

Almost every choice in distributed systems revolves around availability and perfor-

mance, and thus we should carefully analyse these requirements before considering

anything else. We are especially interested in the lower boundaries, since these

directly indicate how much there is leeway to trade-o� for other nice-to-have prop-

erties.

An especially nice-to-have property in distributed systems is simplicity (see sec-

tion 7), and since simplicity is greatly a�ected by the chosen consistency model

(see subsection 4.4) choosing one should be our next step. Strong consistency mod-

els are generally easier to reason about and to work with than weaker models since

they usually lead to less surprises like stale reads, lost writes, or write con�icts

(see subsection 4.2). In other words, for the simplest possible system, we should

choose the strongest consistency model that is able to conform to the set availabil-

ity and performance requirements.

After consistency model has been chosen, deciding on a replication strategy should

be easy. This boils down to choosing the number of followers and leaders (see subsec-

tion 4.1). More followers usually means better throughput and availability for reads

(depending on the consistency model), while more leaders usually leads to better

throughput and availability for writes (again depending on the consistency model).

Nevertheless, too many followers will waste storage and computing resources and

having more than one leader per shard can lead to write con�icts. Dealing with con-

�icts is a complicated business (see subsection 4.2) and thus single-leader replication

should be carefully considered over its con�ict prone alternatives. We could state

the following: if the write tra�c per shard is mostly consecutive then single-leader

replication is often the optimal solution (see subsubsection 4.1.2).

Sharding introduces isolation which in turn translates to improved scalability and

availability (see subsection 4.3). And by sharding large replicas into something

more manageable we can improve performance. But most importantly: we can use

sharding to reduce, or to completely prevent, con�icts by capturing the concurrent

access patterns of each component. The overall e�ect should be that each shard

ends up being large enough to avoid unnecessary overhead, but small enough to

65

prevent hot spots from forming. Lastly comes the decision on the actual sharding

strategy. As a rule of thumb, hash range sharding should always be considered �rst

because it alleviates the risk of hot spots, but if e�cient transactions across ranges

are needed then there is no way around key range sharding.

Lastly, if we can not �nd a su�ciently performant solution, we should look for

coordination avoidance (see section 6). When eventual consistency is enough CRDTs

should be considered since they guarantee con�ict-free convergence. Moreover, if

the invariants of the application are well known, I-con�uence should be used to �nd

out which operations are safe to be implemented without coordination. But if the

application were to written from scratch, we recommend using the CALM principle

to ensure eventual consistency. This can be easily achieved with Bloom [70], a

programming language that has a built-in support for CALM checks.

9.2.2 Architecture

To keep the logical components of the system separately maintainable, we are going

for a modular, service-based architecture, where each component should be sepa-

rately deployable. Based on our experience (see subsubsection 9.1.2) the system

should divided into three separate components: one for storing input and output

data (to abstract away the shared �le system), one for storing tasks (to enable dy-

namical load balancing as is required of the new system; see subsubsection 9.1.1),

and one for coordinating the actual production. There are basically two possible

ways to implement the dynamical load balancing: either by instructing the workers

to fetch the tasks themselves or by instructing the coordinator to assign the tasks

to the workers. However, since centralised architectures tend to produce simpler so-

lutions than decentralised architectures (see subsection 7.8) and since 100% uptime

is not required of our system (see subsubsection 9.1.3), the centralised solution to

load balancing is chosen.

Here is how we picture the components of the new architecture to come together.

Tasks and their related triggers are sent to the task pool via a client program.

Task pool noti�es the master whenever it receives a new task. Upon receiving

such a noti�cation, master downloads the advertised triggers and adds them to

its in-memory metadata. Whenever the master fails, it repopulates this metadata

by simply polling the task pool for trigger information upon recovery. Master then

continues to periodically check its metadata for triggered tasks and distributes them

to workers according to its best knowledge. To avoid overwhelming the master, we

66

wish to exclude it from all the heavy data transfers. Consequently, the master does

not send the actual task to worker, but its identi�er so that the worker can fetch

it directly from the task pool. Upon receiving such an identi�er, worker downloads

the task, executes it, and informs the master of its result. All tasks access and store

their data via a distributed object store.

9.2.3 Task Pool

The performance and availability requirements of read and write tra�c are very

disproportionate for task pool. According to the past usage of the current production

system (see subsubsection 9.1.3) we assume that new tasks continue to be added

roughly once a week. This means that the requirements for write tra�c are basically

non-existent. Contrastingly, the task pool is going to be read whenever a task

triggers, which will happen frequently and often in batches. Thus, its read tra�c

requires high availability and performance.

Whenever a worker receives a task identi�er it asks the task pool for the related

task. We assume that the task can be found since it would not make any sense for

an identi�er to exist without the task. In terms of consistency, this translates to a

requirement for writes to become immediately visible for all latter reads. When we

combine this requirement with the earlier disproportionate availability and perfor-

mance requirements, we can conclude that the strongest possible consistency model

for task pool is sequential consistency tuned for fast reads (see subsubsection 4.4.3).

The task pool is frequently read, but rarely written into. Thus, the optimal replica-

tion strategy for the task pool is single-leader replication (see subsubsection 4.1.2).

To account for the high availability and performance requirements of the read traf-

�c, each leader should be accompanied with a su�cient number of followers. The

exact number should be experimentally determined and scaled according to the read

tra�c.

The task pool is a distributed, persistent, three-dimensional unsorted map indexed

by a task identi�er and a column key. There are only two columns: one for the

triggers and one for the actual tasks. The task pool is sharded into row ranges

called tablets. These tablets should be large enough to avoid unnecessary overhead

resulting from having to manage too many tablets, but small enough to be manage-

able by the weakest node in the system (see subsection 4.3). The exact size should

be experimentally determined and tuned according to collected metrics. Since tasks

67

are never accessed by range, we can safely choose hash sharding as the sharding

strategy and thus ensure best possible distribution of load across tablets.

9.2.4 Master

The master in the new production system is not replicated and hence there is not

much to say about it in the sense of distributed systems. Since there is only one

master its failure is going to be a relatively rare event and thus a simple failover

strategy should be su�cient (a simple strategy should also su�ce since 100% up-

time is not required of the new system; see subsubsection 9.1.3). We recommend

automatic server restarts in case of master operation failures, and if the server itself

becomes faulty, manual migration to another server.

To enable master to continue where it left upon recovery, careful attention should

be paid to persistent logging. Logs should include what triggered each task, the

worker it was assigned to, and its result (if received). Such information enables

master to avoid duplicate task executions. Upon recovery master downloads the

triggers from task pool, checks for triggered tasks, playbacks the log, and launches

only the tasks that are not being processed, whose triggers are more recent than

trigger information in the logs, and failed tasks.

9.2.5 Distributed Object Store

The NFS cluster in the current production system is slowly turning into a bottleneck,

signifying great data tra�c (see subsubsection 9.1.1). To avoid the new solution from

becoming a bottleneck as well, we should better utilise the current hardware. In a

ideal production system all of the worker nodes should be continuously working

on some task. This means that the new database should be always available for

reads and writes. The data items in the system are mostly written just once (when

created) but read many times (see subsubsection 9.1.3). Since data is barely ever

modi�ed, write con�icts on some single data item are going to be a rarity.

To support the strict performance and availability requirements of the new solution,

we are going to need every drop of performance from the current hardware. This

means that we can not compromise with any of the stronger consistency models.

Thus, the strongest consistency model able to conform to these needs is eventual

consistency.

Because of the high performance and availability requirements of the database, we

68

have to discard single-leader replication from the list of possible replication strate-

gies, which leaves us with multi-leader and leaderless replication to choose from.

Multi-leader replication with every node designated as a leader enables practically

the same performance as leaderless replication. But leaderless replication can pro-

vide better availability if sloppy quorums are utilised (see subsubsection 4.1.4).

Therefore, leaderless replication is chosen as the replication strategy for the new

database. Furthermore, to meet the high availability, performance and durability

requirements, (N, R, W) quorums should be initially con�gured to (3, 1, 2). We

settled upon this con�guration by starting from the recommended (3, 2, 2) con�gu-

ration (see subsubsection 4.1.4), but reduced the read quorum to enable faster reads.

Normally this change would increase the probability of returning a stale value, but

since the data is mostly write-once we do not really have stale values.

We expect many of the data objects to be quite large; some exceeding tens of

gigabytes in size (see subsubsection 9.1.1). Moving such objects around is slow and

cumbersome. Therefore, we should split large objects into manageable size chunks

before uploading them. This increases throughput since chunks can be uploaded

and downloaded in parallel. In addition to increased throughput, storing chunks

instead of objects makes many database maintenance operations such as rebalance,

hando�, and anti-entropy faster. Operating on chunks also reduces the probability

of forming hot spots since read tra�c is automatically distributed among chunks.

We can prevent write con�icts by simply making each �le chunk its own shard. This

works because each �le in the system always originates from a single source only and

is usually never modi�ed afterwards (see subsection 4.3). Thus, even though there

are many concurrent sources, their writes will not con�ict since they are isolated

into di�erent shards. But the data tra�c is not limited to writes. Instead, every

task has a set of input �les, which are read upon its execution. Usually, the tasks are

interested in only the most recent �les in the system (see subsubsection 9.1.2). This

means that the database is particularly susceptible to hot spots since read tra�c

is biased towards new data. Therefore, we should ensure that new �le chunks are

distributed as evenly as possible, meaning hash sharding. Hash sharding suits the

database well since we already gave up on e�cient key-range transactions when we

decided to split large �les into chunks.

Initially we thought of using CRDTs paired with dotted version vectors (see subsec-

tion 4.2) to ensure the convergence of the database, but we realised that a simpler

approach was available due to the write-once nature of the data: timestamped writes

69

with LWW. We chose LWW as the con�ict resolution strategy to ensure task idem-

potency: if for some reason a task gets executed twice, the second execution just

overwrites the �rst one. This also applies to con�icts found during read repairs,

hinted hando�s, and anti-entropy.

9.2.6 Maintainability

The majority of the costs of software come from its ongoing maintenance, not from

its initial development. To minimise these maintenance costs we must make the

new production system as maintainable as possible. We have already �nished the

most critical part in creating a maintainable system, that is designed for simplicity.

The new architecture is modular, service oriented, and centralised. But simplicity

alone can not ensure the maintainability of the new production system. We need

good operability, meaning easy routine tasks, enabling operations team to focus on

high-value activities.

A good service-level monitoring system is required in order for the operators to know

how the system is performing currently and how it has changed (see subsection 7.1).

In terms of the production system this means monitoring the state of tasks, master,

task pool, and the object store. The progress of individual tasks should be moni-

tored to prevent failing tasks from stalling whole task pipelines. Master should be

monitored for availability since its failure (and especially failure to recover) would

cause a system wide stall. Task pool and the database should also be monitored for

availability; however, perhaps even more important is to monitor their performance

in order to make quick adjustments in face of bottlenecks. A simple dashboard

showing only the most critical signals should be set up to allow operators to con�rm

the correct operation of the system at a glance.

Logs should be aggregated for better operability (see subsection 7.2). We are es-

pecially interested in the master and task logs, because they are the main active

parts of the new production system. But tasks are distributed across the system. If

each task just logged to the local hard disk drive (HDD) of its executing worker, the

logs would become distributed across the system, forcing operators to waste e�orts

hunting them down each time something bad happens. Therefore, logs should be

aggregated to one central place for easier access.

Platform-level monitoring equipment should be installed to ensure that there are

enough compute, storage, and network resources, and that they are working as

70

expected (see subsection 7.4). This should also prevent underlying hardware prob-

lems from manifesting as service-level problems, which could waste serious operator

e�orts.

Back-pressure should be build into master-worker communication to avoid cascading

failures (see subsection 7.5). Cascading failures occur when failure of one component

spreads to another due to lack of proper failure handling. We see two possible ways

for a failure of a component to spread to another in the new production system.

First, the unavailability of the task pool will cause workers to stall, which might

result in pressure between the master and the workers. Second, the unavailability

of the database will again cause workers to stall and similarly result in pressure

between the master and the workers. Therefore, we should implement back-pressure

into the master-worker communication to prevent failures from cascading to master.

A simple solution would be to instruct workers to inform master whenever they are

unable to reach task pool or database. Master can then back-o� task assignments

accordingly.

We should containerise the production system to increase operability (see subsec-

tion 7.6). A container packages the application with its dependencies allowing it

to be run wherever the container technology is supported. Consequently, packaging

the master, the task pool, and the database clients into containers enables operators

to easily, deploy, migrate and update them. Even more important is to package

each task into a container so that they can be run on any worker without needing

to install their dependencies �rst. This also makes adding new nodes to the system

easier since they only need to be installed with the chosen container technology in

order to execute tasks.

A container orchestration platform should be installed for e�cient container man-

agement (see subsection 7.6). These platforms enable operators to easily describe

how they wish applications to be deployed and managed, while the platform handles

the rest. Moreover, most container orchestration platforms actually provide all the

maintainability improvements listed above (service-level and platform monitoring,

logging, and back-pressure) plus many other features (see table 1).

9.3 Implementation

Instead of implementing the new production system from scratch, we decided to use

ready-made components (where available) to save in development and maintenance

71

costs. We compared several products to �nd out which of them would best match

the new design.

9.3.1 Kubernetes

As of March 2018 there are only four major container orchestration platforms that

are on-premises ready. Out of these four container orchestration platforms Kuber-

netes was chosen as the basis for the new production system since it most closely

matched our list of desired features (see Table 1). Some features were absolutely nec-

essary, like support for high availability or for bind mounting, but most of the other

features were chosen with operability in mind, e.g. logging, monitoring, debugging,

and di�erent deployment strategies.

We elaborate what is bind mounting and why it is necessary to our system. Bind

mounting is the ability to access �le system directly from the container. It is nec-

essary since it enables the only strategy to smoothly transition from NFS to the

new distributed object store. Initially, each task inputs and outputs to the old NFS

cluster as before, which is done by mounting the NFS directories to each worker

node and by bind mounting these directories from each task container. Afterwards,

�les should be migrated to distributed object store one by one with the respective

changes to related tasks.

Kubernetes is the base on top of which we build the new production system. Its

main responsibilities are to distribute triggered tasks evenly among the workers and

to keep important services, like master and task pool, running inde�nitely. All

this is done through Kubernetes' interface which enables containerised jobs to be

scheduled for execution. What is left for operators to do is to simply describe

how they wish their services to be deployed and Kubernetes handles the rest. For

our purposes, there are basically two kinds of deployments, services and one-o�

jobs. As was already mentioned, services are for long running jobs (e.g. the new

master). Kubernetes continuously manages deployed services towards their desired

state, which is con�gured into the deployment description, e.g. that there should

be three replicas of some service. This could mean killing or restarting, depending

on the needed change. One-o� jobs are expected to �nish and Kubernetes only

guarantees them to be run at least once.

The idea is to deploy the master, the task pool, and the distributed object store

clients as long running services to Kubernetes and have the master deploy tasks as

72

one-o� jobs through Kubernetes interface. Consequently, master can concentrate on

checking task triggers whereas Kubernetes handles the load balancing and ensures

the tasks to be executed to completion. Since all tasks and services are handled

by Kubernetes we can leverage its excellent monitoring and logging capabilities and

enjoy uniform metrics on all parts of the system. It is important to note that we

only plan to deploy the distributed object store clients to Kubernetes, not the object

store itself, which should reside outside Kubernetes in its own cluster, like the NFS

cluster.

9.3.2 Brigade

Brigade is an event-based scripting framework for Kubernetes. It enables operators

to describe simple and complex task pipelines using JavaScript. These pipelines can

be triggered based on times, message queue events, Hypertext Transfer Protocol

(HTTP) requests, or any other events. Brigade also includes a dashboard, called

Kashti, for monitoring tasks in real-time.

A Brigade script should de�ne at least one event handler. Brigade triggers these

event handlers when it receives a matching event from a gateway. Events are project

speci�c, meaning that an event will only be triggered for the explicitly declared

project. An event includes the following information: which project it belongs to,

the name of the event, the entity that triggered the event, an optional script to

execute, and an optional payload containing event data. When Brigade receives an

event, it loads the referenced project and starts a new worker. The worker then

executes the script using the triggered event as the entry point.

Scripts consist of event handlers, jobs, and tasks. An event handler associates an

event with a function to process the event. When triggered, an event handler is

explicitly given two pieces of information: an event record, that contains information

about the event, and a context record, that provides some information about the

project (e.g. environment variables or secrets). An event handler typically declares

one or more jobs. A job is a unit of work that is associated with a container image.

When a job is executed, the associated container image is pulled from an image

repository, and is executed in the Kubernetes cluster. A job may also optionally

declare tasks, which are executed inside the associated container. Finally the results

of the container (if any) are returned to the event handler.

We plan to use Brigade as follows. We set up a custom gateway that checks for new

73

or changed data and creates events named after them. Initially this gateway can

be a simple script that polls each data sources' output directory, but later, after we

have migrated from NFS to a database, this gateway can be changed to a simple

service with a hook to database events. Each of the current tasks is containerised

and published to a repository that is accessible from the Kubernetes cluster. Lastly,

Brigade is provided with a JavaScript �le containing an event handler for each of

the containerised tasks.

9.3.3 Riak CS

We chose Riak CS to be the object store of the new production system since it

most closely ful�lled our list of desired features. We arrived at this decision after

comparing three highly available, high-performance, on-premises capable, object

stores: Riak CS, LeoFS, and Swift (see 2). The compared features were selected in

accordance to the design of the new object store.

9.3.4 Image Registry

Since tasks in the new production system are containers, the task pool should be

a container image registry. But unfortunately we could not �nd much architecture

information on any of the popular image registries, and thus we were unable to

compare them to �nd out which of them would best ful�l our plan for the new task

pool. Therefore, we recommend taking the simplest approach, that is, deploying the

task images to a private Docker Hub. To avoid the unnecessary latency of having

to pull an image every time a task executes, the imagePullPolicy property of each

task should be set to ifNotPresent, which causes the assigned worker to �rst check

for a local image before pulling from the registry. However, if the latency still proves

to be too large, we recommend deploying an on-premises private image registry.

74

10 Conclusions

We arrived at the following conclusions while writing this thesis:

1. Designing a distributed system is hard due to the numerous trade-o�s one has

to make in the process.

2. Distributed systems are complicated by nature and thus maintainability should

be the number one goal in their design.

3. Container orchestration platforms provide a very powerful abstraction, which

leads to a maintainability improvement unparalleled by any other available

tool.

4. Single-leader replication is surprisingly versatile when accompanied with a well

chosen sharding strategy.

10.1 Summary of Contributions

This thesis makes the following contributions to knowledge:

1. We designed a distributed production system that is maintainable, performant,

available, reliable, and scalable.

2. We compared and selected ready-made software to build the production system

we designed.

3. The research part of this thesis is a concise document of its own which presents

the essentials of distributed systems in a clear manner.

10.2 Future Research

This thesis can be extended in the future in the following ways:

1. A production system with a better data locality: arriving data is replicated

among a subset of workers and the related tasks are assigned to these nodes.

2. A guideline for designing distributed systems. We believe that such a docu-

ment would be very valuable anyone dealing with distributed systems.

3. Compared object stores should be additionally benchmarked.

75

Abbreviations

I-con�uence invariant con�uence. 49, 51, 65

CALM consistency as logical monotonicity. 49, 50, 65

CAP Brewer's theorem. 39, 41�46, 63

COPS Cluster of Order-Preserving Servers. 47, 48

CPU central processing unit. 4, 29, 31

CRDT commutative replicated data type. 49�51, 65, 68

FLP Fischer's, Lynch's, and Paterson's impossibility proof. 39�41, 63

FMI Finnish Meteorological Institute. i, 1, 59

GC garbage collector. 6

GFS Google File System. 24, 25, 57

GPS Global Positioning System. 18

GUI graphical user interface. 60

HDD hard disk drive. 69

HPC high performance computing. 4

HTTP Hypertext Transfer Protocol. 72

I/O input/output. 1, 60, 61

ID identi�er. 21

LAN local area network. 4, 5, 40, 59

LWW last-write-wins. 1, 20, 69

MR Monotonic reads. 34, 35

MTBF mean time between failures. 58

76

MW Monotonic writes. 34, 35

NFS Network File System. 1, 59�62, 67, 71�73

NTP Network Time Protocol. 8

PACELC Abadi's extension to the CAP theorem. 39, 44, 45, 63

PODC The Symposium on Principles of Distributed Computing. 41

RAM random-access memory. 4

RMS root mean square. 8

RTC real-time clock. 17

RTT round-trip time. 29

RYW Read your writes. 34, 35

SI Snapshot Isolation. 30

SLA service-level agreement. 26, 46

SSI Serialisable Snapshot Isolation. 30, 31

TPS Toyota Production System. 3

WAN wide area network. 4, 5

WFR Writes follow reads. 34, 35

ZAB ZooKeeper Atomic Broadcast. 36

References

1 D. Klahr, P. Langley, and R. Neches, eds., Production System Models of Learn-

ing and Development. Production system models of learning and development.,

Cambridge, MA, US: The MIT Press, 1987.

2 T. Ohno, Toyota Production System: Beyond Large-Scale Production. CRC

Press, Mar. 1988.

77

3 M. Bellgran and E. K. Säfsten, Production Development: Design and Operation

of Production Systems. Springer Science & Business Media, Nov. 2009.

4 T. Steen, Marten van, Andrew S., Distributed Systems. Maarten van Steen, 3 ed.,

2017.

5 W. L. Heimerdinger and C. B. Weinstock, �A conceptual framework for system

fault tolerance,� tech. rep., CARNEGIE-MELLON UNIV PITTSBURGH PA

SOFTWARE ENGINEERING INST, 1992.

6 B. C. Neuman, �Scale in Distributed Systems,� 1994.

7 M. Kleppmann, Designing Data-Intensive Applications: The Big Ideas Behind

Reliable, Scalable, and Maintainable Systems. Beijing Boston Farnham Se-

bastopol Tokyo: O'Reilly Media, 1 edition ed., Apr. 2017.

8 L. A. Barroso, J. Clidaras, and U. Hölzle, �The Datacenter as a Computer:

An Introduction to the Design of Warehouse-Scale Machines, Second edition,�

Synthesis Lectures on Computer Architecture, vol. 8, no. 3, pp. 1�154, heinäkuu

31, 2013.

9 J. Hodges, �Notes on Distributed Systems for Young Bloods � Something

Similar.� https://www.somethingsimilar.com/2013/01/14/notes-on-distributed-

systems-for-young-bloods/, 2013.

10 G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, �Dynamo: Ama-

zon's highly available key-value store,� ACM SIGOPS operating systems review,

vol. 41, no. 6, pp. 205�220, 2007.

11 S. Ghemawat, H. Gobio�, and S.-T. Leung, �The Google �le system,� in ACM

SIGOPS Operating Systems Review, vol. 37, pp. 29�43, ACM, 2003.

12 A. Rotem-Gal-Oz, �Fallacies of distributed computing explained,� URL

http://www. rgoarchitects. com/Files/fallacies. pdf, vol. 20, 2006.

13 P. Bailis and K. Kingsbury, �The network is reliable,� Queue, vol. 12, no. 7, p. 20,

2014.

14 W. Oremus and W. Oremus, �The Global Internet Is Being Attacked by Sharks,

Google Con�rms,� Slate, Aug. 2014.

78

15 M. Imbriaco, �Downtime last Saturday.� https://github.com/blog/1364-

downtime-last-saturday, 2012.

16 M. A. Donges, �Re: Bnx2 cards intermittantly going o�ine � Netdev.�

https://www.spinics.net/lists/netdev/msg210485.html, 2012.

17 R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat, �Evolve or

Die: High-Availability Design Principles Drawn from Googles Network Infras-

tructure,� pp. 58�72, ACM Press, 2016.

18 M. Caporaloni and R. Ambrosini, �How closely can a personal computer clock

track the UTC timescale via the internet?,� European Journal of Physics, vol. 23,

pp. L17�L21, July 2002.

19 Y. Saito and M. Shapiro, �Optimistic replication,� ACM Computing Surveys

(CSUR), vol. 37, no. 1, pp. 42�81, 2005.

20 J. Gray, P. Helland, P. O'Neil, and D. Shasha, �The dangers of replication and

a solution,� ACM SIGMOD Record, vol. 25, no. 2, pp. 173�182, 1996.

21 L. Lamport, �Time, clocks, and the ordering of events in a distributed system,�

Communications of the ACM, vol. 21, no. 7, pp. 558�565, 1978.

22 R. Schwarz and F. Mattern, �Detecting causal relationships in distributed com-

putations: In search of the holy grail,� Distributed computing, vol. 7, no. 3,

pp. 149�174, 1994.

23 N. Preguiça, C. Baquero, P. S. Almeida, V. Fonte, and R. Gonçalves, �Dot-

ted version vectors: Logical clocks for optimistic replication,� arXiv preprint

arXiv:1011.5808, 2010.

24 D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walker, E. Walton,

J. M. Chow, D. Edwards, S. Kiser, and C. Kline, �Detection of mutual inconsis-

tency in distributed systems,� IEEE transactions on Software Engineering, no. 3,

pp. 240�247, 1983.

25 J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghe-

mawat, A. Gubarev, C. Heiser, and P. Hochschild, �Spanner: Google's glob-

ally distributed database,� ACM Transactions on Computer Systems (TOCS),

vol. 31, no. 3, p. 8, 2013.

79

26 D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and C. H.

Hauser, �Managing update con�icts in Bayou, a weakly connected replicated

storage system,� in ACM SIGOPS Operating Systems Review, vol. 29, pp. 172�

182, ACM, 1995.

27 J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gum-

madi, S. Rhea, H. Weatherspoon, and W. Weimer, �Oceanstore: An architec-

ture for global-scale persistent storage,� ACM Sigplan Notices, vol. 35, no. 11,

pp. 190�201, 2000.

28 �Git - Documentation.� https://git-scm.com/doc.

29 M. Burrows, �The Chubby lock service for loosely-coupled distributed systems,�

in Proceedings of the 7th Symposium on Operating Systems Design and Imple-

mentation, pp. 335�350, USENIX Association, 2006.

30 A. Fox and E. A. Brewer, �Harvest, yield, and scalable tolerant systems,� in Hot

Topics in Operating Systems, 1999. Proceedings of the Seventh Workshop On,

pp. 174�178, IEEE, 1999.

31 F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,

T. Chandra, A. Fikes, and R. E. Gruber, �Bigtable: A distributed storage system

for structured data,� ACM Transactions on Computer Systems (TOCS), vol. 26,

no. 2, p. 4, 2008.

32 W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen, �Don't settle for

eventual: Scalable causal consistency for wide-area storage with COPS,� in Pro-

ceedings of the Twenty-Third ACM Symposium on Operating Systems Principles,

pp. 401�416, ACM, 2011.

33 B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-

A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni, �PNUTS: Yahoo!'s hosted data

serving platform,� Proceedings of the VLDB Endowment, vol. 1, no. 2, pp. 1277�

1288, 2008.

34 D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin,

�Consistent hashing and random trees: Distributed caching protocols for relieving

hot spots on the World Wide Web,� in Proceedings of the Twenty-Ninth Annual

ACM Symposium on Theory of Computing, pp. 654�663, ACM, 1997.

80

35 M. P. Herlihy and J. M. Wing, �Linearizability: A correctness condition for

concurrent objects,� ACM Transactions on Programming Languages and Systems

(TOPLAS), vol. 12, no. 3, pp. 463�492, 1990.

36 P. Bailis, �Linearizability versus Serializability | Peter Bailis.�

http://www.bailis.org/blog/linearizability-versus-serializability/, 2014.

37 M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and

P. Helland, �The end of an architectural era:(it's time for a complete rewrite),�

in Proceedings of the 33rd International Conference on Very Large Data Bases,

pp. 1150�1160, VLDB Endowment, 2007.

38 M. J. Cahill, U. Röhm, and A. D. Fekete, �Serializable isolation for snapshot

databases,� ACM Transactions on Database Systems, vol. 34, pp. 1�42, Dec.

2009.

39 H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O'Neil, and P. O'Neil, �A

critique of ANSI SQL isolation levels,� arXiv preprint cs/0701157, 2007.

40 A. Adya and B. H. Liskov, Weak Consistency: A Generalized Theory and Opti-

mistic Implementations for Distributed Transactions. PhD thesis, Massachusetts

Institute of Technology, Dept. of Electrical Engineering and Computer Science,

1999.

41 L. Lamport, �How to make a multiprocessor computer that correctly executes

multiprocess program,� IEEE transactions on computers, no. 9, pp. 690�691,

1979.

42 H. Attiya and J. L. Welch, �Sequential consistency versus linearizability,� ACM

Transactions on Computer Systems (TOCS), vol. 12, no. 2, pp. 91�122, 1994.

43 K. Birman and T. Joseph, Exploiting Virtual Synchrony in Distributed Systems,

vol. 21. ACM, 1987.

44 M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W. Hutto, �Causal memory:

De�nitions, implementation, and programming,� Distributed Computing, vol. 9,

no. 1, pp. 37�49, 1995.

45 P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica, �The potential

dangers of causal consistency and an explicit solution,� in Proceedings of the

Third ACM Symposium on Cloud Computing, p. 22, ACM, 2012.

81

46 D. Terry, �Replicated data consistency explained through baseball,� Communi-

cations of the ACM, vol. 56, no. 12, pp. 82�89, 2013.

47 D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M. Theimer, and B. B.

Welch, �Session guarantees for weakly consistent replicated data,� in Parallel and

Distributed Information Systems, 1994., Proceedings of the Third International

Conference On, pp. 140�149, IEEE, 1994.

48 M. J. Fischer, N. A. Lynch, and M. S. Paterson, �Impossibility of distributed

consensus with one faulty process,� Journal of the ACM (JACM), vol. 32, no. 2,

pp. 374�382, 1985.

49 C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to Reliable and Secure

Distributed Programming. Berlin: Springer, 2nd ed. 2011 edition ed., Feb. 2011.

50 D. Ongaro and J. K. Ousterhout, �In search of an understandable consensus

algorithm.,� in USENIX Annual Technical Conference, pp. 305�319, 2014.

51 F. P. Junqueira, B. C. Reed, and M. Sera�ni, �Zab: High-performance broadcast

for primary-backup systems,� in Dependable Systems & Networks (DSN), 2011

IEEE/IFIP 41st International Conference On, pp. 245�256, IEEE, 2011.

52 X. Défago, A. Schiper, and P. Urbán, �Total order broadcast and multicast al-

gorithms: Taxonomy and survey,� ACM Computing Surveys (CSUR), vol. 36,

no. 4, pp. 372�421, 2004.

53 T. D. Chandra and S. Toueg, �Unreliable failure detectors for reliable distributed

systems,� Journal of the ACM (JACM), vol. 43, no. 2, pp. 225�267, 1996.

54 L. Lamport, �Paxos made simple,� ACM Sigact News, vol. 32, no. 4, pp. 18�25,

2001.

55 R. Guerraoui and A. Schiper, �Consensus: The big misunderstanding [distributed

fault tolerant systems],� pp. 183�188, IEEE, 1997.

56 S. Gilbert and N. Lynch, �Brewer's conjecture and the feasibility of consistent,

available, partition-tolerant web services,� Acm Sigact News, vol. 33, no. 2,

pp. 51�59, 2002.

57 S. Gilbert and N. Lynch, �Perspectives on the CAP Theorem,� Computer, vol. 45,

pp. 30�36, Feb. 2012.

82

58 M. Kleppmann, �A Critique of the CAP Theorem,� arXiv:1509.05393 [cs], Sept.

2015.

59 D. Abadi, �Consistency tradeo�s in modern distributed database system design:

CAP is only part of the story,� Computer, vol. 45, no. 2, pp. 37�42, 2012.

60 E. Brewer, �CAP twelve years later: How the "rules" have changed,� Computer,

vol. 45, pp. 23�29, Feb. 2012.

61 J. Brutlag, Speed Matters for Google Web Search. 2009.

62 A. Lakshman and P. Malik, �Cassandra: A decentralized structured storage sys-

tem,� ACM SIGOPS Operating Systems Review, vol. 44, p. 35, Apr. 2010.

63 �MongoDB for GIANT Ideas | MongoDB.� https://www.mongodb.com/.

64 E. A. Brewer, �Lessons from giant-scale services,� IEEE Internet Computing,

vol. 5, no. 4, pp. 46�55, 2001.

65 M. Mavronicolas and D. Roth, �Linearizable read/write objects,� Theoretical

Computer Science, vol. 220, no. 1, pp. 267�319, 1999.

66 R. J. Lipton and J. S. Sandberg, PRAM: A Scalable Shared Memory. Princeton

University, Department of Computer Science, 1988.

67 P. Mahajan, L. Alvisi, and M. Dahlin, �Consistency, availability, and conver-

gence,� University of Texas at Austin Tech Report, vol. 11, 2011.

68 H. Attiya, F. Ellen, and A. Morrison, �Limitations of Highly-Available

Eventually-Consistent Data Stores,� pp. 385�394, ACM Press, 2015.

69 P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein, and I. Sto-

ica, �Coordination avoidance in database systems,� Proceedings of the VLDB

Endowment, vol. 8, no. 3, pp. 185�196, 2014.

70 P. Alvaro, N. Conway, J. M. Hellerstein, and W. R. Marczak, �Consistency Anal-

ysis in Bloom: A CALM and Collected Approach.,� in CIDR, pp. 249�260, 2011.

71 M. Letia, N. Preguiça, and M. Shapiro, �CRDTs: Consistency without concur-

rency control,� arXiv preprint arXiv:0907.0929, 2009.

83

72 M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, �Con�ict-Free Repli-

cated Data Types,� in Stabilization, Safety, and Security of Distributed Systems

(X. Défago, F. Petit, and V. Villain, eds.), vol. 6976, pp. 386�400, Berlin, Hei-

delberg: Springer Berlin Heidelberg, 2011.

73 P. Reynolds, J. L. Wiener, J. C. Mogul, M. K. Aguilera, and A. Vahdat, �WAP5:

Black-box performance debugging for wide-area systems,� in Proceedings of the

15th International Conference on World Wide Web, pp. 347�356, ACM, 2006.

74 B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver,

S. Jaspan, and C. Shanbhag, �Dapper, a large-scale distributed systems tracing

infrastructure,� tech. rep., Technical report, Google, Inc, 2010.

75 P. Reynolds, C. E. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and A. Vahdat,

�Pip: Detecting the Unexpected in Distributed Systems.,� in NSDI, vol. 6, pp. 9�

9, 2006.

76 R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica, �X-trace: A Per-

vasive Network Tracing Framework,� in Proceedings of the 4th USENIX Confer-

ence on Networked Systems Design & Implementation, NSDI'07, (Berkeley, CA,

USA), pp. 20�20, USENIX Association, 2007.

77 B. Burns and D. Oppenheimer, �Design Patterns for Container-based Distributed

Systems.,� in HotCloud, 2016.

78 C. Pahl, �Containerization and the paas cloud,� IEEE Cloud Computing, vol. 2,

no. 3, pp. 24�31, 2015.

79 W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, �An updated performance

comparison of virtual machines and linux containers,� pp. 171�172, IEEE, 2015.

80 E. Casalicchio, �Autonomic Orchestration of Containers: Problem De�nition and

Research Challenges,� ACM, 2017.

81 J. Dean and S. Ghemawat, �MapReduce: Simpli�ed Data Processing on Large

Clusters,� in Proceedings of the 6th Conference on Symposium on Opearting Sys-

tems Design & Implementation - Volume 6, OSDI'04, (Berkeley, CA, USA),

pp. 10�10, USENIX Association, 2004.

82 �ecFlow - ECMWFCon�uenceWiki.� https://software.ecmwf.int/wiki/display/ECFLOW/Documentation.

83 �Nagios Documentation.� https://www.nagios.org/documentation/.

84

84 �Website performance and availability monitoring.� https://www.pingdom.com/.

85 �APM | New Relic Documentation.� https://docs.newrelic.com/docs/apm.

86 �Hashicorp/nomad: Nomad is a �exible, enterprise-grade cluster scheduler de-

signed to easily integrate into existing work�ows. Nomad can run a diverse work-

load of micro-service, batch, containerized and non-containerized applications.

Nomad is easy to operate and scale and integrates seamlessly with Consul and

Vault..� https://github.com/hashicorp/nomad.

87 �Documentation - Nomad by HashiCorp.� https://www.nomadproject.io/docs/index.html.

88 �Kubernetes/kubernetes: Production-Grade Container Scheduling and Manage-

ment.� https://github.com/kubernetes/kubernetes.

89 �Setup | Kubernetes.� https://kubernetes.io/docs/setup/.

90 �Tasks | Kubernetes.� https://kubernetes.io/docs/tasks/.

91 �Concepts | Kubernetes.� https://kubernetes.io/docs/concepts/.

92 �Docker/swarmkit: A toolkit for orchestrating distributed systems at any scale.

It includes primitives for node discovery, raft-based consensus, task scheduling

and more..� https://github.com/docker/swarmkit.

93 �Docker Documentation | Docker Documentation.� https://docs.docker.com/.

94 �Dcos/dcos: DC/OS - The Datacenter Operating System.�

https://github.com/dcos/dcos.

95 �Documentation for Mesosphere DC/OS 1.10 - Mesosphere DC/OS Documenta-

tion.� https://docs.mesosphere.com/1.10/.

96 �Leo-project/leofs: The LeoFS Storage System.� https://github.com/leo-

project/leofs/.

97 �LeoFS Documentation.� https://leo-project.net/leofs/docs/index.html.

98 �Basho/riak_cs: Riak CS is simple, available cloud storage built on Riak..�

https://github.com/basho/riak_cs.

99 �Riak Cloud Storage.� http://docs.basho.com/riak/cs/2.1.1/.

85

100 �Openstack/swift: OpenStack Storage (Swift).�

https://github.com/openstack/swift.

101 �OpenStack Docs: Welcome to Swift's documentation!.�

https://docs.openstack.org/swift/latest/index.html.

Appendix 1. Container Orchestration Platform Com-

parison

Features Nomad [86, 87] Kubernetes [88,

89, 90, 91]

Docker Swarm

Mode [92, 93]

DC/OS [94, 95]

License Mozilla Public

License 2.0

Apache License

2.0

Apache License

2.0

Apache License

2.0

Community size 3000+ stars,

200+ contribu-

tors

32000+ stars,

1500+ contribu-

tors

1500+ stars, 90+

contributors

1900+ stars,

100+ contribu-

tors

Container ag-

nostic

Yes Yes No Yes

High availability Yes Yes Yes Yes

Log storage Logs are stored

some hours

Logs are stored

inde�nitely

According to the

selected driver

No

Log rotation Yes Requires third-

party

According to the

selected driver

No

Log access inter-

face

Yes Yes Yes Yes

Container-level

metrics interface

Yes Yes Yes Yes

Container-level

metrics visuali-

sation

Yes Yes Requires third-

party

Yes

Platform-level

metrics interface

Yes Yes Yes Yes

Platform-level

metrics visuali-

sation

Yes Yes Yes Yes

Debugging No No No No

Rolling updates Yes Yes Yes Yes

Roll-back Yes Yes Yes No

Blue-green

deployments

Yes No No No

Event-based job

scheduler

No Brigade No Scale

Bind mounts No Yes (hostPath) Yes No

Table 1: Comparison of some of the most popular container orchestration platforms.

Appendix 2. Distributed Object Storage Comparison

Features LeoFS [96, 97] Riak CS [98, 99] Swift [100, 101]

License Apache License 2.0 Apache License 2.0 Apache License 2.0

Community size 1100+ stars, 10+

contributors

500+ stars, 30+ con-

tributors

1600+ stars, 200+

contributors

Multi-data centre 2 enterprise edition

only

at least 2

Max object size N/A potentially multiple

terabytes

virtually unlimited

Large objects are

chunked

yes, con�gurable

chunk size

yes, con�gurable

chunk size

yes, con�gurable

chunk size

Consistency model eventual eventual eventual

Replication strategy leaderless leaderless leaderless

Sloppy quorums not yet yes no

Sharding scheme consistent hashing consistent hashing consistent hashing

Shard size one object per shard one object per shard one object per shard

Convergence async read repair

with background

anti-entropy

read-repair with

background anti-

entropy, both are

highly con�gurable

background anti-

entropy (LWW)

Table 2: Distributed Object Storage Comparison.

	Introduction
	A Brief Review of Production Systems
	A Brief Review of Distributed Systems
	Definition
	Designing for Reliability, Scalability, and Maintainability
	Reliability
	Scalability
	Maintainability

	Difficulties
	Partial Failures
	Unreliable Networks
	Unreliable Clocks

	Fundamental Properties of Distributed Systems
	Replication
	Asynchronous Versus Synchronous Replication
	Single-Leader Replication
	Multi-Leader Replication
	Leaderless Replication

	Handling Write Conflicts
	Detecting Concurrency
	Detecting Conflicts
	Resolving Conflicts

	Sharding
	Effective Sharding
	Sharding Key-Value Data

	Consistency
	Linearisability
	Serialisability
	Sequential Consistency
	Causal Consistency
	Eventual Consistency
	Session Based Consistency

	Fault-Tolerant Consensus
	Applications
	Implementations
	Summary of Fault-Tolerant Consensus

	Trade-offs and Impossibility Results
	FLP
	CAP
	PACELC
	Harvest and Yield
	Delay-Sensitivity Framework

	Avoiding Coordination
	CALM Principle
	CRDTs
	Invariant Confluence

	Building a Maintainable Distributed System
	Service-Level Monitoring
	Logging
	Debugging Distributed Systems
	Platform-Level Monitoring
	Back-Pressure
	Containers
	Container Orchestration
	Architecture

	Current Production System
	Description of the Current System
	Shortcomings of the Current System

	New Production System
	Requirements for the new System
	Requirements From the Shortcomings of the Current System
	Requirements From Experience With the Current System
	Non-Requirements for the new System

	Design for the new System
	Designing Distributed Systems
	Architecture
	Task Pool
	Master
	Distributed Object Store
	Maintainability

	Implementation
	Kubernetes
	Brigade
	Riak CS
	Image Registry

	Conclusions
	Summary of Contributions
	Future Research

	References

