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Mid-term effects on ecosystem services of quarry
restoration with Technosols under Mediterranean
conditions: 10-year impacts on soil organic carbon
and vegetation development
Vicenç Carabassa1,2,3 , Xavier Domene1,2, Elisa Díaz1,4, Josep M. Alcañiz1,2

The use of Technosols for the restoration of limestone quarries overcomes the usual “in situ” scarcity of soil and/or its poor
quality. The use of mine spoils, improved with mineral and/or organic amendments, could be an efficient and environmentally
friendly option. Properly treated sewage sludge from urban wastewater treatment plants could be a suitable organic
amendment and fertilizer (rich in N and P) whenever its pollutant burden is low (heavy metals and/or organic pollutants). Its
appropriate use could improve essential soil physical and chemical properties and, therefore, promote key ecosystem services of
restored areas, such as biomass production and carbon sequestration, as well as biodiversity and landscape recovery. However,
the mid-term impacts of these restoration practices on soil functioning and their services have rarely been reported in the
available literature. In this study we assess the mid-term effects (10 years) of the use of sewage sludge as a Technosol amendment
on soil organic carbon (SOC), nutrient status, and plant development in several restored quarries. Soils restored using sewage
sludge showed a threefold increase in SOC compared to the corresponding unamended ones, despite the moderate sludge
dosage applied (below 50 tonnes/ha). Plant cover was also higher in amended soils, and recruitment was not affected by sludge
amendment at these doses. This study demonstrates that, used at an appropriate rate, sewage sludge is a good alternative for
the valorization of mine spoils in quarry restoration, improving some important regulatory ecosystem services such as carbon
sequestration, without compromising woody plant encroachment.
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Implications for Practice
• The use of sewage sludge as organic amendment in mine

spoil-based Technosols is an environmentally friendly and
economically suitable option for the restoration of land
degraded by quarrying and could allow a fast recovery of
the ecosystem services lost.

• After 10 years, sludge-amended Technosols boosted pri-
mary production and promoted a threefold increase in
organic carbon stocks without compromising woody plant
encroachment.

• The use of digested municipal sewage sludge with a
high degree of stability (>30%), at moderate doses (ca.
45 tonnes/ha), in Technosol construction minimizes envi-
ronmental risks and maximizes ecosystem services in
terms of carbon sequestration and plant biodiversity.

Introduction

Quarrying activities produce severe impacts on important eco-
logical functions that provide ecosystem services contributing
to human well-being. In most of the scenarios, restoring ecosys-
tem services after finishing the exploitation implies the recov-
ery of vegetation in sites where soil fertility levels have been

depleted (Moreno-Peñaranda et al. 2004). Manufactured soils
(Technosols) could be a viable soil source when the availabil-
ity of suitable natural soils is limited (Watkinson et al. 2017),
with this technology being emblematic of the issues we face for
the management of the soils of the Anthropocene (Leguédois
et al. 2016). The use of organic waste for Technosol construc-
tion is a widely used practice in mine restoration (Asensio et al.
2013; Lomaglio et al. 2017; Watkinson et al. 2017), with the
aim of speeding up the biological colonization of a relatively
inert initial substrate. Specifically, the use of sewage sludge for
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quarry restoration is a management option that contributes to the
valorization of mine spoils and sludge from urban wastewater
treatment plants (Sopper 1993), in agreement with the EU prin-
ciples for a more circular economy (Mosquera-Losada et al.
2017). When a Technosol approach is taken, sewage sludge
is applied once, at a moderate dosage, to act both as fertilizer
and organic amendment, and usually mixed with mining debris
before their spreading as a topsoil layer in the restored areas.
Sewage sludge is then an interesting option for valorizing mine
spoils due to its fertilizing properties (Van-Camp et al. 2004)
and its known positive effects on soil aggregate stability (Car-
avaca et al. 2002; Ojeda et al. 2008), soil water retention (Ojeda
et al. 2010, 2011), and vegetation recovery (Moreno-Peñaranda
et al. 2004; Ortiz & Alcañiz 2006; Carabassa et al. 2018). How-
ever, sewage sludge application also requires strong supervision
and monitoring due to certain environmental risks related to its
potentially harmful heavy metals and persistent organic pollu-
tant content (Düring & Gäth 2002; Carabassa et al. 2010a).

Pedogenic processes occurring in Technosols are similar to
those of natural soils (Leguédois et al. 2016), although the
components used can strongly influence their evolution and
their capacity to behave as a soil, and therefore, to provide the
associated ecosystem services. However, they tend to have a
fast evolution compared to natural soils, including biological
activity (Leguédois et al. 2016). The last is of importance since
soil fauna and vegetation are key factors for the provision of
ecosystem services in soils (Tate 2005), but biological activity
also drives soil pedogenesis itself, e.g. through its role in carbon
and nitrogen dynamics (Frouz et al. 2013).

Soils are responsible for a variety of natural processes known
as soil functions that are the basis of the delivery of the so-called
ecosystem services (Adhikari & Hartemink 2016). While soil
functions refer to the soil benefits for all the ecosystem species,
including humans, the term ecosystem service specifically refers
to human benefits (Adhikari & Hartemink 2016; Baveye et al.
2016). Because of the difficulties in the direct assessment of
ecosystem services, soil functions have been used as indica-
tors of the provision of those services (Baveye et al. 2016).
For instance, organic carbon (OC) content has been used as a
proxy of carbon sequestration, while the biodiversity of particu-
lar groups of organisms has been related to the habitat function
of soil. The provision of ecosystem services is the main reason
for soil rehabilitation, due to their direct connection with human
well-being (UNEP 2008). In the last decade, the ecosystem ser-
vices concept has been successfully adopted by environmental
scientists, media, and governmental agencies, boosted by the
publication of the Millennium Ecosystem Assessment (2005).
Thus, ecosystem services approaches have been included in a
variety of applications, from land planning and the assessment
of particular soil management alternatives, to the assessment
of restoration success, given the increasing social expectations
toward soils in the Anthropocene (Leguédois et al. 2016).

Regarding carbon sequestration in soil, it is generally
achieved by any biomass input that originated through a pro-
cess causing a net removal of atmospheric CO2-C by plants,
and then stored as stable soil organic matter. The storage
efficiency of the different pools of organic matter is highly

influenced by its biochemical recalcitrance, its stabilization as
organomineral aggregates, the occlusion in soil aggregates, or
its transportation into the subsoil (Lal 2003). Sewage sludge,
as a biomass derived residue, may directly contribute to soil
carbon sequestration through its stabilization in soil, and indi-
rectly through the increase in plant biomass production and
litter intake (Ojeda et al. 2015). However, the relatively low
stability of sewage sludge (Mattana et al. 2014) is expected to
cause transient effects on soil organic matter pools, as mid-term
soil organic carbon (SOC) sequestration relies more on the
subsequent evolution of OC inputs from plant debris intake to
soil rather than on the OC provided by the sludge (Ojeda et al.
2015). Organic matter improvements, in turn, can contribute
to other relevant ecosystem services in rehabilitated land such
as raw materials production (for fuel, construction materials,
etc.), nutrient cycling, climate regulation, or improving soil as
habitat for organisms (Baveye et al. 2016). However, little is
known about the efficiency of Technosol approaches in terms
of soil carbon storage (Ojeda et al. 2015), and especially in
the mid and long term, which could be of interest for offset-
ting the emissions of mining activities closely linked to the
cement industry, one of the main contributors to industrial CO2
emissions (Imbabi et al. 2012).

The use of sewage sludge in Technosols is expected to
enhance the biological colonization in the initial stages of
the restoration. In previous studies, the use of sewage sludge
was shown to strongly influence plant community structure
in the short term in a shrubland intended to be converted
into a dehesa (Ferreiro-Domínguez et al. 2011; Tarrasón et al.
2014). On the contrary, no significant effects on diversity
were found when the reference was the neighboring forest
or shrubland (Moreno-Peñaranda et al. 2004). Some negative
ecological effects of the use of sewage sludge have been
reported elsewhere, such as declines in microbiota, meso-
fauna, and macrofauna sensitive taxa (Barrera et al. 2001;
Giller et al. 2009; Andrés et al. 2011), the promotion of exotic
species (Alpert et al. 2000), and decreases in plant biodiver-
sity (Ferreiro-Domínguez et al. 2011). This is of concern given
the ecosystem services driven by plants (Lavorel 2013) and soil
organisms (Lavelle et al. 2006).

To prevent the negative effects of excessive dosing of sewage
sludge that might compromise the provision of ecosystem ser-
vices of rehabilitated land, some recommendation protocols
have been proposed, such as the one used since 2008 in Catalo-
nia by the local environmental authorities (Alcañiz et al. 2009;
Carabassa et al. 2010a, 2010b; Department of Territory and Sus-
tainability 2015). This guideline takes into account the mineral
substrate characteristics, the stability of the sewage sludge used
(recommended to be over 30%), its pollutant burden, the site
aptitude (sewage sludge should not be used near wells, water
courses, nitrate vulnerable zones, or highly frequented or inhab-
ited areas), among other environmental restrictions. The pro-
tocol also states a dosing limit for sludge (50 tonnes/ha) and a
maximum increase in labile organic matter in the receiving soils
or substrates (0.5%).

The main goal of this article is to assess the mid-term effects
(10 years), on two key ecosystem services (carbon sequestration
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Figure 1. Location of the evaluated quarries on the NE Iberian Peninsula.

and habitat function), of the use of sewage sludge in Technosol
construction for limestone quarry restoration, under Mediter-
ranean conditions.

Methods

Study Sites

A set of seven limestone quarry sites, restored 10 years
ago using Technosols, were selected, all of them located in
the Mediterranean climatic area of Catalonia (NE Iberian
Peninsula) (Fig. 1). Each experimental site corresponded to a
Technosol constructed using sewage sludge, and a neighbor-
ing control area corresponding to a Technosol with the same
mineral substrate but without adding sludge (Table 1). Climatic
conditions in the different sites mostly differed in terms of water
availability, since mean annual precipitation ranged from 400 to
700 mm (from wet to semiarid Mediterranean climate). The ref-
erence ecosystem for the restoration was a Mediterranean forest
that predominates in the study area, dominated by Aleppo pine
(Pinus halepensis) usually mixed with holm oak (Quercus ilex)
and accompanying shrub species (Table 1). Prior to restoration,
the areas were used for limestone exploitation for aggregate or
concrete production. The evaluated sites (sludge amended and
controls) had an average surface area of 3,000 m2, and covered
many facings, from the most favorable (N face) to the most
challenging (S face). The dominant geomorphologic (land-
form) type is the terrace/berm embankment with steep slopes,
some approaching 45∘. The subsoil of embankments primarily
consisted of fine and/or rocky fractions from extraction debris
or excavations, and sometimes with blasting debris.

Technosols Construction

The mineral substrate used for Technosol construction mostly
consisted of rocky debris, sometimes mixed with topsoil kept
aside from mine topsoiling or excavations. In some cases, the
stoniness was very high (over 80%), having a high proportion
of carbonates and very low organic matter content (Table 2).

Sewage sludge consisted of an anaerobically digested sludge
coming from medium-size municipal wastewater treatment

plants. All of them had enough quality to be used in agriculture,
i.e. had relatively high stability (48% as average) and low heavy
metal content (Table 3). As usually found in sewage sludge, P
concentrations were very high. Sludge was dosed according to
its organic matter content, stability degree, and the properties
of the mineral substrate (stoniness and bulk density), follow-
ing Alcañiz et al. (2009) and Carabassa et al. (2010a, 2010b).
The average sludge dose used in the different sites was around
45 tonnes/ha (dry weight), and its field application was con-
ducted between autumn 2006 and spring 2007.

Field Sampling and Laboratory Analysis

The parameters assessed in the rehabilitated areas reflect the
sludge-based Technosols’ ability to improve soil quality, min-
imize degradation processes, and promote vegetation develop-
ment. Soil samplings were carried out in 2007 (4–6 months
after sludge application) and in May–June 2017 (10–11 years
after sludge application). Vegetation measures were carried out
in May–June 2017 after 10–11 years of the sludge applica-
tion. Soil sampling involved taking a composite sample of cores
(n = 12–20, depth = 0–20 cm) for each restored zone with an
Edelman auger.

The soil parameters analyzed were particle size determined
by sedimentation—Robinson pipette (Clarke Topp & Ferré
2002), equivalent CaCO3 by CO2 volume released after HCl
addition—Bernard calcimeter method, electrical conductivity
of 1:5 (w:v) water extract, SOC content by acid dichromate
oxidation, total nitrogen using the Kjeldahl method, avail-
able phosphorous—Olsen, and available potassium (Ameri-
can Society of Agronomy 1982). In each restored area, veg-
etation measures were taken according to Carabassa et al.
(2019): establishing 6× 10 m transects and measuring the main
cover types (herbaceous, shrubs, trees, organic debris, bare
soil) by contact-point each 20 cm; shrub and tree density
by identifying and counting all the seedlings in 3× 100-m2

plots; flora inventories identifying all the species present;
species abundance by qualitative observation of its respective
cover.
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Table 2. Properties of the soils and mining debris used for the Technosols’ construction. *Referring to the fine fraction (<2 mm).

Site
<2 mm

(%)
Sand*

(%)
Silt*
(%)

Clay*
(%)

Carbonate*
(g/kg) pH

Organic
Matter*
(g/kg)

Electrical
Conductivity

(1:5 extract, dS/m)

Bulk
Density
(mg/m3)

Aiguamolls 22 14 50 36 421 8.8 1.0 0.48 1.8
Ponderosa 45 34 33 34 314 8.3 7.0 0.90 1.5
Lázaro 17 50 22 28 734 8.3 2.7 0.27 1.6
Fou 22 21 30 49 426 8.2 7.0 0.58 1.4
Vallcarca 57 46 22 32 271 8.3 3.7 0.37 1.5
Falconera 55 58 21 21 207 8.1 11.9 1.16 1.4
Montlleó 75 41 40 19 390 8.4 8.0 1.96 1.2

Table 3. Physicochemical characterization of the sewage sludge used for Technosol construction. *Percentage of organic matter resistant to acid hydrolysis.

Parameter Average Max. Min. SD

Dry matter (%) 24.5 26.8 22.5 12.6
Organic matter (%) 57.7 70.7 39.2 27.1
Degree of stability (%)* 48.1 60.1 31.8 17.2
Conductivity (1:5 extract. dS/m 25∘C) 2.0 3.0 1.0 0.7
pH (water 1:10 w:v) 7.7 8.5 6.9 0.6
N-Kjeldhal (g/kg) 36.8 63.4 11.5 19.8
N-ammonia (g/kg) 10.7 21.5 1.8 7.3
P-total (g/kg) 38.3 64.4 24.5 23.5
K (g/kg) 2.8 5.7 1.0 1.5
Cu (mg/kg) 322.3 580.0 102.0 170.6
Ni (mg/kg) 23.0 43.3 15.5 13.9
Cr (mg/kg) 56.6 85.6 12.5 35.7
Pb (mg/kg) 54.3 64.2 29.5 28.1
Hg (mg/kg) 2.0 4.2 0.2 1.3
Cd (mg/kg) 3.7 10.0 0.9 3.6
Zn (mg/kg) 1, 037.6 2, 199.0 375.0 512.6

Data Analysis

Analysis of variance (one-way ANOVA and repeated mea-
sures ANOVA) was used to examine differences between
treatments (amended and control soils) regarding soil prop-
erties (organic matter, N, and P contents), proportion of soil
cover in each category (herbaceous, total vegetal, organic
debris) and herbaceous development (height), using p< 0.05
as the cut-off value for statistical significance throughout the
manuscript.

Results

Soil Properties

After 10 years of Technosol construction, sludge-amended soils
had significantly higher organic matter, N, and P contents com-
pared to the unamended ones (Fig. 2), achieving a fivefold
content increase in one of the sites. Some unamended Tech-
nosols were clearly deficient in organic matter, with SOC values
below 0.5%. These differences were even stronger in the case
of N, where sludge-amended Technosols had more than three
times higher contents compared to unamended ones, which were
extremely poor in N, especially when only mine spoils were
used as mineral substrate. Moreover, P contents showed the

largest contrast between amended and control soils, with very
high contents in the sludge-amended Technosols, which were
10 times higher than in unamended soils where values showed
a clear deficiency.

Regarding soil C:N ratio (Fig. 3), most soils were well bal-
anced, with a ratio between 8 and 12, which are typical val-
ues for A horizons of calcareous Mediterranean forest soils. In
general, ratios were similar for amended and unamended soils,
except in the Lázaro control treatment, where the C:N ratio was
extremely high due its very low N content. Regarding the N:P
ratio, controls were deficient in available P and highly unbal-
anced, mainly when rocky debris without including topsoil were
used for Technosol construction.

Comparing the soil property values shortly after Technosol
construction (4–6 months) with the results after 10 years
(Fig. 4), it was shown that SOC increased in both amended
and unamended soils (control areas) but more strongly in the
sludge-amended plots, with a 2.1-fold increase compared to the
1.6-fold increase in the unamended Technosols. After 10 years,
the control Technosols also failed to achieve the initial SOC
levels of sludge-amended ones. Amended soils tended to show
significant increases in N and P content after 10 years, but this
trend was not observed for P, with nonsignificant changes,
despite a tendency to increase (Fig. 5).

Restoration Ecology 5
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Figure 2. SOC, Kjeldhal N, and Olsen P content in sludge-amended and
control Technosols 10 years after their construction. The error bars
represent +SE and different letters indicate significant differences at a
p< 0.05 level.

Considering only the topsoil layer (first 20 cm depth), the
average organic C sequestration in sludge-amended Technosols
was 28 tonnes C/ha after 10 years, and 9 tonnes C/ha was con-
tained in the unamended ones, which represents a threefold
increase in the sequestered C.

Plant Community and Development

After 10 years, herbaceous cover was still dominant in most of
the areas evaluated, irrespective of controls or sludge-amended

Figure 3. C:N and N:P ratios of sludge-amended and control Technosols
10 years after construction, in the different sites studied.

plots. The average herbaceous cover over all plots was less than
50% (Fig. 6). However, herbaceous vegetation was still more
developed in amended plots, where organic debris accumula-
tion was also higher (Fig. 6). Regarding herbaceous species
composition, sludge-amended Technosols showed a higher fre-
quency of ruderal species, such as Chenopodium album, Malva
sylvestris, and Cardus spp. (Table S1), but they were not domi-
nant. Colonization by native neighboring species was observed
in both Technosol approaches. Some silt-tolerant and halophyte
plants, like Salsola kali or Atriplex halimus, were more frequent
in sludge-amended soils despite salinity not being significantly
higher. Some invasive species such as Arundo donax were iden-
tified in amended plots, despite the fact that their vegetation
cover is minimal, and its presence cannot be attributed to sludge
amendment but to its introduction as rhizomes in the exogenous
soil used for Technosol construction.

Regarding the shrub and tree strata, sludge-amended plots
presented higher woody cover (shrubs and trees), mainly due
to enhanced pine growth, which explains the higher total plant
cover in this treatment (Fig. 6). The presence of shrubs and
trees is mainly explained by plantation actions carried out after
Technosol spreading. However, in most areas, recruitment of at
least one wild shrub species took place, while this was also true
but less usual for tree species. The most common tree species
found was Aleppo pine (Pinus halepensis), although in some
cases holm oak (Quercus ilex) was also present at much lower

6 Restoration Ecology
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Figure 4. Initial (t0, 4–6 months) and 10 years (t10) soil organic carbon
(SOC) contents in sludge-amended and control Technosols of studied
quarries. The error bars represent +SE and different letters indicate
significant differences at a p< 0.05 level.

densities (see Table S1). Regarding shrubs, Dittrichia viscosa,
an extremely common Mediterranean plant of the first stages
of secondary succession, had colonized almost all the areas
evaluated. Rosemary (Rosmarinus officinalis), mastic (Pistacia
lentiscus), and cotton lavender (Santolina chamaecyparissus)
were also found in many of the areas evaluated. Most specimens
of these bushes were planted, although natural recruitment
was also observed, especially in the case of mastic. There
were no notable differences between treatments regarding the
recruitment of shrub or tree species (see Table S1).

Discussion

After 10 years, Technosols constructed using sewage sludge as
an amendment had three times more SOC than the unamended
ones. On one hand, it is clear that sewage sludge has contributed
to changes in the organic matter content of the soil, but most
of its organic matter is labile, which suggests that the direct
effects of sludge on soil have only been transient (Tarrasón et al.
2010). On the other hand, plant debris from vegetation grown
in restored areas contributes to increased SOC (Muñoz-Rojas
et al. 2016) that tends to be stabilized and concentrated in the
fine fraction (<2 mm). For this reason, the increase in SOC
observed in amended plots after 10 years is more likely due to
the contributions of vegetation growth in the area than from
the OC directly provided by the sludge. These differences were
higher in extremely stony soils (<20% fine fraction) located
in moderately rainy regions (700 mm annual precipitation) that
allowed herbaceous vegetation to grow after sludge applica-
tion and rain events. In contrast, fine soils in semi-arid regions
(500 mm annual precipitation) did not accumulate such quanti-
ties of C in amended soils, due to the smaller positive impact of
the amendment on growth of herbaceous vegetation, and con-
sequently differences with respect to control were also lower.
This seems to be confirmed by Meersmans et al. (2012), who
detected that OC concentrations in fine particle-size fraction

increase with increasing rock fragment content, and that spread-
ing farmyard manure and slurry induces higher carbon concen-
trations mostly in wet and stony grasslands. Similarly, Arias
et al. (2017) found gains of up to 10 tonnes C/ha in the tilled
layer (0–30 cm) of stony soils only after 2 years of irrigation.

After 10 years of restoration works, the average SOC of soils
amended with sewage sludge was relatively high, while the
SOC content in the control areas was very low and clearly
deficient (Carabassa et al. 2010a, 2010b; Carabassa et al. 2015).
In any case, both amended and unamended soils were still far
from the SOC average for Mediterranean forest soils (Lal 2005;
Rovira & Ramón Vallejo 2007; Doblas-Miranda et al. 2013),
and therefore probably far from any C saturation situation,
especially considering the relatively high clay content of soils
in this study.

Despite the fact that SOC fractioning was not available in
this study, previous studies on Technosols from quarries con-
firmed that SOC tends to be more stabilized over time in
sewage-amended soils, doubling the fraction of nonhydrolyz-
able carbon in the mid term (Ojeda et al. 2015). Considering
that many organic compounds of this nonhydrolyzable fraction
are hard to mineralize (Rovira & Ramón Vallejo 2007), we state
that this SOC fraction of the sludge-amended mine Technosols
could be considered as sequestered carbon. Moreover, in this
study all the Technosols had a high carbonate content, which
contributes to the formation of aggregates and to the physical
protection of SOC (Amézketa 1999).

Regarding the total amount of carbon sequestered in soils at
a world level, the vast majority of the SOC reservoir is reported
to be below 20 cm (Fontaine et al. 2007). This deep carbon
is highly persistent because it is bonded to soil minerals and
it is less accessible for decomposers (Wattel-Koekkoek et al.
2003). However, we only considered the first top 20 cm of soil in
our carbon stock estimations. Consequently we underestimated
the total SOC, especially on amended plots, due to the strong
plant growth in the first years after Technosol construction
(Carabassa et al. 2018). This plant growth, which included
trees, could have increased deep C through root growth, as
shown by Simón et al. (2018) in mine Technosols in SE Spain
6 years after their establishment. Nevertheless, this plausible
underestimation might be limited considering the reduced soil
depth of the Technosols included in this study.

Regarding nutrient content, some control Technosols were
clearly deficient and unbalanced in N and P. This fact might
explain the low vegetation success in sites with relatively low
hydric stress (700 mm annual precipitation), as N and P are
the two main macronutrients limiting plant primary production
in terrestrial ecosystems (Elser et al. 2007). This is especially
true in Mediterranean forest ecosystems with calcareous soils
that reduce P bioavailability (Sardans et al. 2004). Furthermore,
nutrient imbalances in the stoichiometric relationship between
N and P can have significant impacts on soil functions, affecting
the development of vegetation and microbial activity (Sardans
et al. 2012).

On the contrary, sludge-amended Technosols still presented
high N and P concentrations after 10 years, and in the spe-
cific case of N, more than in the short term after sludge

Restoration Ecology 7
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Figure 5. Kjeldhal N and Olsen P contents in sludge-amended Technosols 4–6 months (t0) and 10 years (t10) after sludge application. The error bars
represent +SE and different letters indicate significant differences at a p< 0.05 level.
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Figure 6. Percentage of plant cover type distribution (herbaceous, total vegetal, organic debris) and herbaceous development (height [cm]) on sludge-amended
and control Technosols 10 years after sludge application. The error bars represent +SE and different letters indicate significant differences at a p< 0.05 level.
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amendment. Although nitrogen leaching is plausible with the
sludge treatment, it would mainly take place during the first
4 months due to the high mineralization rates of organic N
from sludge (Carabassa et al. 2018). After this period, leaching
should decrease quickly due to reduced sludge decomposition
rates and the enhanced nitrate absorption by the growing vegeta-
tion (Tarrasón et al. 2008; Jordán et al. 2017). As SOC becomes
stabilized over time in sludge-amended Technosols (Ojeda et al.
2015), N stabilization in organic forms is also expected, as
shown by the balanced C:N ratios observed. Regarding P, and
despite its high levels, a low availability is expected due to the
alkaline pH of the highly calcareous materials used for Tech-
nosol construction that causes a fast immobilization of P as
calcium triphosphate (Tunesi et al. 1999).

Regarding total plant cover, significant differences between
amended and control Technosols persisted after 10 years. How-
ever, despite herbaceous cover being similar in both treatments,
herbaceous vegetation was more developed in sludge-amended
areas, which was coupled to an enhanced accumulation of
organic debris and the consequent higher content of SOC
(Wambsganss et al. 2017). Even though the absolute herbaceous
cover was less than 50% in both treatments, this was not of
concern due to the effective protection against erosion because
of the high stoniness of these soils. Moreover, sludge-amended
areas had higher cover of woody plants, associated with the high
fertilizing effect on pine growth, which in turn also plausibly
contributed to the increased SOC. This tree-specific fertilizing
effect has been described elsewhere and shown as higher tree
growth ratios in soils amended with sludge for restoration pur-
poses (López-Díaz et al. 2009; Tarrasón et al. 2014).

Regarding plant composition, and coupled to the higher N
levels, higher relative abundance of nitrophilous species was
observed in sludge-amended soils, though those species were
not dominant in the community after 10 years. Thus, the species
compositions in both types of Technosols were similarly rud-
eral, in agreement with previous studies conducted 5 years after
sludge application (Moreno-Peñaranda et al. 2004). Despite
the slowness of this process and the fact that woody species
were also present in unamended Technosols (including natu-
ral recruitment), enhanced woody (shrubs and trees) species
recruitment was observed in sludge-amended plots, which rep-
resents an important goal in the restoration of these areas due to
the beneficial effect on ecosystem functioning (Soliveres et al.
2014). This show that Technosols constructed with mine spoils
without organic amendment are less successful in terms of veg-
etation development and community complexity, mostly due to
the extremely low fertility of the quarry substrates.

In summary, after a decade, Technosols constructed with
moderate dosages of sewage sludge boosted soil organic matter
enrichment and carbon sequestration, as they contained three
times more SOC than the unamended ones. This was the result
of increased primary production due to the high nutrient content
of sludge, which was still visible after 10 years. Plant cover was
also enhanced in Technosols receiving sludge, without causing
strong changes in plant community but demonstrating higher
development of shrubs and trees that might reflect a speed up in
the natural succession process. All of these benefits are clearly

linked to the two main soil ecosystem services that are intended
to recover in the restoration of quarrying activities, which are
biological habitat and carbon sequestration. Furthermore, we
demonstrate that the valorization of “in situ” mine spoils can
be successful and improved by the use of sewage sludge, in
agreement with the current principles of the circular economy.
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