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1 Introduction

Telecommunication networks facilitate exchanging information between content prov-

iders and the network subscribers [34]. This information can be in the form of voice,

video or data [76]. In recent decades, there has been an accelerating demand for

services and an increase in tra�c in these networks. This is due to the increased

numbers of users of mobile devices and competitive businesses all over the world.

The network of IoT is predicted to have around 50 billion devices connected by the

year 2020 [50]. This is double the number of connected devices in the year 2015.

This growth means that more data is transferred through cellular networks. To meet

this explosion in tra�c, new generations of mobile networks are continuously being

developed to achieve higher bandwidth and shorter delays.

In the current 4G networks, there has been an improvement in data rates reaching

50-100 Mbps. The future 5G networks extend from connecting users to also having

IoT devices connected to the global IP network [72]. The 5G research aims to

improve the scalability, connectivity and the speed of transferring the data over the

network. 5G research further addresses challenges in providing massive coverage

and ability to maintain the huge number of connected subscribers' devices [57]. The

5G research is also involved in the process of managing these networks and safely

transmitting data and data streams over these networks. Mobile edge computing

(MEC) is one of the main technologies where 5G plays a major role [14] as it provides

faster connectivity rates and fewer delays, especially when transmitting data from

IoT devices.

Cloud computing is a network and computing model where centralized storage, com-

pute power and other resources are available on demand and accessed over a network

in a self-service fashion [7]. By introducing the concepts of edge and fog comput-

ing the cloud moved towards a more distributed approach [55]. Edge cloudlets are

distributed nodes in the network connected to a central cloud. IoT devices are data

sources and they usually connect to the edge of the network [18].

In the edge computing model, the processing happens close to the data sources. This

speeds up the computations since the data does not have to travel all the way to

the central cloud before being processed. However, these edge cloudlets are usually

limited in resources. For this reason, e�cient ways to use the available resources are

required.
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Sensors in IoT devices create and send continuous �ows of data or in other words,

data streams [19]. Processing the data is an important step as it prepares the

data for further analysis. Fast processing allows using the data for time-sensitive

applications such as real-time alerts.

There are three main points to consider when collecting and processing data from

sensors.

1. How to minimize the chances of failure in sensor readings and failure in main-

taining the connection to the network since these failures can a�ect the quality

of data collected from the sensors and how it further lead to inaccurate results

and failures in data collection at the data sources.

2. How to process sensor data to make it ready for further analysis and reports.

Analysis can be visualizations; summaries of measurements for a certain time

window and recommended action to take (i.e. restart sensor, sensor low on

battery, or some sensor is failing to produce readings).

3. How to control and synchronize processing of data and data streams in real

time in a distributed environment. This distribution adds complexity and

overhead but it allows for scaling.

Data streams are created when IoT devices at the edge of the network continuously

produce and transmit data which arrives in the network at high rates [19]. The

data in those streams can be of di�erent types such as temporal data, videos from

surveillance cameras, information on monitoring of a system, event logs and discrete

signals.

Stream processing tasks are usually executed on the cloud. This is because the

services running on the cloud have the ability to allocate more resources to meet

the needs of the application workload. This thesis studies the e�cient processing of

data streams at the edge cloud given limited resources. The goal behind this is to

be able to provide quick analysis and comparison results without the need to store

the data.

This work will be enhancing a messaging prototype solution developed by Nokia.

This system is a data streaming solution for network monitoring on edge cloud. The

system operates close to the data sources and retrieves data based on requests made

by applications through the system. In this work, these data streams provided

by sensors in the IoT environment will be processed before they are sent to the
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applications. I present three use cases two of them are empirical and the third

is theoretical. The �rst use case involves the values from KPI calculation. The

second use case involves live data generated by air-quality sensors where streams of

measurements will be processed as soon as they are collected on the far edge; and

the third one is a conceptual use case that involves an application of deep learning

where the model will be trained at the central cloud and be used at the far-edge. In

the three cases we will be processing the data given limited resources and without

the need to store or archive the data.

The chapters of the thesis are structured as follows. Section 2 covers background

concepts to help understand the system and the added component better. Section

3 illustrates the design and implementation of the solution. Section 4 illustrates

the use cases. Section 5 presents an evaluation of the analysis. Section 6 discusses

existing challenges and future work on the component as well as the conclusion of

the �ndings.

The target of this work is to introduce a component design that helps in processing

data streams, produced by the IoT devices, on the far edge. This work also observes

the e�ciency and feasibility of this processing given the limited storage and com-

putation resources on the far-edge. Furthermore, the process happens without the

need to store historical data.

By processing the data on the far edge, research questions involve empirically �nding

the best approach to reduce the amount of data transferred after processing as well

as the number of times the data has to travel back and forth. Success in those will

help in saving bandwidth, speeding up the processing and the production of faster

results
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2 State of the art

This section highlights the most important concepts to ease the understanding of

the research problem. At �rst, there is a part on the advancement towards the 5G

networks, their expectation, challenges and management. Afterwards, there is a

presentation of the publish/subscribe architecture. This also includes Apache Kafka

and the solution developed by Nokia. Then, we present the data streaming concept

including Apache Storm architecture and di�erent data stream processing solutions

that implemented Storm as part of their models such as Lambda and Kappa.

2.1 Moving towards 5G Networks and the impact on network

management

Telecommunication networks are a collection of connected nodes interacting with

each other through links [1]. Cellular networks are one example of these networks

where the last linking factor between the network and the subscriber is wireless.

Cellular networks consist of several interconnected base transceiver stations (BTS)

that cover large geographical areas. These geographical areas are divided further

into sections called cells. Each BTS covers a few cells [47].

Generations of mobile networks have been evolving during the past decades to meet

demands for higher bandwidth and shorter delay times when transmitting data over

these networks [50]. In 4G and 4G LTE, the data rates improved signi�cantly and the

data rates are 50-100 Mbps, which enabled sharing larger amount of data through

the network and fewer delays in data transmissions.

Base stations and sending packets through the network using an IP-based technology

were also part of the 4G evolution [49]. Long-term evolution or LTE is a type of

4G that uses an air-interface called Orthogonal Frequency Division Multiplexing

(OFDM) which is faster than normal 4G and can support a wider variety of users

[65]. LTE focused on closing the gap between cellular networks with high mobility

requirements and �xed wireless Local Area Networks with high bandwidth [65].

LTE advanced is a communication standard that enhanced LTE by providing higher

bandwidth and data rates that reached up to 3 Gbps for downlink and 1.5 Gbps for

uplink to accommodate more simultaneous active subscribers and aiming for cost

e�ciency of resources [4]. Furthermore, LTE advanced improved the performance

at the edge of the cellular network.
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Evolution from generation to generation included hardware improvements that sup-

ported each generation. Yet, the 5g evolution is more software oriented in managing

the network [51] and it gathers many technologies, scenarios and use-cases [49].

The future 5G networks aim to extend the capacity of the network extending from

connecting users to also having IoT devices connected to the cloud. The latter is

referred to as massive machine-type communication.

5G research aims to improve the connectivity, security and communication [49] [59]

[75] when handling data streams. It also aims to provide high scalability and data

rates (up to 100mbps) [49]), reduce energy consumption [50] and delay times to

support the network's services' integrity, availability and reliability due to the new

emerging use cases [54]. For those reasons, 5G plays a major role in Mobile edge

computing (MEC) [14].

5G is targeting a variety of use cases. These include supporting enormous density

of mobile devices and ultra-low latency in user's communications over the network.

Another use case is controlling and monitoring vehicles tra�c. There is also a use

case of monitoring an industrial process. All these use cases place high demands on

the dependability of the network. Furthermore, human safety and even human lives

depend on the availability and integrity of the network service.

2.2 Publish/Subscribe Model

Publish/subscribe is a messaging model where there are two main entities: the pub-

lishers and the subscribers [24]. The publishers are responsible for creating events.

Those events are then consumed by the subscribers. The subscriptions are man-

aged through a mediator that is responsible for waiting to receive updates from the

publishers and sending those updates later to the list of subscribers. Two subscrip-

tion models exist in de�ning the publish-subscribe scheme: the topic-based, and the

content based.

In the topic-based subscription model, the relationship between publishers and sub-

scribers is determined by the attributes set for the topic. The publishers generate

data-streams that are organized into topics. The data fetching component of the

system subscribes to one or more topics and will receive updates and responses

based on which topics it subscribed to. The subscribers would then be consuming

the whole topic to which they are subscribing and there are no restrictions on which

subsets or parts of the topics updates they wish to receive.
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The second model is the content based subscription, that is more speci�c than topic-

based. The subscribers, in this case, are interested in certain subsets or parts of the

events and for that, they would de�ne �lters for the part of the event's contents [13].

In this case, this shows more expressiveness but it is more di�cult to implement.

This is because the correlation between the publisher and the subscriber has to be

computed before the event is created to de�ne which content the subscriber will

receive. A good example of a content-based publish-subscribe model is the one

developed by IBM Gryphon [16, 67].

IBM Gryphon uses simple routing approach in which case routing tables are used

and all the message brokers should be aware of all active subscription requests. Since

all brokers need to know about all subscribers their routing tables can easily grow

large. This limits the scalability and expressiveness of the IBM Gryphon model [52].

In a publish/subscribe architecture, both publishers and subscribers are fully de-

coupled in space, time and synchronization [22]. Space decoupling means that both

publishers and subscribers are separated from each other and they do not have any

knowledge about one another. In the prototype solution mentioned in the next

section, e.g., both entities communicate by sending and receiving subscription re-

quests through the prototype solution pipeline. Therefore there is no direct contact

between them.

Time decoupling implies that publishers and subscribers can be active at di�erent

points in time. Events will be issued anytime by publishers and delivered to the

mediators within the system. The mediators will hold these events until they expire

or until the subscribers are available to consume them.

Synchronization decoupling means that publishers generate data regardless of whether

there are subscribers or not. Furthermore, subscribers in synchronization decoupling

can also subscribe to topics or issue subscription requests even if the topics are not

there yet.

The prototype solution developed by Nokia, discussed in the next section, is based

on the topic-based publish/subscribe model. The following is a more detailed illus-

tration of the functionality and components of the prototype solution through which

the subscription requests are made and answered.



7

2.2.1 Prototype solution

The proposed system is part of an ongoing research project conducted at Nokia

Bell Labs, Espoo, in collaboration with the University of Helsinki's Department of

Computer Science. The concept of the proposed system relies on the publish/sub-

scribe architecture. The proposed system acts as the middleman in the network

management plane of a cellular network.

The system operates at the edge cloud and handles transmitting events between

publishers and subscribers. The publishers operate close to data sources and they

are responsible for providing data for the subscribers issuing subscription requests.

The subscribers are any kind of applications that need data in a certain form in order

to be able to make decisions or show some analytics results. Those subscribers make

a subscription request through the prototype solution.

Subscribers to the network issue subscription requests to events through the pro-

totype solution. The prototype solution targets the publishers (i.e. the network

elements) that are publishing those events to respond to the subscription requests.

Data sources here are the publishers in this application of the publish/subscribe ar-

chitecture. In response to subscription requests, the publishers issue a subscription

response through the system. The process is illustrated in Figure 1.

The prototype aims to minimize the number of times the same data has to travel

over the same link which is from the network elements (i.e. the publishers) to the

subscribers. For instance when there are multiple subscribers requesting the same

data then the solution prototype is able to route this data to all these subscribers by

only requesting this data once and without having to generate a new request to fetch

this data from the publishers each time. Furthermore, the prototype maximizes the

amount of up to date information in the subscriptions [35] by feeding those updates

to the subscription requests.

The aim is to process data streams coming from the data sources and that has

been collected by the fetcher component. Application of this analysis will take

into consideration the following three use cases: Calculations of Key performance

indicators (KPIs) of network elements, processing of data streams generated by air

quality sensors, and a demonstration of how to apply deep learning to the solution

to recognize car license plates.

The architecture of the prototype solution consists of four main components. Those

components are data hub, data switch, data fetcher and the global repositories [35].
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Figure 1: Prototype Solution Architecture. Components of the management

plane of the proposed system. An illustration of data transmission in publish/sub-

scribe architecture.

The global repositories help in controlling the system. During the operation of the

system, an application makes a subscription request for data. This data is found at

one of the network elements in the management plane. The data hub component

in the system receives the subscription request. The data hub is the interface for

serving applications and acts as the subscriber to the events published by the data

fetchers.

The subscription requests include information on what events the application is

subscribing for and how frequent this application wishes to receive subscription

responses or updates on the subscription. The data switch component, implemented

using Apache Kafka [35], acts as the broker that regulates the data �ow in the

system.

The data switch receives the subscription request and routes it to the proper data

fetcher. If another application makes similar requests, the data switch will mirror

that request and send it as a response to the requesting data hub. This hub then

sends the response data back to the subscriber. This speeds up the process of data

retrieval. When the data switch forwards the request to the data fetcher, the network

elements will start to emit this data.

As we can notice in the structure of the prototype solution, the fetcher component
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operates next to the data sources. The data fetcher then will perform computations

or analysis on the response data and then send the response to the data switch.

The data switch continues to route that published response to the data hub and

then to the subscribers. There are two pipelines in Figures 2 and 3. The pipeline

in Figure 2, illustrates the �ow of the response to the subscriber request from the

network elements. Network elements here represent the publishers of the events.

Figure 3, illustrates the �ow of the subscription request from the subscribers through

the system.

The prototype solution has two di�erent modes of communication: direct mode

that relies on connecting the applications to the network elements by sharing their

connection details. The other mode of communication is the publish/subscribe mode

which is the focus of this work. For further details on the system architecture, the

work in [35] describes the system and its components in more details.

Figure 2: Subscription request �ow pipeline through the proposed system

Figure 3: Subscription response �ow pipeline through the proposed system

Data streams such as raw counter values and system logs are the kind of data fetched

by the fetcher component of the prototype solution. Next part will be discussing

the processing of data streams in more detail.
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2.3 Processing of Data Streams

IoT devices and data sources generate continuous �ows of data that arrive at high

speed to the data collection points [19]. These data sources are connected to the

edge of the network and are usually distributed at various geographical locations.

The data �ows generated by those systems arrive in sequential instances called

data streams [26]. Data carried in those streams can, for example, be temporal

data, videos from surveillance cameras, system monitoring information, event logs

or discrete signals. In order to make sense of this data, several solutions have been

developed for processing data streams.

Data stream processing, is the process of performing computations on data streams

the moment they arrive at the data collection point of the system. The intention

of this processing is to clean, transform and prepare the data to make it ready

for further analysis and decision making, for example, anomaly detection, and it

can also result in a new data stream. Examples of data stream processing (DSP)

solutions are Spark streaming [10], World Wide Streams (WWS) [38], Apache Storm

[11] and Apache Flume [8]. For this work, Apache Storm in�uenced the design of

the proposed processing component architecture. Storm is explained in more detail

in the next section.

Applications of IoT data streams include network monitoring, collecting data from

sensors for environmental monitoring (such as detecting gas leaks, alerting of high

CO2 levels and detecting anomalies in the readings produced by sensors) and many

other applications. Incoming data streams can be classi�ed into historical and real-

time data. Both kinds have their own properties and use-cases.

Real-time refers to the recent data at the moment of arrival to the system. When

processing the real time data there are limitations in storage and computational

power. In real-time or near-real time processing, the result must be produced in

a timely fashion to meet the time constraints within which an action should take

place. Otherwise the result will no longer be of use. In cases where the incoming

data streams are arriving at high rates, the computation results might be estimated

values. However, in some systems, once the processing of the real time data is

completed it can also be archived.

Historical data is the data that has been collected and stored over time. There can

be the data store that is constantly being fed by the real-time data and grows in

size over time. In the case of historical data there are no restrictions in terms of
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storage and time to process the data. Retrieving query results from historical data

is often slower because they are derived from a long span of actual data points. The

results taken from this data can help in pattern detection, data mining and decision

making.

Processing real-time data streams can be useful in several domains as they can point

out patterns, detect failues in devices and gives insight on the overall state of the

sensed environment [19].

Table 1: Comparison between real-time and archived data.

Feature Archived Real-time

Query Many One or few

Memory No restrictions Limited

Results Actual Estimated/Actual

Processing Slow Limited

Let's assume we have a stream of N bits and we are trying to count the number of 1's

or 0's in that stream. In another scenario of a stream of N elements we might want

to retain the sum of all the N elements in the stream and continue adding values

as they arrive. Since we have a storage limitation, solving these issues present a

challenge in processing data streams at the edge, unless we can do this without

having any storage by maintaining a variable with an incremental value in memory

and discarding the raw values after calculation. Having no storage might increase

chances for error but this is a compromise since we want to do this processing to get

results within a certain time constraint and the given storage and computational

limitations.

Data streams are basically time series tuples. Each tuple arriving within the stream

has a time-stamp. Incremental computation on mean, standard deviation, and cor-

relation coe�cient is possible with numerical values of data streams [26]. For the

mean value, number of observations must be maintained in memory as well as the

aggregate sum of the values in the stream. For standard deviation we also need to in-

crement the number of observations as well as the aggregate sum of the observations

as well as the squares sum of the observations. Correlation coe�cient is useful when

having two data streams and we need to �nd the linear interdependence between

the two. For calculating the correlation coe�cient we need again the incremental

number of observations, sums, squared value sums as well as the sum of the cross

product for both streams needs to be aggregated.
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Certain kinds of statistics can be maintained for the above by constantly updating

values for the calculations. Data can lose value over time. With this approach we

cannot tell old data from new data This issue brings us to the concept of using time

windows to process data streams.

Time windowing means that only those values, whose timestamp falls within the

range of the time window, are included in the computation.A value may be computed

many times in di�erent time windows. A challenge in case of two streams is to de�ne

a time window that would �t both streams. Three approaches to time window were

mentioned in [26] that are relevant when handling data streams: Landmark windows,

sliding windows and tilted windows. Landmark windows will be used in this work

and more explanation will be provided in the 'design and implementation' section.

Reduction techniques such as sampling and summarization techniques, such as his-

tograms, data synopsis and wavelets, are applied on data streams to help compress

those streams and reduce the size of the data that is then sent over the network.

These techniques save bandwidth and increase the speed accordingly. However, the

accuracy of the computation result or the summary provided are usually a�ected

by the size of the time window from which the summary was obtained. Therefore,

tuning the size of the time windows can help in achieving more accuracy. Increasing

the size of time window can be at the cost of increasing the processing that needs

to be done over that time window, more needed space and longer delay due to the

increased processing.

2.3.1 Apache Kafka

Apache Kafka [9] is a real-time, fault-tolerant and durable messaging solution that

follows the publish/subscribe architecture. Kafka open-source model is also used in

distributed messaging. Kafka is able to handle large amounts of data and is used

with data stream processing systems such as Apache Storm to help in distribut-

ing, delivering and routing the incoming data. As described in Figure 4, some of

the components in the prototype system are built on Apache Kafka for delivering

subscription messages between the publishers and the subscribers.

There are four main components in Kafka: the topics, the brokers, the publishers

and the subscribers. Kafka pipeline is found in Figure 4. Publishers produce data

streams that are received by Kafka which categorizes them to topics based on the

category of this data stream. Those topics are further divided to partitions of
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Figure 4: Kafka components.

equal sizes, each having a unique identi�er. Each topic can have many partitions.

Partitions are further replicated to avoid losing data. Brokers have the responsibility

of maintaining published data and later sending it to the subscribers. Each broker

can also have one or more partitions.

A subscriber wishing to receive contents of a topic initiates a subscription request

through the system for that topic. Apache Spark or Apache Storm can then be

used to process the data streams that are fetched from the publishers of the data

streams, IoT sensors, for example. The term data stream will be used instead of

topic to represent the events generated by the publishers and fed to the topic in the

solution prototype.

2.4 Apache Storm

Figure 5: Storm Topology. A simple Storm Topology consisting of one spout and

two bolts.

Apache Storm is a distributed computation system for processing unbounded streams

of data [11, 23]. This processing happens at the moment of the data arrival. Data

models used as input in Apache Storm are tuples and streams.
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Figure 6: Storm Cluster.

The processing model followed in Apache Storm is Directed Acyclic Graph (DAG)

[56]. The DAG model means that there is a path between any two vertices without

any cycles. Storm consists of topologies (See Figure 5). Each topology consists

of two main building blocks that are connected, i.e., a spout and bolts [21]. The

topology speci�es the connections between spouts and bolts.

The spout is responsible for receiving data streams from input sources or from

message brokers such as Kafka, which helps the spout consume the incoming stream.

The spout then transforms the stream of data to stream of tuples. These tuples are

then forwarded to the bolts. Each bolt that processes the incoming tuple and sends

it forward to another bolt. The last bolt outputs the processed stream to another

layer in the processing pipeline.

Bolts are the processing units in the topology and each bolt is responsible for one

processing task. The processing logic can include joins, �ltering or aggregation

operations on the incoming tuples. While processing the tuples, no information is

stored about their status. Therefore, Storm is a stateless processing system.

Topology is run by the Storm cluster (see Figure 6). This cluster follows a master-

slave architectural pattern and has the topology as the input to it. A daemon process

called Nimbus runs on the master node and it is responsible for the assignment,

distribution, monitoring and reassignment of tasks (i.e. responsibility for di�erent

elements de�ned in the topology) to worker nodes. Those tasks are the spouts and

bolts within the topology. Figure 5 illustrates a simple Storm topology consisting

of one spout and two bolts. The spout is the entry point of the data stream. As the

data stream is transformed to tuples those tuples are sent to Bolt 1 which performs
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some processing task and then sends the tuples to Bolt 2 which performs another

processing task and then sends the completed data on its way through the rest of

the pipeline.

Storm cluster in Figure 6 contains one or more worker nodes. Each worker node

consists of one supervisor daemon and multiple worker processes. The supervisor

communicates with the master node through ZooKeeper which facilitates the com-

munication between the master and slave nodes. After the topology is ready it is

sent to Nimbus daemon. Nimbus downloads the code of the topology locally and

communicates with a supervisor to assign tasks to the worker processes. Nimbus

is responsible for distributing the tasks to the supervisor of a worker node through

zookeeper. The number of the worker processes is determined by the number of

tasks (i.e. the spouts and bolts).

The supervisor gets information about the topology from zookeeper and copies them

to a local �le system. The supervisor assigns each bolt and spout in the topology to a

worker process and then starts those processes where each process is responsible for

a single bolt or spout task. Each worker node can have multiple worker processes.

Tasks will continue running until a topology is killed and the Nimbus does the

monitoring of the tasks through zookeeper that acts as the coordinator.

Storm has been one of the popular data stream processing system. Storm has been

implemented in architectures such as Lambda and Kappa that are solutions for

processing data in real time. The following two sections illustrate both Lambda

and Kappa architectures in details. Those architectures has in�uenced the proposed

solution component described in the third section of this thesis.

2.4.1 Lambda architecture

Lambda architecture is a cloud-based solution for building stream processing appli-

cations on top of stream processing systems such as Storm [71]. Lambda operates

in a scalable and distributed fashion to process and store data streams [73].

Analyzing data streams coming from sensors and other IoT devices is a challenge

when operating at the edge cloud due to limitations in resources, the need to get

results fast, and the challenge to discover the resources at the edge [53]. For that, it

is crucial to �nd the proper environment. Regarding the discoverability of resources,

the prototype solution in this thesis is already connected to the data sources and this

work will study di�erent issues related to the connectivity of sensor devices and the
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Table 2: Comparison between Apache Spark and Apache Storm

Feature Storm Spark

Latency Lower latency Higher latency, up to few sec-

onds

Throughput Higher throughput, achieved

with some limitations im-

posed

Capable of handling higher

throughput

Languages Available in Python, Java, R,

JavaScript, Ruby and Scala

Available in Python, Java, R

and Scala

Stream primitives Incoming stream is trans-

formed to tuples

DStream is the input stream

primitive

Incoming stream

source

Spout The network or HDFS

Model reliability Supports di�erent modes of

reliability including at least

once

Spark supports exactly once

Computation

units

Bolts are the units responsi-

ble for the computations

Relies on windowing

prototype solution. The data fetching component already operates at the network

edge close to the data sources.

Data streams are classi�ed into two categories: 1) real-time data �owing into the

system and 2) the historical data that has been collected and stored [27]. This thesis

deals with the processing of real-time data only.

A serverless computing model is a cloud-based approach that enables the de�nition

of functions to a shared pool of cloud-servers. This makes the task of managing the

server no longer necessary [28].

The lambda architecture consists of Three main layers that are the batch, the serving

and the speed layers [27]. The batch component uses Hadoop which is usually used

for processing batches of stored data and aggregates new data once it arrives. This

gives more recent insights on the data. The speed and the serving layers both use

Storm. The serving layer performs indexing operations on the data in the batch layer

to speed up the querying operations, and this is not covered in the scope of this work.

Querying operations happen on both the batch and speed layers. Furthermore, the
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query result is merged to get a view on the complete data that is near real-time.

Apache Hadoop is an open source framework for distributed processing of historical

data. It uses Hadoop �le system HDFS which is a set of shared libraries and utilities.

It is based on a programming model called MapReduce. It has widely been used

in processing archived data. In the Lambda architecture, it is used in the batch

layer to process both real-time and batch data. MapReduce splits the input data

set into independent chunks that are then mapped to worker nodes and processed

in parallel. Once the worker nodes complete the processing with a collection of sub

results they are combined and reduced to a �nal result.

There are two challenges when using the lambda architecture, the �rst is completing

the tasks in real-time, i.e., within a time constraint. The other is the repetition of

business logic for both the batch and real-time data stream processing and that was

approached in [36] where they suggested a language abstraction that works over

both kinds of data. The proposed component in this thesis is in�uenced by the

Lambda architecture and will avoid the need to use batch layer in the architecture

and rely only on processing real-time data streams.

Figure 7: Lambda Architecture. The �gure shows the interactions between the

three layers in the architecture. The serving layer is responsible from getting the

real time and batch updates to compute both the real time and the batch views.

The downside with Lambda is that the incoming data is copied twice.

2.4.2 Kappa architecture

Kappa is a serverless software architecture that came after Lambda. This it is similar

to the Lambda architecture but aims to reduce the amount of processing. The aim
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was to overcome the shortcoming of having to copy the incoming stream to both the

batch and the speed layer as in the Lambda architecture. Kappa architecture does

not include the batch layer as part of the architecture and this removes the need to

duplicate the data and to do batch processing.

The main goal behind Kappa architecture is to have both the real time processing

of the data and the reprocessing provided by one layer rather than two. However,

while the data is going through the speed layer it is also stored and preserved using

some of the available data storage solutions.

Processing of the data �ows (i.e, data stream) happens at the speed layer and the

results are forwarded to the serving layer to provide a real-time view or to be stored.

This architecture provides re-computations for the data when there is a need such

as in machine learning applications.

Kappa can be used in cases where a historical view does not needed to be maintained.

An example of such a use use case would be triggering an alarm when a sensor value

is out of range or if some sensor is malfunctioning [58].

Figure 8: Kappa Architecture. In the Kappa architecture there is no batch layer

and the incoming stream of data is not duplicated.
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3 Solution design and implementation

This section describes the architecture design for the proposed processing compo-

nent developed to enhance the Nokia prototype system. Section 3.1 describes the

rationale behind the designed processing component. Section 3.2 describes the pro-

totype solution pipeline in more detail. Section 3.3 describes the design and the

implementation of the proposed processing component.

3.1 Rationale

By combining 5G technologies and Mobile edge computing (MEC) the aim is to

reduce latency and increase the connection speed. Extending the network to the

edge and far edge, which is an extension to the network edge, brings the processing

systems closer to the data sources. 5G brings the ability to connect more devices

to the network. This can further minimize the number of data transmissions for

processing, save bandwidth and increase the speed of processing. The network edge

spreads over various geographical locations, which disseminates the demand on the

network and computation power.

Yet, the edge of the network has limitations in storage and computing resources.

Thus, the proposed processing component aims to perform the processing on the in-

coming streams of data without the need to store the data or send it to the central

server to be processed. The prototype solution is already implemented with a hard-

wired processing capability. Therefore, this work introduces a processing component

that would enhance the processing capability at the edge/far edge by enabling more

distribution to the computations. A Storm like solution is proposed for this purpose.

This thesis further studies the applicability of the proposed architecture in three use

cases involving data streams from di�erent data sources, i.e., counter values, sensor

reading and a video/image stream. The following subsections introduce the concepts

of far edge and fog computing.

3.1.1 Far edge

Far edge is a name given to portable devices or systems connected to the edge of

the network. These systems are able to generate data or process it. Devices at

the far edge provide a wireless interface for communicating [70]. The network edge

can contain a variety of connected components [5]. Some of these components can
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include micro data centers, cloudlets and smart routers [62]. Far edge, a recent

emerging concept, refers to a variety of devices such as smart mobile devices, IoT

wearables and sensors. Far edge connects to the edge-cloud through some form of

wireless or radio connection. The name far edge is due to being further from the

central cloud than what is usually considered the network edge.

By connecting to the edge the aim is to reduce latency and save battery power in

the connected far edge devices. Yet, the constant data transmission between the

edge and the far edge devices is ine�cient. Each data transfer operation consumes

power and bandwidth.

Having the computational power operate on the edge/far edge to process the incom-

ing data streams can be more e�cient in two main ways. We save resources, and we

operate faster as it will take fewer trips for the data to travel to have it processed

[6].

The results are then sent to the edge after processing. Same bene�ts apply for having

computational power at the edge instead of the central cloud which also minimizes

the number of trips that the data has to make and, speeds up the processing given

the limited resources available at the far edge.

We used Sensordrones as data sources to generate continuous �ows of data and a

laptop as the far edge device. The communication with the laptop is direct and this

creates a far-edge-to-far-edge (F2F) communication model. Rehman et. al discussed

F2F in more detail [70].

3.1.2 Fog computing

Fog computing concept, created by Cisco, is part of the cloud computing model

[44]. The focus of fog computing is to bring the computing power to the edge of the

network, so as to minimize delays and bandwidth usage [15].

Fog computing is similar to edge computing in terms of bringing the computation

power close to the data sources. The location of the computations is the main

di�erence between the edge and fog computing models. Edge computations happen

on devices or gateway devices that are directly connected to the sensors while Fog

computations take place on the processors of the Local Area Network (LAN) or

the hardware of the LAN and therefore it may be more physically distant when

compared with Edge computations [29].

The obvious presence of data streaming at the edge makes it a convenient platform
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for IoT devices and real-time applications since there is a possibility to distribute the

computation tasks and make them execute in parallel which makes them complete

in shorter time. Analyzing data streams at the edge saves bandwidth as mentioned

earlier. This is because there is no need to transfer the collected data to the central

network for that purpose. This also enables the calculations on the data to happen

in real-time [61] and retrieve the results in time. There is a possibility to deploy the

network edge computing resources either on base stations or within Radio Access

Networks (RAN) aggregation points.

3.2 Existing prototype solution pipeline

Figure 9: Prototype solution Components. The arrows show the request/re-

sponse between publishers and subscribers through the prototype [35].

The prototype solution is an architecture for coordinating message delivery and

message updates between publishers and subscribers in the network. The current

model of the prototype provides a processing for large data streams in near real-time.
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One of the main goals of the prototype solution is to minimize the data transfers

over the network and increase the up to date information in the subscriptions. To

achieve those goals the computations are done close to the data generation points

and the analysis is performed on the data in real-time [35].

The prototype solution in Figure 9 consists of data hubs, data switches, global

repositories and data fetchers. Data hubs operate close to the subscribers and are

responsible for serving those subscribers. The subscribers issue subscription requests

through the data hub which are delivered to the data fetchers through the pipeline.

Data fetchers operate close to the publishers and send responses for the subscription

requests. The processing of the data happens at the data fetcher.

Data switches receive computation outcomes from the data fetchers. Data switches

act as the router and the coordinator of messages between the data fetchers and the

data hubs. The prototype follows the publish/subscribe model (i.e. the data hubs

act as the subscribers within the model and the data fetchers act as the publishers).

Data fetchers send the published events only once to the data switches. The data

switches then route the published events to the data hubs. The data hubs will then

serve the subscribers with the published responses.

Global repositories were not shown in Figure 9 and they are not in the scope of this

thesis. However, the purpose behind global repositories is to assist in coordinat-

ing the subscriptions and relationships between components within the prototype

solution system.

This work applies the prototype solution's fetcher component at the far edge network

device. This far edge device acting as the gateway between the prototype solution

and the publishers of the data, i.e., environmental sensing devices. The fetcher is

assumed to be directly connected to the far edge IoT devices and the aspect of device

discoverability is not covered in the scope of this work.

3.3 The proposed processing component architecture

The proposed processing component design aims to enhance the processing of data

streams that are fetched from the publishers, by the data fetcher, to the prototype

solution. The design of the component was in�uenced by the Kappa architecture

for processing data streams in near real-time.

As illustrated in Figure 10, the layers of the proposed processing component are
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highlighted in red. The layers of this component are the speed and the serving layers.

The speed layer is implemented at the data fetcher component of the prototype

solution while the serving layer is implemented at the data switch component of the

prototype.

The serving layer acts as the broker to deliver the processing results sent from the

fetcher. This part was implemented in [20] and will not be in the scope of this work.

The main focus here is on the speed layer where the processing of the data takes

place at the data fetcher side.

Figure 10: Proposed component architecture. The processing component con-

sists of two layers. The speed and the serving layers. The speed layer is implemented

at the data fetcher, while the serving layer is implemented at the data switch.

The speed layer detailed in Figure 11, shows a storm like model of a topology. Data

sources in the network, i.e., each LTE counter or sensor individually generate a �ow

of data. Those continuous �ows together feed the data stream and that is also

illustrated in Figure 10 above.

Figure 11: Components of the computation model. This is a generalized model

with one spout and 3 bolts.

After the data fetcher component fetches those streams into the prototype solution,

they are received by the spout component of the topology. The spout is the stream's

entry point to the rest of the topology. If needed, data reduction can take place at

the spout.
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Data reduction and the reasoning behind it is detailed for each of the use cases. The

spout processes the stream and transforms it into a set of tuples that are then sent

to bolt1 for the �rst processing task. For demonstration purposes Figure 11 has 3

bolts and each of them is responsible for a single task.

After the topology is �nished processing, the processed data is compressed for each

of the subscription topics and sent to the data switch. The data switch will route

it to the data hub where it will be decompressed before the subscription response is

sent to the subscribers [32]. The following gives more insight on data compression

and which form is suitable when dealing with di�erent kinds of data.

Data compression

There are two kinds of compression techniques available. The lossless and the lossy

compression. Table 3 illustrates the di�erent usage scenario for each kind. Lossless

compression is reversible, which means that it is possible to perfectly reconstruct

the original data without losing any parts of it.

Table 3: Comparison between lossy and lossless compression techniques

Compression

Type

Lossy Lossless

Reversibility Irreversible Reversible

Data types JPEG, video, sound text, spreadsheets, GIF

Data Retrieval Data is partially discarded

during compression.

Original data can be recovered

when the �le is uncompressed

GZIP is an example of lossless compression algorithms. lossless compression is

preferable when dealing with critical data readings such as �nancial data. lossless

compression works better for the KPI calculations and the environmental sensing

use cases and this compression happens before sending the processed data from data

fetcher to the data hub where it will be decompressed before it is sent to the sub-

scribers. What makes lossless of compression desirable is that it is reversible, which

means that we can retrieve the original data content when decompressing.

As for lossy compression, it is an irreversible compression technique where parts of

the data are discarded during compression and cannot be perfectly restored after

decompressing the data. The main reason behind using lossy compression is that it
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provides a very high compression ratio. Discarding nonessential parts of the data

still often allows for a su�ciently accurate reconstruction of the original data.

Lossy compression has been used in earlier work [32] as a second compression layer

for the aggregated LTE KPI values. However, the quality of compression can be

assessed by using the euclidean distance. Eucleadian distance is a measure to �nd the

similarity between the time series before the compression and after decompressing

the data [33]. The lossy compression technique is a good choice for compressing

images such as JPEG or video and sound and is a suitable choice for the third use

case in this thesis.

Compression happens at two stages. In the case of KPI and sensor data, semantic

compression is applied at a lower level in data fetcher. lossless compression algorithm

GZIP is used before sending the processed data away from the data fetcher. Since

the purpose of lossless is to minimize the amount of data to be transmitted and

since the processing happens at the far edge close to the data collection point, it

makes more sense to compress the data before transmitting it.

Once the processed data is decompressed, if it is a lossless compression, then we

are sure that no parts of the processed data were discarded during the compres-

sion. However, with this approach we make sure to slightly reduce the data before

processing, minimize the size of the transmitted data and retain the original data

after decompression. There is an Java implementation of the GZIP algorithm for

compression and decompression of data.

Figure 12 shows an hour glass representation of the prototype solution highlighting

the bene�ts of compressing the data before sending it through the network, which

is saving bandwidth resources.
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Figure 12: Compression and multiplexing through the prototype solution.

Reduced bandwidth demand and reduced requests to fetch the data.

Data processing

Data reduction, i.e., semantic compression on the incoming data such as calculating

KPIs from LTE counter values helped in giving a straightforward indicator on how

well this base station cell is performing within the network. This also reduced

the amount of data that needed to undergo further processing before sending to

subscription requests.

Bolt1 receives the reduced data and splits it into non-overlapping time windows,

i.e., landmark windows. In landmark windows, a de�ned landmark marks the end

of a time window and the start of a new time window. This restarts the processing

computations to include the values of the newer time window.

The choice of window size depends on the number of data samples we need to have

in each window portion. For example, if we are receiving the data at the speed of

one sample per 10 seconds and we need to know the overall performance every �ve

minutes. Then, each window will perform the calculations on samples from within

those �ve minutes.
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Bolt2 receives the time windows and calculates the aggregated sum and values count

for each time window and send those new tuples to Bolt3. In Bolt3, the mean is

calculated by dividing the aggregated sum by the values count which gives us the

average performance in that time window. After all the processing is complete, the

processed data is then compressed and sent through the prototype solution to reach

the subscribers.

In case of having too little data produced from the processing at the speed layer,

compressing the data might result in larger data size. This might be a result of added

header information by the compression algorithm. In such a case compression would

be counterproductive and would not serve the goal of reducing the transmitted data

over the network to the other components of the prototype solution.

The following two Algorithms represent de�ning a new topology and the pipeline for

processing the de�ned topology. Algorithm 1, presents a topology consisting with

one spout and three bolts. Each of these tasks takes in data, does the necessary

processing and outputs tuples to the next task. The next task is speci�ed for each

of the tasks.

Algorithm 1 Topology for processing data stream

1: procedure Topology

2: Spout(data,NextTask)← data stream entry point

3: Bolt1(data,NextTask)← Splitting streams to time windows

4: Bolt2(data,NextTask)← Aggregate values + increment counters per data point

5: Bolt3(data,NextTask)← Average data value for each data point

Algorithm 2, illustrates the pipeline of the processing at the data fetcher, where a

data stream enters the spout and is transformed into a tuple and sent to Bolt1 and

so on. Compression is set to happen after all the processing completes and each

processed portion of data is assigned to the speci�ed subscription topic.
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Algorithm 2 Pipeline to processing data stream

1: procedure ProcessData

2: NewTopology← De�ne a new Topology

3: Tuples← NewTopology.Spout(DataStream,Bolt1)

4: Tuples2← NewTopology.Bolt1(Tuples,Bolt2)

5: Tuples3← NewTopology.Bolt2(Tuples2,Bolt3)

6: Tuples4← NewTopology.Bolt3(Tuples3,None)

7: CompressedData← CompressData(Tuples4) - compress the processed data

8: DistributeToSubscriptionTopics(CompressedData)

4 Use cases

This section demonstrates the applicability of the prototype solution to three use

cases. A use case about Key performance indicators calculations for LTE data

counters and this has been covered in previous work. Environmental monitoring

use case using mobile air quality sensors called Sensordrones. The third use case

discusses the applicability of the prototype solution and the Storm like architecture

in the proposed solution on a deep learning example of detecting car license plates

and processing this at the far edge network.

4.1 Key Performance Indicator calculations

Key performance indicators (KPIs), are calculations derived from simpler perfor-

mance counter values that bear some signi�cance regarding the performance of the

system. The results of these calculations give an indication of the network perfor-

mance. KPIs are a form of network metrics. Network metrics are de�ned to be any

form of calculations that represent a certain aspect of the network status and those

metrics are known to have a scalar value [12].

Cullen and Frey method, which is a method for �nding the type of statistical dis-

tribution followed by the data, found that KPI calculations followed a form of con-

tinuous probability distribution called Beta distribution [32]. The beta distribution

data values are found within the interval [0,1].

KPI calculations for this use case were used in an earlier work [12]. The goal was to

study the performance management of the LTE network. In [12] KPI calculations are

computed from LTE counters published per cell in a Base Station. Base stations are
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distributed across the test network. The test network is an LTE network operating

in Espoo and Helsinki and managed by Nokia. The test network consists of 20 LTE

Base Stations and 36 LTE cells.

The data fetcher is assumed to have a direct connection to receive the raw LTE

counter values of cells in Base Stations. Each cell LTE data counter is an individual

data �ow, and a collection of �ows fetched into the system make up the data stream.

Once these counter values reach the spout component of the topology in the speed

layer, semantic compression is done to produce the KPI calculations of each counter

[35]. Semantic compression is a technique used to convert a fragment of text using

terms that are less detailed while preserving the meaning at the same time [31].

KPI calculations of LTE counter values are an aggregation of the values of one or

more raw counter data values. These KPI calculations give an indication of how this

base station cell is performing and when sending only the KPI calculation instead

of all the LTE counter values we are sending less data [35]. A script is de�ned for

calculating each KPI and consumes speci�ed counter values [35]. The more counter

values we can discard due to a KPI calculation the more compression is achieved

and the more reduction there is in the processed and transmitted data.

After the reduction, the spout generates tuples from the data stream and then moves

them to Bolt1 to be split to time windows. Bolt2 counts the KPI calculations for each

time window and aggregates the values. The mean for each time window is calculated

in Bolt3. The processed data for each subscription topic is then compressed using

GZIP algorithm and sent by the fetcher to the data switch where it is routed to the

proper subscription request through de�ned topics. The data hub decompresses the

processed data before sending it to the subscribers. The idea behind keeping each

processing task in a separate topology component is to help in distributing those

tasks and to make the design more scalable we can add more tasks in between and

connect them to the designed processing pipeline.

4.2 Environmental Sensing

Applications are increasingly relying on data provided by sensors. These sensors can

be already available in mobile devices or IoT wearable devices and they generate

continuous data over time. Traditionally this data needs to be collected and then

transferred to the central cloud for processing and further analytic operations. These

operations can be general computations, monitoring or generating data logs [2].
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Environmental awareness is very important. Pollution levels are rising and it is

a�ecting communities and people's health and their health on many levels [25]. The

quality of the air we breathe inside the workplace, houses and outdoors can have an

impact on how energetic and productive we are and we are witnessing an increase

in health problems due to polluted air.

Air quality sensors have features to detect if there is a gas leak or if the levels of

oxygen are dropping in a way that would put people's lives in danger or alarm if

there are indicators of a �re starting. Processing the data streams coming from these

sensor devices as soon as it arrives can help in �ring an alarm in the right moment.

Therefore, reliability and survivability are two important qualities in such sensors.

The Megasense project studies air quality monitoring [46].

Evolution in IoT, sensors and smartphone technology resulted in the emergence of

low-cost sensors. Those sensors are cheap, light-weight and easy to carry around.

This enables many new applications including such that enabled people to be more

aware of the air they breathe and help them monitor their bodies and health.

For this thesis, we chose to use an environmental sensing product called Sensordrone

that was manufactured by SensorCon [63]. The Sensordrone is able to connect

through Bluetooth LE to the far edge or a gateway device. An open source Java

library is used to handle the connection and data collection from the Sensordrone

devices.

Sensordrone provides three modes of operation: sending most recent data, data

streaming (sending data in real-time) and data logging where it stores the readings

in memory until they are needed and downloaded as csv �les.

Figure 13 illustrates the main components of the Sensordrone. Main Sensordrone

unit contains integrated sensors for gas (precision electrochemical, oxidizing gases,

reducing gases), temperature, humidity, pressure, non-contact thermometer, prox-

imity capacitance, color intensity (Red, Blue, Green, illumination) and expansion

connector that enables adding more sensors to the device [64]. Several factors a�ect-

ing measurements will also be considered since the device tends to heat up while it is

charging which can a�ect the temperature measurements. Furthermore, the sensors

have the tendency to drift sometimes. For that, it will also be good to detect such

anomalies in the measurements and give an indicator when the sensor is drifting in

order to check the reason behind the drifts in measurements.

A detailed table of the sensors and their IDs and main functions can be found in
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Figure 13: Sensordrone is a portable sensing device An illustration of the main

components of Sensordrone.

Appendix 1, Table 6. The code for data collection is provided in Appendix 2. The

data collection code is written in Java and it is based on an open source project 1.

Some modi�cations were done to the code. A sample of collected data is shown in

Appendix 3 with more details.

Earlier work with Sensordrone

Traditional stationary air quality and pollution monitoring sensors come with high

accuracy. However, they tend to be bulky and expensive and it is di�cult to move

them to di�erent locations of interest as they have to be installed in each of these

locations.

Portable sensors are cheaper and remove this inconvenience of having the sensor in

a �xed place. Portable sensors enabled the crowd to further assist in collecting data

from di�erent locations in a city or to monitor indoor and outdoor air quality. This

means that multiple sensors can be used in many locations to perform air quality

1https://github.com/jmineraud/sensordrone-air-quality-logger
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Figure 14: Sensordrones sending streams and the solution prototype con-

necting to the data sources. The far edge device is the gateway between the

prototype solution and the IoT devices, Sensordrones in this case. The connec-

tion between the solution prototype's fetcher component and the Sensordrones is a

Bluetooth LE connection.

monitoring. Yet, those portable sensors can be less accurate and tend to experience

drifting in readings quite often.

Participatory sensing [66] or community-based sensing [30] is an environmental mon-

itoring method that uses smartphones or other kinds of portable sensing devices.

This method depends on the crowd actively participating in the data collection

process.

The studied previous work with Sensordrones involved participatory sensing in the

process of collecting the data. The following work has been done with Sensordrones

and they also used Android-based smart devices and the process involved the storage

and transmitting the data to some central server for further processing.
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Work in DroneSense [66] involved two kinds of sensing devices, Sensordrone and

Waspmote [41]. Sensordrone sends data via Bluetooth LE and Waspmote sends the

data via Wi�. The smart device collects the data from both devices and then sends

the data to cluster heads and a central server for further processing. Cluster heads

attempt to reduce the computation load on the central server. Kalman Filter was

applied to the collected data to reduce noise in the measurements. Furthermore, the

central server gave the users some ranking that infers which users are producing more

reliable measurements than others. Aggregation was used to exploit redundant data.

The work also handled a failure scenario, where the data is redirected to another

cluster if one of the cluster heads fail.

SecondNose [39] system had a crowd of 80 citizens collecting environmental data.

The work involved storage of historical data and a back-end system for collecting

and analyzing the results. Furthermore, they further developed a web application

to visualize the aggregated measurements to give a weekly personalized view for

each authorized user in the crowd participating. Connection failure in this work was

handled by re-attempts to connect until there is a successful connection.

Jafari et. al. [30] developed an air quality monitor. The data was stored both on the

smart device and another copy was sent to the central server for processing via TCP

sockets. Collection and aggregation of measurements happened at the server that

then visualized the results on google maps in both real-time and historical views.

SmartVent [43] system had both static and portable sensors for collecting measure-

ments. Static sensing device was an Arduino UNO R3 that had temperature and

humidity sensors and it was deployed in rooms that were highly occupied. The

smart devices collected data from Sensordrones, while the Arduino sent the data

directly to the central server. The collection and storage happened at the central

server where the data was analyzed and then visualized.

Applying environmental sensing to the prototype solution

The work in this thesis di�ers from the above in that the collection will happen

directly on the laptop, i.e., the far edge device that connects to the Sensordrones.

The processing of the data will happen at the far edge device and there will be no

transmission of the data to the central server to do the processing.

The data collection script in Appendix 2 was modi�ed to collect measurements from

multiple Sensordrone devices every ten seconds. The data was stored as comma
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separated values (csv). A sample of the data is presented in Appendix 3.

The data from the sensors was collected in a room over the course of three days

to measure the quality of the air in that room. During the process, the system

occasionally experienced some failures to connect to some of the sensors. After

resetting the connection the data collection proceeded normally.

We can control the speed at which the data is collected. In Appendix 2, we con�gured

the data collection script to collect the data every ten seconds.

In processing, the spout transforms each line of sensor readings into a tuple. Bolt1

then groups the tuples into non-overlapping time windows. Bolt2 aggregates the

readings of each sensor and it also counts the number of readings. The average

reading for each sensor in a time window is calculated in Bolt3 and the data is then

compressed, to reduce the size of the data, and sent to the data switch.

4.3 Deep Learning Application

Deep learning is a branch of machine learning [74] where the word deep indicates

the complexity of the model of computation. This complexity involves several layers

each having a simple task. Each layer in the deep learning model is linked to other

layers in the model in a logical manner. The input to each layer is processed and

passed to the next processing unit after the processing is completed in the previous

layer.

Modern surveillance and tra�c control management are increasingly using tech-

niques, such as deep learning, for detecting car license plates. Detecting license

plates involves recognizing the plate itself the digits and characters present on a

plate given an image, sequence of images or a video. This can help in detecting

stolen cars, managing parking spaces, and allowing authorized vehicles to enter in

restricted parking spaces. In such cases, there is a high demand for real-time pro-

cessing and quick responses.

Deep Convolutional Neural Networks are one application of deep learning and they

consist of feed-forward Neural Networks and back-propagation Neural Networks [37].

In back-propagation Neural Networks the weights are constantly learnt for these

networks. Convolutional Neural Networks are a form of back-propagation Neural

Networks and they are applied in tasks such as digit recognition and image classi�-

cation.
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Figure 15: Finnish car license plates.

The top part shows di�erent license plates for vehicles. The middle part shows

di�erent plates for veteran vehicles which are vehicles that are older than 30 years

and have a black background. The last part shows motor bike license plates. Images

collected from Tra� 'Finnish Transport Safety Agency' website[68].

This use case is a study of the applicability of deep learning to process an image or

video stream using the proposed processing model and provide results in real-time.

For the model in this use case, we chose three categories of license plates issued in

Finland [69]. Those categories are for vehicle license plates, veteran vehicles and

motorbikes. Figure 15 shows some categories of vehicle license plates. Each license

plate type in each category vary in dimensions, has two to three Latin characters

and two to three numbers separated by a dash in some plates. All the plates use

the same font and all letters are in upper case.

In newer plates, there is a blue �eld on the top left with the European �ag twelve

stars and the nationality ID FIN below the stars. Furthermore, license plates can

be placed in di�erent locations depending on the vehicle size and type. The plates

themselves have di�erent dimensions as in Figure 15 and those dimensions depend

on the rules for issuing them.
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However, a tra�c monitoring system can make mistakes when issuing tra�c speed-

ing tickets, for example, a ticket issued for a vehicle in Sweden or Estonia can be

registered for a vehicle in Finland or vice versa. This is due to similarities between

license plates and the recognition algorithm's failure to detect which country the

plate in question belongs to. Therefore it is also important to recognize which coun-

try a vehicle plate belongs to by understanding the di�erences in the features of the

plates between countries.

To ensure the accuracy of the deep learning model it is important to provide clean

data with proper annotations [45]. This clean data consists of vehicle images with

the license plate images in clear locations and with minimal noise introduced to

them and this is for the task of detecting the plates in an image. Another set of

clean data needed is for the task of recognizing the digits in the plates with minimal

noise introduced to those images. Using minimal or no noise in the training data

helps the model achieve higher accuracy when it is applied later on.

Due to the limitation in storage and computation resources at the edge, the train-

ing of the model will happen on the central server [45]. Due to the need of heavy

computations and the resources for these computations are available at the central

server. After the training part, the model is applied at the edge of the network.

When running the model it will start by detecting the plate in an image and then

it will move to detecting and recognizing the digits in the plate. There are di�erent

methods for detecting the vehicle license plate location in an image such as edge

features, where the detection algorithms look for rectangular shapes in the image,

image features, i.e., having characters in the license plate helps the algorithm de-

tecting it [42]. Usually using a combination of location detection techniques help in

getting better results [42].

Factors that are important when detecting the license plate from a given image

include the location of the plate as di�erent vehicle models have di�erent plate

sizes, plates can further have di�erent shapes depending on the date of issuing

them or again the type of the vehicle. Colors and fonts of the license plate a�ect the

classi�cation task and when all the vehicles use the same font the task is made easier

for the classi�er. A plate can be missing, for example, if the car is also missing and

in this case, the system will not proceed with the pipeline. Tilted plates or plates

full of dirt makes the task harder. Changes in the environment are also important

factors that a�ect the accuracy of the detection algorithm as well as the degree of

illumination.
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The surveillance camera provides an input image or video to the system once a car

appears in front of the gate or when malfunctions are detected. Those are the input

stream in this case. Lossy compression or compressive sensing techniques are to

be applied to help reduce the data load but still preserve the quality. Then, the

image is converted to grey-scale which reduces it from 24-bit RGB value to 8-bit

grey-scale value [60]. This input image then goes through the processing component

to detect the plate and then the characters on that plate. Location algorithm using

edge-based features are used to detect the plate on the vehicle.

For detecting the characters on the plate, the image is passed to the segmentation

deep learning algorithm. This divides the characters on the plate and sends them to

the recognition deep learning task. In the recognition task, each of the characters

is classi�ed to the character category they belong to. However, some errors in

classifying characters can still happen in cases where characters might look similar

such as B and 8, letter O and number zero, I and 1, A and 4, C and G, D and O,

K and X [40].

The pipeline in Figure 16 shows the transition from one stage to another through

the processing layer of the system to detect the characters on the license plate. After

the last classi�cation task has completed, the �nal real-time aggregated result of the

characters on the plate is then sent by the data fetcher to the serving layer in the

data switch component of the prototype solution in order to provide the near real-

time view. The data switch then maps the result through the rest of the solution

prototype and the apps acting as subscribers check whether the car is authorized

to park. Applying the model close to the data sources brings the data closer to the

processing pipeline and in such cases, this can help in reducing the amount of data

transfers.

In case of having new types of plates issued then the model will have to be trained

again and then applied at the edge and also in the case where there is a need to

include a wider range of plate types.



38

Figure 16: Applying deep learning to detect car license plates numbers.

The camera streams video or images of cars once they reach the parking space.

Deep learning models involve plate location detection, plate character detection and

character recognition.

5 Discussion

We are heading towards a more dynamic lightweight solution. This thesis studied

data streams and data stream processing solutions including Lambda and Kappa.

The proposed solution illustrated applying Kappa model within the prototype solu-

tion developed by Nokia.

We studies di�erences between the Lambda and the Kappa data stream processing

models. Where the Lambda model has a layer for processing historical data and

continuously update this data with the new incoming data. While the Kappa model

is doing the processing and the reprocessing only on the new incoming data. The

reasoning behind the Kappa model is reducing the need for batch processing and

limit the task to processing the data in near real-time only with limiting the need

for storage.

Apache Storm in�uenced the design of the proposed processing component and the

Kappa processing solution was applied to the prototype solution in two stages, the

data fetcher which contained the speed layer and the data switch that contained the

linking layer.

The prototype system is working toward minimizing the number of data transfers

through the network. By operating at the edge or at the far-edge, we brought the

processing capability closer to the data sources. In this work, the issue of device

discoverability was not studied but it will be in the scope of future work as this
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problem has di�erent aspects to it.

However, while collecting data from the Sensordrone devices we experienced some

connection problems with the devices and that took several attempts to be able to

connect and proceed with the data collection again. Future work will also include

applying the prototype solution to connect to stationary sensing devices like the

ones used in the Megasense project.

Through this work, we studied the possibility to distribute the processing computa-

tions that are being performed at the far-edge device. Due to limited computation

and storage capabilities, distributing the computations using a Storm like archi-

tecture and executing processing tasks in parallel and having them distributed on

di�erent devices can help distribute the computation load and would allow the pro-

cessing to complete at a faster speed. The proposed Storm like architecture will be

developed further in the continuation of this work.

Data reduction and compression techniques were discussed in this work. Data re-

duction techniques, i.e., semantic compression can be useful when meaningful sum-

maries can be generated from the collected data as in the case of generating KPI

calculations from base station cells' LTE data counters. While the data reduction is

also applied when setting how often to collect data as in the case of environmental

sensing. In the deep learning application, the reduction is made to the quality of

the image.

Data compression was set to happen once the processing of the data is completed at

the data fetcher component of the prototype solution. Two compression techniques

were compared that are the Lossy and the Lossless compression techniques [3]. Lossy

compression is applied to the data stream causing some data is discarded in order

to reduce the actual size of the data which reduces the amount of data that needs

to be processed [17].

In Kapoor's work [32], he implemented the compression in the data fetcher compo-

nent. Kapoor de�ned the accuracy limits for KPI data compression using quality

of monitoring concept for each KPI calculation. Quality of monitoring is done to

maintain accuracy while compressing the data. Kapoor proposed a modi�ed version

of piece-wise constant approximation algorithm when compressing the KPI data.

However, using the quality of monitoring concept introduced compression gain. To

calculate this gain he assumed i to be the number of KPIs calculated from the

counter values. LTE counter data needed to calculate KPI, we denote it here by c.

The number of data values that needed to be transferred if the calculation of KPI
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did not happen at the edge of the network would be i*c. In Kapoor's solution, i

values needed to be transferred which lead to a direct compression gain.

Another technique that is applicable to reduce the size of the incoming data, video

or image stream is compressed sensing where the number of measured signals and

images are reconstructed from reduced number of measurements while preserving

the structure. In cases of having critical data, lossless is more advisable while when

discarding parts of the data and still being able to construct the signal then Lossy

will not cause any critical losses in the data. However, when having very few data

points, compression can lead to larger compressed �le size due to the header added

by the compression algorithm.

In this thesis, the proposed processing component aimed to enhance the existing

prototype solution by moving the computations to the far-edge device that acted

as the gateway for the prototype solution and by that the computation power was

moved to the far-edge network, reducing the load on the edge and the central server.

Table 4 compares the di�erent requirements needed for applying the processing

component to each of the use cases. We can see the di�erent data reduction methods

that are applicable in each case as illustrated. The resulting data after the processing

is also di�erent in each use case and the component should be able to tolerate varying

data types. As for the compression techniques, the recommended technique is also

highlighted in the table.

Table 4: Use case requirements comparison.

Use case LTE Data counter

values

Environmental sens-

ing

License plate detec-

tion

Data reduction

before process-

ing

Semantic compres-

sion (calculating

KPI from raw

counter values).

Control how often to

collect the data.

Reduce image qual-

ity from 24-bit RGB

to 8-bit grey-scale.

Processing

outcome

Indication of net-

work performance.

Average reading for

each of the sensors

for every time win-

dow.

Letters and digits on

a license plate.

Compression

Technique

Lossless compression Lossless compression Lossy compression
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6 Conclusion

In this thesis, we studied the applicability of processing data streams at the far edge.

We designed a processing component to enhance the processing done in the Nokia

prototype solution. The prototype solution followed a topic-based publish/subscribe

architecture. The solution prototype consists of data hubs, data switches and data

fetchers. The data fetchers in our case are connected to the data sources. The

processing component developed in this thesis is implemented within the data fetcher

component.

A Storm-like architecture was designed as part of the processing component. Two

data stream processing solutions, Lambda and Kappa, were studied. Kappa showed

to be an improvement over Lambda as it removed the need to duplicate the incoming

stream for both the batch and the real-time processing. However, each stream

processing solution can �t a di�erent use case scenario and they also in�uenced the

designed processing solution at the data fetcher.

Moving the processing away from the central server to the far-edge reduces the num-

ber of data transfers and this saves bandwidth. Combining this with compression

when needed helps in saving more bandwidth.

Data compression was proposed in earlier work done on the prototype solution.

Lossless techniques such as gzip algorithms were more suitable for data such as KPI

calculations and sensor readings. In the pipeline, the example application of KPI

calculations applied semantic compression on LTE counter values to compute KPIs

which were an indicator of those counter values. Before sending the data back to

the data hubs gzip compression is used to reduce the size of the transmitted data.

The data hub then decompresses the data and sends it to the subscribing applica-

tions. By using two compression techniques, we reduced the size of the data that

we needed to process and in the second one we reduced the data that we needed to

send to the applications which also saves bandwidth.

Environmental sensing is another use case where we studied the applicability of

the proposed processing component. The input stream came from Sensordrone air

quality sensing devices. Future work will include better quality and more accurate

sensors. Sensordrones were used for the demonstration of the use case in this thesis

and study the applicability in the domain of environmental sensing.

Deep learning can also be applicable on the solution prototype. The training of the

model can take place on a central server and applying the model can be done at the



42

Table 5: Requirement analysis for the proposed solution.

Framework Proposed processing solution

Need to duplicate in-

coming data

No need since there is only one processing layer

and no storage is needed for the data.

Batch/real time pro-

cessing

Near real-time processing.

Model design Speed layer (i.e. the processing layer) implemented

at data fetcher. Serving layer (routing the sub-

scriptions) at the data switch.

Resource usage Data reduction aimed to reduce the amount of

data that needed processing and the data compres-

sion aimed to reduce the size of the data transmit-

ted over the network.

edge or the far-edge. Future work might include applying the proposed pipeline to

apply deep learning computations at the edge of the network.
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Appendix 1. Sensordrone sensors and their usage

Here is a table that details the sensors that exist in the SensorDrone device and the

usage of each of them.

Table 6: Sensordrone sensors and their reference IDs

Sensor type Sensor ID Details

Temperature 1 Temperature measured in Celsius

Color 2 Red, Blue, Green Illumination

Reducing Gas 3 Hydrocarbons such as Methane, Propane and alcohols

Pressure 4 Barometer, Blood Pressure

Precision Gas 5 Calibrated for Carbon Monoxide

Oxidizing Gas 6 Chlorine, Ozone, Nitrogen Dioxide

IR temperature 7 Simple resistance temperature

Humidity 8 Humidity percentage

Capacitance 9 Fluid level, intrusion detection, stud �nder

Altitude 10 Altimeter

Battery Voltage 11 Measures battery voltage



Appendix 2. Code used for collecting data streams

from sensors

Code for collecting the data from the sensordrones is taken from [48]. The following

code was modi�ed to generate the streams of measurements without the longitude

and the latitude.

The modi�ed task code can be called as in Figure 17.

Figure 17: Gradlew command to run the data collection task. The measure-

ments are set to be collected every 10 seconds.

//sensordrone-air-quality-logger/src/main/java/fi/helsinki/cs/sensordrone/air/quality/logger/SensorDroneDataCollectionTask.java

package fi.helsinki.cs.sensordrone.air.quality.logger;

import com.sensorcon.sensordrone.DroneEventHandler;

import com.sensorcon.sensordrone.DroneEventObject;

import com.sensorcon.sensordrone.java.Drone;

import java.util.Locale;

public class SensorDroneDataCollectionTask implements Runnable {

private static Drone drone;

private static String macAddress;

private final long timeout;

private boolean batteryMeasured = false;

private boolean altitudeMeasured = false;

private boolean capacitanceMeasured = false;

private boolean humidityMeasured = false;

private boolean irTemperatureMeasured = false;

private boolean oxidizingGasMeasured = false;

private boolean precisionGasMeasured = false;

private boolean pressureMeasured = false;

private boolean reducingGasMeasured = false;

private boolean rgbMeasured = false;

private boolean temperatureMeasured = false;

private boolean debug = false;

private boolean[] measuring = new boolean[12];

private static final int TEMPERATURE_SENSOR_ID = 1;

private static final int COLOR_SENSOR_ID = 2;

private static final int REDUCING_GAS_SENSOR_ID = 3;

private static final int PRESSURE_SENSOR_ID = 4;

private static final int PRECISION_GAS_SENSOR_ID = 5;

private static final int OXIDIZING_GAS_SENSOR_ID = 6;

private static final int IR_TEMPERATURE_SENSOR_ID = 7;

private static final int HUMIDITY_SENSOR_ID = 8;

private static final int CAPACITANCE_SENSOR_ID = 9;

private static final int ALTITUDE_SENSOR_ID = 10;

private static final int BATTERY_VOLTAGE_SENSOR_ID = 11;

private static final int[] SENSOR_MASK = new int[] {

COLOR_SENSOR_ID, PRESSURE_SENSOR_ID, OXIDIZING_GAS_SENSOR_ID,

TEMPERATURE_SENSOR_ID, HUMIDITY_SENSOR_ID

};

private static boolean validSensor(int sensorId) {

if (SENSOR_MASK == null) return true;

for (int id : SENSOR_MASK) {

if (id == sensorId) return true;

}

return false;

}

SensorDroneDataCollectionTask(String macAddress, long timeout, boolean debug) {



if (SensorDroneDataCollectionTask.macAddress == null) {

SensorDroneDataCollectionTask.drone = new Drone();

SensorDroneDataCollectionTask.macAddress = macAddress;

for (int i = 0; i < measuring.length; i++) {

measuring[i] = validSensor(i + 1);

}

DroneEventHandler mDroneEventHandler = new DroneEventHandler() {

@Override

public void parseEvent(DroneEventObject event) {

if (event.matches(DroneEventObject.droneEventType.CONNECTED)) {

drone.setLEDs(126, 0, 0); // Set LED red when connected

Enable the desired sensors defined in SENSOR_MASK

if (validSensor(ALTITUDE_SENSOR_ID)) drone.enableAltitude();

if (validSensor(CAPACITANCE_SENSOR_ID)) drone.enableCapacitance();

if (validSensor(HUMIDITY_SENSOR_ID)) drone.enableHumidity();

if (validSensor(IR_TEMPERATURE_SENSOR_ID)) drone.enableIRTemperature();

if (validSensor(OXIDIZING_GAS_SENSOR_ID)) drone.enableOxidizingGas();

if (validSensor(PRECISION_GAS_SENSOR_ID)) drone.enablePrecisionGas();

if (validSensor(PRESSURE_SENSOR_ID)) drone.enablePressure();

if (validSensor(REDUCING_GAS_SENSOR_ID)) drone.enableReducingGas();

if (validSensor(COLOR_SENSOR_ID)) drone.enableRGBC();

if (validSensor(TEMPERATURE_SENSOR_ID)) drone.enableTemperature();

if (validSensor(BATTERY_VOLTAGE_SENSOR_ID)) drone.measureBatteryVoltage();

// Enabled

} else if (event.matches(DroneEventObject.droneEventType.ALTITUDE_ENABLED)) {

drone.measureAltitude();

} else if (event.matches(DroneEventObject.droneEventType.CAPACITANCE_ENABLED)) {

drone.measureCapacitance();

} else if (event.matches(DroneEventObject.droneEventType.HUMIDITY_ENABLED)) {

drone.measureHumidity();

} else if (event.matches(DroneEventObject.droneEventType.IR_TEMPERATURE_ENABLED)) {

drone.measureIRTemperature();

} else if (event.matches(DroneEventObject.droneEventType.OXIDIZING_GAS_ENABLED)) {

drone.measureOxidizingGas();

} else if (event.matches(DroneEventObject.droneEventType.PRECISION_GAS_ENABLED)) {

drone.measurePrecisionGas();

} else if (event.matches(DroneEventObject.droneEventType.PRESSURE_ENABLED)) {

drone.measurePressure();

} else if (event.matches(DroneEventObject.droneEventType.REDUCING_GAS_ENABLED)) {

drone.measureReducingGas();

} else if (event.matches(DroneEventObject.droneEventType.RGBC_ENABLED)) {

drone.measureRGBC();

} else if (event.matches(DroneEventObject.droneEventType.TEMPERATURE_ENABLED)) {

drone.measureTemperature();

// Measured

} else if (event.matches(DroneEventObject.droneEventType.BATTERY_VOLTAGE_MEASURED)) {

logSample(BATTERY_VOLTAGE_SENSOR_ID, drone.batteryVoltage_Volts);

batteryMeasured = true;

} else if (event.matches(DroneEventObject.droneEventType.ALTITUDE_MEASURED)) {

// drone.altitude_Meters, drone.altitude_Feet

logSample(ALTITUDE_SENSOR_ID, drone.altitude_Meters);

altitudeMeasured = true;

} else if (event.matches(DroneEventObject.droneEventType.CAPACITANCE_MEASURED)) {

logSample(CAPACITANCE_SENSOR_ID, drone.capacitance_femtoFarad);

capacitanceMeasured = true;

} else if (event.matches(DroneEventObject.droneEventType.HUMIDITY_MEASURED)) {

logSample(HUMIDITY_SENSOR_ID, drone.humidity_Percent);

humidityMeasured = true;

} else if (event.matches(DroneEventObject.droneEventType.IR_TEMPERATURE_MEASURED)) {

// drone.irTemperature_Celsius, drone.irTemperature_Fahrenheit, drone.irTemperature_Kelvin

logSample(IR_TEMPERATURE_SENSOR_ID, drone.irTemperature_Celsius);

irTemperatureMeasured = true;

} else if (event.matches(DroneEventObject.droneEventType.OXIDIZING_GAS_MEASURED)) {

logSample(OXIDIZING_GAS_SENSOR_ID, drone.oxidizingGas_Ohm);

oxidizingGasMeasured = true;

} else if (event.matches(DroneEventObject.droneEventType.PRECISION_GAS_MEASURED)) {

logSample(PRECISION_GAS_SENSOR_ID, drone.precisionGas_ppmCarbonMonoxide);

precisionGasMeasured = true;

} else if (event.matches(DroneEventObject.droneEventType.PRESSURE_MEASURED)) {

// drone.pressure_Pascals, drone.pressure_Atmospheres, drone.pressure_Torr

logSample(PRESSURE_SENSOR_ID, drone.pressure_Pascals);

pressureMeasured = true;



} else if (event.matches(DroneEventObject.droneEventType.REDUCING_GAS_MEASURED)) {

logSample(REDUCING_GAS_SENSOR_ID, drone.reducingGas_Ohm);

reducingGasMeasured = true;

} else if (event.matches(DroneEventObject.droneEventType.RGBC_MEASURED)) {

// drone.rgbcLux, drone.rgbcColorTemperature, drone.rgbcClearChannel, rgbcBlueChannel, rgbcGreenChannel,

rgbcRedChannel

logSample(COLOR_SENSOR_ID, drone.rgbcLux, drone.rgbcColorTemperature,

drone.rgbcClearChannel, drone.rgbcBlueChannel, drone.rgbcGreenChannel, drone.rgbcRedChannel);

rgbMeasured = true;

} else if (event.matches(DroneEventObject.droneEventType.TEMPERATURE_MEASURED)) {

// drone.temperature_Celsius, drone.temperature_Fahrenheit, drone.temperature_Kelvin

logSample(TEMPERATURE_SENSOR_ID, drone.temperature_Celsius);

temperatureMeasured = true;

}

}

};

SensorDroneDataCollectionTask.drone.registerDroneListener(mDroneEventHandler);

}

this.timeout = timeout;

this.debug = debug;

}

private boolean allDataCollected() {

return (temperatureMeasured || !measuring[0]) &&

(rgbMeasured || !measuring[1]) &&

(reducingGasMeasured || !measuring[2]) &&

(pressureMeasured || !measuring[3]) &&

(precisionGasMeasured || !measuring[4]) &&

(oxidizingGasMeasured || !measuring[5]) &&

(irTemperatureMeasured || !measuring[6]) &&

(humidityMeasured || !measuring[7]) &&

(capacitanceMeasured || !measuring[8]) &&

(altitudeMeasured || !measuring[9]) &&

(batteryMeasured || !measuring[10]);

}

@SuppressWarnings("ResultOfMethodCallIgnored")

private void logSample(int sensorId, double... sensorValues) {

if (sensorValues.length == 0 ||

(sensorValues.length == 1 && (Double.isNaN(sensorValues[0]) || !Double.isFinite(sensorValues[0])))) {

// We dont care about these if the data is not defined

return;

}

StringBuilder sampleSb = new StringBuilder(String.format(Locale.ENGLISH, "%d;%s;%d",

System.currentTimeMillis(), macAddress, sensorId));

for (double v : sensorValues) {

// Handle the case when data is not finite

if (Double.isNaN(v) || !Double.isFinite(v)) {

sampleSb.append(";");

}

else {

sampleSb.append(String.format(Locale.ENGLISH, ";%f", v));

}

}

System.out.println(sampleSb.toString());

}

private void reset() {

batteryMeasured = false;

altitudeMeasured = false;

capacitanceMeasured = false;

humidityMeasured = false;

irTemperatureMeasured = false;

oxidizingGasMeasured = false;

precisionGasMeasured = false;

pressureMeasured = false;

reducingGasMeasured = false;

rgbMeasured = false;

temperatureMeasured = false;

if (validSensor(ALTITUDE_SENSOR_ID)) drone.measureAltitude();

if (validSensor(CAPACITANCE_SENSOR_ID)) drone.measureCapacitance();

if (validSensor(HUMIDITY_SENSOR_ID))drone.measureHumidity();

if (validSensor(IR_TEMPERATURE_SENSOR_ID)) drone.measureIRTemperature();

if (validSensor(OXIDIZING_GAS_SENSOR_ID)) drone.measureOxidizingGas();

if (validSensor(PRECISION_GAS_SENSOR_ID)) drone.measurePrecisionGas();

if (validSensor(PRESSURE_SENSOR_ID)) drone.measurePressure();

if (validSensor(REDUCING_GAS_SENSOR_ID)) drone.measureReducingGas();



if (validSensor(COLOR_SENSOR_ID)) drone.measureRGBC();

if (validSensor(TEMPERATURE_SENSOR_ID)) drone.measureTemperature();

if (validSensor(BATTERY_VOLTAGE_SENSOR_ID)) drone.measureBatteryVoltage();

}

@Override

public void run() {

if (!drone.isConnected) {

drone.btConnect(macAddress, debug);

}

if (!drone.isConnected) {

System.err.println("Connection Failed to drone " + macAddress + " !");

return;

}

long startTime = System.currentTimeMillis();

reset();

while (drone.isConnected && !allDataCollected() && (System.currentTimeMillis() - startTime < timeout)) {

try {

Thread.sleep(20);

} catch (InterruptedException e) {

e.printStackTrace();

}

}

}

void disconnect() {

drone.disconnect(debug);

}

}

//sensordrone-air-quality-logger/src/main/java/fi/helsinki/cs/sensordrone/air/quality/logger/SensorDroneAirQualityLogger.java

package fi.helsinki.cs.sensordrone.air.quality.logger;

import org.apache.commons.cli.*;

import java.io.ByteArrayOutputStream;

import java.io.PrintStream;

import java.util.concurrent.Executors;

import java.util.concurrent.ScheduledExecutorService;

import java.util.concurrent.ScheduledFuture;

import java.util.concurrent.TimeUnit;

public class SensorDroneAirQualityLogger {

public static void main(String[] args) {

// create Options object

Options options = new Options();

// add t option

options.addRequiredOption("d","delay", true, "The delay for collecting the data from the sensordrone");

options.addRequiredOption("m","mac", true, "The mac address of the sensordrone");

options.addOption("timeout", true, "The timeout set to collect the data");

options.addOption("debug", "Put the log to debug");

// create the parser

CommandLineParser parser = new DefaultParser();

try {

// parse the command line arguments

CommandLine cmd = parser.parse(options, args);

long delay = Long.parseLong(cmd.getOptionValue("d"));

String macAddress = cmd.getOptionValue("m");

long timeout = Long.parseLong(cmd.getOptionValue("timeout", "10000")); // default of 10 seconds

boolean debug = cmd.hasOption("debug");

final ScheduledExecutorService scheduler =

Executors.newScheduledThreadPool(1);

final SensorDroneDataCollectionTask task = new SensorDroneDataCollectionTask(macAddress, timeout, debug);

final ScheduledFuture<?> sensorDroneCollectionHandler =

scheduler.scheduleAtFixedRate(task,0, delay, TimeUnit.MILLISECONDS);

Runtime.getRuntime().addShutdownHook(new Thread(() -> {

sensorDroneCollectionHandler.cancel(true);

if (!debug) {

// Create a stream to hold the output

ByteArrayOutputStream baos = new ByteArrayOutputStream();

PrintStream ps = new PrintStream(baos);

// Tell Java to use your special stream

System.setOut(ps);

}



task.disconnect();

}));

}

catch (ParseException exp) {

// oops, something went wrong

System.err.println(exp.getMessage());

HelpFormatter formatter = new HelpFormatter();

formatter.printHelp( "gradle run", options);

}

}

}



Appendix 3. Sensordrone: Sample data stream

Figure 18: Collected measurements sample from SensorDrone.

Data is collected in a text �le. Each line represents a reading of a sensor at a given

timestamp. The values are separated by semicolons. The �rst value is the timestamp

of the reading, the second value shows the MAC address of the Sensordrone, the

third value is the ID of the sensor, the last value is the reading(s) value that the

sensor generated.


