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Summary 16 

 Intraspecific variability in ecological traits confers the ability of a species to adapt to an 17 

ever-changing environment. Fractions of biomass allocation in plants (BAFs) represent 18 

both ecological traits and direct expressions of investment strategies and so have 19 

important implications on plant fitness particularly under current global change.  20 

 We combined data on BAFs of trees in more than 10000 forest plots with their 21 

distributions in Europe. We aimed to test whether plant species with wider distributions 22 

have more or less variable intraspecific variance of BAFs foliage-woody biomass and 23 

shoot-root ratios than species with limited distribution. 24 

 Irrespective of corrections for tree age and phylogenetic relatedness, the standard 25 

deviation in BAFs was up to three times higher in species with most extensive 26 

distributions than in those with least extensive distribution due to a higher genetic 27 

diversity. Variance in BAFs also increased with latitude.  28 

 We show that a combination of 36% tree genetic diversity and 64% environmental 29 

variability explains variance in BAFs and imply that changes in genetic diversity occur 30 

quickly. Genetic diversity should thus play a key role in regulating species responses to 31 

future climate change. Loss of habitat, even if transient, could induce a loss of genetic 32 

diversity and hinder species survival. 33 

 34 
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Introduction 39 

 40 

The strategies of fitness and growth of sessile organisms are largely determined by biomass 41 

allocation (Hodge, 2004; Poorter et al., 2012; Veresoglou et al., 2017), which in turn determines 42 

the long-term morphology of the individual. The morphology of sessile organisms has been 43 

studied the most in plants (Kokko, 2007). Plant morphology can be summarised in several ways, 44 

each with distinct strengths and limitations. Poorter and Sack (2012) reviewed these methods and 45 

concluded that fractions of biomass allocation, especially after correcting for confounding 46 

allocation parameters such as size, represent a particularly effective measure. Plant morphology 47 

has high functional importance, so the influence of environment on morphology has been well 48 

studied. Some representative parameters that have been studied extensively for their influence on 49 

plant allometry are the size of individual plants (Reich et al., 2005; Poorter et al., 2012), 50 

historical environmental abiotic parameters such as stressors (e.g. uniform stress hypothesis) 51 

(Mogan & Gannell, 1994; Dean et al., 2002), shading (Lusk et al., 2008; Duursma et al., 2010; 52 

Forster et al., 2011), temperature (Reich et al., 2014), precipitation (McCarthy & Enquist, 2007), 53 

biotic interactions such as competition and diversity (Forrester et al., 2017a); the growth form of 54 

plants (Wyka et al., 2013) and species-specific ontogeny (Forrester et al., 2017b). Plant age, 55 

however, is an influential factor that is often not available for integration into such analyses 56 

(Nikklas, 1997; Nikklas et al., 2003; Barthélémy & Caraglio, 2007; Duursma et al., 2010). 57 

Analysts often use plant size as a proxy of age (Nikklas, 2004; Bowman et al., 2013). 58 

 Biomass-allocation fractions (BAFs) describe biomass ratios, usually at a logarithmic 59 

scale, of plant organs. BAFs are measureable to an individual level and thus constitute plant 60 

traits (Müller et al., 2000; Reich et al., 2003). Trait variance is often comparable to or even more 61 

important than trait means (Messier et al., 2010; Bolnick et al., 2011; Violle et al., 2012). High 62 

variance in trait values could facilitate, for example, the evolution and adaptation of a species to 63 

new environmental settings (Bolnick et al., 2011). Quantifying variation in BAFs could improve 64 

modelling uncertainty in the standing biomass of woody habitats because most of our estimates 65 

of standing biomass are projections of allometric equations (Chave et al., 2005; Muukkonen, 66 

2007).  67 

Plant morphology has been described as an equilibrium between constraints to plant 68 

growth and exogenous environmental stressors (Barthélémy & Caraglio, 2007). Constraints to 69 



plant growth and other intrinsic factors can negate the influence of the environment to varying 70 

degrees, i.e. environmental conditions tend to shift BAFs against the stabilising influence of 71 

intrinsic factors. We would then expect that BAFs would be more variable in plant species that 72 

experience extreme environmental conditions more often. Reyer et al. (2013) argued that 73 

extreme conditions occur mainly at the edges of the distribution of a species. Source-sink 74 

population dynamics describe instances where species only occur in an area because of a 75 

constant influx of propagules from surrounding areas where the species grows better. At the 76 

edges of the distribution of a species it is more likely to observe source-sink population 77 

dynamics (Remeš, 2000) than in the kernel of the distribution which could induce unique 78 

phenotypes. Plant species that have a small distribution should more frequently experience such 79 

“extreme edge” conditions so plants with smaller distributions may have the most variable BAFs. 80 

The reason is that environmental heterogeneity mainly increases the variance in BAFs in these 81 

species (Fig. 1a). We thus hypothesize that plant species with smaller distributions have more 82 

variable BAFs (hypothesis one). Alternatively, the higher effective population sizes and genetic 83 

variability could allow plant species that have extensive distributions to be those showing the 84 

highest intraspecific trait variance, including BAFs. The reason could be that environmental 85 

variability acts independently of distribution but more populous species show more diverse 86 

BAFs due to a higher genetic diversity (Fig. 1b). As a result, plant species with smaller 87 

distributions could vary less in their BAFs (hypothesis two). A final expectation is that variance 88 

in BAFs should indicate the ability of species to adapt to local environmental conditions, so a 89 

high variance suggests rapid evolution. Stapley et al. (2017) reported considerably lower 90 

recombination rates in gymnosperms than angiosperms. The variance in BAFs should thus be 91 

lower in conifers, compared to angiosperms (hypothesis three).  92 

 Most of our existing understanding on the way traits of woody species vary with genetic 93 

diversity and the environment originates from provenance tests, where plants differing in their 94 

origin are grown under common environmental conditions (Thompson et al. 2008; Wang et al. 95 

2010). Some of the limitations of provenance test relate to the choice of the common 96 

environment (Leites et al. 2012), the time they require for long-lived species to grow and thus the 97 

logistics of destructively harvesting them (e.g. to assess BAFs). Here we worked on an 98 

observational approach which synthesizes across existing BAF measurements from records of 99 

destructive tree harvests in Europe (Fig. 1). Schepaschenko et al. (2017) have recently released 100 



two large data sets detailing the biomass fractions of many trees that had been destructively 101 

harvested between 1930 and 2014 in Eurasia. We combined this data set with information on the 102 

distributions of many of these plant species in Europe from Mauri et al. (Mauri et al., 2017) to 103 

address the above mentioned three hypotheses. 104 

 105 

Materials and Methods 106 

 107 

Sources of data 108 

We used the two data sets published by Schepaschenko et al. (2017) for our main analysis. The 109 

Biomass-tree data set provided information on biomass fractions following destructive 110 

harvesting for 9613 trees, mainly in Europe. The Biomass-plot data set provided information on 111 

biomass fractions for 10 351 plots distributed throughout Eurasia, each of which provided 112 

information for cumulative biomass of two or more trees. The two data sets synthesized across 113 

approximately 1200 experiments over the period 1930-2014 and contained information on 114 

location and age of the trees as well as biomass information on several different fractions. We 115 

used biomass information on foliage vs. woody aboveground biomass for our main analyses. We 116 

also used root:shoot ratios as part of our sensitivity analyses. We extracted distributions of tree 117 

species in Europe from Mauri et al. (Mauri et al., 2017). Mauri et al. (2017) only described tree 118 

distributions in Europe, so we limited our analysis to trees that occur mainly in Europe. We used 119 

QGis v 2.12.3 to estimate the size of the polygonal envelopes provided by Mauri et al. (2017). 120 

We used Phylocom v 4.2 to reconstruct the phylogenetic relationships of the tree species in our 121 

analysis.  122 

We worked with an aggregate of 80 species in our analysis of European trees. A list of 123 

the species and the phylogenetic reconstruction used to correct for phylogenetic relatedness can 124 

be found in Table S1. The three data sets varied considerably in terms of their resolution and 125 

their suitability for the different analyses. The cumulative analysis of the Biomass-tree data set 126 

used biomass and age information for 4719 trees from 42 species (median observations per 127 

species, 10.5; 1st quartile, 7; 3rd quartile, 78.5). The analysis of the Biomass-plot data set used 128 

information for 3898 plot entries describing 63 species (median observations of plot per species, 129 

15; 1st quartile, 8.5; 3rd quartile, 46) making it particularly suitable for assessing how BAFs are 130 

influenced by environmental heterogeneity. The analysis of individual stands in the Biomass-tree 131 



data set used an aggregate of 1854 tree observations from 40 species (median observations per 132 

species, 8.5; 1st quartile, 7; 3rd quartile, 33.25). Because for the analysis on individual stands (i.e. 133 

plots) in the Biomass-tree data set we only used per species information of trees in a single stand 134 

(i.e. plot with most tree observations in the Biomass-tree data set), this made it particularly 135 

suitable for quantifying the influence upon BAFs of genetic diversity. The Biomass-tree data set 136 

contained proportionally more observations located in Europe than Biomass-plot data set did 137 

(Fig.2 – inserts). 138 

 139 

Rationale for the analyses 140 

We modelled three sources of variance in BAFs, age, environment and genetic diversity. We 141 

inferred genetic diversity from genetic variability (i.e. the degree to which the genetic 142 

characteristics of populations vary) using a phenomenological approach that determined the 143 

variance of morphological characteristics in populations after controlling for sources of variance 144 

that were not of genetic origin such as age, environment and latitude. To control for age-related 145 

differences in BAFs we used the slopes of linear models with BAFs as response variables and 146 

age as predictor. To assess the fraction of BAFs that is explained by genetic diversity we 147 

assessed how variance in BAFs scaled with tree species distribution in tree individuals which 148 

belonged to the same species and stand after correcting them for tree age (individual stands in the 149 

Biomass-tree data set; Fig. 1b). To assess the fraction of BAFs that is explained by 150 

environmental variability we assumed that environmental variability is mainly due to 151 

latitudinal range (de Frenne et al. 2013; we provide more details at the section poling effect 152 

sizes) and quantified how much the variance in BAFs changed with each degree of latitudinal 153 

range (i.e. latitudinal breadth – to avoid an overrepresentation of stands we used the Biomass-154 

plot dataset).  155 

 156 

Statistical analyses  157 

Our analyses only considered tree species (which were the unit of our analysis) for which a 158 

minimum of five observations of age, foliage biomass and aboveground woody biomass were 159 

available, because we needed a minimum of three observations to fit a linear model and then two 160 

additional residuals to yield meaningful estimates of variance for the fit of the regression line 161 

(results from a sensitivity test on the inclusion threshold are presented in Appendix 1 and Fig. 162 



S1). To extract the fraction of variance in BAFs that was not due to age differences we fitted 163 

linear models with BAFs as a response variable and age as predictor and then quantified the 164 

standard deviation of the residuals. We explain the procedure in higher detail below (also 165 

Appendix 2; Table S2):  166 

1. We calculated the natural log response ratio (logRR) of foliage over aboveground woody 167 

biomass (
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RR lnlog , where m stands for biomass) for each individual tree in the case of 168 

the Biomass-tree data base or plot in the case of the Biomass-plot data base (Appendix 2). In the 169 

form of a sensitivity analysis we also analysed logRR of root over shoot BAFs. LogRR 170 

represents a widely used nonstandard effect size in synthesis studies. A large logRR indicates a 171 

higher investment in foliage than woody biomass. 172 

2. We fitted a linear model with logRR as a response variable and age as the sole predictor. The 173 

single most important idiosyncratic cause of variability in BAFs is age (Nikklas et al., 2003; 174 

Nikklas, 2004; Barthélémy & Caraglio, 2007; Duursma et al., 2010). To correct our data for this 175 

source of variance, we extracted the residuals of the linear model and assessed their standard 176 

deviations. We assumed a first-order linear correlation between logRR and age using the 177 

standard deviation of the residuals as a measure of the variance, in agreement with preliminary 178 

analyses (Appendix 2). 179 

3. We correlated our metric of variance of the relationship between BAFs and age with the 180 

distribution of the plants. 181 

In the first of our three analyses (Table S2) we used all observations of individual trees in 182 

the Biomass-tree data set, which consisted of multiple trees per stand and multiple stands per 183 

species. We then used information for all plots in the Biomass-plot data set, consisting of a single 184 

plot per stand, which allowed us to correct for spatial autocorrelation. Finally, we reanalysed the 185 

Biomass-tree data set but only using the information for each species in a single stand, with the 186 

sole criterion that the stand had provided most observations for that species. This analysis 187 

addressed the concern that the cause of higher variance in BAFs was due to a larger distance 188 

across observations and thus a higher variability in environmental conditions. We conducted this 189 

analysis both with and without phylogenetic correction. We used an analysis of phylogenetically 190 

independent contrasts to correct for phylogeny. 191 



 We further compared our estimates of variance between angiosperms and gymnosperms. 192 

We thus used t-tests, assuming unequal variance. 193 

 194 

Sensitivity analyses 195 

 196 

We tested the specificity of our observations to logRR between foliage and aboveground woody 197 

biomass by replicating the analysis for logRR between total root biomass vs. total aboveground 198 

biomass. The two data sets contained unequal numbers of observations of total root biomass, and 199 

the number of species which we could analyse was low. We directly assessed how the variance 200 

in biomass fractions scaled with distribution (i.e. independent of age) by directly assessing the 201 

standard deviation of biomass-allocation ranges and correlating it with distribution (Appendix 2).  202 

 We further replicated the analysis with the Legacy Tree Data data set (Radtke et al., 203 

2016). To estimate the distribution of North American trees we used information from the United 204 

States Department of Agriculture (USDA 2017). This data set did not contain any information on 205 

tree age. We used data from the Legacy_Tree table and used the variability of logRR foliage over 206 

aboveground woody biomass for single locations. Sufficient information was available for only 207 

three species, which were assessed for four locations. All three species belonged to the Pinaceae 208 

family, had nested distributions and occurred in southeastern North America. We assessed 209 

distribution by extracting information from the USDA for the number of states in which the 210 

species occurred and regressed this metric against the variance of logRR. The amount of 211 

information we extracted from the Legacy Tree Data base and the resolution, given that the size 212 

of US states varies considerably, were much lower than in our main analysis so we only used as 213 

a means of supporting the main results with a different dataset. Because we did not have accurate 214 

distribution range data, we used here non-parametric statistics. 215 

 To assess the degree to which our observations were sensitive to the inclusion of invasive 216 

tree species we classified tree species in native vs invasive as in Veresoglou et al. (2018; Table 217 

S3). We repeated the analysis separately for the subsets of native and invasive species. 218 

 219 

The influence of latitude 220 

Latitude is an influential predictor of variance in plant traits (Heibo et al., 2005; Aerts et al., 221 

2012), and as such it was important for us to show that it was not driving our results. We 222 



assessed the degree to which our patterns were explained by latitude using two analyses. (a) We 223 

first extracted the average latitudes of the distributions of the woody species in Europe reported 224 

by Mauri et al. (2017). We compared these values with the variances in BAFs corrected for plant 225 

age (i.e. the standard deviation of the residuals of the linear model described above). (b) We then 226 

divided Europe into northern and southern Europe. We thus used the average of the two 227 

latitudinal extremes of Europe: 82°N for the northern region and 35°N for the southern region, 228 

averaging 58.5°N. We used the subset of points west of 69°W. We separately calculated the 229 

variance of BAFs corrected for age for the woody species for which the Biomass-tree data set 230 

contained a minimum of five observations both north and south of the latitudinal average 231 

threshold, which we then combined in a new logRR (i.e. northern variance over southern 232 

variance). We calculated the variance for these two sites and used them to recalculate logRR.  233 

 234 

Pooling effect sizes to quantify genetic and environmental variance in BAFs  235 

We partitioned here variance in BAFs into a fraction due to genetic variability and a fraction due 236 

to environmental variability. We used a phenomenological approach for this (Fig. 1; Appendix 237 

4). We made the following three assumptions: 238 

1. The key factor contributing to environmental variability was latitudinal range of the 239 

distribution of an organism. In support to this simplistic statement, see de Frenne et al. (2013) 240 

demonstrating that some key environmental parameters such as temperature, precipitation, soil 241 

pH and human influence covary with latitude. We assumed that there is a first order linear 242 

relationship between latitudinal range and environmental variability in BAFs. 243 

2. Genetic variability in BAFs increased with distribution at a slope equivalent to that in Fig. 2b. 244 

3. The relative importance of the two fractions was assessed for an imaginary species with an 245 

“average” latitudinal range which in this case was 19.4o latitude and a mean distribution range of 246 

10,000 km2.  247 

We use the additive principle of variances in statistics to add the two fractions on the assumption 248 

that the observed variance was independent of our sample sizes. Our variance partitioning was 249 

carried out for an idealized species having an average latitudinal range of 58.9o – 39.5o = 19.4o 250 

latitudinal range and a distribution of 10.000 km2 which represented averages in our dataset and 251 

were also consistent with (Tkach et al., 2008). We estimated the overall form of the model and 252 



we calculated relative effect sizes for mean parameters of distribution and latitude in Europe. We 253 

provide more information on the analysis in Appendix 4. 254 

 255 

 256 

 257 

 258 

Results 259 

 260 

The main results are on records throughout Eurasia but these were supported by a 261 

reanalysis exclusively to the records from Europe. Our main analysis gave consistent results for 262 

all three data sets (Fig. 2), namely that variance in BAFs increases with the distribution size of a 263 

species. LogRR of foliage vs aboveground woody biomass was significantly positively 264 

correlated with distribution in all three tests (Fig. 2). The correlation was strongest (i.e. highest 265 

Kendall’s tau) for individual trees in the same stand (tau=0.51, Fig. 2c). We found yet stronger 266 

correlations when we narrowed down the analysis on tree records occurring in Europe which we 267 

here define as those with a longitude smaller than 69oW (Fig. S2). Correlations would have been 268 

considerably weaker if we had not corrected for age of the trees (Fig. S3). No phylogenetic 269 

conservatism was found in either the variance of biomass fractions (Blomberg’s K in the 270 

cumulative analysis of the Biomass-tree data set was 0.37 with P = 0.95) or the distribution of 271 

the species (Blomberg’s K in the same data set was 0.53 with P = 0.12; Appendix 3). The 272 

correlations were weaker after correction for phylogeny with phylogenetically independent 273 

contrasts, except for the Biomass-tree data set (Fig. 3). The variances of the BAFs did not differ 274 

significantly between angiosperms and gymnosperms in any of the three data sets (Fig. 4 – 275 

evidence against hypothesis three). 276 

 The analysis using root:shoot ratios produced comparable results but with lower 277 

statistical power (Fig. 5a,b). The results of our analysis of the biomass data from America agreed 278 

with those for European trees (Fig. 5c; tau=0.91, P=0.07). Most of the trees in the datasets were 279 

classified as native and there were minimal differences in the additional analyses targeting 280 

natives (Fig. S4). There was insufficient statistical power to reach robust conclusions for 281 

invasives (Fig. S4). 282 

 283 



The influence of latitude 284 

There was no relationship between mean latitude and the variance of BAFs between foliage over 285 

woody aboveground biomass in the Biomass-tree data set (Fig. 6a). The five tree species that 286 

were observed both North and South of the latitudinal threshold of 58.5°N did not display any 287 

patterns with regards to their BAFs (Fig. 6a – insert). Picea obovata showed higher BAFs in the 288 

southern extent of its distribution, Pinus sylvestris and Betula alba in the northern extent of their 289 

distribution whereas Larix sukaczewii and Pinus sibirica showed relatively balanced BAFs in 290 

both extents. The lack of a relationship was even more apparent when we narrowed down our 291 

analysis to individual stands in the Biomass-tree data set (data not shown). By contrast we could 292 

observe a strong relationship between mean latitude and the variance of BAFs in the Biomass-293 

plot data set (Fig. 6b). 294 

 295 

Relative effect sizes of genetic and environmental variability 296 

We had 40 observations and a mean slope of 3.324.10-5 per thousand km2 of distribution in the 297 

case of the individual stands in the Biomass-tree data set assessing genetic variability and 18 298 

observations and a mean slope of 3.05. 10-2 per degree latitudinal range in the case of the 299 

Biomass-plot data set measuring environmental variability. The resulting expression of variance 300 

(Appendix 4) was )025,9311.0(10 224   Ds p  with D representing distribution range and φ 301 

degrees latitudinal range. For average European settings of D ≈ 10,000 thousands km2 (also 302 

consistent with (Tkach et al., 2008)) and φ differences of 58.9o – 39.5o latitudinal range the two 303 

factors inside the parenthesis take the values 11.106 and 35.106 suggesting that latitudinal range 304 

(i.e. here used as a proxy of environmental variability) exerts on average a 48% stronger (i.e. the 305 

resulting variances for genetic and environmental variability, if that the other factor was zero, 306 

would be 0.33 and 0.59, respectively, giving relative proportions of 36% and 64%) influence on 307 

variance in logRR of BAFs than distribution (i.e. here genetic variability) does. Genetic diversity 308 

and latitudinal range, both induce strong changes on the variance in BAFs and the respective 309 

standard deviations were multifold higher for species with extensive distributions (Fig. 2c) and 310 

high latitudes (Fig. 6b). 311 

 312 

 313 

Discussion 314 



 315 

Living organisms are constantly challenged to optimally allocate their finite resources to 316 

maximise fitness. This challenge leads to multiple investment trade-offs, many of which have 317 

been extensively studied (Poorter et al., 2006; Cadotte, 2007; Huot et al., 2014). BAFs represent 318 

direct expressions of some of these trade-offs and the phenotypes of the organisms. We 319 

experimented with two such BAFs, foliage over woody aboveground biomass and the root:shoot 320 

ratio, to show that both these fractions were more variable in tree species with extensive 321 

distributions, even after limiting our analysis to neighbouring trees (Fig. 2c), in agreement with 322 

hypothesis two. Our results were also valid after correcting for phylogenetic relatedness 323 

(Appendix 3). A higher ability to adapt to a changing environment is one of the implications of 324 

higher trait variance (Bolnick et al., 2011). The causality of this relationship is unclear and could 325 

imply either that tree species that experience a higher phenotypic variability tend to have larger 326 

distributions (e.g. van Vallen, 1973) or that some species are phenotypically more diverse in 327 

response to a larger distribution and most likely a larger effective population size. Environmental 328 

heterogeneity has been identified as a mechanism that facilitates genetic variation in plants 329 

(Delph & Kelly, 2013), and a larger distribution implies a higher environmental heterogeneity. 330 

Many tree species have extensive distributions, but individual trees can also disperse over very 331 

large distances (Bacles et al., 2006; Petit & Hampe, 2006; Kremer et al., 2012) and cross-fertilise 332 

with individuals experiencing differing environmental conditions. We thus favour the 333 

interpretation that a larger distribution most likely induces a higher variance in BAFs. 334 

 BAFs in plants represent expressions of an equilibrium between stabilising 335 

intrinsic/genetic factors such as ontogeny and the destabilising influence of the environment 336 

(Barthélémy & Caraglio, 2007), i.e. any biomass-allocation fraction is an aggregate of these two 337 

mechanisms. We thus present an argument detailing why our results were likely due to a higher 338 

genetic variability of trees with more extensive distributions and not because of the 339 

environmental conditions that the trees experienced (in support of hypothesis two and against 340 

hypothesis one). The influence of the environment is expected to be only moderately important 341 

at sites close to the centres of species distributions (compared to the edges). Most of the trees in 342 

our data sets had been harvested near the centres of their distributions, because moderate 343 

environmental conditions facilitate silvicultural practices. Most importantly, our results were 344 

valid when using individual sites per species in which case the differences were most likely due 345 



to rapid evolution (i.e. the absence of systematic differences between angiosperms and 346 

gymnosperms provided evidence against hypothesis three). Co-occurring tree species experience 347 

comparable environmental conditions, so the resulting phenotypic variance should best represent 348 

the genetic diversity (Fig. 2c). 349 

 Does latitude influence BAFs? We found no relationship in the Biomass-tree data set but 350 

there was a strong positive relationship in the Biomass-plot data set (Fig. 6). A reason why the 351 

results across the two data sets were incongruent probably relates to the way these were 352 

standardized. The Biomass-tree data set contained multiple tree records per sampling site and 353 

there were few replicate sites per tree species. Co-occurring woody species are likely to 354 

experience comparable environmental conditions and the resulting BAFs should mainly reflect 355 

genetic diversity. Because of the few replicate sites per tree species any influences of latitude 356 

were masked in the data set by those of genetic diversity. This was even more pronounced when 357 

we narrowed the analysis to a single site per tree species. By contrast in the Biomass-plot data set 358 

via being limited to a single record per sampling site, we could effectively investigate differences 359 

arising from environmental variability. Based on this analysis, trees that typically occur closer to 360 

the poles exhibit higher variances of BAFs. Even though it has been disputed in the past 361 

(Vázquez & Stevens, 2004), it is widely appreciated that environmental variability increases with 362 

latitudinal range (MacArthur, 1972). This result is in accordance with our first hypothesis that 363 

environmental variability should increase BAFs variance (Fig. 1a). The effect size we estimated 364 

for environmental variability exceeded that for genetic diversity.  365 

 The survival challenges of tree species to the accelerating pace of global change is a key 366 

topic in the biology of global change (Lenoir et al., 2008; Bertrand et al., 2016; Veresoglou & 367 

Halley, 2018). Identifying tree species at a high risk of extinction is important. Several traits such 368 

as longevity (Morin & Thuiller, 2009) and seed size (Veresoglou & Halley, 2018) might be 369 

informative in terms of tree susceptibility to extinction. The loss of habitat is a key factor that 370 

drives the eventual risk of extinction, but the relationship between habitat size and genetic 371 

variability is poorly understood. The loss of genetic diversity following habitat loss can further 372 

limit the ability of a species to cope with environmental conditions (Sexton et al., 2009) and 373 

eventually accelerate extinction. The implications of extensive distributions have been debated. 374 

A review of 31 studies by Lowe et al. (Lowe et al., 2005) found that habitat loss usually did not 375 

significantly affect the genetic variability of tree species. Another meta-analysis by Vranckx et 376 



al. (2012), however, found that habitat loss induced losses in the genetic diversity of species. An 377 

extensive synthesis by Morueta-Holme et al. (2013) reported that plant species with extensive 378 

geographic ranges were more genetically variable, and Kremer et al. (Kremer et al., 2012) 379 

argued that long-distance gene flow amongst trees likely conferred an evolutionary advantage. In 380 

contrast, the implications of habitat loss in trees may be fully reversible if the former habitat of 381 

these species can be restored before extinction (Newmark et al., 2017).  382 

Our results suggest that it is tree genetic diversity that induces variance in BAFs (Fig. 1b; 383 

we found higher variance in BAFs in species with large distributions). Our analysis makes the 384 

assumption that genetic variability is a good proxy of genetic diversity, which despite being a 385 

common and well supported assumption in the literature (e.g. Avolio et al., 2012; Jöqvist and 386 

Kremp, 2016), remains less robust than direct estimates of genetic diversity. Most importantly, 387 

our general models did not discriminate between native and non-native plant species and used 388 

real distributions to assess effect sizes. We often observe that the distributions of non-native (i.e. 389 

invasive) species are not at equilibrium with their environment and that they possess a lower than 390 

expected genetic diversity (Beaumont et al., 2009; Bradley et al., 2010). We would have 391 

expected, as a result, relatively weak relationships between genetic diversity and realized 392 

distributions for the subset of non-native trees which was not the case (Fig. S4). This finding 393 

implies that changes in genetic diversity can occur quickly and develop after a few generations 394 

of growth in isolation. Genetic diversity should thus play a key role in regulating the response of 395 

species to future climate change, because of the extensive fitness implications of BAFs on the 396 

ability of a species to adapt. The loss of habitat, even if transient, could lead to a loss of genetic 397 

diversity, which would hinder species survival. 398 

Human activity has sped up gene flow in almost all types of ecosystems and this should 399 

continue in the near future (Wilson et al. 2009). On the short term, assisted gene flow 400 

homogenizes populations (i.e. and their genetic diversity), allowing species to more effectively 401 

cope with unfavourable environmental conditions (e.g. through acquiring more favourable 402 

BAFs). Assisted gene flow should thus steepen the positive relationship between variance in 403 

BAFs and distribution (Fig. 1b), benefiting disproportionally species with a large distribution at 404 

the risk of species that maintain a limited genetic diversity. It has been documented, for example, 405 

that invasions, which represent an alternative form of introductions of species with a high 406 

competitive ability, induce extinctions of native species (Colautti et al. 2017; Catford et al. 407 



2018). Even though we did not directly model assisted gene flow (as for example in Adams et al. 408 

1998), the strong relationship between distribution and genetic diversity should be instructive for 409 

forest management.  Silvicultural practices such as the artificial regeneration of stands from 410 

commercial genetic material (e.g. Bradshaw 2004; Finkeldey Ziehe 2004) might, therefore, be 411 

precarious for the native species diversity.  412 

 In summary, BAFs were more variable in trees with extensive distributions, i.e. our 413 

results supported only the second of our hypotheses. Most notably, we made the point that it was 414 

a higher genetic variability that resulted in more variable BAFs for tree species with extensive 415 

distributions. We thus present evidence that the loss of habitat for tree species through a quick 416 

loss of genetic diversity could lower the ability of a species to modify its architecture (BAFs) in 417 

response to changes in the environment (Fig. 1). It is thus likely that any loss of habitat may not 418 

be as reversible as many believe.  419 
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Legends to Figures 643 

 644 

Fig. 1 Conceptual diagram illustrating the three hypotheses we address in the manuscript. Four 645 

hypothetical species, the broadleaves blue triangle and yellow circle (represented with an 646 

elliptical leaf) and the conifers red rhomb and green square (represented by an acicular 647 

leaf) are each sampled at four locations (map on top; note that distribution envelopes 648 

differ). The ranking of their distributions is as follows: red rhomb, blue triangle, yellow 649 

circle and green square. In Hypothesis One (a) we expect that the fraction of variance in 650 

biomass allocation fractions that is explained by genetic variability (purple discontinuous 651 

lines) is independent of distribution and that environmental factors increase the variance 652 

(green arrow) more in those species that have a small distribution (larger arrow) resulting 653 

in a negative relationship between observed variance and distribution (green 654 

discontinuous lines). In Hypothesis Two (b) we expect that a larger distribution results in 655 

a higher genetic diversity which is depicted with a purple line. The environment increases 656 

variance irrespective of distribution (green arrows) resulting in a positive relationship 657 

between observed variance and distribution (green discontinuous lines). In Hypothesis 658 

Three (c) the biomass allocation fractions vary independently of distribution and can be 659 

explained by the evolutionary history of the plant (here angiosperms vs gymnosperms). 660 

We could assess genetic variance in BAFs by comparing conspecific trees in the same 661 

stand after correcting for age-differences and the sum of genetic and environmental 662 

variability by comparing across stands, also after correcting for age. 663 

 664 

 665 

Fig. 2 Relationships between the variance in biomass-allocation fractions (foliage over woody 666 

aboveground biomass) and distribution of the tree species. (a) Biomass-tree data set, all 667 

possible observations (multiple trees per location) of the specific data set (lower than in 668 

Biomass-plot); (b) Biomass-plot data set, one observation per location (at a plot level); (c) 669 

Biomass-tree data set, observations per species only describe trees in the stand (plot) that 670 

contained the most tree observations. The dashed lines represent the best fits. Numbers 671 

next to the data points indicate the number of observations per species used to calculate 672 

the variance. Overlaid map shows in red the location of the sites where the data 673 



originated from – we only analysed woody species with an extensive distribution (over 2 674 

million km2) in Europe. Phylogenetic correction was not applied. Relationships were 675 

stronger when we repeated the analyses with the subset of sites located in Europe (Fig. 676 

S2). 677 

  678 

 679 

 680 

 681 

Fig. 3 Relationships between variance in biomass-allocation fractions (foliage over woody 682 

aboveground biomass) and distribution of the tree species for phylogenetically corrected 683 

data using phylogenetically independent contrasts (PIC). (a) Biomass-tree data set, all 684 

possible observations; (b) Biomass-plot data set, one observation per location; (c) 685 

Biomass-tree data set, observations per species are from the stand that contained most 686 

observations. The dashed red lines represent the best fits. The overlaid phylogenetic tree 687 

depicts in the form of squares information (blue: first quartile; white middle two 688 

quartiles; red 4th quartile) on variance in biomass allocation fractions (left) and 689 

distribution (right) of the woody species included in the analysis and their phylogenetic 690 

relationships (tree). Note the absence of phylogenetic signal which was confirmed with 691 

Blomberg K tests. 692 

 693 

Fig. 4 Differences in variance in biomass-allocation fractions (foliage over woody aboveground 694 

biomass) between angiosperms (elliptical leaf in yellow) and gymnosperms (acicular leaf 695 

in green). (a) Biomass-tree data set, all possible observations; (b) Biomass-plot data set, 696 

one observation per location; (c) Biomass-tree data set, observations per species are from 697 

the stand that contained most observations. None of the t-tests were significant.  698 

 699 

   700 

Fig. 5: (a; b) Relationships between the variance in biomass-allocation fractions (root over shoot 701 

fractions) and distribution of the tree species. (a) Biomass-tree data set, all possible 702 

observations; (b) Biomass-tree data set, observations per species are from the stand that 703 

contained most observations; (c) variance in biomass-allocation ratios for Pinus echinata 704 



(observed in 23 states), Pinus taeda (observed in 20 states, from two studies) and Pinus 705 

palustris (observed in 10 states) across four studies in the Legacy Tree Data database 706 

(USA). The three species have nested distributions in America. The dashed lines 707 

represent the best fits. Numbers next to the data points indicate the number of 708 

observations per species used to calculate the variance. Overlaid map shows in red the 709 

location of the sites where the data originated from. 710 

 711 

 712 

Fig. 6 Influence of latitude on variance in biomass-allocation fractions (foliage over woody 713 

biomass). The x-axis describes the average latitude of the distribution range of the woody 714 

species whereas the y-axis the variance in biomass-allocation fractions. Panel (a) 715 

describes the Biomass-tree data set whereas panel (b) the Biomass-plot data set. The 716 

insert in panel (a) shows how variance differs in the north and south distribution of five 717 

tree species in the Biomass-tree data set (opaque triangles). North here describes latitudes 718 

in Europe higher than 58.5°N (mean of the latitudinal extremes of European territory) and 719 

South lower than this value. These five species were the only ones that met the inclusion 720 

criterion, namely being represented with a minimum of five entries both in North and 721 

South Europe. The continuous opaque line is an isocline where variance in the North 722 

equals that in the South. 723 

 724 
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