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Significance Statement

The 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMG-CoA reductase) inhibitors lovastatin and
simvastatin have both been investigated in clinical trials designed to treat the cognitive deficits associated
with neurodevelopmental disorders such as neurofibromatosis type 1, fragile X and autism. In a recent
study, the therapeutic efficacy of lovastatin and simvastatin were compared in a fragile X (Fmr1) mouse
model. The authors concluded that lovastatin was superior to simvastatin in rescuing the Fmr1 phenotypes,
and cautioned against considering simvastatin as treatment for neurodevelopmental disorders. We discuss
these findings in the context of published literature and argue that more support is needed for this poten-
tially far-reaching conclusion. We further provide recommendations to improve the translation of pre-clinical
studies of cognitive disorders into the clinical domain.

The potential use of statins for antagonizing RAS (rat
sarcoma viral oncogene homolog) signaling was first rec-
ognized nearly three decades ago (Mendola and Backer,
1990; Sebti et al., 1991). Functional RAS requires post-
translational farnesylation to become membrane bound
and active. Since farnesyl (like cholesterol) is a product of
the mevalonate synthesis pathway, its synthesis can be
reduced by interfering with the rate-limiting enzyme, 3-hy-
droxy-3-methyl-glutaryl-coenzyme A reductase (HMG-
CoA reductase). Statins, designed as high-affinity HMG-

CoA reductase inhibitors, are commonly prescribed for
hypercholesterolemia. Over the past several decades,
various types of statins have been extensively investi-
gated as potential cancer therapeutics using cellular mod-
els, mouse studies, and human clinical trials (Gazzerro et
al., 2012; Pisanti et al., 2014; Sopková et al., 2017). On
the basis of these findings, Alcino Silva and colleagues
explored whether statins might have efficacy in the treat-
ment of RASopathies, a group of neurodevelopmental
disorders resulting from mutations that lead to overactiva-
tion of the RAS/extracellular signal-regulated kinase
(ERK) signaling pathway. Specifically, it has been shown
that lovastatin can ameliorate the cognitive deficits in ani-
mal models of neurofibromatosis type 1 (Nf1 mice) and
Noonan syndrome [Ptpn11 (protein tyrosine phosphatase
non-receptor type 11) mice; Li et al., 2005; Lee et al.,
2014], although it failed to rescue the deficits in a mouse
model of Costello syndrome (Hras mice; Schreiber et al.,
2017).
To translate the mouse findings to the clinic, statins

were tested in several randomized placebo-controlled tri-
als aimed at improving cognitive function (Krab et al.,
2008; Van Der Vaart et al., 2013; Bearden et al., 2016;
Payne et al., 2016; Moazen-Zadeh et al., 2018; Stivaros et
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al., 2018). These trials used either the first commercially-
available statin, lovastatin, or a second generation statin,
simvastatin, that is highly similar in structure and pharma-
cokinetics to lovastatin (Neuvonen et al., 2008; Gazzerro
et al., 2012). Notably, simvastatin has not been used in
animal models of the RASopathies, but like lovastatin,
simvastatin has been shown to decrease ERK signaling
in cultured cells (Fürst et al., 2002; Guillén et al., 2004;
Miura et al., 2004; Ghittoni et al. 2005, 2006; Khanzada
et al., 2006; Ogunwobi and Beales, 2008; Sundararaj et
al., 2008; Kang et al., 2009), as well as in vivo (Chen et
al., 2010; Lee et al., 2011; Takayama et al., 2011), includ-
ing the brain (Ghosh et al., 2009). Simvastatin has a 2- to
4-fold increased potency against HMG-CoA reductase
and a higher blood-brain barrier permeability compared
with lovastatin (van Vliet et al., 1996; Sierra et al., 2011;
Gazzerro et al., 2012; Fong, 2014). These comparative
properties of simvastatin and lovastatin might suggest at
minimum the non-inferiority of simvastatin versus lova-
statin. Although both lovastatin (Mainberger et al., 2013;
Bearden et al., 2016) and simvastatin (Stivaros et al.,
2018) showed some potential benefits in smaller trials for
NF1, three independent large randomized controlled tri-
als of cognition and behavior in children with NF1 using a
dose of 40mg/d of simvastatin (Krab et al., 2008; Van
Der Vaart et al., 2013) or lovastatin (Payne et al., 2016)
failed to show efficacy in the primary outcome measures,
even when treatment was administered for one year (Van
Der Vaart et al., 2013). Thus, no benefits (nor meaningful
differences) have been observed between simvastatin
and lovastatin in treating NF1-associated cognitive dys-
function. The only sufficiently powered trial that has sug-
gested a benefit for statin treatment on behavior came
from a recent study on children with ASD, in which sim-
vastatin was used adjunctively, which yielded a signifi-
cant decrease of irritability and hyperactivity, but no
improvement on three other scales of a behavioral
checklist (Moazen-Zadeh et al., 2018).
In light of these mostly negative findings, it is crucial to

try to understand why these clinical trials failed. For that,
more research is required, and the study by Muscas et al.
(2019) is a very important step in that direction. In this
study, the authors compared lovastatin with simvastatin
treatment in an animal model of fragile X (Fmr1 (fragile X
mental retardation) mice). Although ERK signaling in Fmr1
mice is not increased under baseline conditions, it has
been shown that the ERK pathway in these mice is hyper-
sensitive and contributes to the excessive protein synthe-
sis which is considered one of the core mechanisms
underlying fragile X syndrome pathophysiology (Osterweil
et al., 2010). Moreover, lovastatin treatment rescues the
ERK-dependent increased of protein synthesis as well as
the sensitivity to audiogenic seizures of Fmr1 animals
(Osterweil et al., 2013). Given that simvastatin is a more
potent inhibitor of HMG-CoA reductase than lovastatin,
one would expect that simvastatin treatment would result
in a better, or at least a similar rescue. However, in the re-
cent study, Muscas et al. (2019) surprisingly concluded
that lovastatin is superior over simvastatin in reducing
ERK activation, as well as in its ability to rescue the

downstream phenotypes of ERK activation: increased
protein synthesis and sensitivity to audiogenic seizures.
Therefore, the authors caution against the assumption
that simvastatin is a suitable substitute for lovastatin
with respect to the treatment of fragile X or other neuro-
developmental disorders.
If correct, this conclusion would have far reaching impli-

cations. Given the increased potency of simvastatin to
reduce HMG-CoA reductase, it would suggest that the pre-
viously demonstrated rescue of RASopathy phenotypes by
statins is not mediated by attenuation of RAS farnesylation
but rather through an unknown mechanism that is absent
or less potent for simvastatin. This would have consider-
able impact in the design of potential future clinical trials
for treatment of cognitive deficits in RAS related disorders.
However, in reviewing the study of Muscas et al. (2019),
the question arises whether the study truly represents a
side-by-side comparison that warrants such a strong con-
clusion. Most notable, there is no experiment in which lova-
statin and simvastatin are compared at the same dose
(and with the same vehicle). In addition, a statistical analy-
sis that would enable a direct comparison of lovastatin and
simvastatin is lacking.
Given the aforementioned large body of literature that

shows that simvastatin can reduce RAS/ERK signaling in
cultured cells as well as in vivo, the finding by Muscas and
colleagues, that simvastatin (in contrast to lovastatin) fails
to reduce ERK signaling in brain slices, is quite remark-
able. However, it is important to note that the investiga-
tors used 50 mM lovastatin but a 100- to 500-fold lower
dose of simvastatin (the maximum used simvastatin dose
is 0.5 mM). Importantly, the authors previously showed
that a lovastatin dose of 10 mM is not effective in this par-
ticular assay (Osterweil et al., 2013), hence, the failure of
simvastatin to reduce ERK activation at doses far below
that is not entirely surprising.
For the protein synthesis experiments (which is sensi-

tive to increased ERK signaling), the investigators used
again a much lower dose of simvastatin (10- to 500-fold
lower) compared with lovastatin (the maximum used sim-
vastatin dose is 5 mM). The lack of efficacy at such a low
dose of simvastatin is again not entirely surprising, as the
authors previously showed that the lovastatin dose needs
to exceed at least 10 mM to be effective in this assay
(Osterweil et al., 2013). An elegant study by Tuckow et al.
(2011) showed that 10 mM simvastatin is indeed able to re-
duce protein synthesis in a mevalonate dependent way,
which indicates that at this dose (and under these condi-
tions) there is a clear HMG-CoA-dependent effect of sim-
vastatin on protein synthesis.
The most surprising finding of the study by Muscas and

colleagues is the finding that simvastatin treatment at low
dose actually worsened the Fmr1 phenotype by further in-
creasing protein synthesis rates. This effect was found to
be independent of ERK signaling. This aspect of the study
is not only a noteworthy finding, it is also a very worrisome
finding with respect to fragile X clinical trials, where the
overarching goal is to use statins to reduce protein syn-
thesis and thereby rescue the behavioral phenotypes
(Çaku et al., 2014). For the follow-up of these trials it
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would be of great importance to know if a comparable
(low) dose of lovastatin (below the dose needed to inhibit
ERK) would have a similar negative effect on this pheno-
type, especially since the dose that can be safely used in
clinical trials is much lower than the in vivo dose used in
this study.
Whereas in the large, placebo-controlled clinical trials

lovastatin was used at the same dose as simvastatin,
Muscas and colleagues used a 2- to 30-fold lower dose of
simvastin than the dose used for lovastatin (100mg/kg)
for their in vivo epilepsy experiments. Importantly, the au-
thors previously showed that reducing the lovastatin dose
to 30mg/kg, only rescues the seizure phenotype of Fmr1
mice in certain mouse strains (i.e., inbred C57BL/6;
Osterweil et al., 2013), indicating that also for lovastatin a
lower dose than 100mg/kg may not always be effective in
this assay.
Beside these differences in dosing, it is questionable if

the overall experimental design justifies the conclusion
that lovastatin is superior over simvastatin to rescue the
core phenotypes of Fmr1 mice. If the ultimate goal of the
study is to directly compare two drugs with each other,
the drugs should not only be tested side-by-side as inter-
leaved experiments, they should also directly be com-
pared with each other using a statistical analysis that
tests for a main effect of treatment, and if significant, fol-
lowed by a post hoc analysis to compare the drugs. That
this can have a substantial effect on the conclusion, can
be illustrated by reanalysis of the dichotomous audio-
genic seizure data from the paper of Muscas et al.
(2019). Performing such analysis using a logistic regres-
sion model, reveals that there is a significant main effect
of genotype (x2(4) = 51; p, 0.0001), no effect of vehicle
(x2(2)=0.3; p = 0.9) and no interaction of vehicle and ge-
notype (x2(1) = 0.2; p = 0.7). These are important control
measures since different concentrations of DMSO sol-
vent were used for each drug and could potentially af-
fect the outcome on seizures (Carletti et al., 2013). This
analysis further shows a trend for a main effect of treat-
ment (x2(6) = 12; p = 0.07), but not for the interaction
between genotype and treatment (x2(4) = 4; p = 0.3).
When performing a post hoc Tukey’s test, neither the
Fmr1-lovastatin versus Fmr1 “low dose” of simvastatin
(p = 0.96) nor the Fmr1-lovastatin versus Fmr1 “high
dose” of simvastatin treatment (p.0.99) are signifi-
cantly different from each other. Hence, despite the fact
that the lovastatin dose was 2- to 30-fold higher than
simvastatin dose, it does not seem to perform signifi-
cantly better than simvastatin in this seizure assay.
So how can the lack of efficacy of both lovastatin and

simvastatin in prior randomized clinical trials of neurode-
velopmental disorders be explained, and what can we
learn from pre-clinical studies such as the Muscas et al.
(2019) study? We believe that two factors are very impor-
tant to consider when translating findings in animal mod-
els to clinical trials in humans.
The first critical factor is the translation of dosing from

mice to men. The dose in which a particular drug rescues
a phenotype in animal model does not always translate
into a clinically applicable and safe dose in humans

(Figure 1). For instance, the study by Muscas et al. (2019)
used a lovastatin dose of 100mg/kg (intraperitoneal injec-
tion) for testing of audiogenic seizures in the fragile X
mouse model. This dosing regimen is much higher than
needed to inhibit HMG-CoA reductase (Van de Steeg et al.,
2013), or the dose used for behavioral rescue in earlier
studies of RASopathy mouse models (10mg/kg, subcutea-
nous injection; Li et al., 2005; Lee et al., 2014; Schreiber et
al., 2017). More importantly, it is ;100-fold higher than the
equivalent dose used in the clinical trials when also consid-
ering bioavailability for oral versus intraperitoneal injection
(Zhu et al., 2011; dose conversion calculated by FDA
guidelines; www.fda.gov/media/72309/download). Hence,
although the partial rescue of audiogenic seizures is of
compelling scientific interest, it is important to realize that
the direct translational value of such high doses is limited.
And although a rescue of behavioral deficits in Fmr1, Nf1,
and Ptpn11 animal models has been observed using an
oral dose that more closely reflects the dosing used in clini-
cal trials (Li et al., 2005; Osterweil et al., 2013; Lee et al.,
2014; Asiminas et al., 2019), it still cannot be excluded that
the effective dose of statins in the mouse brain is different
from the human brain, as even small species differences in
blood brain permeability could eliminate the beneficial ef-
fect of statins (Hoshi et al., 2013). This study by Muscas et
al. (2019) underscores the importance of looking at effec-
tive dosing ranges, and more detailed (in vivo) pharmaco-
logical studies in animal models should be performed to
elucidate the dose dependency of therapeutic benefit.
The second factor that may affect successful transla-

tion to patients is the timing of drug administration.
Whereas most pre-clinical studies involved drug treat-
ment of adult animal models of neurodevelopmental

Figure 1. To ensure optimal translation of animal experiments
to cognitive clinical trials, it is important that the drug treatment
used in animal studies resembles that of clinical trials with re-
spect to equivalent dose (considering also interspecies differen-
ces in pharmacodynamics and pharmacokinetics of target
tissue), route of administration and drug similarity. Moreover, it
is important to take into account the timing of drug administra-
tion, as treatment of neurodevelopmental disorders may require
intervention during a critical window of development.
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disorders, it is conceivable that this may not be effective
in human patients and that treatment of patients should
be started in young children to be maximally effective.
Conversely, if a behavioral rescue is observed in young
mice (e.g., the rescue of seizures in Fmr1 mice was per-
formed on postnatal day (P)18–P29 mice; Osterweil et al.,
2013; Muscas et al., 2019), it is important to investigate if
such a rescue is still observed when the brain has fully
matured. Interestingly, a recent study in a rat model of
fragile X syndrome demonstrated that adult Fmr1 animals
no longer exhibited cognitive deficits following brief lova-
statin treatment at young age only (Asiminas et al., 2019).
Such studies should be further exploited to delineate the
precise critical period for optimal treatment of neurodeve-
lopmental disorders (Silva-Santos et al., 2015).
Once these two critical parameters are known for both

simvastatin and lovastatin, it may be warranted to consid-
er new clinical trials of statins for treatment of cognition in
neurodevelopmental disorders. Hopefully, when using the
right conditions, statins will be as effective in humans as
they were shown to be in multiple animal models.
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