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ABSTRACT: Oil spills resulting from maritime accidents pose a
poorly understood risk to the Arctic environment. We propose a novel
probabilistic method to quantitatively assess these risks. Our method
accounts for spatiotemporally varying population distributions, the
spreading of oil, and seasonally varying species-specific exposure
potential and sensitivity to oil. It quantifies risk with explicit
uncertainty estimates, enables one to compare risks over large
geographic areas, and produces information on a meaningful scale
for decision-making. We demonstrate the method by assessing the
short-term risks oil spills pose to polar bears, ringed seals, and walrus
in the Kara Sea, the western part of the Northern Sea Route. The risks
differ considerably between species, spatial locations, and seasons. Our
results support current aspirations to ban heavy fuel oil in the Arctic
but show that we should not underestimate the risks of lighter oils either, as these oils can pollute larger areas than heavier ones. Our
results also highlight the importance of spatially explicit season-specific oil spill risk assessment in the Arctic and that environmental
variability and the lack of data are a major source of uncertainty related to the oil spill impacts.

1. INTRODUCTION
As climate change extends the ice-free period in high-latitude
areas, the Arctic faces increasing maritime traffic and petroleum
extraction activity.1 A growing number of oil drilling and
shipping operations in areas experiencing harsh weather and
extensive sea ice raises concerns about oil-related accidents. An
accident similar to, for example, the Exxon Valdez oil spill in
Alaska (1989) could have disastrous impacts on relatively
pristine Arctic ecosystems. To proactively manage the risks
maritime accidents pose to Arctic marine ecosystems, we need
methods to assess them in a quantitative and spatiotemporally
explicit manner while at the same time acknowledging high
uncertainties typical for the Arctic. Despite this self-evident
need, the risks have previously been described mainly in
qualitative terms, and the handling of uncertainty has been
limited.2 Recently, however, new quantitative approaches
addressing the risks have started to emerge,3−5 and our work
continues the general development of new methods suitable to
Arctic risk assessment.
Oil spill risk assessment (OSRA) combines the probability of

spill occurrence with an analysis of the consequences. The latter
covers information about the oil’s properties, its fate and
movement, and its impacts on natural resources.6,7 However,
many of these factors are difficult to assess reliably in the Arctic.
Although there are sophisticated oil spill models to assess the
trajectory and fate of spilled oil8 (e.g., SIMAP9 and OSCAR10),
they usually require extensive data about bathymetry, weather
conditions, and coastal habitat types, which are currently not

available for the majority of Arctic marine areas. Typically, these
models also have a limited capacity to handle the uncertainty in
their projections, and only few can contend with the interaction
between oil and ice,11 even though significant progress has been
made in this area in recent years.12,13 Further, due to nonexistent
or sporadic monitoring, detailed biological information,
including species distributions, is lacking in most Arctic
regions.14

Hence, it is evident that justifiable OSRA methods for the
Arctic need to cope with various uncertainties and limited data.
For this reason, the quantitative state-of-the-art methods
developed for more extensively studied and data-rich regions
are likely not applicable to holistic, large scale OSRA in the
Arctic context. Hence, due to rapidly increasing anthropogenic
activities and growing societal pressure asking for actions to
ensure a sustainable future, we need alternative ways to provide
holistic Arctic-applicable risk assessments.
To meet this demand, we propose a novel probabilistic

method for conducting OSRA in Arctic marine areas, based on
the recently developed probabilistic framework.2 The method
uses parsimonious probabilistic methods and open access data
to hierarchically assess the factors determining the ecological
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consequences of oil spills. The pan-Arctic estimates of seasonally
varying, species-specific exposure potentials and sensitivities15

are estimated separately from seasonally varying species-specific
spatial population distributions and the seasonally and spatially
varying spreading of oil. This allows risk assessments at various
levels of spatial and temporal resolution and the exchange of
information between Arctic regions and eases the process of
updating assessments with new evidence.
We use our method to assess the risks oil spills pose to the

marine environment along the main shipping routes in the Kara
Sea (KS). The Northern Sea Route (NSR), which runs through
the KS, has received a growing interest as a potentially
competitive alternative to shipping through the Suez Canal.16

We provide generally applicable quantitative results on the acute
impact of oil on adult populations of three arctic marine
mammal (AMM) species: polar bear (Ursus maritimus), ringed
seal (Pusa hispida), and walrus (Odobenus rosmarus). Further,
we estimate the impact of a 42 000 m3 oil spill on AMMs for 5
shipping routes in the KS and 4 types of spilled oil (light,
medium, heavy, and extra heavy oil) during 3 different seasons
(spring, summer, and autumn).

2. MATERIALS AND METHODS
2.1. Spatiotemporally Explicit OSRA in Arctic Marine

Areas. The probabilistic framework for assessing oil spill risks is
presented in Figure 1. We defined an oil spill’s acute
environmental impact as the proportion of the population of a

given species within the study region that dies as a result of the
spilled oil within 2 weeks (see ref 17) after an accident.2 Let us
first consider that an oil spill occurs at location s during season t
and spreads into area A(s, t, o, V) (oiled area, Figure 1), where o
denotes the oil type andV, the volume of the spill. Further, λ(s,̃ t)ds ̃
denotes the proportion of the population of a species within a
small area ds ̃ around a location s ̃ during season t (λ(s,̃ t) is the
relative intensity of a species to be called the species population
distribution). The proportion of the population within the oiled area
is then ϕ(s, t, o, V, λ) = ∫ s ̃ ∈ A(s, t, o, V)λ(s,̃ t)ds.̃ However, not all
individuals are exposed to oil, even if they were in the oiled area,
and not all individuals die when oiled.2,15 Hence, we denote by
θex(t, o) and θsn(t, o) the species-specific exposure potential (the
proportion of the population within the oiled area that gets into
contact with the oil) and sensitivity (the proportion of the oiled
individuals that die due to the oil), respectively. The proportion
of the population that dies due to an oil spill at location s in
season t is then ϕ(t, s, o, V)θex(t, o)θsn(t, o). Further, d denotes
the route taken by a ship, ρ(d), the path traveled when route d is
chosen, and π(s, t, V), the probability that an oil spill of size V
occurs at location s at time t (Figure 1). The expected proportion
of the population that dies due to an oil spill (herein oil spill impact
OSI) along route d at season t is then

Figure 1.Description of the probabilistic oil spill risk assessment method. On the left, a directed acyclic graph (DAG) showing the OSRA factors and
their conditional interdependencies. Each factor is a random variable whose probability distribution depends only on the state of the factors preceding
it, as indicated by the arrows. The three dashed arrows leading to “Accident probability” illustrate that there are several factors that can affect the
probability of an accident (e.g., ice and weather conditions), which were not treated in our case study but could be added into subsequent works. On
the right, a description of factors affecting oil spill impact: (A) Factors that can be controlled by management decisions; (B) seasonally and spatially
varying factors. Red and purple areas represent population distributions of species 1 and 2, respectively. Environmental covariates and population
distribution are stochastic spatiotemporal functions represented as random raster maps that account for environmental stochasticity and parameter
uncertainty in species distribution models. The oiled area and the proportion of a population in an oiled area are stochastic spatiotemporal functions
represented as random vectors over route points. (C) The expected proportion of a population that is at risk. (D) Spatially constant but seasonally
varying species-specific exposure potential and sensitivity and seasonally varying route-specific oil spill impact. Riskmeasures to be considered: avgPPR
= the expected proportion of the population (of a given species) that occurs in the oiled area (i.e., the proportion of the population at risk) when an
accident occurs at a random location along a route; PPR = the route-specific risk scaled by the route length; avgOSI = the expected oil spill impact, i.e.,
the proportion of the population that dies due to oiling when an accident occurs at a random location along a route, defined as avgOSI = avgPPR× BI;
OSI = the route-specific risk scaled by the route length; BI = biological impact, defined as BI = exposure potential × sensitivity.
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We call the product θex(t, o)θsn(t, o) biological impact (BI), and
in the general framework, the integral after BI corresponds to the
expected proportion of the population at risk (PPR); i.e., PPR is the
expected proportion of the population in the oiled area, which
may become exposed to oil. The PPR and OSI depend on the
length of the route, |ρ(d)|, since the probability of an accident
along a route increases as the route is lengthened. Hence, as the
main risk scores, we examine the routes’ average expected
proportion of the population at risk and average expected oil spill
impact defined as

d
avgPPR

PPR
( )ρ

=
| | (2)

and

d
avgOSI

OSI
( )ρ

=
| | (3)

The uncertainties related to the OSRA factors (eq 1, Figure 1)
are summarized by probability distributions. When oil type,
season, and environmental conditions are known, the processes
behind species distribution, accident probability, oil spreading,
exposure potential, and sensitivity can be assumed to be
mutually independent. This leads to conditional independence
between the factors described by the directed acyclic graph
(DAG) in Figure 1. Hence, we can factorize, e.g., the joint
distribution p(λ, A, π, θex, θsn|o, t, x, V) = p(λ|t, x)p(A|o, x, V)p(π|
o, t, x, V)p(θex|o, t)p(θsn|o, t). The conditional independence
structure allows us to first solve each of the conditional
probability distributions independently (see Section 2.2) and
later combine them. We can solve the (marginal) probability
distributions for avgOSI and avgPPR efficiently via Monte Carlo
(MC) by sequentially sampling random realizations from the
conditional distributions of the OSRA factors (see the
Supporting Information). Next, we summarize how we
estimated the conditional probability distributions for different

OSRA factors in the case study, which serves also as a
demonstration of the practical feasibility of the approach. A
more detailed description is included in the Supporting
Information.

2.2. Case Study: The Kara Sea. The Kara Sea (KS, Figure
2) is located along the NSR between the Barents and Laptev
Seas. It is characterized by a harsh polar maritime climate, with
air temperatures below 0 °C formost of the year.18 Ice covers the
sea almost completely from October to May and is also present
in the summer. The KS has a substantial hydrocarbon resource
potential.19 As such, the KS may face elevated oil spill risks as a
result of increasing traffic along the NSR and increasing oil and
gas industry activity in the near future.
We included 5 navigation routes (Figure 2), 3 seasons, and 4

oil types in the analysis and treated the spill size as a scenario
variable fixed to an estimate of the Exxon Valdez accident
(42 000 m3). Seasons were defined according to ref 15 and
included spring (March−June), summer (July−September),
and autumn (October−November). Winter was omitted, since
maritime traffic halts in the KS in winter.20 The oil types
included light, medium, heavy, and extra heavy oil (see the
Supporting Information). The assessment end points were three
AMMs: polar bear, ringed seal, and walrus. All three species can
be regarded as keystone species in Arctic marine ecosys-
tems,21,22 and they are focal ecosystem components (FECs)
included in the assessments by the Circumpolar Biodiversity
Monitoring Program.14

2.2.1. Environmental Covariates. The environmental
covariates, x, were chosen on the basis of their importance to
AMM habitat selection and oil spreading23,24 (Table S1).
Regarding the latter, the environmental covariate used was sea
ice concentration, whereas in species distribution modeling also
bathymetry, distance-to-coast, and sea surface salinity (SSS)
were applied. Each environmental covariate was represented by
monthly raster maps with 5 km spatial resolution covering the
whole KS. Sea ice data were for years 2009−2013, which
represents well the current environmental variability in ice
conditions25,26 (Table S2). The SSS data covered a monthly
average over the years 1980−2000 and describe well the

Figure 2.Description of the case study area in the KS. On the left: Bathymetric map of the area and the shipping routes included in the study. On the
right: Average ice concentration by season (years 2009−2013).
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seasonal variation of SSS and the area of fresh and nutrient rich
water in the KS.25 All the data were collected from open source
data repositories.25,27,28 The uncertainty in environmental
covariates in a season was accounted for by an MC sample of
environmental covariates corresponding to a randomly drawn
month of a specific season. This results in an empirical
distribution for x.
2.2.2. Population Distribution. We estimated the species’

population distribution λ(s, t) within the KS by using the
probabilistic relative density maps for polar bears, ringed seals,
and walrus constructed with the species distribution models
described in ref 23. The models describe species areal densities
in relation to environmental covariates, location, and time. The
biological and environmental data used in the analysis were
derived from scientific publications and open source data sets23

(Tables S2 and S3). The MC samples for species population
distribution were drawn from Bayesian posterior distributions
jointly across all grid cells in the KS. For each MC sample, we
used the correspondingMC sample of environmental covariates.
Hence, the MC samples of λ(s, t) reflect the uncertainty
originating from both environmental variability and uncertainty
about the species’ responses to their environment described by
model parameter uncertainty.
2.2.3. Oiled Area. The oiled area, A(s, t, o, V), depends on oil

type, spill volume, and spatiotemporally varying ice concen-
tration, all of which affect oil spreading. We used Fay-type
equations24,29 to describe the spreading process as a circular
slick (see Figure S5). The parameters of the equations were fixed
to values that are representative to the oil types in our analyses
(Table S4). However, to account for environmental variability in
an oiled area, we formed an MC sample of A(s, t, o, V) for each
route point and season using the MC samples of environmental
covariates. The environmental covariates in MC samples of A(s,
t, o, V) matched the environmental covariates in the
corresponding MC samples of λ(s, t), so that the (marginal)

dependence between A(s, t, o, V) and λ(s, t) due to shared
environmental conditions is reflected in their joint MC samples.

2.2.4. Accident Probability. As there are no estimates
available for accident probabilities in the KS, we fixed the
accident probability to a constant across the study area. Hence,
avgPPR and avgOSI correspond to the expected proportion of
the population at risk and the expected oil spill impact under the
assumption that an accident occurs at a random location along a
route.

2.2.5. Exposure Potential and Sensitivity. The literature on
the exposure potentials and sensitivities of Arctic species is
limited.2 For ringed seals, we used the previously published
probability distributions for θex and θsn.

15 For polar bears and
walrus, we estimated the probability distributions by conducting
an extensive literature review (see Table S6) and then turning
that information into probability distributions for θex and θsn
with the elicitation tool built by Nevalainen et al.15

3. RESULTS AND DISCUSSION

We used the following measures to assess oil spill risk for each
AMM species across season, oil type, and shipping route (Table
S7):

(1) avgPPR: the expected proportion of the population of a
given species that occurs in the oiled area and may thus
become exposed to oil (i.e., the proportion of the
population at risk) when an accident occurs at a random
location along a route.

(2) avgOSI: the expected oil spill impact, i.e., the proportion
of the population of a given species that dies due to oiling
when an accident occurs at a random location along a
route, defined as avgOSI = avgPPR × BI (BI: biological
impact = exposure potential × sensitivity).

(3) avgPPR_cmb and avgOSI_cmb: the combined avgPPR
and the combined avgOSI, respectively, defined as the

Figure 3. AvgPPRs and avgOSIs for AMM species along R1−R5 with medium (rows 1 and 3) and extra heavy (rows 2 and 4) oil in spring (green),
summer (orange), and autumn (purple). Circles denote medians; thick lines are the 25% to 75% quantile, and thin lines the 5% to 95% quantile.
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sum of individual avgPPRs and avgOSIs of the three
AMM species.

Note that since extra heavy oil spreads inefficiently in all
conditions (Figure S5), the avgPPR for extra heavy oil for a given
species corresponds to the average proportion of the KS
population along the route with the discretization accuracy of 5
km.
3.1. Effect of Season and Oil Type. On average, with

respect to season, the distributions of avgPPRs and avgOSIs of
polar bears and ringed seals resemble each other. For both
species, the distributions of avgPPR and avgOSI are
concentrated to their highest values in the spring and the lowest
values in the summer. For walrus, avgPPR and avgOSI are the
highest in the summer, followed by autumn and spring. With
extra heavy oil in autumn, polar bears and walrus have generally
higher avgPPRs than ringed seals, whereas in spring, polar bears
and ringed seals have higher avgPPRs than walrus; in summer,
walrus have the highest avgPPRs (Figures 3 and S9, Table S8).
With other oil types, the results are generally the same as above,
but the avgPPRs of walrus increase relative to other species in
summer and autumn. Further, polar bears have the highest
avgOSI across all shipping routes in the KS during every season
for all oil types. The avgOSI on ringed seals exceeds the impact
on walrus, except during summer (Figures 3 and S11, Table S9).
Further, there are distinct differences between species and

seasons in terms of uncertainty in avgPPR and avgOSI. In
general, walrus exhibit higher uncertainty than the other two
species, and summer and autumn express more uncertainty than
spring, which is mostly explained by more variable environ-
mental conditions during summer and autumn than in spring.
When uncertainty is high and the probability distributions are
hence wide, there is non-negligible probability that the
consequences are manifold compared to the most likely (i.e.,
median) avgPPR and avgOSI. For instance, if light oil is spilled

along route 4 in the summer, there is 0.05 probability that the
avgPPR of walrus is over 14-fold compared to the median
avgPPR (Figure S9, Table S8).
Across all routes and seasons, avgPPRs are the highest for light

oil and the lowest for extra heavy oil (Table S8). Lighter oils
spread more efficiently than heavier oils both in open water and
in ice, exposing greater proportions of AMM populations to oil.
However, medium oil has the highest avgOSI across shipping
routes and seasons for all species (Table S9), since the species’
exposure potential and sensitivity, and hence biological impact
(BI), are higher for medium oil compared to light oil (Figures
S6−S8).
Although exposure and sensitivity to oil are highly uncertain,

they clearly differ between species and oil types (Figures S6−
S8). Polar bears are sensitive to all oil types but aremore likely to
become exposed to and exhibit a higher BI with medium and
heavy oils than light and extra heavy oils. Ringed seals and walrus
are less sensitive to light oil than other oil types. Ringed seals are
more exposed to medium and heavy oils than to other oil types,
whereas walrus are most exposed to heavy oil. To summarize,
the expected impacts to AMM species are lowest for light oil and
highest for medium or heavy oil, when only exposure potential
and sensitivity to oil are considered.

3.2. Differences between Routes. Typically, routes 1 and
4 exhibit higher avgPPRs and avgOSIs than the other routes. For
all three species and all four oil types, in the summer, the highest
avgPPR is associated with route 4. With extra heavy oil, the
riskiest routes in spring are routes 1 (ringed seal) and 4 (polar
bear and walrus) and in autumn, routes 1 (ringed seal) and 2
(polar bear and walrus). However, with lighter oil, the riskiest
routes change partially for polar bear and walrus; e.g., for the
former, the highest avgPPR in the spring is associated with route
1 instead of route 4 (Figure 3, Table S8). These changes are due
to the different ice conditions in these routes; i.e., although the

Figure 4. Results with different levels of realism in OSRA factors and sources of uncertainty, when avgPPR (avgOSI in the case of p + e + BI) is
calculated for medium oil type and route 3. occ: Species occurrence probability is used to describe the population distribution; the population in an
oiled area is assumed to die with 100% certainty (BI = 1); environmental covariates are fixed to their mean values andmodel parameters to their median
values (i.e., we ignore uncertainties in OSRA factors). dens: Species’ population distribution is described by its median (i.e., we ignore uncertainty in
it); other specifications are the same as in occ. p: Parameter (knowledge) uncertainty is accounted for in population distributions; other specifications
are the same as in occ and dens. p + e: Parameter and environmental uncertainty are taken into account in other components except BI, which is
assumed to be 1. p + e + BI: BI is given the value estimated in the paper; other specifications are the same as in p + e. Vertical bars denote the medians;
boxes represent the 25% to 75% quantile, and whiskers the 5% to 95% quantile.
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population densities are the highest along route 4, the oil spreads
more efficiently along route 1 than route 4.
In general, the consideration of avgOSIs instead of avgPPRs

does not affect our views on the most risky routes. However, this
is not the case when the individual avgPPR and avgOSI scores of
the three species are summed up to a combined avgPPR_cmb
and avgOSI_cmb (Figures S9 and S11). The avgPPR_cmb does
not strongly resemble the avgPPR order for any single species.
However, since the polar bears are more sensitive and prone to
becoming exposed to oil than the other two species, the order of
the routes based on avgOSI_cmb resembles that of avgOSI of
polar bears.
We can also assess the routes by using PPR and OSI, which

take into account route lengths (e.g., PPR = avgPPR × |ρ(d)|).
The highest PPRs and OSIs are associated with routes 5 and 2,
which are also the longest routes. With a few exceptions, route 5
has the highest PPR for all species in the spring, whereas in
autumn, PPR is the highest for route 2 (Figure S10, Table S10).
In the summer, the relative order of routes 5 and 2 differs
between species. Again, these changes arise from the differences
in ice concentrations along routes and seasons affecting the
spreading of oil. The ranking of the route-wise OSIs is the same
as that of PPRs (Figure S12, Table S11). The level of uncertainty
varies less between routes than between seasons and species.
When ranked from the greatest to the smallest PPR or OSI, the
order of shipping routes typically differs from the ranking of
routes from the longest to the shortest (Table S12). Further, the
relative differences in PPRs between routes differ significantly
from the relative differences in the route lengths. For instance,
although route 1 is only 44% shorter than route 2, in the
summer, the expected value of PPR of ringed seals is over 96%
lower for route 1 than route 2. Similarly, although route 5 is the
longest, the expected value of its PPR for ringed seals in the
summer is only 26% of the expected value of PPR of route 2.
3.3. Sources of Uncertainty and the Effect of OSRA

Factors. When one accounts for the uncertainty in OSRA
factors (Figure 1), there is a clear effect on the analysis,
producing different results than when point estimates for model
parameters and environmental factors alone are used (Figure 4).
All OSRA factors exhibit a high degree of uncertainty. Therefore,
as more of these factors are added to the analysis, uncertainty in
the avgPPR and avgOSIs accumulates. As stated above, there are
clear differences between species and seasons with regard to
uncertainty. For all species, a major source of uncertainty is
environmental variability (i.e., monthly variation in environ-
mental conditions like sea ice), the inclusion of which widens the
probability distributions considerably compared to the cases in
which only parameter uncertainty is considered (i.e., uncertainty
related to the species’ responses to environmental conditions).
Uncertainty in biological impact (BI) increases uncertainty in
avgPPR and avgOSI even more.
Moreover, the assessment based on species population

distribution (areal abundance estimates) differs significantly
from a more traditional risk assessment, which is based on the
probability of species occurrence alone. Risk estimates based on
population distribution can be either higher or lower than
estimates based on species occurrence alone (Figure 4). For
example, the avgPPR of polar bears calculated with the
occurrence probability alone does not differ much from the
avgPPR calculated using population distribution; however, for
the other two species, the difference is distinct. The reason is
that the ringed seal population distribution varies more than that
of walrus inside their corresponding high occurrence probability

areas (Figures S2 and S3). Therefore, the occurrence probability
of ringed seals does not reflect well their population distribution
and leads to a too low avgPPR in the spring. In general,
population density contains more information than occurrence
probability.
It is important to explicitly take uncertainty into account. In

environmental risk assessment, we are often interested in
extreme or “worst” cases, i.e., the tails of the probability
distributions. For instance, we can base our analysis on the 95%
quantiles of the distributions and ask how big impacts will occur
with a probability of 0.05. The adoption of this approach does
not necessarily change our understanding; for instance, usually,
for the riskiest routes, the order from the least to the most risky
route remains the same independent of whether we apply
medians or 95% quantiles (Figures S9−S12). However, there
are also situations where these two approaches produce different
results and, more importantly, the quantiles have a direct impact
on decision-making, since they can be used to define acceptable
risk levels.

3.4. Spatiotemporally Varying Oil Spill Risks. Our case
study shows that ranking shipping routes according to the risk oil
spills pose to the environment is not a straightforward task. We
cannot assume that shorter routes equate to lower risks. We can
assume neither that heavy oils are always more risky than light
oils nor that routes near high population density areas are
automatically more risky than routes near low population
density areas. Seasonal variation in risk and differences between
species and oil types are substantial. It is essential to be aware of
these discrepancies, since they indicate that it might be
impossible to find an ideal risk management solution for all
ecological components present in a given area.
Although the population density of a given species may be

high along one route, another route may be riskier if oil spreads
more efficiently there, exposing a larger proportion of the
population to oil. The lighter the spilled oil, the higher is its
spreading capacity and exposure potential (Figure S5). This is
especially true in the Arctic, where weathering processes, like
evaporation, are typically attenuated (see the Supporting
Information).13 Heavier oils, on the other hand, pose a higher
risk in terms of smothering, although they are usually less toxic
and spread less than light oils.30 These properties affect the
species exposure and sensitivity to oil, which in turn, lead to
differences between avgPPR and avgOSI.
These differences would be even more distinct if more species

were added to the analysis. For example, seabirds are more
exposed and sensitive to medium and heavy oils than to light
oils.15 Light oils, which typically contain more toxic and soluble
components than heavier oils,30 would likely pose a greater risk
to fish. The inclusion of benthic fauna in the analysis could have
emphasized the risk related to extra heavy oils, which may sink.
The extension of the focus to long-term impacts would also have
stressed the importance of heavy oils, since heavier oils are more
persistent in the environment than lighter oils.31 Further, our
study focuses only on the adult AMMs. For juveniles, the
differences between seasons are expected to be more distinct as,
e.g., seal pups are especially susceptible to negative effects of
oiling until they have accumulated a thick blubber layer to rely
on for buoyancy and thermoregulation.32

Our results demonstrate the need for more accurate
information on species ranges and abundances. For example,
both fish and benthos are still poorly monitored in many parts of
the Arctic.14 Moreover, as demonstrated with Figure 4,
additional information on species ranges only would not
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necessarily change our understanding of the safest or riskiest
routes and could even lead to misleading risk estimates. If the
species’ estimated ranges cover large areas overlapping with
several shipping routes and we lack information on species
abundances, we are not able to differentiate between routes.
Further, we are likely to over- or underestimate the route specific
risks in a manner that is not systematic over species or seasons.
Hence, our results highlight the more general observation that
species range estimates alone are inferior to population
distribution estimates in management applications.33

3.5. General Lessons for OSRA in the Arctic.Despite our
analysis focuses on the KS, it provides three lessons for oil spill
risk management generalizable to the Arctic as a whole. First, the
results support current aspirations to ban heavy fuel oil (HFO)
in the Arctic.34 Second, in some situations, light oils, however,
pose a higher risk to the environment, as they have higher
spreading capacity than heavy oils. Therefore, we should not
base our risk assessments solely on the impacts of oiling on
individual species (i.e., sensitivity) but also on the exposure
capacity of different oil types. This includes both the behavior of
the spilled oil itself (i.e., to what extent oil contaminates different
parts of the ecosystem) and the probability of organisms to
become exposed to oil. Although the understanding of the fate of
oil in ice has improved in recent years,11,12,35 there is still a need
for a deeper understanding of the weathering processes that oil
undergoes. These processes contribute to the exposure capacity
and persistence of oil in the environment, which influence the
short-term and long-term effects of oil spills.2,30 Third, our
results highlight the importance of season-specific OSRA in the
Arctic. Many of the physical factors influencing Arctic biota,
such as sea ice, vary seasonally and interannually.36 Population
distributions change in accordance with these variations,
resulting in varying risk levels. For example, in the KS, the
shipping routes receiving the highest and lowest avgPPRs for
ringed seals differ between seasons, and the situation in the
summer can be the opposite of the situation in spring and
autumn (Table S8). Therefore, we cannot base OSRA on areal
species densities averaged over seasons, as they might lead to
erroneous conclusions about risk level.
3.6. Benefits and Drawbacks of the Developed

Method. The approach presented here has several advantages.
First, it provides quantitative estimates of spatiotemporally
varying oil spill risk, while expressing uncertainty explicitly. This
is important since proper quantification of uncertainty should be
of paramount interest when the aim of risk assessment is to
support decision-making.37 This is especially true in the Arctic,
where underlying uncertainties are typically large.38 Our study
confirms this point and demonstrates that uncertainty can differ
considerably between seasons, oil types, and species.
Second, the method offers a relatively simple way to make

justifiable risk comparisons over large geographic areas. Prior
OSRA methods typically use trajectory models to describe the
spread and transport of spilled oil. Then, they combine this
information with knowledge about the resources at risk. The
realism and spatial resolution of trajectory models are higher
than those of our oil-spreading model. However, it is not usually
feasible to conduct trajectory modeling with many potential spill
locations, and therefore, the assessment is usually done for only a
few spill locations at most (see, e.g., refs 5 and 39−41).
Naturally, such an approach is suboptimal when comparing
shipping routes that are hundreds of kilometers long. By
considering each grid cell (5 × 5 km) along a route as the
potential origin of an oil spill, our method assesses risk more

comprehensively than is possible when only a few spill locations
are considered. This level of resolution also pairs well with the
broad-scale environmental data available for the Arctic. We
believe that methods that allow OSRA over large areas can also
support marine spatial planning, which will become increasingly
important when new opportunities for shipping, oil and gas
exploitation, fisheries, and tourism open in the Arctic.42

Third, by taking spatiotemporal variation in population
distributions into account, we can provide information on a
meaningful scale for decision-making. The purpose of any
environmental risk assessment (ERA) is to provide support for
decision-making.43 In order to achieve this goal, ERAs should
offer decision makers information that enables them to make
comparisons between different management alternatives. Thus
far, the risks that maritime activities pose to Arctic marine
species have mainly been determined at a relatively coarse level,
by either qualitative (e.g., ref 1) or semiquantitative means.44

Although such approaches provide a good overall view of the
spatial distributions of the ecological components at risk, their
utility in the decision-making context is limited, since their
coarse resolution does not enable the differentiation between
areas (see, e.g., ref 44).
Fourth, our approach handles variations in risk related to oil

types and seasons more comprehensively than previous
assessment methods. Typically, oil spill modeling studies take
oil type and season into account in terms of their effects on oil
behavior by simulating the fate and trajectories of spilled oil
under season-specific weather conditions, but their effects on
ecological components are often limited to, e.g., seasonal (e.g.,
refs 9 and 44) or daily5 changes in the species’ ranges (but see ref
45). However, in addition to spatiotemporally varying species’
ranges, our results emphasize the importance of accounting for
season and oil type in season- and oil type-specific exposure
potentials and sensitivities.
The greatest limitations of our analysis are that it excludes the

transport of oil by currents, ice, etc. and does not consider oil
weathering. The consequences of these simplifications are
season-specific and depend largely on ice cover and, to some
extent, oil type. The impact of ice on the movement of oil is
considered negligible until the ice covers 30% of a given area.
When ice cover exceeds 80%, the oil is assumed to be contained
within the ice and hence be transported with it.46 By leaving oil
transport out of our analysis, we likely underestimate the oiled
area, especially under low-ice conditions, which explains our low
avgPPRs. This underestimation is counteracted, at least to some
extent, by the omission of evaporation, which typically decreases
the amount of oil on the sea surface, although evaporation is
reduced in icy conditions and at low temperatures (see the
Supporting Information and ref 11). To summarize, albeit the
oiled area may be somewhat underestimated, our analysis
provides realistic estimates of risk and associated uncertainties in
it. This possible underestimation does not directly affect our
conclusions about the riskiest shipping routes if we assume that,
on average, the transport of oil does not differ extensively
between routes. We believe that this assumption is valid on the
scale of our study but might not apply if we compare routes that
are located very far from each other and that exhibit very
different ice conditions. Hence, there is an apparent need for
information on currents and ice movements as well as for
computationally cheap methods to simulate oil spreading under
those conditions for a large number of spill locations.
Moreover, as the analysis focuses on the acute impacts of oil

spills, some important ecological aspects are not taken into
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account. For example, population decline is believed to be the
most detrimental for species that mature late and have few
offspring.47 Hence, polar bears and walrus, which do not breed
annually, may suffer more over time than ringed seals, which do.
Furthermore, walrus may be particularly susceptible to the
chronic impacts of oiling, since their preferred prey, mussels, are
known to accumulate oil-derived toxins. Oil spills may also have
long-term indirect effects by inducing changes in food webs.47

However, both the long-term fate of spilled oil and its ecological
effects are virtually impossible to predict using the current
methods.2

Our study does not acknowledge differences in the ecological
or economic value between species but, rather, weights species
equally. There are different ways to value biota (see, e.g., ref 48),
for example, on the basis of conservation status. As an example,
polar bear and walrus are regarded as “vulnerable” and ringed
seals, as “least concern” according to the IUCN Red List.49 This
information could be taken into account in OSRA by weighting
the value of each species according to their IUCN status.39

Lastly, the route-specific results are conditioned on the
constant accident probability and fixed spill size. Hence, the
results encompass the consequence analysis component of
OSRA but must be supplemented with oil spill probabilities to
be considered comprehensive. The extension of the analysis to
cover spatiotemporally varying accident probabilities is
relatively straightforward if such assessments become available.
This would probably underline even more the fact that we
should not base our conclusions solely on the route lengths, as a
ship sailing on a shorter route exhibiting harsh weather
conditions may face higher accident probability than a ship
sailing a longer route in less challenging conditions. Hence, the
supplementation of the analysis with spill probabilities is
strongly supported. This holds true also for uncertainty related
to spill size, for which probabilistic methods have been
developed (see, e.g., ref 50).
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