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Abstract  

Oxidative stress is responsible for microvascular complications (hypertension, nephropathy, 

retinopathy, peripheral neuropathy) of diabetes, which during pregnancy increase both maternal and 

fetal complications. Chronic hypoxia and hyperglycemia result in increased oxidative stress and 

decreased antioxidant enzyme activity. However, oxidative stress induces also anti-oxidative 

reactions both in pregnant diabetes patients and in their fetuses. Not all type 1 diabetes patients with 

long-lasting disease develop microvascular complications, which suggests that some of these 

patients have protective mechanisms against these complications. Fetal erythropoietin (EPO) is the 

main regulator of red cell production in the mother and in the fetus, but it has also protective effects 

in various maternal and fetal tissues. This dual effect of EPO is based on EPO receptor (EPO-R) 

isoforms, which differ structurally and functionally from the hematopoietic EPO-R isoform. The 

tissue protective effects of EPO are based on its anti-apoptotic, anti-oxidative, anti-inflammatory, 

cell proliferative and angiogenic properties. Recent experimental and clinical studies have shown 

that EPO has also positive metabolic effects on hyperglycemia and diabetes, although these have 

not yet been fully delineated.  Whether the tissue protective and metabolic effects of EPO could 

have clinical benefits, are important topics for future research in diabetic pregnancies.      

 

Introduction 

Diabetes during pregnancy increases complications in the mother, the fetus and the newborn infant. 

Pregnancies in women with type 1 or type 2 diabetes have the most frequent and serious 

complications, but similar complications, although less frequent and less serious, occur also in 

women with gestational diabetes. Typical maternal complications in diabetic pregnancies are 

preeclampsia, gestational hypertension and preterm birth while congenital malformations (MF), 

intrauterine hypoxia, stillbirth and abnormal growth are common fetal complications. It is not quite 

clear whether these complications have a common background in diabetic pregnancies. In this 

review we discuss the possible roles of chronic hypoxia and oxidative stress in the pathogenesis of 

maternal and fetal complications in diabetic pregnancies. 

 

Oxidative stress in diabetic pregnancy 

Perinatal morbidities and mortality in type 1 diabetic pregnancies have remained relatively 

unchanged over the past 20 years. This bears out the fact that the precise mechanisms that cause the 
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type 1 diabetes related conditions have not yet been clearly established nor taken into account in the 

clinical practice [1]. Nevertheless, the influence of the oxidative stress, understood as an imbalance 

in the redox steady states, have proved to be a determining factor in type 1 diabetes related 

metabolic pathways. Hyperglycemia results in increased production of reactive oxygen species 

(ROS) through different abnormal metabolic pathways [2]. The most common ROS in human 

biology consist of superoxide free radicals, hydrogen peroxide, singlet oxygen, nitric oxide and 

proxy nitrite. While on the one hand both chronic hypoxia and high glucose levels result in 

increased oxidative stress, on the other hand it decreases antioxidant enzyme activity and impairs 

the endogenous antioxidant defense system [3]. This triggers a range of reactive molecules that can 

produce cellular damage by free radicals and includes lipid peroxidation and nitration, protein-thiol 

depletion, nucleic acid hydroxylation and nitration, DNA strand breakage and DNA adduct 

formation [4] and formation of ROS [5,6]. Furthermore, hyperglycemia causes an overproduction of 

advanced glycation end-products (AGE) and activates hexosamine biosynthesis [7]. Oxidant 

overproduction can ensue from either enhanced engagement of Nicotinamide adenine dinucleotide 

phosphate (NAPH) oxidase through an Angiotensin II type 1 receptor (AT1R)-mediated event or 

excessive mitochondrial oxidant production due to an energy surplus [8]. Consequently, both NAD 

synthesis and rebuilding of glutathione (GSH) by GSH reductase are reduced. The oxidants can be 

activated, at least in part, through various metabolic pathways such as polyol pathway, protein 

kinase C pathway and  p38-MAPK pathway and other stress-activate kinases dependent mechanism 

(including JUNK, GSK-3β and potentially IKK-β) [9–11]. Finally under a pro-oxidant status, a 

series of redox-sensitive transcription factors such as fetal NFκB, activator protein-1 (AP-1), HIF-

1α and insulin signaling factors that regulate GLUT-4 translocation become activated ultimately 

reducing the capacity for insulin-dependent glucose transport activity [12]. 

Erythropoietin (EPO), in addition to its regulation of erythropoiesis, has also anti-oxidative 

properties by acting anti-apoptotic and by being a potent scavenger of the hydroxyl, 2,2-diphenyl-1-

picrylhydrazyl and peroxyl radicals [13]. EPO also stimulates vasculogenesis by increasing the 

number of endothelial cells [13]. Angiogenesis is stimulated by low oxygen tissue content and 

regulates expression of EPO, vascular endothelial growth factor (VEGF), placental growth factor 

(PGF), and angiopoietins 1 and 2 [14].  Prolonged hypoxia is known to be the major stimulus of 

EPO production in the fetus [15]. In a study by Escobar et al, biomarkers of oxidative and 

nitrosative stress in amniotic fluid (AF) clearly correlated with AF concentration of EPO in type 1 

diabetic or insulin-treated gestational diabetes pregnant women [16]. Since EPO is not stored and 

does not cross the placenta, elevated concentration of EPO in fetal plasma and AF reflect EPO 
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synthesis and elimination, and significantly correlate with the intensity and duration of hypoxia 

[15,17]. Hence, under maternal metabolic stress fetuses experience  prolonged hypoxia with the 

subsequent inherent risks [18]. 

 

Metabolic roles of erythropoietin  

In addition to the regulation of erythropoiesis and its tissue protective properties [19], EPO effects 

also glucose metabolism. EPO decreases blood glucose levels both in non-diabetic human subjects 

and in rodents with diabetes [20,21]. Recombinant human EPO (rHuEPO) prevents diabetes in mice 

by promoting anti-apoptosis, anti-inflammation, cell proliferation and angiogenesis in pancreatic β-

cells [22,23]. EPO-receptors (EPO-R) are present both in human and rat pancreatic islets [24], 

which suggests that EPO can protect β-cells from apoptosis and possibly even prevent diabetes [25]. 

Experimental studies in rodents have shown that EPO reduces insulin resistance via regulation of 

EPO-R-mediated signaling pathways [20,26]. EPO-R in proopiomelanocortin (POMC) neurons in 

the hypothalamus regulate food intake and energy expenditure both in rodents and in humans 

[22,27]. During hypoxia glucose metabolism is regulated via POMC neurons [28]. EPO-Rs are 

highly expressed in these neurons, which suggests that EPO has several favorable effects on 

hyperglycemia [22,27]. EPO also decreases inflammation in white adipose tissue in animal models 

and normalizes insulin sensitivity in humans [22].  

 

Maternal complications  

The pathogenesis of diabetic microvascular complications is extremely complicated involving 

several different pathways resulting in oxidative stress and ROS formation [2]. Hypertension, 

diabetic nephropathy and/or retinopathy are especially important complications in pregnant diabetic 

women, because of potential serious complications to the fetus and the newborn infant. 

 

Diabetic hypertension 

Maternal and fetal endothelial dysfunction have been evidenced in type 1 and in type 2 diabetes, 

and also in gestational diabetes [29,30]. One of the most common disorders associated with 

hypertensive state during pregnancy is preeclampsia responsible for severe perinatal morbidity. The 

production of various mediators implying the cardiovascular and renal systems such as 
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inflammatory factors (e.g. TNF-α, IL-6), AT1R and ROS perturb the vascular homeostasis and 

mediate endothelial dysfunction in pregnant women [31]. Furthermore, nitrosative stress increase 

nitration of proteins in pregnant women with gestational diabetes, leading to endothelial and 

vascular dysfunction both in placental vessels and in the umbilical vasculature [32]. These changes 

together with maternal metabolic alterations in glucose, fatty acid, amino acid and placental ion 

transport mechanisms contribute to enhancing fetal hypoxia and acidosis and may lead the fetus into 

a catabolic state with deleterious postnatal consequences. 

 

Diabetic nephropathy 

Hyperglycemia, duration of diabetes and hypertension are risk factors for diabetic nephropathy. 

Several studies have shown that improvement of glucose control will decrease the development of 

diabetic nephropathy [33,34] but presently there are no known methods that could cure or prevent 

diabetic nephropathy. Both experimental and human studies suggest that hyperglycemia and renal 

hypoxia are the leading causes of diabetic nephropathy [35]. Mechanisms by which hyperglycemia 

can cause renal damage have recently been described [36]. Briefly, hyperglycemia can cause 

activation of vasoactive, inflammatory and fibrotic cytokines, increase formation of ROS and AGE, 

which all can decrease renal function, cause renal structural damage and finally lead to end-stage 

renal disease.  

Antioxidants prevent or ameliorate hyperglycemic unfavorable effects in the kidneys and vascular 

endothelium in experimental diabetes [37,38]. Interestingly, not all diabetics with a long-lasting 

duration of the disease develop microvascular complications [39]. The Joslin Medalist Study has 

revealed that occurrence of diabetic nephropathy or retinopathy did not correlate with glycemic 

control in some diabetic patients over a long period of time in contrast to the majority of diabetics 

with a much shorter duration of the disease [40]. This suggests that some of the type 1 diabetics 

have protective mechanisms against development of diabetic nephropathy [36].  Both in vitro and in 

vivo experimental studies have shown that high glucose results in ROS generation in renal tubular 

cells and that EPO can prevent this ROS generation [41]. A more recent study has shown that 

exogenous EPO has protective renal effects in type 2 diabetes mellitus patients with diabetic 

nephropathy [42]. However, the authors of a recent meta-analysis concluded that exogenous EPO or 

other erythropoiesis stimulating agents did not delay the progression of nephropathy [43]. 
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Diabetic retinopathy 

Hypoxia induces EPO expression in the retina [44] and exogenous EPO administration protects 

retinal neurons from acute ischemia-reperfusion injury [45]. High concentration of EPO has been 

observed in the vitreous fluid of patients with diabetic retinopathy [46]. This has led to controversy 

whether high levels of EPO in the eye of diabetes patients with proliferative retinopathy is a 

pathogenic cause of diabetic retinopathy [47] or whether these high levels of EPO is a 

compensatory neuroprotective mechanism of the retina [48]. Importantly, both preclinical and 

clinical studies suggest that EPO may actually have beneficial effects on diabetic proliferative 

retinopathy [49].    

 

The placenta in diabetic pregnancies 

Previous studies have suggested that fetal complications in type 1 diabetic pregnancies are mainly a 

result of placental structural abnormalities and function [50,51]. However, a recent study using 

more sophisticated methods, found only minimal structural differences between placentas of type 1 

diabetic and healthy non-diabetic pregnancies [52]. Importantly, villous surface area, placental 

capillary surface area and villous membrane thickness were not altered in type 1 diabetic 

pregnancies. It is very unlikely that the increased frequency of fetal chronic hypoxia in diabetic 

pregnancies is caused by placental structural changes with the exception of fetal intrauterine growth 

restriction caused by diabetic nephropathy and/or hypertension. 

 

Fetal and neonatal complications  

Congenital malformations 

Congenital malformations are 3-4 times more frequent in type 1 diabetic pregnancies than in normal 

pregnancies [53,54]. Although poor glycemic control (high HbA1c levels) during the first trimester 

of pregnancy is associated with an increased risk of fetal MF [54], the exact pathogenetic 

mechanism of fetal MF is not well understood. Most likely the pathogenesis of fetal MF is 

multifactorial, including hyperglycemia, hypoxic and endoplasmic stress, which induce oxidative 

stress and increased production of ROS (for review see Eriksson and Wentzel 2015) [55]. 

 

Abnormal fetal growth  
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Fetal overgrowth is the most common fetal complication in type 1 diabetic pregnancies with high 

frequencies of birth weights over 2 SD-units above the mean of the background population [1,56]. 

Chronic fetal hyperinsulinemia in euglycemic Rhesus monkeys results in fetal overgrowth and 

organomegaly [57]. Fetal birth weight z-scores correlate directly with fetal insulin levels [58] and 

with fetal EPO levels [59], which indicates that fetal overgrowth is often associated with chronic 

fetal hypoxia. Small-for-gestational age fetuses occur less frequently in pregestational diabetic 

pregnancies compared with the general population, because relative birth weights are shifted to the 

right also among growth restricted fetuses [60]. However, amniotic fluid EPO levels correlate with 

birth weight z-score in a U-shaped fashion in type 1 diabetic pregnancies [59]. Amniotic fluid EPO 

correlates negatively with birth weight z-score below -0.6 SD-units, which implies that these 

newborn infants are actually growth restricted and at risk of chronic hypoxia.             

 

Perinatal mortality  

Perinatal mortality is presently 4-5 times higher in both type 1 and type 2 diabetic pregnancies than 

in the general populations [61,62]. Pregestational diabetes is an independent risk factor for late 

stillbirths [63]. Before fetal electronic surveillance methods were available, stillbirths increased 

linearly during the last weeks of type 1 diabetic pregnancies reaching 20% at 40 weeks of gestation 

[64]. It can be assumed that the basic factors for the tendency of increasing stillbirths towards the 

end of type 1 diabetic pregnancies, although poorly understood, have not disappeared.  

Approximately half of the stillbirths in  these pregnancies occur before 30 weeks of pregnancy [18]. 

These stillbirth fetuses are in most cases growth restricted due to maternal hypertension and/or 

diabetic nephropathy, which suggests placental insufficiency (decreased nutrients and oxygen to the 

fetus) as the etiologic factor. In contrast, after 35 weeks of gestation stillbirth fetuses are usually 

overgrowth, but unexpected stillbirths occur also among normal weight fetuses [18]. The etiology 

of late stillbirths in diabetic pregnancies is most likely chronic intrauterine hypoxia caused by fetal 

hyperglycemia and hyperinsulinemia as indicated by high amniotic fluid and fetal plasma EPO 

levels [59,65].      

 

Chronic fetal hypoxia 

Chronic hypoxia is associated with oxidative and nitrosative stress. The fetus can adapt to 

reductions in oxygen delivery without life-threatening damage but with reduced somatic growth 

[66]. Interestingly enough, fetal oxygen delivery is the same but the glucose transfer to the fetus is 
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decreased resulting in fetal hypoinsulinemia and increased fetal lactate levels [67]. Nonetheless, 

under these circumstances the fetus becomes increasingly hypoxic and acidotic due to the increased 

anaerobic metabolism of glucose, and the fetus can enter into a catabolic state with long-term 

postnatal consequences [68]. 

Hyperinsulinemia during constant glucose concentration increases glucose oxidation and a fall in 

the arterial oxygen content both in adult human and experimental fetal sheep studies [69,70]. 

Moreover, hyperinsulinemia in the fetal sheep increases blood flow to the carcass but decreases 

blood flow to the placenta, which further enhances fetal hypoxia [71]. Hyperglycemia in fetal sheep 

results also in increased oxygen consumption, in a decrease in arterial oxygen content and in an 

exponential increase in fetal EPO concentration [72]. A similar exponential increase in fetal EPO 

concentration at birth was observed in type 1 diabetes pregnancies when umbilical artery pO2 fell 

below 2.0 kPa [59].  

Increased fetal plasma and amniotic fluid levels of EPO are observed in approximately 14% of type 

1 diabetic pregnancies [59], which gives further evidence that fetal chronic hypoxia often 

complicates these pregnancies. There are multiple maternal and fetal factors that can cause alone or 

in combination fetal hypoxia, and ultimately fetal demise in diabetic pregnancies. High HbA1c 

concentration shifts the maternal oxyhemoglobin dissociation curve to the left, which hampers 

oxygen delivery to the fetus. During maternal ketoacidosis the oxygen delivery to the fetus is even 

further reduced, especially during the recovery period, explaining the high stillbirth rate during 

maternal ketoacidosis [73]. Ante- and intrapartum fetal heart rate changes, cord blood acidosis at 

birth and low Apgar scores, all associated with fetal hypoxia, occur more frequently in type 1 

diabetic pregnancies, especially in women with poor glycemic control, than in non-diabetic 

pregnancies [56,74–76]. It is possible that placental abruption is more common among diabetic 

pregnancies, at least in pregnancies with large-for-gestational fetuses [77]. 

The fetus adapts to chronic hypoxia by redistributing its cardiac output in order to maintain 

adequate blood flow to the brain and heart and by increasing its EPO synthesis in order to increase 

its red cell production and oxygen-carrying capacity of blood.  

Prolonged hypoxia triggers the activation of transcription factor HIFs in several fetal tissues. This 

master regulator of hypoxia response is a heterodimeric transcription factor comprising of HIF1α 

and HIF-1β subunits.  In the presence of oxygen, the enzyme prolyl hydroxylase modifies HIF1α in 

proline sites within two oxygen-dependent degradation domains. This modification in HIF1α 

facilitates the ubiquitination for its degradation by the proteasome [78]. Under conditions of 
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hypoxia, the enzyme proline hydroxylase is unable to modify HIF1α, which is translocated to the 

nucleus where it binds to the hypoxia response elements (HREs) in the regulatory region of a 

number of genes, and stimulates the transcription of the Vefg gene and Epo genes and other hypoxia 

response genes [79]. 

In addition to regulating erythropoiesis, EPO has tissue-protective properties and repairing effects 

[19,80]. The tissue-protective effect of EPO is a result of EPO-R isoforms, which differ structurally 

and functionally from the erythropoietic EPO-R isoform. EPO levels needed for tissue-protection 

are 100-1000 times greater than EPO levels needed for erythropoiesis [19]. Local EPO synthesis 

has also been shown to take place in the fetal brain [81], which is another adaptive fetal response 

against hypoxia. Exogenous rHuEPO crosses the blood-brain barrier in concentrations known to 

cause tissue protection in the fetal sheep [82]. In asphyxiated newborn infants high EPO levels in 

the cerebrospinal fluid correlate with simultaneously obtained neonatal plasma EPO levels [83]. 

Exponential increases in amniotic fluid EPO concentrations have been shown in pregnancies 

complicated by hypertension or type 1 diabetes [59,84]. Over 10,000 mU/ml EPO plasma 

concentrations have been measured in the cord blood at birth of asphyxiated newborn infants [84]. 

Although the exact reason for these high fetal EPO concentrations are unknown, we have 

hypothesized that the fetus increases its EPO synthesis during chronic hypoxia in order to protect its 

brain and other vital organs against deleterious effects of hypoxia [85]. 

 

Fetal iron deficiency 

Iron is mandatory to fetal metabolism, energy production, and brain function. Newborn infants of 

diabetic mothers have often low ferritin levels and abnormal iron distribution at birth as a result of 

chronic intrauterine hypoxia [86,87]. Iron stores in the liver, heart and brain are almost totally 

depleted in fetuses who die in utero after 35 weeks in diabetic pregnancies [88]. This indicates that 

fetal death has been preceded by a prolonged period of fetal hypoxia, which results in increased 

production of red cells, for which iron stores are preferentially used for hemoglobin synthesis. Fetal 

and neonatal iron deficiency has long-term negative effects on cognitive and behavioral scores later 

in life [86,89]. 

 

Necrotizing enterocolitis of the newborn infant 
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Fetal hypoxia and birth asphyxia are associated with gut injury, impaired intestinal motility and 

necrotizing enterocolitis (NEC), especially in the preterm newborn infant [90,91]. In neonatal rat 

models, exogeneous EPO stimulates vasculogenesis of microvascular endothelial intestine cells and 

protects intestinal cells from NEC [92,93]. The fetus swallows up to 700 ml of amniotic fluid each 

day towards the end of pregnancy [94], although the reason for this is not well understood. One 

possibility could be that EPO and other cytokines in the amniotic fluid could exert protective effects 

locally in the fetal and neonatal intestine and hence improve neonatal feeding tolerance and prevent 

NEC [85,95].  

 

Adolescent cognitive function after intrauterine exposure to diabetes  

Maternal pre-conceptional and gestational control of hyperglycemia have relevant implications on 

short- and long-term offspring neurodevelopment [96]. Brain maturation is characterized by a pre-

established sequence of complex biological processes that encompass from the early embryonic 

period to late adolescent and young adulthood [97]. However, there is a large number of potential 

adverse factors during pregnancy that may inevitably alter brain maturation pattern. Among others, 

maternal obesity [98], prenatal famine [99], maternal infections [100], or insulin dependent diabetes 

[89] have been associated in epidemiological studies with neurocognitive impairment. Moreover, 

hyperglycemic intrauterine environment, hypoglycemia or ketoacidosis may directly exert a 

harmful effect upon the fetal brain. Finally, negative conditions associated with diabetic pregnancy 

such as prematurity or preeclampsia, also put the fetus at high risk of severe complications [101]. 

Recent studies have shown that infants born to diabetic mothers exhibited significantly higher 

mortality, hospital admissions and use of medications to the age of 15 [102]. In addition, intellectual 

assessment scales for the outcomes such as composite intelligence, verbal and nonverbal 

intelligence, composite memory, reading and writing difficulties, and attendance to classes showed 

a significant lower scoring for normalized and standardized intelligence indices among offspring of 

diabetic mothers as compared with controls [97,103,104]. However, no correlation with mothers’ 

glycated hemoglobin was found suggesting that maternal diabetes despite being adequately 

controlled has a negative impact on the neurodevelopment of the offspring [96]. But it can also be 

argued that "adequately controlled" was not adequate enough to prevent intrauterine negative 

effects.    

The pathophysiological explanation of impaired cognitive functions has not been fully clarified. 

During fetal life, the predominant source of brain energy is glucose, which crosses the placenta by 
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facilitated diffusion [105].  Maternal diabetes is associated with continuous fluctuations of in utero 

blood glucose levels but also with disturbances in fatty acid metabolism with a decreased transfer of 

docosahexaenoic acid to the fetus [106]. Docosahexaenoic acid accumulates in the brain especially 

in the third trimester and is essential for neurogenesis, neurotransmission, and protection from 

oxidative stress. Reduced bioavailability of this key metabolite has been suggested as a putative 

mechanism for programming altered neurodevelopment [106,107]. In addition, induced oxidative 

stress by hyperglycemic environment causes damage to the blood-brain barrier contributing to the 

infiltration of macrophages and pro-inflammatory cytokines. Altogether, these processes cause 

neuroinflammation, brain damage and contribute to neuronal cell death and long-term brain 

dysfunction [108]. 

 

Conclusions 

Oxidative stress is the likely common etiologic factor of microvascular complications of diabetes. 

Both pregestational and gestational diabetes increase complications in the mother, the fetus and the 

newborn infant, which can have long-lasting negative effects in the offspring later in life. Maternal 

hyperglycemia results in fetal hyperglycemia, which leads together with fetal hypoxia to increased 

oxidative stress and decreased antioxidant activity. Oxidative stress induces also anti-oxidative 

reactions both in pregnant diabetes patients and their fetuses. In this review we discuss the possible 

roles of chronic hypoxia and oxidative stress in the pathogenesis of maternal and fetal 

complications in diabetic pregnancies. Fetal EPO, besides regulating hematopoiesis, has also fetal 

tissue protective effects, which are based on EPO's anti-apoptotic, anti-oxidative, anti-

inflammatory, cell proliferative and angiogenic properties. More recent studies have shown that 

EPO has also positive metabolic effects in diabetic patients and in non-diabetic individuals. 

Whether the tissue protective and metabolic effects of EPO could be used clinically to prevent or 

delay the occurrence of diabetic complications both in the mother and her offspring, are important 

topics for future research on diabetic pregnancies.            
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Legend to Figure: 

 

Microvascular complications of diabetes during pregnancy (hypertension, nephropathy, retinopathy, 

peripheral neuropathy) are associated with maternal complications (preeclampsia, gestational 

hypertension, preterm birth) as well as with fetal and neonatal complications (congenital 

malformations, intrauterine hypoxia, stillbirth, abnormal growth, impaired cognitive function later 
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in life).  Oxidative and nitrosative stress, hyperglycemia, hypoglycemia and chronic hypoxia can 

further modulate maternal and fetal complications during diabetic pregnancy. 
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HighligthsHighligthsHighligthsHighligths    

    

••••    Maternal hyperglycemia and fetal hypoxia result in increased oxidative stress  

• Increased oxidative stress triggers cellular damage by free radicals in the fetus   

• Erythropoietin has both hematopoietic and tissue protective properties in the fetus 

• Studies have shown that erythropoietin has positive metabolic effects on diabetes 

• Weather erythropoietin has clinical benefits for the offspring needs more studies     


