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Abstract: When measuring multidimensional poverty it is reasonable to expect that

the trade-o¤s between variable pairs can di¤er depending on whether the concerned pairs

are complements or substitutes. Yet, currently existing approaches based on deprivation

count distributions unrealistically assume that all pairs of variables are related in the same

way �an unfortunate circumstance that undermines the possibilities of identifying the poor,

aggregating their poverty levels and modeling non-trivial interactions between variables in

highly �exible ways. This paper, which aims at modeling non-trivial relational structures

across variables both in the identi�cation and aggregation steps, is a �rst contribution to-

wards addressing these inadequacies. The approach has been axiomatically characterized

to �esh out the normative foundations upon which it is based and has a vast potential for

application.
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1. Introduction

Who is poor and who is not? How poor are the poor? These are the fundamental �iden-

ti�cation�and �aggregation�questions suggested by Amartya Sen that must be addressed

before any poverty eradication program can be implemented (Sen 1976). While the answer

to these questions has been quite satisfactorily addressed when poverty is measured in the

space of income distributions (after the seminal contribution by Sen in 1976 the literature

on income poverty measurement is huge and is based on a very solid footing � see, for

instance, Chakravarty 2009 for a recent survey on the topic), matters become more compli-

cated when the poverty status and its levels are determined using several dimensions at the

same time. After the in�uential writings of Sen (1985, 1987, 1992, 1993), it is nowadays ac-

knowledged that poverty is a multidimensional phenomenon and many scholars have insisted

on the necessity of de�ning poverty measures that go beyond the distribution of income or

consumption expenditures alone (see, for instance, Anand and Sen 1997, Atkinson 2003,

Bourguignon and Chakravarty 2003, Thorbecke 2007, Alkire and Foster 2011, Aaberge and

Brandolini 2015).

While several contributions have identi�ed di¤erent classes of multidimensional poverty

measures (e.g. Chakravarty et al 1998, Tsui 2002, Bourguignon and Chakravarty 2003,

Chakravarty and D�Ambrosio 2006, Alkire and Foster 2011, Silber and Yalonetzky 2014,

Aaberge and Brandolini 2015, Aaberge et al 2015, Datt 2017, Pattanaik and Xu 2018) one

of the most fundamental issues in this literature still needs to be addressed: the proper

modeling of the relational structure across variables. When combining several variables of

potentially di¤erent nature into a single measure it is reasonable to expect that the trade-

o¤s between them could di¤er depending, for instance, on whether the concerned pairs are
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complements or substitutes (see Ravallion 2011, 2012 for a conceptually related discussion).

Yet, virtually all current approaches to multidimensional poverty measurement rely one way

or another on the so-called �deprivation count distributions��an approach that takes the

amount of variables in which individuals are deprived as its informational basis �implicitly

assuming that all pairs of variables are related in the same way. This is unfortunate because

the possibilities of identifying the poor, aggregating their poverty levels and modeling non-

trivial interactions between variables in more realistic ways are severely undermined (see

Ravallion 2011). Even if the trade-o¤s variability across alternative pairs of variables was

readily identi�ed as a central issue as soon as multidimensional poverty or welfare assessments

were proposed (e.g. Atkinson and Bourguignon 1982, Bourguignon and Chakravarty 2003),

as of now there are no measures that are able to capture such variability in a satisfactory

way.

When poverty is assessed via pecuniary and non-pecuniary attributes simultaneously it is

customary to partition the variables composing such measures in mutually exclusive dimen-

sions, with several variables within each dimension. Such a partition �which is exogenously

given �aims at imposing certain coherence and structure on the variables one is dealing with

by clustering them in conceptually related areas (e.g: the dimensions of �Health�, �Education�

or �Standard of Living�). Here we argue that the partition of variables across dimensions

lends itself to a natural relational structure �with the variables belonging to the same (resp.

alternative) dimensions being more �similar�(resp. �dissimilar�) among themselves �that has

been sistematically ignored in current approaches to multidimensional poverty measurement.

Consider the following examples.

Example 1. Assume multidimensional poverty is assessed using the variables V1 =�Income�,

V2 =�Years of Schooling�, V3 =�Self-assessed Health�and V4 =�Health insurance�(example
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taken from Alkire and Foster 2011, p.483). These variables can be naturally partitioned

in two dimensions: �Capacity to make a living�(denoted as D1, including V1 and V2) and

�Health�(denoted as D2, including V3 and V4). When deciding how to identify the poor,

one might argue that the lack of deprivation in one variable could eventually compensate for

the deprivation experienced in the other variable within the same dimension (i.e. having a

health insurance might somehow compensate a low health status in a �health�dimension, or

having a high-quality education could compensate temporary low income levels). Therefore,

individuals could be labeled as �poor�when they experience simultaneous deprivations at

least in V1 and V2 (something which would severly hinder that individual�s capacity to make

a decent living) or in V3 and V4 (an alarming circumstance for that individual�s health), but

not when they experience deprivation in one variable within D1 and in one variable within

D2.

Example 2. In the same 4-variable 2-dimensional setting, one could alternatively argue

that each variable is essential to enjoy a decent living in the corresponding dimension (so

that there is no possibility of compensation within dimensions) but that only individuals

that are deprived in both dimensions have good reasons to be identi�ed as �poor�. Under

this alternative speci�cation, individuals experiencing deprivations in one dimension only

would not be identi�ed as �poor�.

In these examples, what counts to be identi�ed as poor is not only the quantity of

variables in which individuals are deprived but also the qualitative relationships that might

exist between them. Presently, there is no multidimensional poverty methodology that is

able to identify the poor in the ways described in examples 1 and 2 (see section 3.1). Existing

identi�cation methods basically count the number of existing deprivations irrespective of the

dimensions they belong to (see Atkinson 2003, Alkire and Foster 2011, Silber and Yalonetzky
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2014, Aaberge and Brandolini 2015), thus ignoring the non-trivial compensation patterns

that might exist within and between dimensions.2 Such disregard for the relational structure

across variables also has crucial implications for the aggregation step. When measuring

how poor are the poor, current approaches assume that all pairs of variables are either

complements or substitutes and that the elasticity of substitution is constant across them

�an unduly restrictive assumption that is very unlikely to be satis�ed in practice. Using

an axiomatically characterized approach, this paper is a �rst step towards addressing the

aforementioned inadequacies both in the �identi�cation�and �aggregation�steps.

The rest of the paper is organized as follows. After introducing some basic notations

in section 2, in section 3 we present the axiomatic characterization of di¤erent families

of �identi�cation functions�. We start with the basic one-dimensional case (i.e. there is

no partition of the underlying variables �this includes all approaches currently used in the

literature3 ) and then proceed to the multidimensional case (i.e. the variables are partitioned

across multiple dimensions). In section 4 we propose and axiomatically characterize new

aggregation methods that allow introducing non-trivial relational structures across variables.

Like in the previous section we start with the single dimensional case and then proceed to

the multidimensional one. Section 5 concludes. The proofs are relegated to the appendix.

2 Yalonetzky (2014) makes room for de�ning identi�cation functions that can potentially take into account
the relationship between variables when de�ning the poverty status of individuals. Yet, in the context of
three or more variables (which is the one we are interested in this paper), the author only explores the
extreme cases of the �union�and �intersection�approaches �see de�nitions in section 2.
3 These are the well-known �union�, �intersection�and, more generally, the �intermediate�or �counting�iden-
ti�cation approaches which are massively used in empirical analysis �see Aaberge and Brandolini 2015 and
Alkire et al 2015 and the de�nitions in section 2.
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2. Notation and de�nitions

Let N be the set of individuals and D the set of variables4 under consideration, with

n := jN j � 1; d := jDj � 2. For any natural number d � 2, let Xd := f0; 1gd. For x;y 2 Xd;

we write x � y whenever xj � yj for all j 2 f1; : : : ; dg and say that x vector-dominates

y. Analogously, we write x > y whenever xj � yj for all j 2 f1; : : : ; dg with at least one

strict inequality, and say that x strictly vector-dominates y. R+ is the set of non-negative

real numbers and N+ the set of strictly positive natural numbers. Let a = (a1; : : : ; ad) be a

vector of positive numbers summing up to 1, whose jth coordinate aj is interpreted as the

normalized weight associated with variable j. Let �d =
�
(a1; : : : ; ad) 2 Rd+j

P
i ai = 1

	
be

the d�dimensional simplex. Within this set, we denote by 1=d := (1=d; : : : ; 1=d) the equal

weights vector.

The achievement of individual i in attribute j is assumed to be measurable in a cardinal

scale and will be denoted by yij 2 R+. For each attribute j we consider a poverty threshold

zj 2 R++ indicating the minimum quantity necessary for a subsistence level�which in this

paper we consider as exogenously given. Whenever yij � zj, we say that individual i is

deprived in attribute j. Very often , poverty measures are de�ned in the space of depriva-

tions rather than achievements.5 One common measure of the deprivation experienced by

individual i in variable j is the following6

ij :=

�
Max

�
zj � yij
zj

; 0

��c
; (1)

4 The terms �variable�, �indicator�or �attribute�will be used interchangeably in this paper.
5 The alternative approach advocated by Ravallion (2011) of working in the space of attainments is not
followed in this paper because (i) it might be possible for a poor person to be lifted out of poverty as a result
of an increment in a nondeprived dimension, (ii) it does not allow keeping track of the dimension-speci�c
deprivations simultaneously.
6 There exist other de�nitions of deprivation gaps (see Table 1 in Permanyer (2014:4) for other examples).
Since alternative de�nitions do not alter the �ndings of the paper, we have chosen the one that is more
commonly used in the literature.
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where c � 0. Whenever yij is measured in a cardinal scale ij is well-de�ned for any c � 0,7

and ij 2 [0; 1]. In particular, when c = 1, ij is the so-called normalized deprivation

gap (which measures in a [0; 1]-scale the distance between a given achievement yij and

the corresponding poverty line zj) and when c = 2, we obtain the squared deprivation

gap. For an individual i, we de�ne the corresponding vector of deprivations gaps as i :=

(i1; : : : ; id) 2 [0; 1]d (when no confusion arises and its use is unnecessary, we might omit

the individuals� label i). A deprivation matrix � is a n � d matrix with entries in [0; 1]

containing the deprivation gap vectors of n individuals in the di¤erent rows. The set of all

n � d deprivation matrices is denoted as Gn�d, and we de�ne G :=
[
n2N

[
d2N

Gn�d. Following

Bourguignon and Chakravarty (2003), an identi�cation function � : G1�d ! f0; 1g is a

mapping from individual i�s deprivation gap vector i to an indicator variable in such a way

that �(i) = 1 if person i is multidimensionally poor and �(i) = 0 otherwise. For analytical

clarity, we write the identi�cation function � as the composite � = � � !, with

! : G1�d ! Xd (2)

and

� : Xd ! f0; 1g : (3)

The function ! converts the deprivation gap vector i into a vector of 0s and 1s of length d

indicating whether individual i is deprived or not in the di¤erent variables taken into account

(where 1 denotes deprivation and 0 non-deprivation). The set Xd contains all possible

combinations of deprivations/non-deprivations across d variables. Its generic members �

referred to as deprivation pro�les �are denoted as x = (x1 : : : xd); with xj 2 f0; 1g indicating

the deprivation status in variable j. The pro�le 0 := (0:::0) corresponds to someone who is

7 The value c = 0 is typically chosen when the variables that are used to assess multidimensional poverty
are measured in an ordinal scale. However, in this paper we will focus on the cardinal case (see Remark 3
in section 4.2).
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not deprived in any variable and 1 := (1:::1) to someone who is deprived in all variables.

For each j 2 f1; : : : ; dg we de�ne ej := (0 : : : 010 : : : 0) as the deprivation pro�le where

deprivation is only experienced in variable j. The following de�nitions are based on the

relation of vector dominance among pairs of elements in Xd.

De�nition 1: Let Z be any non-empty subset of Xd. The up-set of Z is de�ned as

Z" := fx 2 Xd j 9z 2 Z s.t. z � xg and the set of least deprived pro�les in Z is de�ned as

L(Z) := fx 2 Z j @y 2 Znfxg s.t. y � xg.

If Z is a subset of Xd, Z" is the set of deprivation pro�les vector-dominating at least

one member of Z. On the other hand, L(Z) is the set of elements in Z that do not vector-

dominate any other element in Z.

Since ! is simply an indicator function specifying whether individuals are deprived or

not in the di¤erent variables, here we focus our attention on di¤erent ways in which � can

be de�ned. With a slight abuse of notation, the functions � will also be referred to as

�identi�cation functions�. Let 
d := f� : Xd ! f0; 1gg be the set of all possible identi�cation

functions for d variables. Since each identi�cation function � is uniquely characterized by the

set of elements ��1(1) � Xd (or its complement ��1(0)) and Xd has 2d elements, it follows

that 
d has 22
d
elements. To simplify notation we will write P� := ��1(1) and R� := ��1(0)

(i.e. P� and R� are the set of deprivation pro�les that � identi�es as �poor�and �non-poor�

respectively). The set 
 := f
dgd2N+nf1g contains all identi�cation functions for all possible

d � 2. In section 3 we impose several conditions on the elements of 
d to pin down several

classes of identi�cation functions Sd � 
d. For clari�cation purposes, it is sometimes useful

to graph the Hasse diagram corresponding to the set Xd (whose elements are the nodes of

the diagram) and the partial order generated by vector dominance � (represented by the
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edges between nodes) to represent identi�cation functions � 2 
d. In Figure 1 we show two

examples of identi�cation functions (�1; �2) for the case d = 4 that will be useful to illustrate

other sections of the paper.

Let Q� := fi 2 N j �(!(i)) = 1g be the set of individuals considered to be poor ac-

cording to the identi�cation function �. After completing the identi�cation step, Sen (1976)

(and all the ensuing literature on poverty measurement after him) suggests to proceed to the

aggregation step, i.e. summarize the information on the extent of poverty among the poor

into a single number. While the identi�cation functions analyzed in section 3 are based on

the vectors of 0s and 1s that obtain after applying the ! function to individuals�deprivation

gap vectors, the aggregation step takes � as given and associates with a deprivation ma-

trix � an overall level of multidimensional poverty. The chosen aggregation method will be

denoted as A (section 4 presents and axiomatically characterizes several of such methods).

Borrowing notation from Alkire and Foster (2011:477), we de�ne a multidimensional poverty

methodology as the tuple (�;A).

2.1 The counting approach

The �counting approach identi�cation functions�can be written as the composite �k �ca, with

ca : X
d ! [0; 1] (4)

and

�k : [0; 1]! f0; 1g : (5)

For any x 2 Xd and any a 2 �d, the function ca is de�ned as ca(x) =
Pj=d

j=1 ajxj, that is: ca

computes the weighted proportion of deprivations experienced by someone with deprivation

9



Figure 1: Figure 1a (top), 1b (bottom). Two examples of identi�cation functions for the
partially ordered set (X4;�). The shaded circles in the top and bottom panels are the mem-
bers of P�1 and P�2 respectively. The �rst identi�cation function comes from the �unweighted
counting approach�using k = 1=2 as deprivation threshold (see equation (8)). The second one
comes from the �weighted counting approach�, using a1 = 1=2; a2 = 1=4; a3 = 1=8; a4 = 1=8
as weights and k = 3=4 as deprivation threshold (see equation (7)). The least deprived
pro�les for �1 and �2 (i.e. L(P�1) and L(P�2)) are highlighted in bold.
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pro�le x. Lastly, for any s 2 [0; 1] and for any k 2 (0; 1], �k is de�ned as

�k(s) =

8><>: 1 if s � k

0 if s < k

9>=>; : (6)

The �k � ca function takes a value of 1 whenever the weighted proportion of deprivations

attains a certain deprivation threshold k (which is exogenously given) and a value of 0

otherwise. With this notation, if one �xes any k 2 (0; 1] we can de�ne the following class of

identi�cation functions:

Wd(k) := f� 2 
d j �(x) = �k(ca(x)) for some a 2 �dg : (7)

This is the set of identi�cation functions belonging to the so-called �weighted count-

ing approach�with deprivation threshold k. The higher the value of k, the more di¢ cult

it is that an individual ends up being classi�ed as poor. When k � minj aj, a function

� 2 Wd(k) corresponds to the so-called �union approach�, and when k = 1, � 2 Wd(1) is

equivalent to the �intersection approach�. The Hasse diagrams shown in Figures 1a and 1b

illustrate examples of identi�cation functions � 2 Wd(k) for certain combinations of a and

k when d = 4. In Figure 1a, we have chosen a1 = a2 = a3 = a4 = 1=4 and k = 1=2

(representing �1) and in Figure 1b, a1 = 1=2; a2 = 1=4; a3 = 1=8; a4 = 1=8 and k = 3=4

(representing �2). When the weighting vector a turns out to weight all variables equally we

obtain the class

Cd(k) :=
�
� 2 
d j �(x) = �k(c1=d(x))

	
; (8)

which will be referred to as �unweighted counting approach�with deprivation threshold k.

Since both approaches use deprivation thresholds within variables (zj) and an overall thresh-

old k across them, they are generally known as the �dual cuto¤�identi�cation method �or,
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simply, the �counting approach�(see Alkire and Foster 2011). The sets

Wd : =
[

k2(0;1]

Wd(k) (9)

Cd : =
[

k2(0;1]

Cd(k) (10)

contain all weighted and unweighted counting identi�cation methods for d variables respec-

tively. Lastly, the sets W := fWdgd2N+nf1g and C := fCdgd2N+nf1g are the collection of all

weighted and unweighted counting identi�cation methods for all possible variables.

3. Identi�cation of the poor

In this section we present di¤erent families of identi�cation functions obtained after im-

posing increasingly demanding axioms on the elements of 
d. We start assuming that all

variables belong to the same dimension (the following subsection deals with the more gen-

eral case where variables are partitioned across several dimensions). Let Sd � 
d be a set of

identi�cation functions.

Non-triviality (NTR): � is a non-constant function for all � 2 Sd.

Monotonicity (MON): Let x;y 2 Xd. If x � y, then �(x) � �(y) for all � 2 Sd.

NTR prevents the identi�cation function being constant across all deprivation pro�les.

MON ensures that if individual A experiences deprivations at least in the same variables

as those where another individual B experiences deprivations, and possibly in others, then

A quali�es at least as much as B to be identi�ed as multidimensionally poor. Because of

their uncontroversial nature, we posit that the set of identi�cation functions satisfying these

two axioms should be the universe of reference from which identi�cation functions should

be drawn; it will be denoted as Id and referred to as the set of consistent identi�cation
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functions.8 The set I := fIdgd2N+nf1g is the collection of consistent identi�cation functions

for all possible sets of variables. The following result uniquely characterizes the elements of

I.

Proposition 1. For all d 2 N+nf1g; � 2 Id , (L (P�))" = P�.

Proof : See the appendix.

According to Proposition 1, the sets of �poor pro�les�P� derived from consistent identi�-

cation functions are uniquely characterized and represented by the corresponding subsets of

�least deprived elements�L (P�). When choosing a sensible set of poor pro�les P�, the sub-

sets L (P�) are particularly important because their elements determine the least deprived

conditions that individuals should experience in order to be considered as poor. Indeed,

the sets L (P�) can be thought as a generalization of the concept of a poverty line to the

multidimensional context (i.e. they determine the boundary separating the poor from the

non-poor: when x 2 L(P�) and y; z 2 Xd are such that y < x � z, then y 2 R� and z 2 P�).

The minimal structure imposed on consistent identi�cation functions makes ample room

to incorporate di¤erent criteria �many of which can be qualitative in nature �when deciding

who should be considered as multidimensionally poor. The downside of such �exibility is

that the set of consistent identi�cation functions can perhaps be too unwieldy for certain

practical purposes. Indeed, current approaches to multidimensional poverty measurement

have considerably reduced the class of admissible identi�cation functions by imposing a set

of axioms that, as we will now see, are quite restrictive.
8 The naming �consistent identi�cation functions�is reminiscent of the so-called �poverty consistency�prop-
erty introduced by Lasso de la Vega (2010) in the context of the counting approach (see section 2.1). In that
paper an identi�cation function is �poverty consistent�if, when identifying a person with a deprivation score
equal to s as poor, it also considers as poor anybody whose deprivation score count is at least as high as s.
Clearly, the consistency condition proposed here is more general than the �poverty consistency�property in
that the former applies to any identi�cation function, not just those relying on scores.
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Variable Anonymity (VAN): For any i; j 2 f1; : : : ; dg; �(ei) = �(ej) for all � 2 Sd.

Independence (IND): Let x;y 2 Xd be two deprivation pro�les such that for some variable

i 2 f1; : : : ; dg; xi = yi: Let x0;y0 2 Xd be two other deprivation pro�les such that xj = x0j

and yj = y0j for j 6= i and x0i = y0i. Then �(x) � �(y) implies �(x0) � �(y0) for all � 2 Sd.

VAN requires all variables to be treated symmetrically. IND is a classical separability

assumption ensuring that the removal or addition of the same deprivation from two depri-

vation pro�les should preserve the weak ordering among them. With these two additional

axioms we can present the following result.

Theorem 1: Let Sd � 
d. The identi�cation functions � 2 Sd satisfy MON, NTR, VAN

and IND if and only if Sd = Cd.

Proof : See the appendix.

Theorem 1 is inspired by the seminal work of Pattanaik and Xu (1990) in the �eld of

freedom of choice measurement. Whenever one is willing to accept the four aforementioned

axioms simultaneously, the unweighted counting approach obtains. When it comes to char-

acterize the weighted counting approachWd one would be tempted to simply drop the VAN

axiom from the list. Yet, it turns out that IND is not powerful enough, so it needs to be

strengthened. For our next axiom, we need the following de�nition.

De�nition 2: Consider two hypothetical societies, each with m > 1 individuals, with

deprivation pro�les (x1; : : : ;xm), (y1; : : : ;ym). We say that these two societies are equivalent

if for each variable j 2 f1; : : : ; dg the number of individuals that are deprived in that variable

is the same in both societies, that is:
Pi=m

i=1 xij =
Pi=m

i=1 yij for all j 2 f1; : : : ; dg:

14



Compensation (COM): Consider two equivalent societies with deprivation pro�les (x1; : : : ;xm)

and (y1; : : : ;ym). Assume that �(x1) � �(y1); : : : ; �(xm�1) � �(ym�1) for all � 2 Sd. Then,

one must have that �(xm) � �(ym) for all � 2 Sd.

COM states that in two equivalent societies, it is not possible that all individuals in

one of them qualify at least as much as the others to be identi�ed as multidimensionally

poor. That is: it is not possible to match the individuals of these equivalent societies in

such a way that each individual of the former is ranked at least as high as the corresponding

individual of the latter with some of these rankings being strict. It is easy to show that

COM imposes separability across variables �indeed, COM can be seen as a stronger version

of classical independence axioms usually employed in welfare analysis (see, for instance,

Blackorby, Primont and Russell 1978): if COM holds for a given Sd � 
d, then IND holds as

well for all � 2 Sd; however, the opposite is not necessarily true (the proof of this statement

is shown in the Appendix before the proof of Theorem 2).9

Theorem 2: Let Sd � 
d. The identi�cation functions � 2 Sd satisfy MON, COM and

NTR if and only if Sd =Wd.

Proof : See the appendix.

With the last axioms the class of consistent identi�cation functions has been narrowed

down considerably to obtain Wd and Cd, the state-of-the art methodologies that are mas-

sively used in practice to identify the multidimensionally poor. However, such simpli�cation

comes at a cost: while NTR and MON are indisputable, VAN, IND and COM are con-

tentious. VAN is not very meaningful when some variables are much more relevant than

9 In the context of �nite sets it turns out that Independence axioms are not strong enough to guarantee the
additive representations we are looking for �as opposed to what happens in continuous settings with richer
structures (see, Fishburn 1970 and Blackorby, Primont and Russell 1978).
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others, while IND and COM impose full separability across all variables and treat them as

if they were, so-to-speak, mutually orthogonal. These axioms are responsible for the exceed-

ingly uniform way in which all pairs of variables are treated, irrespective of whether they

might be complements or substitutes. Such quantitatively-driven approach can be highly

unsatisfactory as it might fail to identify the poor in those contexts where the di¤erent vari-

ables we are dealing with are partitioned across several dimensions and where there might

be non-trivial compensation patterns between and within them (see examples 1 and 2 in

the introduction). In the following section we address these issues by proposing another

subclass of consistent identi�cation functions that does not satisfy the overly restrictive IND

and COM axioms.

3.1 Identi�cation in multiple dimensions

Suppose now that the set of variables D is partitioned in G dimensions (G being a natural

number strictly greater than one). Such exogenously given partition in thematic areas is

naturally derived from the index�s design and is unlikely to generate much controversy. Let

	G denote the set of partitions of D into G dimensions D1; : : : ; DG where at least two dimen-

sions contain at least two variables10 and let dg := jDgj. Clearly, d =
P

g dg. Given any such

partition there is a one-to-one correspondence between Xd and Xd1 � : : :�XdG, so any de-

privation pro�le x = (x1; : : : ; xd) 2 Xd can be uniquely associated with (x1; : : : ;xg; : : : ;xG),

where xg = (xg1; : : : ; xgdg) 2 Xdg and xgv 2 f0; 1g indicates the deprivation status in variable

v within dimension g.

De�nition 3: Let Sd � 
d be a set of identi�cation functions belonging to a collection

fSjgj2N+nf1g and let  2 	G. We de�ne the two-stage identi�cation functions associated
10This excludes trivial partitions in which each dimension is composed of one variable only and forces d � 4.
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with the pair (Sd; fSjgj2N+nf1g) as the set

S d :=
�
� 2 
d j �(x) = �b(�w1 (x1); : : : ; �

w
G(xG)); with �

b 2 SG; �wg 2 Sdg8g 2 f1; : : : ; Gg
	
:

(11)

The members of S d are identi�cation functions constructed in two steps. Initially, the

functions �wg : X
dg ! f0; 1g decide about the deprivation status in each dimension and

secondly, overall deprivation across dimensions is assessed via �b : XG ! f0; 1g. These

functions �all of which belong to the collection fSjgj2N+nf1g �are referred to as within- and

across-dimension identi�cation functions respectively. The superscript  is used to indicate

the dependence of the two-stage identi�cation functions on the choice of the partition of D

intoG dimensionsD1; : : : ; DG. Hence, C d (resp. W
 
d ; I

 
d ) is the set of two-stage identi�cation

functions for d variables whereby both the within- and across-dimension identi�cation func-

tions belong to the unweighted counting approach C (resp. the weighted counting approach

W, consistent identi�cation functions I).

The identi�cation functions verbally described in Examples 1 and 2 (see Introduction)

are members of C d . In those examples, we have four variables partitioned in two dimensions

(i.e. d = 4; G = 2) and  2 	2 is the partition that groups the �rst two variables (V1; V2)

in the �rst dimension (D1) and the last two (V3; V4) in the second one (D2). In Example

1, both within-dimension identi�cation functions are based on the intersection approach,

that is: individuals have to be deprived in both variables within the same dimension to be

considered as deprived in that dimension. Afterwards, the across-dimension identi�cation

function is based on the union approach, i.e. whenever individuals are deprived in any of

the two dimensions, they are considered to be multidimensionally poor. In Example 2, both

within-dimension identi�cation functions are based on the union approach and the across-

dimension identi�cation function is based on the intersection approach. In general, if there
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are good reasons to believe that the relationships between pairs of variables di¤er within

and across dimensions, two-stage identi�cation functions can a priori be more appropriate

than counting approaches. The following result highlights the key di¤erence between them.

Proposition 2: Let  2 	G. One has that C d ;W
 
d and I

 
d satisfy NTR and MON, but

none of them satisfy COM.

Proof : See the appendix.

The �rst part of proposition 2 ensures that, whenever Sd 2 fCd;Wd; Idg, the two-stage

identi�cation functions in S d satisfy the minimal consistency requirements (i.e. they satisfy

NTR and MON, so S d � Id). The second one fundamentally di¤erentiates S d from the

weighted counting approach W. Since any set of identi�cation functions satisfying NTR,

MON and COM must correspond to the weighted counting approach (see Theorem 2),

the failure of C d ;W
 
d and I

 
d to satisfy COM ensures that none of those sets of two-stage

identi�cation functions coincides with W. Stated otherwise: no matter what weighting

scheme and deprivation threshold we choose, the weighted counting approach is unable to

generate the sets of two-stage identi�cation functions C d ;W
 
d and I

 
d . Hence, no matter what

weighting scheme and deprivation threshold we choose, the weighted counting approach will

not be able to generate the two-stage identi�cation functions shown in Examples 1 and 2.

Since Id � Wd � Cd, it is straightforwad to check that I d � W
 
d � C

 
d for any  2 	G.

In addition, when the partition  is trivial (G = 1) the multiple dimensions approach reduces

to the classical single-dimensional case. This way, we have generated a new set of consistent

identi�cation functions that does not comply with the COM axiom and makes room to

model non-trivial compensation patterns that might exist between and within dimensions �
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thus considerably enlarging the toolkit available to those practitioners aiming at measuring

multidimensional poverty.

4. Aggregation of the poor

So far we have been discussing how the partition of variables in di¤erent dimensions a¤ects

the identi�cation of the poor. We are now going to explore its implications for the �agre-

gation step�. As is standard in the literature, we take a certain identi�cation function � as

exogenously given and propose di¤erent ways to summarize the extent of poverty among the

poor with a single real number (i.e. we suggest di¤erent aggregation methods A). For that

purpose we introduce the following notation. Let GSn�d denote the set of n�d deprivation ma-

trices whose rows are the same. For a given deprivation gap vector  2 G1�d, let [] 2 GSn�d

denote the n � d deprivation matrix whose rows are equal to . A family of multivariate

poverty indices f : G ! R is a set of non trivial functions ffdgd2N where each function fd

converts an element from the space of deprivation matrices � 2 Gn�d into a real number

fd(�) indicating the extent of poverty in the corresponding distribution. In this section we

present some basic properties one might want to impose on a family of multivariate poverty

indices f : G ! R to characterize it axiomatically. We begin with the one-dimensional case

(i.e. all variables belong to the same dimension) and then proceed to the multidimensional

case in the next subsection. Our axioms and results are designed for the cardinal case (i.e.

all variables are assumed to be measurable in a cardinal scale).

Subgroup Decomposability (SDC): Let �1 2 Gn1�d; : : : ;�m 2 Gnm�d be a list of deprivation

matrices form disjoint subpopulations. Then, for all d 2 N, poverty on the overall population

can be written as fd(�1 [ : : : [ �m) =
P

l
nl
n
fd(�l), where n =

P
l nl.

Monotonicity in aggregation (MOA): For all A = (aij); B = (bij) 2 Gn�d, if A 6= B and
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aij � bij for all i 2 f1; : : : ; ng and all j 2 f1; : : : ; dg, then fd(A) � fd(B) for all d 2 N.

Normalization (NRM): Consider � = (ij) 2 Gn�d. If ij = 0 for all i 2 f1; : : : ; ng and

all j 2 f1; : : : ; dg, then fd(�) = 0 for all d 2 N. If ij = 1 for all i 2 f1; : : : ; ng and all

j 2 f1; : : : ; dg, then fd(�) = 1 for all d 2 N.

Separability (SEP): Let ; � 2 [0; 1]d be two deprivation gap vectors such that for some

variable j 2 f1; : : : ; dg; j = �j: Let  0; �
0 2 [0; 1]d be two other deprivation gap vectors

such that l = 0l and �l = �0l for l 6= j and 0j = �0j. Then fd([]) � fd([�]) implies

fd([
0]) � fd([�

0]) for all d 2 N.

Homogeneity (HMG): For any � 2 Gn�d and any � 2 (0; 1] one has that fd(��) =

�fd(�) for all d 2 N, where �� is the ��scaling of �.

Homotheticity (HMT): For any �1;�2 2 Gn�d and any � 2 (0; 1] one has that fd(�1) �

fd(�2) , fd(��1) � fd(��2) for all d 2 N, where ��1; ��2 are the deprivation matrices

�1;�2 with all their elements scaled by �:

Continuity (CON): For all d 2 N, fd is a continuous function in its arguments.

SDC allows identifying subgroups where poverty is particularly high and evaluating their

contribution to overall poverty levels. Indeed, it is such an intuitive and useful property

that it has been imposed on all multivariate poverty indices presented in the literature so

far. One of the consequences of SDC is that overall poverty can be written as the arithmetic

mean of individual poverty levels, thus ensuring that our aggregation method is consistent

with the principle of anonymity (i.e. overall poverty does not depend on the identity of

the individuals experiencing deprivations). MOA ensures that if the deprivation felt by any

individual in any attribute increases, assuming the rest of deprivations do not decrease,
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then overall deprivation should increase. Formally, this axiom is the equivalent of MON

adapted to the �aggregation framework�. NRM establishes that when nobody is deprived in

any variable, then poverty should be equal to zero. In addition, if all individuals are fully

deprived in all variables, NRM stipulates that poverty should reach its maximal value of one.

According to SEP the poverty ranking between two deprivation gap vectors only depends

on the set of variables where their values do not coincide, irrespective of what happens in

the ones where they coincide. Following Blackorby et al (1978), SEP stipulates that each

variable is separable from its complement. HMG ensures that when all deprivation gaps are

scaled by a proportionality factor, overall deprivation is scaled by the same factor. HMT is

a weaker version of HMG and ensures that the weak poverty ordering between two societies

does not change when all deprivations are scaled by the same proportionality factor. Clearly,

Homogeneity implies Homotheticity, but not the other way around. Since both HMG and

HMT are very standard in the literature, we have used them both to show the di¤erence it

makes to impose the one or the other to our poverty measures. Lastly, CON requires that

small changes in the deprivations of individuals produce small changes in the corresponding

poverty measures (i.e. poverty levels do not change abruptly when individuals�deprivations

are slightly altered). This property ensures that poverty levels will not be dramatically

a¤ected by small measurement errors in the data.

Theorem 3: Assume we identify the set of poor individuals (Q�) via the identi�cation

function � 2 Id. A family of multivariate poverty indices f = ffdgd2N satis�es SDC, MOA,

NRM, SEP, HMG and CON if and only if, for each � 2 Gn�d, fd(�) can be written as

�� :=
1

n

X
i2Q�

 
dX
j=1

aj(ij)
�

!1=�
; (12)

for all d 2 N, where � > 0; aj > 08j 2 f1; : : : ; dg and
P

j aj = 1.
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Proof : See the appendix.

The family of multivariate poverty indices shown in (12) measures individuals�poverty

levels averaging the corresponding deprivation gaps vector i using a weighted generalized

mean of order �.11 Clearly, when � = 1,�� corresponds to the class of poverty measures

M� suggested by Alkire and Foster (2011) when � = c. In addition, (12) can also be seen

as a member of some of the multidimensional poverty indices proposed by Bourguignon and

Chakravarty (2003). While the previous two measures were originally de�ned under the

assumption that the poor are identi�ed via the counting and the union approach, respec-

tively, the new measure shown in (12) broadens the class of admissible poverty measures

incorporating the more general identi�cation functions embodied in � 2 Id. The choice of �

allows modelling di¤erent elasticities of substitution between pairs of deprivation gaps: when

� = 1 there is perfect substitutability and when � ! 1 there is perfect complementarity.

As highlighted by Bourguignon and Chakravarty (2003:40), such elasticity of substitution is

the same across all pairs of deprivations, a restriction that often might not be very realistic.

Inspecting the axiomatic characterization shown in Theorem 3, it is clear that SEP �which

treats all dimensions as if they were mutually orthogonal �is responsible for this state of

a¤airs. In the following subsection, we introduce other axioms allowing more �exibility in

this regard.

When homogeneity (HMG) is substituted by homotheticity (HMT), it is easy to show

that the functional form of the multivariate poverty indices characterized in Theorem 3 can

11The class of weighted generalized means is well-known and has been widely used in welfare analysis. Higher
values of � give more importance to the upper tails of the distribution and vice versa. In the limit, as � !1
(resp. � ! �1) the generalized mean converges towards the maximum (resp. minimum) of the distribution.

22



be written as

1

n

X
i2Q�

 
dX
j=1

aj(ij)
�

!�=�

; (13)

where � > 0 (result not shown here but available upon request). This functional form

coincides with some of the measures proposed by Bourguignon and Chakravarty (2003). In

addition, when � = 1 and � > 1, the aggregation function shown in (13) coincides with the

one used in the �distribution-sensitive�measures proposed by Datt (2017) and by Pattanaik

and Xu (2018).12 As discussed in those papers, equation (13) can be sensitive to the extent

of inequality in the distribution of deprivations depending on the values of �. The use of

HMT enlarges the class of admissible indices characterized by Theorem 3 at the cost of

introducing some extra complexity in the interpretation of our poverty measures.

4.1 Aggregation in multiple dimensions

We now assume that the set of variables D is partitioned in G � 1 dimensions (i.e. D =F
gDg), with each dimensionDg containing dg variables (

P
g dg = d). We relabel individual�s

i deprivation gaps vector i = (i1; : : : ; id) to identify the speci�c dimensions where the

di¤erent deprivations belong to. Given the one-to-one correspondence between [0; 1]d and

[0; 1]d1�: : :�[0; 1]dG we can rewrite i as (i1; : : : ;ig; : : : ;iG), where ig = (ig1; : : : ; igdg)

is the vector of deprivation gaps in dimension Dg for each g 2 f1; : : : ; Gg. Hence igv is

individual�s i deprivation gap in variable v belonging to dimension g. When no confusion

arises, we might omit the label i when it is not necessary. For any g 2 f1; : : : ; Gg, let

[0; 1]dg := f(1; : : : ;G) 2 [0; 1]d1 � : : :� [0; 1]dG j j = 08j 6= gg: (14)

12Yet, these two measures and the one shown in (13) di¤er in the identi�cation function they use to select the
members of Q�. While Datt (2017) uses the union approach to identify the poor, Pattanaik and Xu (2018)
propose a novel identi�cation function based on individuals�weighted sum of deprivation gaps

P
j ajij

(rather than the traditional weighted proportion of deprivations
P

j aj!(ij) used in the counting approach).
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This is the set of deprivation gap vectors for those individuals who only experience depriva-

tions within dimension g. Given any partition (D1; : : : ; DG) of D, let

[0; 1]dE := f(1; : : : ;G) 2 [0; 1]d1 � : : :� [0; 1]dG j gu = gv8u 6= v; 8gg: (15)

This is the set of deprivation gap vectors whose components are constant within each di-

mension. Lastly, observe that any deprivation gap matrix � 2 Gn�d can be obtained after

appending di¤erent �g 2 Gn�dg (one per dimension), so that � = (�1j : : : j�G). In order to

generalize the family of multivariate poverty indices shown in Theorem 3 to the multidimen-

sional context, we introduce the following axioms.

Within Dimension Separability (WDS): Let (D1; : : : ; DG) be any partition of D in G � 1

dimensions. Consider any dimension g 2 f1; : : : ; Gg and let ; � 2 [0; 1]dg be two deprivation

gap vectors such that for some variable v 2 f1; : : : ; dgg; gv = �gv. Let  0; �
0 2 [0; 1]dg be two

other deprivation gap vectors such that gu = 0gu and �gu = �0gu for u 6= v and 0gv = �0gv.

Then fd([]) � fd([�]) implies fd([ 0]) � fd([�
0]) for all d 2 N.

Between Dimension Separability (BDS): Let (D1; : : : ; DG) be any partition of D in G � 1

dimensions. Let r; s 2 [0; 1]dE be two deprivation gap vectors such that rg = sg for some

dimension g 2 f1; : : : ; Gg. Let r0; s0 2 [0; 1]dE be two other deprivation gap vectors such that

r0j = rj and s
0
j = sj for j 6= g and r0g = s

0
g. Then fd([r]) � fd([s]) implies fd([r0]) � fd([s

0])

for all d 2 N.

WDS stipulates that the poverty ranking between two individuals who are only deprived

in dimension g just depends on the set of variables where their values di¤er, irrespective of

what happens with the ones where they coincide. In other words, it requires that any variable

should be separable from its complement within the same dimension only. In this respect,
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WDS is much weaker than SEP (the latter requiring any variable to be separable from all

other variables irrespective of the dimension they belong to). Indeed, SEP can be seen as a

particular case of WDS when G = 1. Likewise, BDS requires the di¤erent dimensions to be

separable from each other. Interestingly, SEP can also be seen as a particular case of BDS

when G = d (each variable constitutes one dimension).

Theorem 4: Assume we identify the set of poor individuals (Q�) via the identi�cation

function � 2 Id. Let (D1; : : : ; DG) be any partition of D in G � 1 dimensions. A family

of multidimensional poverty indices f = ffdgd2N satis�es SDC, MOA, NRM, FOC, HMG,

CON, WDS and BDS if and only if, for each � 2 Gn�d, fd(�) can be written as

�G� :=
1

n

X
i2Q�

0@ GX
g=1

ag�

"
dgX
v=1

wgv(igv)
�g

#�=�g1A1=�

; (16)

for all d 2 N, where � = (�; �1; : : : ; �G) 2 RG+1++ ; agv > 08g 2 f1; : : : ; Gg;8v 2 f1; : : : ; dgg; ag� :=Pv=dg
v=1 agv; wgv := agv=ag� and

P
g

P
v agv = 1.

Proof : See the appendix.

4.2 Implications and remarks

Remark 1. The family of multidimensional poverty indices characterized in Theorem 4

satis�es the following identity: fd(�) = fG(fd1(�1); :::; fdG(�G)), where each �g 2 Gn�dg

is the restriction of � to dimension g 2 f1; : : : ; Gg. Stated otherwise: fd(�) is a mean of

means, where deprivations are averaged within dimensions �rst and then averaged across

dimensions. This way of aggregating deprivation gap vectors can be seen as a particular

example of the following �more general �aggregation method. Assume there exist functions

� : [0; 1]G ! [0; 1] and 'g : [0; 1]
dg ! [0; 1] for each g 2 f1; : : : ; Gg so that individual i�s

poverty level can be measured as �
�
'1(i11; : : : ; i1d1); : : : ; 'G(iG1; : : : ; iGdG)

�
. For obvious
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reasons, we call this the dimension-�rst two-stage aggregation method, and leave its more

complete exploration for future research.

Remark 2: When homogeneity (HMG) is substituted by homotheticity (HMT), it is

easy to show that the functional form of the multivariate poverty indices characterized in

Theorem 4 can be written as

1

n

X
i2Q(P�)

0@ GX
g=1

ag�

"
dgX
v=1

wgv(igv)
�g

#�1�=�g1A�2=�

; (17)

where �1; �2 > 0 (result not shown here but available upon request). Hence, relaxing

the somewhat restrictive HMG by HMT, we enlarge the class of admissible dimension-�rst

two-stage aggregation methods we can use to measure multidimensional poverty. Yet, such

increased �exibility is gained at the cost of complicating the interpretation of these measures.

Since the more complicated functional forms shown in (17) are not strictly necessary for the

purposes of this paper, in the rest of this section we stick to their simpler version shown in

(16).

Remark 3: What happens in the ordinal setting where the deprivation gaps are dichoto-

mous (i.e. c = 0 in equation (1))? In that case, CON, HMG and HMT are not well-de�ned.

In addition, the proofs of Theorems 3 and 4 rely on the fact that the deprivation gaps ij

can take any real value in [0; 1] (see Appendix). Hence, these two theorems do not apply

and their ordinal scale versions should await further research.13

Remark 4: An important characteristic of multidimensional poverty measures is their

sensitivity to correlation increasing switches14 . As discussed in Bourguignon and Chakravarty
13Yet, the lack of axiomatic characterization should not necessarily preclude the use of �� or �G� in empirical
applications where the variables one is dealing with are ordinal. Indeed, the M0 index suggested by Alkire
and Foster (2011) for the ordinal setting is not axiomatically characterized but is massively employed in
practice.
14
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(2003:35), these measures might increase or decrease after correlation increasing switches

depending on whether the attributes we are taking into consideration are complements or

substitutes.15 Unfortunately, currently existing measures assume that all pairs of variables

are either complements or substitutes �an assumption that might not necessarily hold. The

poverty measure �G� shown in (16) makes room for the possibility of having pairs of vari-

ables that are complements or substitutes depending on whether they belong to the same

or alternative dimensions (see proposition 3 below). Clearly, when G = 1, equation (16)

reduces to equation (12). The new poverty measure depends on parameter � (governing

the complementarity or substitutability across dimensions) and the di¤erent �g (govern-

ing the complementarity or substitutability between variables within dimension Dg). As

is clear, whenever � = �1 = : : : = �G the �G�dimensional measure��G� is equivalent to

the �1�dimensional measure�shown in equation (12), so all pairs of deprivations have the

same elasticity of substitution. However, when one departs from that trivial case the levels

of complementarity / substitutability between deprivations in the poverty measure �G� can

vary across dimensions. Following Bourguignon and Chakravarty (2003:35), it is trivial to

check that when using �G� , poverty does not decrease (resp. increase) after a correlation

increasing switch whenever the concerned variables satisfy the conditions of substitutability

(resp. complementarity) stated in the following proposition.

Proposition 3: Consider the multidimensional poverty measure �G� . (i) For any dimen-

sion Dg (g 2 f1; : : : ; Gg), two variables u; v belonging to that dimension (i.e: u; v 2 Dg)

Consider a scenario with two individuals a; b and two variables u; v, where a has more of u but less of
v.than b. A �correlation increasing switch�occurs when we interchange the amounts of attribute v between
the two persons. After such change, the marginal distributions are unchanged but a has more of u and v
than b:
15In this paper we use the standard ALEP de�nition of complementarity / substitutability (see Kannai
(1980)). That is: when the cross partial derivative of the individual poverty function is positive (resp.
negative), the attributes are considered complements (resp. substitutes).
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are complements whenever �g < minf1; �g: On the other hand, the same two variables are

substitutes whenever �g > maxf1; �g. (ii) Assume now the two variables u; v belong to

di¤erent dimensions Dg; Dh (g; h 2 f1; : : : ; Gg). Then u; v are complements whenever � < 1

and substitutes when � > 1.

Proof: See the Appendix.

Remark 5: Following Sen (1976) and the ensuing literature on poverty measurement,

the multidimensional poverty methodologies proposed in this paper have two separate parts:

the identi�cation step (�) and the aggregation step (A). It is only after identifying who

is poor and who is not that one proceeds to summarize the extent of poverty among the

poor into a single number. While this sequential approach does not generate any problem

for �traditional�income poverty measures, in the multidimensional context it can potentially

create di¤erent kinds of inconsistencies. One of them might arise because of the lack of

coherence between the identi�cation and aggregation steps �which in this paper have been

characterized independently. While this independence gives ample room to generate identi-

�cation and aggregation functions in highly �exible ways, it could eventually lead to some

kind of mismatch between them.16

The other undesirable consequence of de�ning � and A separately is that whenever the

identi�cation of the poor � is not performed via the union approach, the multidimensional

poverty methodology (�;A) will fail to be continuous �even if the aggregation methods A

proposed in (12), (13), (16) and (17) use continuous functions. Technically, such disconti-

nuities arise because when � does not correspond to the union approach, the deprivations of
16Yet, it is currently di¢ cult to ascertain whether identi�cation and aggregation functions treat the com-
plementarity / substitutability among variables in a truly coherent way. While it is clear that the ALEP
criterion can be used for aggregation functions, we are not aware of any analogous method that can be
implemented in the discrete setting of identi�cation functions �an important topic that should be explored
in future research.
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the non-poor are censored �an issue that currently a¤ects virtually all the multidimensional

poverty methodologies using the dual cuto¤ method proposed by Alkire and Foster (2011)

and the consistent identi�cation functions proposed in this paper. This problem and its

implications have been discussed at length by Datt (2017) and Pattanaik and Xu (2018).

While Datt (2017) suggests to use the union approach to avoid such discontinuities and other

distributive-related problems, Pattanaik and Xu (2018) suggest a novel method in which the

identi�cation of the poor is based on the weighted sum of deprivation gaps (rather than the

weighted count of dichotomous deprivations that is customary in the counting approach �

see footnote #12). This identi�cation method �which seems to dilute the hitherto crisp

boundaries between the identi�cation and aggregation steps �o¤ers an interesting avenue

of research that should be explored in the near future.

5. Discussion and conclusion

This paper addresses one of the most fundamental challenges that are still pending in the

measurement of multidimensional poverty: the modeling of non-trivial relational structures

across variables. As opposed to currently existing methods �which assume that all pairs

of variables are either complements or substitutes and that the elasticity of substitution

is constant across them �our approach o¤ers the possibility to �exibly model the tradeo¤

complexities and subtleties involved in poverty measurement. The fact that some pairs of

poverty indicators are complements while others are substitutes can have crucial implications

both when identifying the poor and when aggregating their poverty levels. The techniques

presented in this paper allow, for the �rst time, to take these considerations into account both

in the identi�cation and aggregation steps. This is accomplished by generalizing and going

beyond the �deprivation count distributions�or �counting methods��whereby individuals�
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multidimensional poverty status and depth of poverty are assessed on the basis of the amount

of variables in which these individuals are deprived �that pervade current approaches to

multidimensional poverty measurement (see Atkinson 2003, Bourguignon and Chakravarty

2003, Alkire and Foster 2011, Silber and Yalonetzky 2014, Aaberge and Brandolini 2015).

The new identi�cation and aggregation methods proposed here have been axiomatically

characterized to �esh out the normative foundations upon which they are based.

Our approach is very general and includes most of the currently existing multidimensional

poverty methodologies proposed in the literature as particular cases. Inter alia, it includes

the counting approach suggested by Alkire and Foster (2011) that is massively used in

empirical applications (like, for instance, in the United Nations�Multidimensional Poverty

Index). Among the multidimensional poverty methodologies that are not covered by the

techniques proposed in this paper, it is worth highlighting the �dual approach�proposed by

Aaberge et al (2015). Using a social evaluation function that applies a certain distortion

to the CDF of the deprivation count across the population, the dual approach is a �exible

method that explicitly takes into consideration the complementarity / substitutability among

attributes in the aggregation step. Yet, like all other aggregation methodologies proposed

in the literature so far, the dual approach assumes that all pairs of attributes are either

complements or substitutes.

All modeling exercises face inescapable trade-o¤s between parsimony and realism. In

this regard, the two-stage identi�cation and aggregation methods introduced in this paper

lie between two extremes: (i) extreme parsimony, in which the relational structure between

variables is simply ignored, and (ii) extreme realism, in which one attempts to model the

association between all variable pairs (d(d�1)=2). While the former approach (which repre-

sents the current state of a¤airs) is excessively rough, the latter quickly becomes statistically
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intractable as the number of variables increases. Alternatively, the two-stage approach sug-

gested here is �exible enough to capture important aspects of the relational structure between

variables without falling prey of statistical over-sophistication.

The tools proposed here have a vast potential for empirical applications in a wide variety

of settings, ranging from microeconomic theory to development economics. Among others,

they allow analysts to model multidimensional poverty more realistically but face them with

questions that are more di¢ cult to answer (e.g. ¿How to choose the identi�cation functions

� 2 Id?, ¿How to determine the degree of complementarity / substitutability across and

within dimensions?). The answer to these questions is highly context-speci�c and is likely to

require econometric callibrating models to estimate the values of the parameters governing

the trade-o¤s within and across dimensions.

To the extent that the success of micro level anti-poverty programs depends on targeting

the right individuals and properly assessing their deprivation levels, and that current inter-

national cooperation, development and aid programs are guided by the macro level results

derived from the corresponding measures, the issues analyzed in this paper have practical

and �nancial implications for the design of e¤ective poverty eradication strategies. Having

recently reached the Millennium Development Goals (MDGs) target year, many scholars

and policy-makers are currently engaged in an intense debate about what kind of headline

poverty indicator should be the most appropriate to guide poverty eradication strategies in

the post-2015 global development agenda. Like its predecessor, the �rst of the so-called Sus-

tainable Development Goals (the SDGs) aims to �End Poverty in all its forms everywhere�.

This is a good moment to take stock and re�ect before uncritically extending use of the

counting approach. Other procedures, such as the ones suggested here, exist to identify

recipients and assess their poverty levels under one of the greatest international endeavours
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of our time to eradicate poverty.

6. Appendix

Proof of Proposition 1: We start with the �if�part of the proof. Assume that � 2 Id. We

have to prove that (L (P�))" = P�.

1) We start proving (L (P�))" � P�. Take x 2 (L (P�))". Then, there exists some

z 2 L (P�) such that z � x (if x 2 L (P�), then z = x). Since L (P�) � P�, z 2 P�. In

addition, since x 2 z" and � 2 Id, one can conclude that x 2 P�.

2) We now prove (L (P�))" � P�. Take x 2 P�. If it turns out that x 2 L (P�) then

we are done. If x =2 L (P�) then there must exist some y 2 P�nfxg such that y � x.

Now, if y 2 L (P�) � P� then x 2 y". Since � 2 Id, one can conclude that x 2 (L (P�))".

Otherwise, if y =2 L (P�) then we can proceed iteratively until reaching an element belonging

to L (P�). That is: since Xd is �nite (
��Xd

�� = 2d) there must exist a �nite sequence of vector
dominations zi � zi+1 from some element z1 2 L (P�) up to x (i.e.: z1 � z2 : : : � zn � x),

so that x 2 z1". Since � 2 Id, one can conclude that x 2 (L (P�))".

This proves the �if�part of the proposition. The �only if�part of the proof goes as follows.

Assume P� is a subset of Xd such that (L (P�))" = P�. We have to prove that � 2 Id. Take

any x 2 P�. Since (L (P�))" = P� we can say that x 2 z" for some z 2 L (P�). Consider

now any y 2 x". By the transitivity of � one has that y 2 z". Since (L (P�))" = P�, we can

conclude that y 2 P�.

Q.E.D.

Proof of Theorem 1: It is easy to verify that when Sd = Cd, then any � 2 S satis�es

MON, IND, VAN and NTR. Therefore, we will prove that when a group of identi�cation
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functions Sd � 
d satis�es these four axioms then it must be equal to Cd.

We will �rst prove the following auxiliary lemma:

Auxiliary Lemma 1: Whenever IND and VAN hold for some � 2 Sd � 
d, then, one

has that jxj = jyj ) �(x) = �(y) for all x;y 2 Xd and all � 2 Sd.

Let � 2 Sd and let m > 1 be an integer for which jxj = jyj entails �(x) = �(y) for all

x;y 2 Xd such that jxj = jyj < m. We will now prove the result also holds true whenever

jxj = jyj = m. Let x;y 2 Xd be two vectors with jxj = jyj = m. There are now two

mutually exclusive cases.

Case 1. Assume there exists a variable j 2 f1; : : : ; dg such that xj = yj = 1. Consider

the vectors x� ej;y� ej. Since jx� ejj = jy � ejj = m� 1 < m, the induction hypothesis

holds, so �(x� ej) = �(y � ej). Now, by IND one has that �(x) = �(y), as desired.

Case 2. Assume there does not exist any variable j 2 f1; : : : ; dg such that xj = yj = 1.

Consider two di¤erent variables j; l 2 f1; : : : ; dg such that xj = 0; yj = 1 and xl = 1; yl = 0.

Since jx� elj = jy � ejj = m � 1 < m, the induction hypothesis holds, so �(x � el) =

�(y � ej). Now, by IND one has that

�(x) = �(y � ej + el): (A1)

Observe that

ej = y �
[

i2�(y)nfjg

ei; (A2)

el = y �
[

i2�(y)nfjg

ei � ej + el (A3)

where �(y) := fi 2 f1; : : : ; dgjyi = 1g is the subset of variables in pro�le y where yi = 1.

By VAN, one has that �(ej) = �(el). Applying now IND several times (once per variable
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i 2 �(y)nfjg), one can conclude that

�(ej +
[

i2�(y)nfjg

ei) = �(el +
[

i2�(y)nfjg

ei) (A4)

By (A2) and (A3), (A4) can be rewritten as

�(y) = �(y � ej + el): (A5)

Comparing (A1) with (A5), we can conclude that �(x) = �(y), as desired. This proves

the auxiliary lemma 1.

Q.E.D.

Take now any two vectors x;y 2 Xd such that jxj � jyj. De�ne now w 2 Xd in such a

way that jwj = jyj and �(w) � �(x). By auxiliary lemma 1, one has �(w) = �(y). On the

other hand, by MON �(x) � �(w), so one can conclude that �(x) � �(y). This ensures that

� is a counting measure for all � 2 Sd.

Observe that NTR and MON imply that �(0) = 0 and �(1) = 1 (if �(0) = 1, then

�(x) = 1 for all x 2 Xd and if �b(1) = 0, then �b(x) = 0 for all x 2 Xd �in both cases

contradicting NTR). Lastly, by MON and NTR there must exist a k 2 f1; : : : ; dg such that

�(x) = 0 whenever jxj < k and �(x) = 1 whenever jxj � k. Therefore, � 2 Cd, as desired.

This proves Theorem 1.

Q.E.D.

Statement: If COM holds for a given Sd � 
d, then IND holds as well for all � 2 Sd;

however, the opposite is not necessarily true.

Proof of the statement: To verify this claim let�s start assuming that COM applies

for a certain set of identi�cation functions Sd � 
d. Consider now the deprivation vectors
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x;y;x0;y0 2 Xd as in the statement of IND. Then, it is trivial to verify that (x;y0) and

(y;x0) are equivalent societies (with m = 2). Imposing COM, one has that �(x) � �(y)

implies �(x0) � �(y0) for all � 2 Sd: this is precisely what IND states. On the other hand,

one can �nd in�nitely many examples of sets of identi�cation functions satisfying IND but

failing to satisfy COM. A very simple example for the case d = 3 can be Sd = f�0g, where

�0(x)=

8><>: 0 if
P

i xi < 2

1 if
P

i xi � 2

9>=>; : (A6)

It is trivial to check that Sd = f�0g satis�es IND. However, it does not satisfy COM. To

verify this, consider the following pair of three-person societies (x1;x2;x3) and (y1;y2;y3)

with x1 = (111);x2 = (101);x3 = (001);y1 = (101);y2 = (011);y3 = (101). Clearly, both

societies are equivalent (the number of individuals experiencing deprivation in each variable

coincides). However, we have that �0(x1) � �0(y1) and �0(x2) � �0(y2) for all � 2 Sd and

yet �0(x3) < �0(y3), thus contradicting COM.

Q.E.D.

Proof of Theorem 2: It is easy to verify that when Sd =Wd, then any � 2 Sd satis�es

MON, COM and NTR. Therefore, we will prove that when a group of identi�cation functions

Sd � 
d satis�es these three axioms then it must be equal to Wd(k) for some k 2 (0; 1].

Since (i) Xd is �nite, (ii) each � 2 Sd induces a complete ordering in Xd � Xd, and (iii)

COM holds for all � 2 Sd, the hypotheses of Theorem 4.1.B in Fishburn (1970) are satis�ed.

Therefore, for all x;y 2 Xd and for all � 2 Sd one has that

�(x) � �(y),
dX
j=1

uj(xj) �
dX
j=1

uj(yj) (A7)

for some real-valued functions u1; : : : ; ud on f0; 1g. One can rewrite the last expression
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as follows

�(x) � �(y),
dX
j=1

(uj(xj)� uj(0)) �
dX
j=1

(uj(yj)� uj(0)) (A8)

In turn, this expression can be rewritten as

�(x) � �(y),
dX
j=1

euj(xj) � dX
j=1

euj(yj) (A9)

where euj(xj) := uj(xj) � uj(0). Clearly, euj(0) = 0. If we de�ne wj := euj(1), (A9) can be
written as

�(x) � �(y),
dX
j=1

wjxj �
dX
j=1

wjyj (A10)

By MON, one must have that wj � 08j. This ensures that � is a counting measure for

all � 2 S. By MON and NTR, �(0) = 0 and �(1) = 1.17 Lastly, by MON and NTR there

must exist a real number q 2 (0;
P

iwi] such that �(x) = 0 whenever
Xd

j=1
wjxj < q and

�(x) = 1 whenever
Xd

j=1
wjxj � q. De�ning ai := wi=

P
iwi and k := q=

P
iwi we have

found a vector of weights a 2 �d and a deprivation threshold k 2 (0; 1] such that � 2 Wd,

as desired. This proves Theorem 2.

Q.E.D.

Proof of Proposition 2: It is straightforward to prove that if Sd 2 fId;Wd; Cdg then

S d satis�es NTR and MON. We will only show that S d does not satisfy COM. For that

purpose we need to prove an auxiliary lemma (see below). According to (11) C d is the

set of identi�cation functions for d variables where the unweighted counting approach is

used within- and between-dimensions (given  2 	G). To allow proper labelling, this set

will be rewritten as C d (k1; :::; kG; kb); where k1; :::; kG denote the domain speci�c deprivation
17If one had that �(0) = 1, then MON would imply that �(x) = 1 for all x 2 Xd, and if �(1) = 0, then
MON would imply �(x) = 0 for all x 2 Xd �in both cases contradicting NTR.
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thresholds and kb the between domain deprivation threshold. Within this set, de�ne

bC d := n� 2 C d (k1; :::; kG; kb) j kb < 1 and kgj � 2=dgj for at least two gj 2 f1; : : : ; Ggo ;
(A11)eC d := n� 2 C d (k1; :::; kG; kb) j kb = 1 and kgj < 1 for at least two gj 2 f1; : : : ; Ggo : (A12)

The set bC d contains identi�cation functions where poor individuals do not have to ex-
perience deprivation in all dimensions simultaneously and in some of them they must be

deprived in at least two variables. The set eC d contains identi�cation functions where poor
individuals have to experience deprivation in all dimensions simultaneously but where de-

privation needs not to be universal within at least two of these dimensions. The sets bC d andeC d are generalizations of Examples 1 and 2 to the multiple dimension context.
Auxiliary Lemma 2. bC d \Wd = ; and eC d \Wd = ;:

Proof of Auxiliary Lemma 2: In both cases we follow the same strategy: if � 2 bC d
or � 2 eC d we start assuming that there is a weighting scheme a 2 �d and a deprivation

threshold k such that � 2 Wd to arrive at a contradiction. Given the partition of D in G

dimensions (D1; : : : ; DG) 2 	G, we will denote the elements of the weighting vector a as agv,

where g 2 f1; : : : ; Gg indexes the member of the partition Dg to which the weight belongs

and v 2 f1; : : : ; dgg indexes the members within domain Dg. We can assume without loss of

generality that within each domain Dg the weights are sorted in a non-ascending order, i.e.:

agv � agv+1 for all g 2 f1; : : : ; Gg and all v 2 f1; : : : ; dg � 1g.

We start with bC d . Without loss of generality, we can assume that the two dimensions
g1; g2 2 f1; : : : ; Gg with kg1 � 2=dg1 and kg2 � 2=dg2 are g1 = 1 and g2 = 2. Since � 2 bC d ,
there exist �b 2 CG(kb) and �wg 2 Cdg(kg) such that �(x) = �b(�w1 (x1); : : : ; �

w
G(xG)). Let

Lb � XG be the set of least deprived pro�les in
�
�b
��1

(1) (i.e. if x 2 Lb and y 2 XG is
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such that y < x, then y 2
�
�b
��1

(0)). Consider u;u0 2 Lb. Without loss of generality

we will write them as u = (1 0 u3 : : : uG), u0 = (0 1 u3 : : : uG): By de�nition, the following

inequalities must hold:

a11 + a12 +

v=m1X
v=3

a1v +

v=m2X
v=3

a2v +
X

g2�(u3:::uG)

v=mgX
v=1

agv � k (A13)

a21 + a22 +

v=m1X
v=3

a1v +

v=m2X
v=3

a2v +
X

g2�(u3:::uG)

v=mgX
v=1

agv � k (A14)

where mg := bkgdgc and �(u3 : : : uG) := fgjug = 1g is the subset of elements in vector

(u3 : : : uG) where ug = 1. Consider now a third vector u00 = (0 0 u3 : : : uG): Since u;u0 2 Lb,

one has that u00 2
�
�b
��1

(0). This implies that the following inequalities must hold.

a11 +

v=m1X
v=3

a1v + a21 +

v=m2X
v=3

a2v +
X

g2�(u3:::uG)

v=mgX
v=1

agv < k (A15)

a11 +

v=m1X
v=3

a1v + a22 +

v=m2X
v=3

a2v +
X

g2�(u3:::uG)

v=mgX
v=1

agv < k (A16)

a12 +

v=m1X
v=3

a1v + a21 +

v=m2X
v=3

a2v +
X

g2�(u3:::uG)

v=mgX
v=1

agv < k (A17)

a12 +

v=m1X
v=3

a1v + a22 +

v=m2X
v=3

a2v +
X

g2�(u3:::uG)

v=mgX
v=1

agv < k (A18)

If one de�nes

k0 := k �

0@v=m1X
v=3

a1v +

v=m2X
v=3

a2v +
X

g2�(u3:::uG)

v=mgX
v=1

agv

1A (A19)

the inequalities (A13)-(A18) can be rewritten as8><>: a11 + a12 � k0;

a21 + a22 � k0;

a11 + a21 < k0;

a11 + a22 < k0;

a12 + a21 < k0;

a12 + a22 < k0:

9>=>; (A20)

It is trivial to show that the inequalities system shown in (A20) does not have feasible

solutions. In the �rst inequality of the system, either a11 or a12 must be greater or equal
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than k0=2. The same goes for a21; a22 in the second inequality of the system: at least one of

them must be greater or equal than k0=2. Picking the largest elements between a11; a12 and

a21; a22 and adding them up results in a number that is greater or equal than k0, therefore

contradicting at least one of the four last inequalities of the system. We have reached the

contradiction we were looking for.

Let us now consider case eC d . Without loss of generality, we can assume that the two
dimensions g1; g2 2 f1; : : : ; Gg with kg1 < 1 and kg2 < 1 are g1 = 1 and g2 = 2. Since

� 2 eC d , there exist �b 2 CG(1) and �wg 2 Cdg(kg) such that �(x) = �b(�w1 (x1); : : : ; �
w
G(xG)).

By de�nition, the following inequalities must hold:

a11 +

v=m1+1X
v=3

a1v + a21 +

v=m2+1X
v=3

a2v +

g=GX
g=3

v=mgX
v=1

agv � k (A21)

a11 +

v=m1+1X
v=3

a1v + a22 +

v=m2+1X
v=3

a2v +

g=GX
g=3

v=mgX
v=1

agv � k (A22)

a12 +

v=m1+1X
v=3

a1v + a21 +

v=m2+1X
v=3

a2v +

g=GX
g=3

v=mgX
v=1

agv � k (A23)

a12 +

v=m1+1X
v=3

a1v + a22 +

v=m2+1X
v=3

a2v +

g=GX
g=3

v=mgX
v=1

agv � k (A24)

where mg := bkgdgc. Consider now the following G�dimensional binary vectors: v = (1 0

1 : : : 1), v0 = (0 1 1 : : : 1): Since v;v0 2
�
�b
��1

(0), the following inequalities must hold:

a11 + a12 +

v=m1+1X
v=3

a1v +

v=m2+1X
v=3

a2v +

g=GX
g=3

v=mgX
v=1

agv < k (A25)

a21 + a22 +

v=m1+1X
v=3

a1v +

v=m2+1X
v=3

a2v +

g=GX
g=3

v=mgX
v=1

agv < k (A26)

De�ning

k0 := k �
 
v=m1+1X
v=3

a1v +

v=m2+1X
v=3

a2v +

g=GX
g=3

v=mgX
v=1

agv

!
(A27)
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the inequalities (A21)-(A26) can be rewritten as8><>: a11 + a21 � k0;

a11 + a22 � k0;

a12 + a21 � k0;

a12 + a22 � k0;

a11 + a12 < k0;

a21 + a22 < k0:

9>=>; (A28)

Again, it it trivial to prove that the inequalities system shown in (A28) does not have

feasible solutions. In the second to last inequality of the system, either a11 or a12 must be

smaller than k0=2. The same goes for a21; a22 in the last inequality of the system: at least one

of themmust be smaller than k0=2. Picking the smallest elements between a11; a12 and a21; a22

and adding them up results in a number that is smaller than k0, therefore contradicting at

least one of the four �rst inequalities of the system. We have reached the contradiction we

were looking for. This proves auxiliary lemma 2.

Q.E.D.

The proof of proposition 1 is now almost immediate. According to auxiliary lemma 2,

C d nWd 6= ; (essentially, it is only when the union or intersection approaches are used both

within and across dimensions �i.e. either kg = 1=dg8g; kb = 1=G or kg = 18g; kb = 1 �that

the counting approach Wd is able to generate some identi�cation functions included in C d ).

Since COM uniquely characterizes Wd (see Theorem 2), C d cannot satisfy that axiom as

well. Finally, since I d � W
 
d � C

 
d and C

 
d does not satisfy COM, neither W

 
d nor I

 
d can

satisfy COM. This proves Proposition 2.

Q.E.D.

Proof of Theorem 3: It is clear that the multivariate poverty index shown in equation

(12) satis�es SDC, MOA, NRM, FOC, SEP, HMG and CON. We are going to prove the

opposite implication. Since f = ffdgd2N satis�es SDC, it can be written as

fd(�) =
1

n

nX
i=1

p(i) (A29)
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for some function p : [0; 1]d ! R. Clearly, for any  2 [0; 1]d; p() = fd([]) for some

deprivation matrix [] 2 GSn�d where all rows are equal to . Therefore, since fd satis�es

SDC, CON, HMG, SEP and MOA, p will satisfy them too. It can be shown that MOA im-

plies minimal increasingness and strict essentiality (see Blackorby and Donaldson 1982:251).

Moreover, the domain of p is [0; 1]d, which is connected and topologically separable. In an

analogous way to Blackorby and Donaldson (1982: 252), based on Gorman (1968:369) and

Blackorby, Primont and Russel (1978:127) it can be shown that p is additively separable and

can be written as

p() = p�

 
dX
j=1

pj(j)

!
(A30)

where p� and pj; j 2 f1; : : : ; dg are continuous real-valued functions and p� is increasing. By

HMG, one has that

p(�) = �p() (A31)

for any � 2 (0; 1]. Using equation (A30), for each l 2 f1; : : : ; dg we can de�ne the functions

hl(l) := p(0; : : : ; 0; l; 0; : : : ; 0) = p�

 
pl(l) +

X
j 6=l

pj(0)

!
: (A32)

Since p is linearly homogeneous on , so are the functions hl(l): Therefore

hl(�l) = �hl(l) (A33)

for any � 2 (0; 1] and for all l 2 f1; : : : ; dg. As a consequence, there exist constants cl such

that

hl(l) = lhl(1) = cll (A34)

Plugging equations (A32) and (A34) we have that

cll = p�

 
pl(l) +

X
j 6=l

pj(0)

!
: (A35)
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Hence

pl(l) = p��1 (cll)�
X
j 6=l

pj(0) (A36)

Substituting equation (A36) in equation (A30), one has that

p() = p�

 
dX
j=1

"
p��1

�
cjj

�
�
X
l 6=j

pl(0)

#!
= p�

 
dX
j=1

p��1
�
cjj

�
+ &

!
(A37)

for some constants cj; & and a continuous increasing function p�. Equation (A37) is essentially

the same as equation (34) in Blackorby and Donaldson (1982:260). Therefore, following those

authors�who in turn draw from Eichhorn (1978:32-34)�it can be proven that p��1 =: f must

satisfy the following functional equation

f(�u) = �(�)f(u) + b(�) (A38)

Without the domain restrictions on � and u, the solutions to equation (A38) are well-known

(Aczel et al 1986). It is straightforward to show that the solution for equation (A38) on the

present restricted domain is

f(u) =

8><>: au� + b

c ln(u) + d

9>=>; (A39)

for some parameters a; b; c; d; � (with � 6= 0). Since continuity of f at 0 precludes the

logarithmic solution, the general solution of equation (A37) can be written as

p() = p�

 
dX
j=1

a
�
cjj

��
+ db+ &

!
=

 
dX
j=1

�
cjj

��
+
b(d� 1) + &

a

!1=�
: (A40)

Since p is linearly homogeneous on , one must have that (b(d� 1) + &) =a = 0. Therefore,

equation (A30) can be rewritten as

p() =  

0@ dX
j=1

�
cjj

��!1=�1A (A41)
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for some continuous increasing function  . Since p satis�es HMG one has

� 

0@ dX
j=1

�
cjj

��!1=�1A = �p() = p(�) =  

0@ dX
j=1

�
cj�j

��!1=�1A =  

0@� dX
j=1

�
cjj

��!1=�1A :

(A42)

Equation (A42) implies that

� (x) =  (�x) (A43)

for all x � 0; � 2 (0; 1]. As a consequence, there exists a constant q such that

 (x) = x (1) = qx (A44)

Imposing NRM and MOA and rewriting accordingly, one obtains the desired functional form.

Q.E.D.

Proof of Theorem 4: Given its similarity with Theorem 3, we will simply present a

brief sketch of the proof (the complete proof is available upon request). The su¢ ciency part

of the theorem is clear, so we focus on the reverse implication. Axioms SDC, FOC, MOA

and NRM imply that fd(�) can be written as

1

n

X
i2Q(P�)

	(i1; : : : ; id) (A45)

for some increasing function 	 : [0; 1]d ! [0; 1] with 	(1) = 1 and 	(0) = 0. Imposing

CON, HMG, MOA and WDS, it turns out that 	(i1; : : : ; id) = �(P1(1); : : : ; PG(G)),

where

Pg(g) =

"
dgX
v=1

wgv(gv)
�g

#1=�g
(A46)

for some �g > 0; wgv > 0. Lastly, CON, HMG, MOA and BDS imply that

�(P1; : : : ; PG) =

 
g=GX
g=1

ag�P
�
g

!1=�
(A47)
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for some � > 0; ag� > 0, so we obtain the desired functional form.

Q.E.D.

Proof of Proposition 3: Let

�� :=

0@g=GX
g=1

ag�

"
dgX
v=1

wgv(gv)
�g

#�=�g1A1=�

(A48)

be the individual level poverty function corresponding to (16). Therefore, one has that

@��
@gv

=

0@g=GX
g=1

ag�

"
dgX
v=1

wgv(gv)
�g

#�=�g1A
1
�
�1 "

dgX
v=1

wgv(gv)
�g

# �
�g
�1

wgv(gv)
�g�1 (A49)

After several algebraic manipulations it is easy to show that

@2��
@gv@gu

�

24(1� �)

 
dgX
v=1

wgv(gv)
�g

!�=�g

+ (� � �g)

0@g=GX
g=1

"
dgX
v=1

wgv(gv)
�g

#�=�g1A35 (A50)

The last expression can be rearranged and written as follows:

@2��
@gv@gu

�

24(1� �g)

 
dgX
v=1

wgv(gv)
�g

!�=�g

+ (� � �g)

0@ h=GX
h=1;h 6=g

"
dgX
v=1

whv(hv)
�h

#�=�h1A35
(A51)

Therefore, one can basically say that

@2��
@gv@gu

� A(1� �g) +B(� � �g) (A52)

for some real constants A;B > 0. Hence, whenever �g < minf1; �g, (@2��) =
�
@gv@gu

�
> 0,

so the attributes u; v belonging to the same dimension are complements. On the other hand,

whenever �g > maxf1; �g, (@2��) =
�
@gv@gu

�
< 0, so the attributes u; v belonging to the

same dimension are substitutes. This proves part (i). For part (ii), we need to compute

(@2��) =
�
@gv@hu

�
. After algebraic manipulations it can be shown that

@2��
@gv@hu

� (1� �)

0@g=GX
g=1

ag�

"
dgX
v=1

wgv(gv)
�g

#�=�g1A
1
�
�2 "

dhX
u=1

whu(hu)
�g

# �
�h

whu(hu)
�h�1

(A53)
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From the previous equation we can say that

@2��
@gv@hu

� C(1� �) (A54)

for some real constant C > 0. Therefore, whenever � < 1, (@2��) =
�
@gv@hu

�
> 0, so

the attributes u; v belonging to di¤erent dimensions are complements. Analogously, when

� > 1, (@2��) =
�
@gv@hu

�
< 0, so the attributes u; v belonging to di¤erent dimensions are

substitutes. This proves part (ii).

Q.E.D.
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