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ABSTRACT 

 2 

The mechanisms translating global circulation changes into rapid abrupt shifts in forest carbon 

capture in semi-arid biomes remain poorly understood. Here we report unprecedented 4 

multidecadal shifts in forest carbon uptake in semi-arid Mediterranean pine forests in Spain over 

1950-2012. The averaged carbon sink reduction varies between 31-37%, and reaches values in the 6 

range of 50% in the most affected forest stands. Regime shifts in forest carbon uptake are 

associated with climatic early warning signals, decreased forest regional synchrony, and reduced 8 

long-term carbon sink resilience. We identify the mechanisms linked to ocean multidecadal 

variability that shape regime shifts in carbon capture. Firstly, we show that low frequency 10 

variations of the surface temperature of the Atlantic Ocean induce shifts in the non-stationary 

effects of El Niño Southern Oscillation (ENSO) on regional forest carbon capture. Modelling 12 

evidence supports that the non-stationary effects of ENSO can be propagated from tropical areas 

to semi-arid Mediterranean biomes through atmospheric wave trains. Secondly, decadal changes 14 

of the Atlantic Multidecadal Oscillation (AMO) significantly alter sea-air heat exchanges, 

modifying in turn ocean vapour transport over land and land surface temperatures, and promoting 16 

sustained drought conditions in spring and summer that reduce forest carbon uptake. Thirdly, we 

show that lagged effects of AMO on the winter North Atlantic Oscillation (NAO) also contribute 18 

to the maintenance of long-term droughts. Finally, we show that the reported strong, negative 

effects of ocean surface temperature (AMO) on forest carbon uptake in the last decades are 20 

unprecedented over the last 150 years. Our results provide new, unreported explanations for 

carbon uptake shifts in these drought-prone forests and review the expected impacts of global 22 

warming on the profiled mechanisms. 

 24 
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Introduction 

The quest to identify the diverse mechanisms driving abrupt shifts in the dynamics of climate 2 

affecting ecosystems has gained considerable scientific attention in recent decades (Lenton et al. 

2008, Scheffer et al. 2009). Numerous empirical studies have reported abrupt regime shifts 4 

between contrasting persistent states of these ecosystems (Scheffer et al. 2009, Chen & Tung 

2014). Several natural phenomena have been long identified as key drivers of rapid changes in the 6 

state of terrestrial ecosystems and in their carbon sink capacity, including changes in regional 

climate regimes. Multidecadal fluctuations in sea surface temperatures (SST), quantified by ocean 8 

variability indices (e.g. the Atlantic Multidecadal Oscillation (AMO), and the Pacific Decadal 

Oscillation (PDO)), are important drivers of long-term changes in the trends of rainfall in tropical, 10 

semi-arid and extratropical areas of the globe (McCabe et al. 2004, Sutton & Hodson 2005). Rapid 

shifts in SST can affect multiple ocean basins, forcing regime shifts in global atmospheric 12 

circulation patterns (Quan et al. 2004, Wang et al. 2013). Changes in SSTs also control inter-

annual variability in the global terrestrial sink, through the propagation of temperature and rainfall 14 

anomalies (Bastos et al. 2013, Poulter et al. 2014, Kim et al. 2017). However, the precise 

mechanisms connecting major changes in the thermal state of ocean basins and the carbon sink 16 

dynamics of forest ecosystems remain yet poorly understood. For example, we lack 

comprehensive descriptions of the multiple mechanisms linking long-term carbon sequestration by 18 

forests to multidecadal shifts in SSTs. Similarly, it has not been assessed whether transitions 

between the warm and cold ocean phases result in abrupt or gradual shifts in forest carbon uptake 20 

regimes, whether and how these shifts vary geographically and the diverse climatic mechanisms 

implied.  22 

Recent research indicates that semi-arid forests are key determinants of the variability in the 

carbon sink capacity of terrestrial ecosystems (Poulter et al. 2014). Semi-arid and dryland systems 24 

cover 45% of the Earth’s land surface, and recent assessments assert that over the last decades are 
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becoming an increasingly important driver of the terrestrial carbon sink capacity of the Earth at 

interannual time scales (Poulter et al. 2014, Ahlström et al. 2015). These biomes are distributed at 2 

the transitional edge between desert and temperate regions of the biosphere, and as a result their 

carbon sink activity could be severely disrupted during the next decades by global warming and 4 

the ongoing latitudinal expansion of the Hadley cells (Fu 2015, Lau & Kim 2015). In addition, 

global warming may possibly induce an increased frequency and severity of eastward propagating 6 

extreme El Niño events, and impact drought regimes in key semi-arid areas (Cai et al. 2015).  

Here we examine the occurrence of regime shifts in forest carbon uptake in the dominant dry 8 

coniferous forests of the Western Mediterranean Basin (Aleppo pine, Pinus halepensis Mill.), 

located in continental Spain. Detailed empirical descriptions of regime shifts in forest carbon 10 

uptake are currently lacking in this semi-arid region. Next, we provide empirical evidence for 

several mechanisms driving regime shifts in forest carbon uptake. The first mechanism examined 12 

is the operation of large-scale, non-stationary effects of El Niño Southern Oscillation (ENSO) 

events that are propagated from tropical to extratropical areas through atmospheric wave trains 14 

(López‐Parages & Rodríguez‐Fonseca 2012, López‐Parages et al. 2015, 2016). The ENSO is the 

strongest year-to-year climate fluctuation of the planet and it is tightly linked to interannual 16 

variations in carbon sink capacity of terrestrial ecosystems (Hashimoto et al. 2004). The 

propagation of the ENSO signal from tropical to extratropical areas can be strongly modulated by 18 

ocean multidecadal variability and this has not been considered in the analysis of forest carbon 

uptake regime shifts. To address this gap here we analyse how the interactions between the ENSO 20 

and the Atlantic Ocean Multidecadal Oscillation (AMO) could jointly drive regime shifts in forest 

carbon uptake. The second mechanism examines the effects of ocean multidecadal variability in 22 

SST on long-term trends of sea-air heat exchange, water vapour transport over land, sea level 

pressure and land temperature conditions. Changes in these climatic variables linked to ocean 24 

multidecadal states can induce sustained drought conditions over land and limit the carbon sink 
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capacity of forests. Thirdly, we analyse whether lagged multidecadal variability in major 

atmospheric modes such as the North Atlantic Oscillation (NAO) significantly affects long-term 2 

drought events. The positive phase of AMO results in more frequent negative NAO events and 

blocking episodes associated to extreme climate events (Häkkinen et al. 2011, Peings & 4 

Magnusdottir 2014). Moreover, lagged multidecadal links between AMO and NAO have been 

extensively documented, and may influence drought events and therefore forest ability to uptake 6 

carbon (Peings & Magnusdottir 2014, Li et al. 2013). 

To summarise, here we address the following research objectives: i) to provide a first description 8 

of coupled shifts in drought regimes and carbon uptake in semi-arid Aleppo pine forests in Spain, 

using combined climatic and dendrochronological time-series analyses spanning the last six 10 

decades (1950-2012); ii) to characterize the observed regime shifts using diverse statistical 

techniques including early-warning signal analyses; iii) to identify the teleconnections 12 

significantly associated with the reported regime shifts, quantifying the associated changes in the 

patterns of ocean water vapour transport over land, land temperature and sea level pressure; iv) to 14 

test whether the non-stationary effects of ENSO mediated by ocean multidecadal variability 

determine the onset of regime shifts of forest carbon uptake; and v) to provide a unified framework 16 

for all the examined mechanisms, summarising the expected effects of global warming on the 

studied processes.  18 

Materials and Methods 

Climatic and forest data 20 

The study area comprised the Spanish Iberian Peninsula and it was subdivided into grids of 

280×280, 140×140, and 70×70 km2 (Supplementary Fig. 1). Climatic data were obtained from the 22 

State Meteorology Agency (AEMET) during 1950-2012. We used the Standardised Precipitation 

Evapotranspiration Index (SPEI) to quantify droughts (Vicente-Serrano et al. 2010). A spatially 24 
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averaged value of monthly SPEI was calculated for each grid cell during the 1950-2012 period. 

The resulting data set was structured in a pool of 5191 SPEI grids, covering different time scales 2 

(3, 6, 9, 12, 18, 24, and 36 months; Domingo-Marimón 2016). Monthly values of sea-level 

pressure (SLP), water vapor transport and temperature fields between 1950 to 2010 at 1 degree 4 

resolution were derived from ERA-20C Reanalysis (Poli et al. 2016). The yearly variation in gain 

of carbon stocks was quantified in a network of 20 Aleppo pine forests (Pinus halepensis Mill.) 6 

(Supplementary Fig. 1). Dendrochronological analyses and allometric equations were applied to 

calculate the variation in carbon stocks linked to tree growth in each of the forest stands for 1950-8 

2012 (kg ha-1 y-1, Forest net carbon uptake hereafter [FCU], Montero et al. 2005). Note that this 

variable does not account for tree and soil respiration fluxes and therefore provides a proxy of the 10 

net primary productivity specifically linked to tree growth (Montero et al. 2005). Tree density and 

stand basal area were measured in each stand (Ribas, 2006, Camarero et al. 2015a). A variable 12 

number of trees (8-38) were randomly sampled for dendrochronological analyses in an area of 2 ha 

(Ribas, 2006). The selected trees were located at least 5-10 m apart. We extracted 2-4 radial cores 14 

per tree at 1.3 m using a Pressler increment borer. Wood samples were sanded and visually cross-

dated. Tree-ring widths were measured to the nearest 0.01 mm using a LINTAB measuring device 16 

(F. Rinntech, Germany), a binocular scope, and the programmes CATRAS and TSAP. The 

COFECHA software was used to assess the accuracy of the visually cross-dated samples. For each 18 

tree, we also measured the diameter at breast height (DBH, measured at 1.3 m), the stem height 

and the bark thickness to calculate the annual increase in basal area.  20 

Description of regime shifts 

We first assessed the existence of unreported abrupt shifts in drought regimes and forest carbon 22 

uptake, analysing the time series of drought trends and dendrochronology data in the Iberian 

Peninsula (objective i). The SPEI allowed us to explore shifts in drought regimes at temporal 24 

scales ranging from 3 to 36 months during 1950-2012. SPEI and dendrochronological time series 
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were analyzed applying spline fits (SAS Institute 2012). To assess the effects of abrupt shifts in the 

drought regime on forest carbon storage, we subsequently examined the yearly increase in carbon 2 

stock in a large-scale network of 20 Aleppo pine forests during 1950-2012 (Supplementary Figure 

1). This tree species was selected because it is the dominant native conifer in the eastern Iberian 4 

Peninsula and in the driest areas of the Western Mediterranean Basin. The selected stands 

represented the native geographical distribution of this taxon across the Iberian Peninsula, 6 

providing a regional assessment for this species (Supplementary Fig. 1). Regression tree analyses 

were applied to detect abrupt shifts in time series (De'ath & Fabricius 2000). We identified an 8 

optimal splitting point (i.e. time of shift) in the time series separating multiannual periods 

characterized by contrasting values in the analysed variable. The magnitude of the shift between 10 

two periods was quantified by the amount of the variance explained by the model and was 

therefore inversely proportional to the model-corrected Akaike Information Criterion (1/AICc). 12 

The splitting criterion was based on the LogWorth statistic (SAS Institute 2012). When a 

significant shift was detected in the regression tree and spline analyses, we applied a Tukey-14 

Kramer analysis to test for significant differences in values between the two multiannual periods 

before and after the splitting point. For all forest stands, we computed the resistance, recovery and 16 

resilience indices for tree growth and analysed their trends (LLoret et al. 2011, Gazol et al. 2018).  

In addition, these indices were subsequently modified in a second step to more properly describe 18 

decadal trends. We computed the following indices of forest resilience (FCUR) and recovery 

capacity after a regime shift (FCURC), defined as follows: 20 

 

where  is the averaged forest net carbon uptake (kg ha-1 y-1) over a 5 year period before the 22 

regime shift in the numerator and over a variable number years after the regime shift in the 

FCUR = 
X
_

FCU BEFORE (5years)

X
_

FCU AFTER (t years)

X
_

FCU
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denominator (t, ranging from 1 to 30 years). The recovery capacity after a regime shift was 

computed as follows: 2 

 

Finally, following previous works (Camarero et al. 2015a) we also computed a synchronicity 4 

index, measured as the averaged Pearson r coefficient between the forests stands. 

Early-warning signal analyses 6 

To characterise early-warning signals associated to the observed regime shifts, early-warning 

signals were quantified using the earlywarnings R package (Dakos et al. 2012) using climatic data 8 

(objective ii). The analyses were restricted to the time period before the splitting point previously 

identified by the regression tree models. The functions generic_ews and qda_ews were used to 10 

estimate the following eight statistical moments within rolling windows along the time series: the 

autoregressive coefficient [ar(1)] of a first-order AR model fitted to the data, the standard 12 

deviation, skewness, kurtosis, the coefficient of variation, the return rate of the data estimated as 

the 1-ar(1) coefficient, the density ratio of the power spectrum of the data estimated as the ratio of 14 

low to high frequencies, and the autocorrelation at the first lag of the data (Supplementary Table 

1). The trends of these eight statistical moments were estimated by using the nonparametric 16 

Kendall tau correlation coefficient. The function sensitivity_ews was applied to plot the Kendall 

tau estimates and their p-values for the range of rolling-window sizes used, together with a 18 

histogram of the distributions of the statistic and its significance. The analyses were computed for 

a large range of window sizes (winsize parameter: 10, 20,…50). We computed and plotted the 20 

power spectrum estimated by the spec.ar function for all frequencies within each rolling window. 

Positive feedback processes originating non-linear responses and early warning signals may occur 22 

in both climatic and ecological processes (Supplementary Fig. 2). Consequently, early-warning 

FCURC = 
FCUAFTER (year of the shift)

X
_

FCU AFTER (3 year rolling window)

-1
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signals were assessed for climatic and forest variables (SPEI 3-12; FCU variables) and contrasted 

applying Tukey-Kramer tests.  2 

Teleconnection analyses 

To analyse the effects of teleconnections on drought and carbon uptake regime shifts (objective 4 

iii), we gathered data for the following teleconnection indices: the AMO, the Multivariate ENSO 

index (MEI), the North Atlantic Oscillation index (NAO), the Western Mediterranean Oscillation 6 

index (WeMOI), and the Arctic Oscillation (AO) index, the Pacific Decadal Oscillation (PDO) and 

the Eastern Atlantic Pattern (EA) (see supplementary materials for further details on data sources). 8 

Structural equation models (SEM) were applied to assess the relative influence of teleconnection 

indices on SPEI variability (objective iii) (R Development Core Team 2017). Alternative SEM 10 

models were compared and selected minimizing the AIC and the Bayesian Information Criterion 

(BIC). The basic SEM model scheme selected is outlined in Supplementary Fig. 3. SEM models 12 

were complemented with multiple regression analyses (based on Ordinary Least Squares, OLS). 

Linear regression analyses of teleconnection indices were performed for SLP, water vapor 14 

transport, SPEI and mean air surface temperature to map the effects of teleconnection indices on 

atmospheric circulation patterns. Wavelet coherence analyses allowed the detection of similar 16 

periodicities in the fluctuations of teleconnection and SPEI time series and the estimation of their 

phase differences.  18 

Regime shifts and non-stationary interactions between ENSO and AMO  

We hypothesized that the multidecadal variation of the Atlantic SST measured by the AMO could 20 

trigger regime shifts in drought and, as a consequence, in net forest carbon capture linked to tree 

growth (FCU). The proposed mechanism is the operation of non-stationary effects of higher 22 

frequency teleconnection patterns (e.g. ENSO and other teleconnection indices) modulated by 

ocean multidecadal variation (López‐Parages & Rodríguez‐Fonseca 2012, López‐Parages et al. 24 
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2015, 2016). To assess whether non-stationary effects of ENSO mediated by ocean multidecadal 

variability (AMO) were determining the onset of regime shifts in drought and carbon uptake 2 

trends (objective iv) we tested two diagnostic predictions. Firstly, we documented the occurrence 

of spatiotemporal shifts in the non-stationary effects of MEI on drought (SPEI) (Prediction 1, P1). 4 

To test this prediction, we performed multiple regression modelling analyses (ordinary least 

squares, OLS) for subsets of consecutive 10-year time windows for each grid cell in the study 6 

region, allowing the detection and mapping of non-stationary effects of ENSO. Complementarily, 

we also assessed the non-stationary effects observed for other teleconnections characterised by 8 

high frequency, interannual variability modes (NAO, WeMOI, EA, AO). Significant multiple 

regression estimates of the OLS models were subsequently mapped for each decade allowing the 10 

detection of spatial and temporal shifts in the effects of ENSO, NAO and high-frequency 

teleconnections on SPEI. Secondly, we analyzed whether rapid changes in the AMO during the 12 

regime shift period significantly predicted the changes in the non-stationary effects of the 

Multivariate ENSO index on net forest carbon capture associated with tree growth (FCU) 14 

(Prediction 2, P2). To assess this prediction, we performed rolling correlation analyses between 

forest carbon uptake (FCU, kg ha-1 y-1) and the MEI index [rFCU-MEI correlation coefficients 16 

hereafter]. Rolling correlation analyses were calculated for each forest stand using the rollaplyr 

function in the package zoo (R Development Core Team 2017), obtaining the Pearson correlation 18 

coefficient in the cor function (stats package) and running the analyses for varying window width 

parameters (10, 15, 20, 25 years). The analyses of rFCU-MEI correlation coefficients were 20 

conducted for annual and monthly values of MEI. Furthermore, we analysed whether the AMO 

was significantly associated with the variation observed in the rFCU-MEI correlation coefficients. 22 

During regime shifts, we expected the observation of significantly negative relationships linking 

rFCU-MEI values and the AMO index, due to increased negative effects of ENSO on forest 24 

carbon uptake associated with a warmer AMO state. 
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Testing for amplified effects of AMO during the last 150 years 

To analyse whether the reported negative effects of AMO on forest carbon uptake detected in 2 

1950-2012 were unprecedented during the last 150 years, we extended the analyses to the 1850-

2012 time period. We applied ordinary squares multiple regression models (OLS) analysing the 4 

effects of teleconnection indices on forest carbon uptake. The OLS models contrasted the observed 

effects of AMO on forest carbon capture for different consecutive time periods over the 1850-6 

2012 series, and were repeated at different time period resolutions (decadal, bidecadal, 30 years 

[corresponding to AMO positive and negative periods], 60 years). For the 60-year resolution, we 8 

computed the observed AMO effects in the IPCC-AR5 reference period (1850-1899, P1) and in 

two subsequent time periods (P2: 1900-1959 and P3: 1960-2012). Changes in the starting year of 10 

the analysed multidecadal periods did not qualitatively change the reported results. Results for 

decadal and bidecadal resolution are not shown. 12 

Testing complementary hypotheses 

Forest carbon uptake trends can be significantly affected by stand structure and past management 14 

practices (Pan et al. 2011, Coomes et al. 2014), by tree age, height and ontogenetic stage 

(Camarero et al. 2015b) and by the increase of post-industrial atmospheric CO2 concentrations 16 

(Camarero et al. 2015b, Keenan et al. 2016). To assess the effects of these complementary 

processes on the reported trends of forest carbon uptake the following variables were quantified: 18 

stand tree density, stand mean diameter at breast height, stand mean tree height, the age of the 

sampled trees, and the annual increase of atmospheric concentrations of CO2 (see supplementary 20 

Table S2 for a detailed description). Following the methods proposed in previous works 

(Camarero et al. 2015b), we extracted the residual variation of forest carbon uptake not linked 22 

forest structure and age (resCincr). Subsequently, we tested whether this remaining variation was 
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significantly associated to the examined teleconnections (AMO, MEI, AO, WeMOI, NAO) and to 

the variation of post-industrial atmospheric CO2 applying multiple regression OLS analyses. 2 

Results 

Drought and forest carbon uptake regime shifts (objective i) 4 

Regression tree analyses identified a consistent shift in SPEI trends affecting the entire central-

eastern Iberian Peninsula in 1980-1981 (Fig. 1). This abrupt shift was characterised by drier 6 

conditions from the 1980s onwards, and it was consistently detected in regression tree models 

across a wide range of SPEI temporal scales (3-36 months) and across different scales of spatial 8 

grids (Supplementary Figs. 4-8). Average SPEI values consistently differed before (1950-1979) 

and after the abrupt shift (Supplementary Fig. 9a, Tukey-Kramer test p<0.0001). A different 10 

pattern of longitudinal variation of average SPEI values was observed before and after the 1980-

1981 shift – with the SPEI switching from increasing with longitude to decreasing with longitude, 12 

i.e. climate conditions were drier eastwards (towards the Mediterranean coast) after the shift 

(Supplementary Fig. 9b).  14 

As found for SPEI, the trends in carbon stocks clearly shifted in 1980-1981 in 18 of the 20 

forests, changing from sustained positive gains to stable, non-significant trends (Fig. 2a, 16 

Supplementary Figs. 10-12). The trends in two cases reversed from significantly positive to 

significantly negative (Fig. 2a). Regression tree models based on the changes in forest carbon 18 

uptake identified significant shifts in 16 of 18 stands during 1978-1981 (Supplementary Table 3), 

in line with the shift in drought dynamics (Fig. 1). Before the regime shift, we observed a 20 

progressive significant increase in forest carbon uptake synchrony (Fig 2b, cubic polynomial fit, 

p<0.0001), followed by a significant reduction after the shift (p<0.0001, Supplementary Figure 22 

S13). For the whole period after the regime shift, synchrony values remained significantly lower 

relative to 1950-79 (T-K test, p<0.0001) and there was an increase of non-significant values 24 
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(Supplementary Fig. S13). In a similar manner, the forest carbon uptake resilience index (FCUR) 

indicated a sustained reduction (31 - 37%) of the forest sink after the regime shift (Fig 2b, see 2 

Supplementary Table 4 for further details). Forests were also characterised by a limited recovery 

capacity, with most stands showing recovery rates of 10-17% respect to the minimum FCU level 4 

observed after the drought regime shift (Fig 2c, Supplementary table 5). In summary, all the 

results indicated a coherent abrupt large-scale shift in forest carbon uptake trends in this area and 6 

allowed testing for alternative large-scale drivers of these trends.  

Early-warning signal analyses (objective ii) 8 

Having identified abrupt shifts in forest and drought regimes, we examined whether they carried 

any early-warning signals. We assessed this by estimating changes in lag-1 autocorrelation in the 10 

time series before the regime shift (Dakos et al., 2012, Camarero et al., 2015a). Abrupt shifts in 

drought regime in the eastern Iberian Peninsula were preceded by an increase in autocorrelation 12 

only in SPEI (Fig 3a, Supplementary Fig. 14). In contrast, non-significant AR-1 values were 

observed in FCU time series before the shift (Fig 3a). In line with these findings, SPEI AR-1 and 14 

the Kendall tau statistic quantifying autocorrelation trends were positively associated with the 

magnitude of the regime shift in the local SPEI time series (Fig. 3b, c). In other words, sites 16 

experiencing more abrupt shifts in SPEI values in 1980 (i.e. presenting higher values of R2 and 

1/AIC in regression tree models) showed significantly higher Kendall tau and AR-1 values before 18 

the regime shift (i.e. in 1970-79). Overall, all the early-warning results indicated a major role of 

climatic variables as putative drivers of the reported shifts, highlighting the need of detailed 20 

analyses of teleconnections and climatic variables. 

  22 
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Teleconnections associated with the reported regime shifts (objective iii) 2 

The models identified AMO as the strongest predictor of the variability in SPEI values (Fig. 3d, 

Supplementary Fig. 15, and Supplementary Table 6). Furthermore, the standardised coefficients of 4 

AMO on SPEI were robust predictors of the magnitude of the regime shift detected by the 

regression tree models in each grid cell (Fig. 3e). In addition, wavelet coherence analyses 6 

confirmed the observed significant links between the AMO index and the SPEI values, reporting 

significant associations at long time periods (>128 months) in cells characterised by strong shifts 8 

in drought regime (Supplementary Fig. 16). These results identified the AMO index as a 

significant predictor of the abrupt shifts in the drought regimes (Supplementary Table 6). 10 

Moreover, the values of the Kendall tau statistic quantifying autocorrelation trends were positively 

associated with the effect of the AMO on the drought indices (Fig. 3f). In the case of tree carbon 12 

sequestration models, we applied multiple regression OLS models and identified AMO as the best 

teleconnection index for predicting changes in carbon stocks in the Aleppo pine stands. The 14 

models revealed a significantly stronger AMO signal for carbon-stock gains in northern stands 

(Supplementary Table 7).  16 

In order to understand the physical processes driving the correlations found, we applied regression 

analyses mapping the effects of AMO on ocean and land water vapour transport, sea level 18 

pressure, ocean surface temperature and land mean air temperature (Supplementary Fig. 17, see 

Methods). Positive AMO states were significantly associated with increased drought conditions 20 

across the Iberian Peninsula, spanning from January to October (Supplementary Fig. 17). 

Furthermore, analyses of the seasonal variation of SPEI after the regime shift reported a significant 22 

increase of drought impacts in the same seasonal time period (winter, spring and summer), which 

were in turn paralleled by a significant increase of AMO positive anomalies in spring and summer 24 
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(Supplementary Fig. 18). Thus, changes in the annual dynamics of AMO and SPEI largely 

impacted the growing season of forests. 2 

Regime shifts and non-stationary interactions between ENSO and AMO (objective iv) 

The results suggested a key role of non-stationary effects of ENSO modulated by AMO and 4 

supported the two diagnostic predictions (P1 and P2). Firstly, multiple regression OLS models for 

the SPEI drought index for subsets of consecutive 10-year time windows allowed the detection of 6 

non-stationary effects of higher frequency teleconnections. The models detected changes in the 

non-stationary effects of the El Niño Southern Oscillation (MEI), promoting autumn rains in the 8 

1970s and increased spring and summer drought conditions during the start of the regime shift, in 

the 1980s (Fig. 4a), being the former more marked in the south and western part of the Iberian 10 

Peninsula and the latter in the south and eastern part. Crucially, the spatial shifts in the effects of 

the models in the 1980s closely matched the spatial pattern reported for the drought patterns (Fig. 12 

1). The models also highlighted a key role of non-stationary effects of positive winter NAO phases 

(December, January) in the 1990s, showing a multidecadal pattern (Fig 4b). Of note, the NAO 14 

signal was significantly correlated with lagged AMO, and this correlation was maximised at a lag 

of 15 years (R2=0.16; p=0.0048), as reported in previous works (Li et al. 2013). In addition, we 16 

examined whether AMO was a significant predictor of the correlations between forest carbon 

uptake and ENSO (rFCU-MEI correlations) during the onset of the regime shift period (1980s). As 18 

predicted, in the 1980s we observed a significantly negative rFCU-MEI / AMO relationship in the 

stands affected by regime shifts (Fig. 5a). A shift to a warmer state of the AMO index in the 1980s 20 

was consistently associated to more negative Pearson correlation values, and the observed negative 

relationships were mostly significant from March to October (Fig. 5b-c). The analyses covering 22 

the 1850-2012 period reported that the strong, negative effects of AMO in the 1980s were 

unprecedented over the last ~150 years (Supplementary Fig. S19, and Supplementary Table 8). 24 

While previous negative AMO phases [e.g. 1897-1930] were significantly associated to increased 
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forest carbon uptake levels in the OLS models (Supplementary Table 8), strong linear effects of 

AMO were only detected in the regime shift period (i.e. in the 1980s [1963-1996 negative AMO 2 

phase], see Supplementary Fig. S19). 

Effects of forest stand structure, tree age and atmospheric CO2 4 

We observed that forest tree density, mean stand tree height and tree age explained a significant 

fraction of forest carbon uptake variation across sites (R2=0.27; p<0.0001, Supplementary Table 6 

10). OLS models examining the residual variation after accounting for stand structure and tree age 

effects indicated that the reported effects of AMO were robust (Supplementary Table 11). 8 

Similarly, the results indicated a significant but small effect of increased atmospheric CO2 

concentrations on forest carbon uptake, which co-acted with significant negative effects of AMO 10 

(Supplementary Table 12). 

Discussion  12 

Our results describe previously unreported regime shifts in drought and carbon uptake across 

Iberian Aleppo pine forests (Figs. 1-2), and identify the climatic drivers implied (Figs. 3-6). This 14 

tree species is the most dominant conifer in semi-arid or dry lowland areas of the Western 

Mediterranean Basin and therefore it is of major ecological relevance in such drought-prone 16 

regions. The reported drought regime shifts strongly affect forest carbon uptake of these forests, 

showing a sustained multidecadal reduction of carbon sequestration. The averaged carbon sink 18 

reduction for all stands varies between 31-37%, but reaches values in the range of 50% in the most 

affected stands (Fig 2b). SEM analyses indicated that AMO is the key regulator of the observed 20 

trends, being in turn significantly associated to early warning indicators. The results indicate that 

AMO acts as a key modulator of different non-stationary mechanisms over analysed drought 22 

regime shift period. We suggest that the mechanisms operate sequentially, following this order: 1) 

the modulation by AMO of the effects of ENSO on drought and forest carbon uptake, acting over 24 
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the 1970s-1980s (e.g. Figs. 4 and 5), which is a key mechanism because it determines the onset of 

the regime shift period; 2) a sustained negative effect of positive AMO phases on ocean moisture 2 

advection and water transport at the multidecadal scale, acting over the 1980s-2000s, and linked to 

a significant increase on spring and summer temperatures (Supplementary Fig. 17); and, lastly, 3) 4 

the lagged multidecadal variation of the NAO (relative to the AMO) that significantly affects 

drought indices in the 1990s. A synthetic diagram summarising these three mechanisms is 6 

provided in Fig. 6. 

Referring to the first mechanism, our results support that non-stationary interactions between 8 

ocean multidecadal variability (AMO) and the ENSO determine the onset of abrupt shifts in forest 

carbon capture in the studied semi-arid forests. We propose that these non-stationary effects of 10 

ENSO in extratropical areas could be possibly linked to modified Rossby wave train activity 

(López‐Parages & Rodríguez‐Fonseca 2012, López‐Parages et al. 2015, 2016) (e.g. 12 

Supplementary Fig. 20). The abrupt, non-linear regime shift observed in the 1980s and its 

significant association with both AMO and ENSO suggest a key role for non-linear atmospheric 14 

responses specifically linked to the patterns of sea surface temperature (SST) associated with 

ENSO and AMO. Below, we review in detail the fundamental processes that may shape this 16 

mechanism.  

It is well known that AMO and ENSO describe large-scale patterns of SST and therefore influence 18 

air-sea heat exchanges. Increases in SST induce a net transfer of heat from the sea to the 

atmosphere and result in diabatic heating of the lower atmosphere (Bjerknes 1964, Gulev et al. 20 

2013). Through these diabatic processes SST can in turn influence ocean-land advection and zonal 

winds, as well as the dynamics of the Walker and Hadley circulation cells (Wang 2002, Sutton and 22 

Dong 2012). All these fundamental air-sea exchanges may upscale affecting large geographic 

regions, modifying in this way atmospheric circulation dynamics and Rossby wave train 24 

dynamics, and shifting the geographic location of anticyclones and lows (Cassou et al. 2005, 
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López‐Parages & Rodríguez‐Fonseca 2012, Mariotti et al. 2012, López‐Parages et al. 2015, 2016, 

Sun et al. 2017).  2 

Previous works have shown that above determinate threshold values of SSTs non-linear trends in 

atmospheric responses and rainfall patterns have been consistently observed (Quan et al. 2004, 4 

Power et al. 2006, López-Parages et al. 2016). Crucially, the available evidence supports that 

atmospheric Rossby wave trains can respond non-linearly to changes in ocean thermal state (SST) 6 

and to ENSO events (Hoerling et al. 2001, López-Parages et al. 2016). In other words, non-linear 

atmospheric effects linked to increased SST can shape Rossby wave train activity connecting 8 

major ocean basins and strongly affect rainfall trends in extratropical areas as the Iberian 

Peninsula (López-Parages et al. 2016). More precisely, ENSO events typically generate a Tropical 10 

Northern Atlantic pattern (TNA) and induce two separate atmospheric wavetrains (centered 

respectively on the Pacific and Atlantic Oceans) (López-Parages et al. 2016, Rodríguez-Fonseca et 12 

al. 2016). Notably, in the case of ENSO events, the response to rainfall, sea level pressure and 

wind is often more linear in the tropics but can be strongly non-linear in the extratropics (Frauen et 14 

al. 2014).  

Recent works have applied atmospheric circulation models to explicitly simulate the 16 

interactions between ENSO events and ocean multidecadal thermal state (Frauen et al 2014, 

López-Parages et al. 2016). These works have implemented numerical experiments in models 18 

forced by idealized ENSO-AMO patterns (López-Parages et al. 2016). The resulting simulations 

indicate that AMO and ENSO can jointly modulate the patterns of atmospheric Rossby wave 20 

trains, and significantly alter extratropical drought responses (Supplementary Fig. 20).  Under 

negative AMO phases (i.e. during the 1970s), the model simulations and observational data 22 

indicate enhanced Rossby wave train activity linked to a weakened jet in zones characterised by 

negative meridional thermal gradients (López-Parages et al 2015, Rodríguez-Fonseca et al. 2016). 24 

Under negative AMO phases (i.e. during the 1970s), the model simulations and the observational 
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data indicate enhanced Rossby wave train activity triggered by ENSO over the North Atlantic 

sector. This fact is related to a weakened jet in zones characterised by negative thermal gradients 2 

(López-Parages et al. 2015, Rodríguez-Fonseca et al. 2016). Thus, under cold North Atlantic SST 

conditions, the models indicate an enhanced wave activity triggered by ENSO and connecting the 4 

Pacific basin and the Atlantic European region (Supplementary Fig. 20). In these conditions, the 

ENSO-related wave activity flux (m2/s2) crossing the North Atlantic at upper troposphere (200 6 

hPa) triggers in turn a deep low-pressure system over the British Islands, producing significantly 

increased rains in Northern Europe and significantly increased drought conditions in semi-arid 8 

Mediterranean areas (López-Parages et al. 2015, 2016). Overall, the available modelling evidence 

and the observational results (Figs. 4 and 5, Supplementary Fig. 20) suggest an important role for 10 

modified Rossby wave trains associated with multidecadal ENSO-AMO variability, potentially 

effecting drought and forest carbon regime shifts.  12 

The results indicate that AMO has a large influence on long-term multidecadal drought and carbon 

uptake dynamics. AMO is significantly associated with increased spring and summer drought 14 

conditions at the multidecadal scale, affecting land temperatures, water vapour transport over land 

and standardised drought indicators (SPEI) (Supplementary Fig. 17). The observed effects of 16 

AMO on the climatic variables are mainly concentrated in the March-October period 

(Supplementary Figs. 17-18). These results add to previous studies documenting a pervasive 18 

influence of AMO on several components of the climatic system (reviewed in Supplementary Box 

1a). Beyond the effects of AMO and SSTs on atmospheric Rossby wave train dynamics, diabatic 20 

processes linked to increased SSTs have multifaceted effects and influence multiple atmospheric 

phenomena. These effects are reviewed in Supplementary Box 1b and include the alteration of the 22 

Hadley and Walker cell size, shape and dynamics, the location and seasonal migration of the 

intertropical convergence zone (ICTZ) and the tropical monsoon activity and its links to mid-24 
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latitude zones. The reviewed evidence supports that these co-acting processes may also strongly 

impact drought regimes.  2 

A remaining question is how these mechanisms might be currently affected by ongoing 

global warming and how they might evolve in the near future (see Supplementary Box 1c for a 4 

detailed discussion). The AMO is linked to the Atlantic multidecadal overturning thermohaline 

circulation (AMOC), which in turn currently stands as a major modulator of the responses of the 6 

earth system to global warming (Chen & Tung 2014, Hansen et al. 2016, Sgubin et al. 2017, 

Caesar et al. 2018, Thornalley et al 2018). Moreover, global warming may strongly interact with 8 

AMO in present day conditions and in future scenarios. For example, amplified ocean 

multidecadal oscillations have been reported in the last decades and related to global warming 10 

(Moore et al. 2017).  These amplified oscillations suggest a scenario in which global warming 

progressively increases the amplitude of AMO cycles in the next decades (Supplementary Fig. 12 

21a). In line with these trends, less frequent and longer-lived oscillations have also been reported 

for the Pacific Decadal Oscillation (PDO), producing a deepening of the ocean mixed layer 14 

(Boulton & Lenton 2015).  

In addition, global warming could also be promoting a progressive slowdown of the AMOC 16 

(Supplementary Fig. 21b). In fact, an unprecedented reduced AMOC state has been recently also 

discussed, presumably linked to global warming and increased Greenland ice sheet loss (Bamber 18 

et al. 2012, Robson et al. 2014, Rahmstorf et al. 2015, Sgubin et al. 2017, Caesar et al. 2018, 

Thornalley et al. 2018). Besides, AMO and ENSO influence wildfire occurrence (Kitzberger et al. 20 

2015). Therefore, amplified AMO, changes in ENSO dynamics and global warming could jointly 

affect fire frequency in the next decades and impact forest carbon sinks (Supplementary Fig. 21c). 22 

In addition, Arctic climate amplification processes significantly interact with ocean multidecadal 

phases. For example, recent works indicate that Arctic warming has been enhanced by the current 24 

phase (PDO-, AMO+), leading to a reduction of the poleward temperature gradient and to reduced 
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westerlies (Screen & Francis 2016, Tokinaga et al. 2017, Su et al. 2017). Additional modelling 

evidence has forecasted strong interactions between AMOC, AMO and global warming in the next 2 

decades (Hansen et al. 2016, Sgubin et al. 2017).  

Global warming is also expected to impact Rossby wave trains (Supplementary Fig. 21d). A 4 

significant impact of Arctic amplification processes on atmospheric Rossby wave trains is 

expected (Francis & Vavrus 2012, Coumou et al. 2015). Rising near-surface air temperatures in 6 

the Arctic exceed mid latitude warming by a factor of at least two since the late 1990s (Francis et 

al. 2017). The amplification of Arctic temperatures by global warming typically promotes a 8 

reduced poleward temperature gradient and slower eastward progression of Rossby waves (i.e. 

weakened zonal winds and increased wave amplitude). Slower progression of waves in turn 10 

produces more persistent associated weather patterns in mid-latitudes, increasing the probability of 

extreme weather events (drought, flooding, cold spells, heat waves). ENSO dynamics might be 12 

also altered by global warming, possibly increasing the frequency and intensity of Eastward 

propagating ENSO events (Cai et al. 2015) (Supplementary Fig. 21e). Other works indicate that 14 

global warming may also promote more persistent La Niña conditions (Mann et al. 2009, 

McPhaden et al. 2015) (Supplementary Fig. 21f). For example, palaeoclimatic evidence from the 16 

Medieval Climate Anomaly suggests that increased radiative forcing can increase La Niña–like 

states (Mann et al. 2009, Marsicek et al. 2018). Global warming will also elevate tropical SSTs, 18 

which in turn will possibly induce a more elevated outflow of the rising branch of the Hadley cell, 

enhancing drought in semi-arid biomes at mid latitudes (Fu 2015, Lau & Kim 2015) 
20 

(Supplementary Fig. 21g). Under warmer SSTs, the raising air reaches a more elevated 

tropopause, becoming dehydrated by colder temperatures, and drier air is produced when 22 

subsidising at mid-latitudes in semi-arid regions (Fu 2015, Lau & Kim 2015). Finally, global 

warming could progressively modify ocean-land interactions that intervene in the generation of 24 

drought periods and the advection of ocean humidity over land (Fu 2015, McPhaden 2015) 
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(Supplementary Fig. 21h; Supplementary Box 2). In the context of increasing global warming, 

water vapor content over land may not increase fast enough relative to the rapid temperature 2 

warming, resulting in drier air masses in extensive continental areas of the globe (Sherwood & Fu 

2014, Fu 2015). The relative balance between Arctic and Antarctic amplification could also alter 4 

globally ocean heat transport by AMOC, SST patterns, and impact global drought patterns 

(Supplementary Fig. 21i).  6 

Overall, there is robust evidence suggesting notable impacts of global warming on the major 

components analysed, including AMO, ENSO and atmospheric Rossby wave trains. Grey circles 8 

in Supplementary Fig. 21 synthesize the expected major impacts of global warming that could in 

turn affect regime shifts in drought and forest carbon uptake. The future dynamics of atmospheric 10 

Rossby wave trains and the associated drought regimes at mid-latitudes will depend on the relative 

strength of different global warming amplification processes at different latitudinal bands 12 

(Supplementary Fig. 21a-i). For example, the co-occurrence of arctic positive feedbacks and 

tropical Hadley cell amplification processes is expected. The relative strength of tropical, arctic 14 

and antarctic amplification processes, though, will ultimately shape the meridional temperature 

gradient at mid-latitudes, determining in this way long-term Rossby wave train dynamics, the 16 

frequency of blocking activity and drought regimes in semi-arid areas (Francis et al. 2017). Due to 

the strong links and interactions reported for all the components reviewed, a wide range of 18 

possible scenarios should be considered.  

Our results are consistent with previous studies of the responses of Aleppo pine to 20 

increased drought, which have extensively documented a reduction in growth and wood 

production as water availability decreases (Borghetti et al. 1998; De Luis et al. 2007; Sarris et al., 22 

2007; Camarero et al., 2010, Pasho et al. 2012, Gazol et al. 2017, Novak et al. 2016, Peña 

Gallardo et al. 2018) and with the effects of climatic oscillators on tree growth trends in this area 24 

(reviewed in Camarero et al. 2011; Pasho et al. 2011, St George 2014, Madrigal-González et al.  
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2017, Dorado-Liñán et al. 2017). Extending this previous evidence, our results highlight a critical 

importance of sustained, multidecadal negative effects of climatic teleconnections in forest carbon 2 

capture and resilience patterns (Fig. 2). We suggest that multiple and non-mutually exclusive 

mechanisms are jointly operating at different time scales shaping the reported trends on forest 4 

carbon capture, including the three analyzed climatic mechanisms (Fig. 6), but also lagged effects 

of soil hydrological and tree ecophysiological processes (Fig. 6). Referring to the ecophysiological 6 

processes, major negative effects of drought on the secondary growth of Aleppo pine have been 

mainly reported at a 8-12 month time scale after drought, but significant effects have been 8 

documented for longer time periods (lasting to 24-30 months; Pasho et al. 2011, Peña Gallardo et 

al. 2018). Experimental, xylogenesis and isotope studies indicate that wood formation and 10 

secondary growth are significantly constrained by early summer water availability and associated 

with drought-induced shifts in the stomatic control of leaf conductance (Borghetti et al. 1998, 12 

Ferrio et al. 2003, Gazol et al. 2017, Novak et al. 2016). Similarly, it is well documented in this 

species that climatic conditions during the growing season affect tree growth during the 14 

subsequent year (Sarris et al. 2007, Linares et al. 2010, Pasho et al. 2011). In line with these 

findings, Anderegg et al. (2015) also documented in a global comparative analysis of multiple 16 

forest types an incomplete forest growth recovery for 1 to 4 years after extreme drought, showing 

most prevalent negative effects in Pinaceae species, located in dry ecosystems, and in species with 18 

reduced hydraulic safety margins. On top of this, additional observational studies suggest that 

complex feedbacks between drought-induced defoliation, tree primary and secondary growth and 20 

carbon starvation might extend and lengthen tree recovery periods, limiting tree long-term 

resilience, and resulting in declining trends (e.g. Girard et al. 2009, Guada et al. 2016). 22 

Independently from these ecophysiological processes, intrinsically delayed responses of soil 

hydrological systems, affecting groundwater levels several months after the meteorological 24 

drought can also additionally contribute to the emergence of long-term tree responses (St George 
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et al. 2014). The limited early warning signals, low recovery rates and resilience trends reported 

for Aleppo pine (Figs. 2, 3) are consistent with previous studies (Camarero et al. 2015a, Gazol et 2 

al. 2018). Overall, despite the well-known importance of the reviewed ecophysiological processes 

shaping long-term responses of secondary growth, our analyses suggest a major contributing role 4 

of the reported climatic mechanisms on the reported regime shift (Fig. 4-6).  

Previous studies of the dynamics of forest carbon uptake in the Iberian peninsula have 6 

mainly focused on the 1986-2008 time period, i.e. the decades covered by the Spanish Forest 

National Inventories. These studies have reported dominant effects on tree secondary growth of 8 

stand structure, plantation effects, tree height, and functional diversity (reviewed in Gómez-

Aparicio et al. 2011, Vayreda et al. 2012, Coll et al. 2013, Ruiz-Benito et al. 2014), and 10 

significant but quantitatively less dominant effects of climatic variables (Vayreda et al. 2012, Coll 

et al. 2013). Our results identify a new ecological context dominated by strong, climate-induced 12 

multidecadal shifts in forest productivity, with important reductions in annual productivity at the 

decadal scale (31-37%) and significantly reduced resilience in Aleppo pine stands (Fig 2).   14 

To conclude, in this study we have identified the key role of the non-stationary interactions 

between AMO and ENSO events in driving abrupt climatic shifts in semi-arid Aleppo pine forests, 16 

providing a new, unreported mechanism for carbon uptake shifts in these vulnerable forests. We 

have provided as well evidence for other co-acting processes implied in the emergence of regime 18 

shifts in drought and forest carbon uptake, and outlined a framework integrating the expected 

effects of global warming in these mechanisms.  20 
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Figure captions 

FIGURE 1.  Drought-regime shifts. Observed shifts in monthly series of the Standard 6 

Precipitation Evapotranspiration Index (SPEI, 12-month window) at a grid resolution of 280×280 

km2 in the Spanish Iberian Peninsula. The year of a shift and the variance explained by the 8 

regression tree model are indicated. The splitting points obtained by the regression tree analyses 

for 1950-2012 are indicated by coloured vertical bars. Red bars indicate shifts characterized by R2 10 

>0.20  and a Tukey-Kramey test p value <0.0001. Orange bars indicate significant shifts with 

regression tree 0.10<R2<0.20 and a T-K test p value <0.0001. Yellow bars indicate 0.01<R2<0.10 12 

and a T-K test p value <0.0001. Green bars indicate a splitting point departing from the studied 

1979 - 1981 period. Positive and Negative SPEI values indicate wet and dry periods, respectively. 14 

(a-m) Monthly SPEI series are shown for each grid unit.  

 16 

FIGURE 2. Changes in carbon uptake by Mediterranean forests. (a) Carbon-uptake dynamics 

in 18 Aleppo pine forests situated in the northeastern Iberian Peninsula showing regime shifts in 18 

carbon uptake. Blue dots and lines represent the observed trends in carbon gain during the first 

three decades. Red dots and lines illustrate the observed dynamics after the 1980s climate shift. 20 

Significant linear trends are shown (ordinary least squares regression). Smoothed trends fitted by 

the cubic spline method are represented (λ values = 0.01 and 100). (b) Observed trends in forest 22 

carbon uptake shynchrony. A spline fit (black line) indicates the averaged r pearson trend observed 

for all forest stands (λ=100). The contour lines are quantile contours in 5% intervals (i.e. 5% of the 24 

r pearson values are below the lowest (blue) contour, 10% are below the next contour, red contour 

lines indicate maximum point density). (c) Observed trends in the forest carbon uptake resilience 26 

index after the 1980 regime shift. A spline fit (black line) indicates the mean FCUR trend observed 
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for all forest stands (λ=100). FCUR is calculated using a reference period of 5 years before the 

shift. A smooth coloured surface illustrating the density distribution of FCUR values is provided. 2 

Red contour lines indicate maximum FCUR point density. The contour lines are quantile contours 

in 5% intervals. (d) Observed trends in forest carbon uptake recovery capacity (FCURC). The thin 4 

dashed black line indicates the minimum FCU level observed the year of the regime shift. A spline 

fit (black line) indicates the averaged FCURC trend observed for all forest stands (λ=100). Red 6 

contour lines indicate maximum FCURC point density. 

 8 

FIGURE 3. Analyses of early-warning signals and structural equation models (SEM). (a) A 

comparison of the early-warning signals (AR-1) observed for SPEI variables and forest carbon 10 

uptake (kg ha-1 y-1). (b) Observed relationship between SPEI early-warning signals (AR-1) and 

regime shift strength (variance explained by regression tree models). (c) Relationship between the 12 

nonparametric Kendall tau correlation coefficient for the AR-1 moment (based on the SPEI 12-

month time series during the 1950-1979 period) and the variance explained by the regression tree 14 

models (1/AICc). (d) Standardised coefficients in the SEM model for grid cell g (280×280 km2 

scale, Supplementary Fig. 1). Model-fitting parameters: χ2=3.04, p=0.36; BIC=-16.81. (e) 16 

Relationship between the standardised coefficients in the SEM models linking AMO and SPEI and 

the variation explained by the regression tree analyses (1/AICc). (f) Relationship between the 18 

nonparametric Kendall tau correlation coefficient and the standardised coefficients of the SEM 

connecting AMO and SPEI 12.  20 

 

FIGURE 4. Changes in the non-stationary effects of the El Niño Southern Oscillation 22 

(ENSO) and the North Atlantic Oscillation (NAO) on the SPEI drought index. (a) Upper 

panel. Observed changes in the Atlantic Multidecadal oscillation (AMO) and the Multivariate 24 
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ENSO Index (MEI) over 1950-2012, reporting a parallel shift in the vicinity of 1980. Low-

frequency variability in the annual AMO and MEI index are illustrated (Spline fits, 2 

LambdaAMO=10, LambdaMEI=100). Lower panel: Observed variation in the number of months per 

year with significant effects (p<0.05) of the Multivariate ENSO index (MEI) on seasonal drought 4 

(SPEI, three month temporal scale). Red squares indicate significant negative effects associated 

with increased drought (increased number of months with significant drought effects). Blue 6 

squares indicate positive effects associated with increased autumn rains (p<0.05). (b) Observed 

low frequency changes in the monthly winter NAO index over 1950-2012. Trends for January are 8 

illustrated (Spline fit). The same trends were observed for December (not shown). Thick blue line: 

Lambda=10000. Thin blue line: Lambda=1000. Lower panel: Observed variation in the effects of 10 

winter NAO on drought (SPEI 3). Significant negative effects of NAO on SPEI (p<0.05) were 

detected on December and January. Red squares illustrate the detection of significant negative 12 

effects of monthly winter NAO states (December and January) on SPEI (p<0.05).  

 14 

 

FIGURE 5. Modulation induced by the Atlantic ocean multidecadal variability (AMO) on 16 

the correlations between ENSO and forest carbon uptake (FCU). (a) Observed negative 

correlations between Pearson correlation values (rFCU-MEI) and AMO in the 18 Aleppo pine 18 

stands experiencing regime shift trends. Correlations were computed for all months, and the 

maximum correlation value observed is illustrated. *p<0.05, **p<0.01. (b) A summary of the 20 

observed variation of the strength of the modulation by AMO (explained variance) and its monthly 

variation. The plot synthesises the observed relationships at 18 forest sites and for all the months 22 

of the year. A quadratic polynomial fit is shown. (c) Observed p values for the reported 
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correlations in b. In b and c a smooth surface showing the density of data points is provided. Red 

contour colors indicate maximum point density. 2 

 

FIGURE 6. A diagram illustrating three mechanisms affecting drought trends and regime 4 

shifts in forest carbon uptake. Sea surface temperatures (SST) depend on positive/negative 

AMO phases and ENSO, and modulate the propagation of Rossby waves and the transport of 6 

water vapour and heat over land. AMO also has lagged effects on the dynamics of winter NAO, 

which in turn significantly affect drought severity and atmospheric blocking frequency leading to 8 

reduced forest carbon uptake. 
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