
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection Lee Kong Chian School Of
Business Lee Kong Chian School of Business

6-2020

Flexibly serving a finite number of heterogeneous jobs in a Flexibly serving a finite number of heterogeneous jobs in a

tandem system tandem system

Yun Fong LIM
Singapore Management University, yflim@smu.edu.sg

Bingnan LU
University of Minnesota

Rowan WANG
Singapore Management University, ROWANWANG@smu.edu.sg

Wenjia ZHANG
Chinese University of Hong Kong

Follow this and additional works at: https://ink.library.smu.edu.sg/lkcsb_research

 Part of the Operations and Supply Chain Management Commons, and the Operations Research,

Systems Engineering and Industrial Engineering Commons

Citation Citation
LIM, Yun Fong; LU, Bingnan; WANG, Rowan; and ZHANG, Wenjia. Flexibly serving a finite number of
heterogeneous jobs in a tandem system. (2020). Production and Operations Management. 29, (6),
1431-1447. Research Collection Lee Kong Chian School Of Business.
Available at:Available at: https://ink.library.smu.edu.sg/lkcsb_research/6547

This Journal Article is brought to you for free and open access by the Lee Kong Chian School of Business at
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research
Collection Lee Kong Chian School Of Business by an authorized administrator of Institutional Knowledge at
Singapore Management University. For more information, please email cherylds@smu.edu.sg.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/288482388?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb
https://ink.library.smu.edu.sg/lkcsb_research?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6547&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1229?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6547&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6547&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F6547&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Flexibly Serving A Finite Number of Heterogeneous Jobs in A Tandem

System

Yun Fong Lim1∗ • Bingnan Lu2 • Rowan Wang1 • Wenjia Zhang1,3

1 Lee Kong Chian School of Business, Singapore Management University, Singapore 178899

2 Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, Minnesota 55455

3 Institute for Data and Decision Analytics, The Chinese University of Hong Kong, Shenzhen, 518172, China

yflim@smu.edu.sg • luxx0389@umn.edu • rowanwang@smu.edu.sg • wenjiazhang1@link.cuhk.edu.cn

February 26, 2020

Abstract

Many manufacturing and service systems require a finite number of heterogeneous jobs to

be processed by two stations in tandem. Each station serves at most one job at a time and

there is a finite buffer between the two stations. We consider two flexible servers that are

cross-trained to work at both stations. The duration for a server to finish a job at a station is

exponentially distributed with a rate that depends on the server, the station, and the job. Our

goal is to identify an efficient policy to dynamically assign the servers to the stations such that

the expected makespan (duration to complete all the jobs) is minimized. Given that an optimal

policy is non-idling, we focus on non-idling policies. We first derive the expected makespan of

a general non-idling policy. We then analyze three simple non-idling policies: the summation-

myopic, the product-myopic, and the teamwork policies. We prove that (i) the product-myopic

policy is optimal if the servers maintain the same service-rate ratio at each station for all the

jobs, (ii) the teamwork policy is optimal if the servers maintain the same service-rate ratio at

different stations for jobs that are sequenced near each other, and (iii) the summation-myopic

policy is no worse than the teamwork policy. Our numerical study based on general service rates

suggests that the summation-myopic policy can be better or worse than the product-myopic

policy. We also extend the model to incorporate moving costs and service defects.

Keywords: manufacturing, service, work station, dynamic server assignment, productivity

History : Received: June 2018; Accepted: January 2020 by Panos Kouvelis, after 2 revisions.

∗: Corresponding author

1 Introduction

A tandem system consists of a sequence of work stations. Servers work on jobs that go through

the stations sequentially. The value of each job increases as it progresses from the start to the end

of the tandem system. Tandem systems are common in the manufacturing industry (Hopp and

1

Published in Production and Operations Management, 29 (6), June 2020, Pages 1431-1447.
https://doi.org/10.1111/poms.13172

Spearman, 2008). For example, workers (servers) in a tandem system transform raw materials into

finished goods in a production plant. Tandem systems can also be found in the service industry

(Cachon and Terwiesch, 2013). For instance, in a hospital, a tandem system diagnoses patients

(jobs) through a sequence of medical tests. Since the labor cost constitutes a substantial portion

of the operating cost in these environments, it is important to effectively make use of a tandem

system’s workforce to maximize its productivity.

We consider a tandem system with two stations shown in Figure 1. Each station can serve at

most one job at a time. There are M <∞ jobs available at an initial position in front of station 1

to be served by the tandem system. We consider only a finite number of jobs to be served by the

system because this is quite common in practice. For example, the number of patients that visit a

hospital for medical tests is finite every day. There is a buffer of size B between the two stations.

Every job is first served by station 1. Upon completion at station 1, the job enters station 2 if the

latter is available. Otherwise, the job either enters the buffer (if the buffer is not full) or stays at

station 1 (if the buffer is full). There are at most B + 1 jobs waiting to enter station 2. The jobs

maintain the same sequence as they go through the system.

St
at
ion

1

St
at
ion

2

- - -
www w w w

: Station

: Bufferw : Job
Figure 1: A tandem system with two stations, two servers, and a finite number of jobs

There are two flexible servers that are cross-trained to work at both stations. Each server can

work at only one station at a time. After he finishes a job he can move to another station, which

takes negligible time and cost. We assume that the duration for a server to finish a job at a station

is exponentially distributed with a rate that depends on the server, the station, and the job. Thus,

the jobs are heterogeneous because they may have different service-time distributions even if they

are served by the same server at the same station. Furthermore, we assume that the two servers

can work together on the same job at the same station simultaneously with additive service rates

(Andradóttir et al., 2001).

2

Define makespan as the duration to complete all the jobs of the system. Our objective is to

identify an efficient policy to dynamically assign the servers to the stations such that the expected

makespan is minimized. We describe the contributions of this paper in the following paragraphs.

(i) To minimize the expected makespan, we formulate a stochastic dynamic program for B = 1

to find an optimal policy that dynamically assigns the servers to the stations. Unfortunately,

the optimal policy is too complicated to characterize when the number of jobs M is large. This

motivates us to develop simpler and more intuitive policies in this paper. We will use the optimal

policy derived from the dynamic program as a benchmark when we evaluate these simpler policies.

(ii) Since the optimal policy is non-idling, we focus on non-idling policies in this paper. Using

the basic probability theory, we first derive the expected makespan of a system with a buffer size

B = 1 under a general non-idling policy. To the best of our understanding, this is the first paper

performing such an analysis. We then study three specific non-idling policies: the summation-

myopic policy, the product-myopic policy, and the teamwork policy. The first two policies are

developed by us and the last policy was proposed by Van Oyen et al. (2001).

The summation-myopic policy chooses an assignment that maximizes the sum of the servers’

service rates for the current state of the system. The product-myopic policy chooses an assignment

that maximizes the product of the service rates at the two stations for the current state of the

system. This policy generalizes the policy in Theorem 4.1 by Andradóttir et al. (2001) to a system

with heterogeneous jobs. Under the teamwork policy (Van Oyen et al., 2001), all the servers work

as a single team that follows each job from station 1 to station 2, and only starts working on a new

job after the current job is completed. This policy is straightforward to implement in practice and

no buffer is needed between the stations. We prove that each of these specific non-idling policies

is optimal under certain conditions on the service rates. We then conduct a numerical study to

compare these non-idling policies for general service rates.

(iii) We extend the analysis to a system with a general buffer size B ∈ N. We derive the

expected makespan of a system under a general non-idling policy as well as under the three specific

non-idling policies. We prove that all the optimality results for the system with a buffer size B = 1

still hold. We also extend the model to incorporate moving costs and service defects. We derive

the expected total moving cost and the expected number of perfect jobs (without service defects)

under a general non-idling policy. We then compare the three specific non-idling policies with

respect to these two performance measures.

After reviewing the literature in Section 2, we formulate the problem for B = 1 as a stochastic

3

dynamic program in Section 3. Section 4 derives the expected makespan of a system with B = 1

under a general non-idling policy. Section 5 describes the three specific non-idling policies and

their expected makespan. Section 6 discusses the optimality conditions of these non-idling policies,

and compares the policies against the optimal one derived from the dynamic program. Section 7

extends the analysis to a system with a general buffer size B ∈ N. Section 8 extends the model

to incorporate moving costs and service defects. Section 9 concludes the paper. All proofs can be

found in the online supplement.

2 Related literature

This paper is related to two streams of literature: dynamic server assignment and dynamic line

balancing. We discuss each stream of literature as follows.

2.1 Dynamic server assignment

There exists a stream of research focusing on dynamic server assignment policies that minimize

holding costs. Many papers in this stream consider parallel or tandem queues with two stations.

For example, Harrison and López (1999), Williams (2000), Bell and Williams (2001), Ahn et al.

(2004), and Mandelbaum and Stolyar (2004) study flexible servers in parallel queues. On the other

hand, Rosberg et al. (1982), Farrar (1993), Iravani et al. (1997), Duenyas et al. (1998), Kaufman

et al. (2005), and Armony et al. (2018) study flexible servers in tandem queues. In contrast, our

objective is to minimize the expected makespan.

Some papers identify dynamic server assignment policies that maximize throughput of tandem

lines with finite buffers. Andradóttir et al. (2001) consider a two-station, two-server Markovian

system that has an infinite supply of jobs in front of station 1. They assume that the service rates

are independent of the jobs (that is, the jobs are homogeneous). They identify an optimal server

assignment policy that maximizes the long-run average throughput. The authors also propose

near-optimal heuristic policies for larger systems. Note that the product-myopic policy generalizes

their optimal policy to a system with heterogeneous jobs.

Andradóttir and Ayhan (2005) focus on the case with two stations and study the optimal server

assignment policies for Markovian systems with more servers than the stations. Kirkizlar et al.

(2010) show that the optimal or near-optimal policies in Andradóttir et al. (2001) and Andradóttir

and Ayhan (2005) for Markovian systems are also effective for non-Markovian systems. Andradóttir

4

et al. (2003) and Andradóttir et al. (2007a) study general queueing networks with infinite buffers

without or with server and station failures. In contrast to this stream of research, we consider a

finite supply of jobs for the system and assume the service rates depend on the jobs.

Andradóttir et al. (2007b) demonstrate that a Markovian system with two stations and gen-

eralist servers can attain most of the benefits of full flexibility by having only one flexible server

when the buffer size is sufficiently large. Hopp et al. (2004) consider a line with an equal number

of stations and servers under a constant work-in-process policy. They show that a skill-chaining

strategy with two skills per server can outperform a “cherry picking” strategy in which some servers

are cross-trained at bottleneck stations. Andradóttir et al. (2003) show that partial flexibility is

sufficient for achieving the maximal capacity for a queueing network with outside arrivals and infi-

nite buffers. Wallace and Whitt (2005) study routing and server assignment in a call center. They

show that most of the benefits of full flexibility can be achieved even with one additional skill per

agent. In contrast, we assume full flexibility such that each server is cross-trained to serve at both

stations. For a comprehensive review on cross-trained workforce, see Hopp and Van Oyen (2004).

2.2 Dynamic line balancing

Another stream of research studies the dynamic line-balancing problem with flexible servers.

Bartholdi and Eisenstein (1996) analyze a bucket brigade system in which each server assembles a

product along a flow line until either his colleague downstream takes over his work or he finishes

his work at the end of the line; then he walks back to get more work, either from his colleague up-

stream or from a buffer at the start of the line. The authors show that if the servers are sequenced

from slowest to fastest in the direction of production flow, then the system can achieve a maximum

attainable throughput and a stable partition of work among the servers.

Bartholdi et al. (1999) study the long-run behavior of bucket brigades with two to three servers.

Bartholdi et al. (2001) study the performance of bucket brigades on discrete tasks with exponen-

tially distributed service requirements. Bartholdi and Eisenstein (2005) consider a bucket brigade

with walk-back and hand-off times. Armbruster and Gel (2006) study a bucket brigade where

servers’ service rates do not dominate each other. Lim and Yang (2009) study bucket brigades on

discrete work stations and find the policies that maximize the system’s throughput.

To reduce the servers’ unproductive travel, Lim (2011) introduces the cellular bucket brigades,

where each server works on one side of an aisle when he proceeds in one direction and works on the

other side of the aisle when he proceeds in the reverse direction. The author demonstrates that

5

a cellular bucket brigade can be 30% more productive than a traditional, serial bucket brigade.

Lim (2017) studies the performance of cellular bucket brigades with hand-off times. Lim and Wu

(2014) study cellular bucket brigades on U-lines with discrete work stations. For the line-balancing

problem in other tandem systems, see Ostolaza et al. (1990), Zavadlav et al. (1996), and Gel et al.

(2002) . Most of the papers in this stream of work maximize the system’s throughput. Again, they

assume an infinite supply of jobs for the system and the service rates are independent of the jobs.

3 Problem formulation for buffer size B = 1

We first study a system with buffer size B = 1. Assume the time duration for server i to serve

job m at station j is exponentially distributed with rate µ
(m)
i,j , for i, j = 1, 2, m = 1, ...,M . To

be consistent with Andradóttir et al. (2001), we assume that the two servers are allowed to work

simultaneously on the same job at the same station with additive service rates. For example,

when both servers simultaneously serve job m at station 1, the service duration is exponentially

distributed with rate µ
(m)
1,1 + µ

(m)
2,1 . Station 1 is blocked when there is a job finished at the station

and the buffer is full. Station 2 is starved when there is no job at or ready to enter the station.

We assume that at time t = 0, both servers work on job 1 at station 1. Whenever a job is

finished at a station, a server assignment policy instructs each server where to work next: station

1 or station 2. Let Dm denote the departure time of job m from the system, and let E[Dm]

denote its expected value. The objective of the problem is to find a server assignment policy that

minimizes the expected makespan E[DM], which represents the expected time duration to complete

all the M jobs. A server assignment policy is optimal if it minimizes the expected makespan. It is

straightforward to show that each server must be non-idling at any time under an optimal server

assignment policy. Therefore, we only focus on non-idling policies that make both servers always

busy until they complete the M jobs. At any instant under a non-idling policy, there are four

possible server assignments: (I) both servers at station 1, (II) both servers at station 2, (III) server

1 at station 1 and server 2 at station 2, and (IV) server 1 at station 2 and server 2 at station 1.

At time t, let U(t) denote the number of jobs that are not yet finished at station 1. We have

U(t) ∈ {0, 1, . . . ,M}. Let V (t) denote the number of jobs that are finished at station 1 but not

yet finished at station 2. We have V (t) ∈ {0, 1, . . . , 3}. Note that U(t) + V (t) ≤M . Assume that

at t = 0, all the M jobs are available at the initial position in front of station 1. Thus, given U(t)

and V (t), we know exactly the locations of all the jobs. For example, (U(t), V (t)) = (6, 2) implies

that jobs M,M − 1, ...,M − 4 are at the initial position, job M − 5 is at station 1, job M − 6 is at

6

the buffer, job M − 7 is at station 2, and all the other jobs are completed and have left the system.

Since service times are exponentially distributed and therefore memoryless, we define the state of

the system as (U(t), V (t)).

For some special system states, it is straightforward to identify an optimal server assignment.

(i) If V (t) = 0 (station 2 is starved), then it is optimal to assign both servers to station 1. (ii) If

V (t) = 3 (station 1 is blocked) or U(t) = 0 (no more jobs to be served at station 1), then it is

optimal to assign both servers to station 2. Thus, we only need to study the server assignment

for other system states. For any state (u, v), let f(u,v) be the minimum expected time duration to

serve all the remaining jobs in the system. The problem can be formulated as a stochastic dynamic

program shown in Table 1.

Table 1: Dynamic programming formulation for a system with a buffer size B = 1

f(0,0) = 0.

For u = 1, ...,M ,

f(u,0) = 1

µ
(M−u+1)
1,1 +µ

(M−u+1)
2,1

+ f(u−1,1).

For u = 1, ...,M − 3,

f(u,3) = 1

µ
(M−u−2)
1,2 +µ

(M−u−2)
2,2

+ f(u,2).

For v = 1, ..., 3,

f(0,v) = 1

µ
(M−v+1)
1,2 +µ

(M−v+1)
2,2

+ f(0,v−1).

For u = 1, ...,M − v; v = 1, 2,

f(u,v) = min
{
f I(u,v), f

II
(u,v), f

III
(u,v), f

IV
(u,v)

}
,

where

f I(u,v) = 1

µ
(M−u+1)
1,1 +µ

(M−u+1)
2,1

+ f(u−1,v+1);

f II(u,v) = 1

µ
(M−u−v+1)
1,2 +µ

(M−u−v+1)
2,2

+ f(u,v−1);

f III(u,v) = 1

µ
(M−u+1)
1,1 +µ

(M−u−v+1)
2,2

+
µ
(M−u+1)
1,1

µ
(M−u+1)
1,1 +µ

(M−u−v+1)
2,2

f(u−1,v+1) +
µ
(M−u−v+1)
2,2

µ
(M−u+1)
1,1 +µ

(M−u−v+1)
2,2

f(u,v−1);

f IV(u,v) = 1

µ
(M−u+1)
2,1 +µ

(M−u−v+1)
1,2

+
µ
(M−u+1)
2,1

µ
(M−u+1)
2,1 +µ

(M−u−v+1)
1,2

f(u−1,v+1) +
µ
(M−u−v+1)
1,2

µ
(M−u+1)
2,1 +µ

(M−u−v+1)
1,2

f(u,v−1).

Note that f I(u,v) corresponds to assignment I with both servers at station 1; f II(u,v) corresponds

to assignment II with both servers at station 2; f III(u,v) corresponds to assignment III with server

1 at station 1 and server 2 at station 2; and f IV(u,v) corresponds to assignment IV with server 2 at

station 1 and server 1 at station 2. The derivation of f I(u,v), f
II
(u,v), f

III
(u,v), and f IV(u,v) is given in the

7

online supplement.

We can obtain the optimal policy by solving the dynamic program in Table 1. The expected

makespan under the optimal policy is f(M,0). However, it is difficult to analytically characterize the

structure of the optimal policy because of its complexity in general. Thus, it is hard to implement

the optimal policy in practice, which motivates us to study simpler and more intuitive policies.

In the following sections, we first determine the expected makespan of a general non-idling policy.

We then focus on three specific non-idling policies, and benchmark their performance against the

optimal policy.

4 The expected makespan of a general non-idling policy for buffer

size B = 1

In this section, we determine the expected makespan under a general non-idling policy for buffer

size B = 1. Suppose jobs k and l are at stations 1 and 2 respectively. There are two possible

cases. In case (i), job k finishes service at station 1 before job l at station 2. Let π(k ≺ l)

denote the probability of case (i), and let τ1(k ≺ l) denote the expected service time of job k at

station 1 conditioned on this case. In case (ii), job l finishes service at station 2 before job k at

station 1. Let π(k � l) denote the probability of case (ii), and let τ2(k � l) denote the expected

service time of job l at station 2 conditioned on this case. Define an indicator function δI(k, l) for

assignment I described in Section 3 such that δI(k, l) = 1, if assignment I is chosen; and δI(k, l) = 0,

otherwise. We define indicator functions δII(k, l), δIII(k, l), and δIV(k, l) for assignments II, III, and

IV, respectively, in a similar manner. Since we choose one of the four server assignments to serve

jobs k and l at stations 1 and 2 respectively, one and only one of the four indicator functions

equals 1. According to the above definitions and using Lemma 3 in the online supplement, it is

straightforward to derive the following equations:

π(k ≺ l) = δI(k, l) +
µ
(k)
1,1

µ
(k)
1,1 + µ

(l)
2,2

δIII(k, l) +
µ
(k)
2,1

µ
(l)
1,2 + µ

(k)
2,1

δIV(k, l),

π(k � l) = δII(k, l) +
µ
(l)
2,2

µ
(k)
1,1 + µ

(l)
2,2

δIII(k, l) +
µ
(l)
1,2

µ
(l)
1,2 + µ

(k)
2,1

δIV(k, l),

τ1(k ≺ l) =
1

µ
(k)
1,1 + µ

(k)
2,1

δI(k, l) +
1

µ
(k)
1,1 + µ

(l)
2,2

δIII(k, l) +
1

µ
(l)
1,2 + µ

(k)
2,1

δIV(k, l),

τ2(k � l) =
1

µ
(l)
1,2 + µ

(l)
2,2

δII(k, l) +
1

µ
(k)
1,1 + µ

(l)
2,2

δIII(k, l) +
1

µ
(l)
1,2 + µ

(k)
2,1

δIV(k, l).

8

We adopt a methodology similar to Wang et al. (2014). Let Tm denote the time point when

job m finishes service at station 1. Let Rm denote the number of jobs at the buffer and station 2

at time Tm. Since the buffer size B = 1, Rm can be as large as 2. Let pm,i = Pr{Rm = i} denote

the probability that job m, upon its service completion at station 1, finds i jobs at the buffer and

station 2, for i = 0, 1, 2. Since job 1, upon its service completion at station 1, always finds the

buffer and station 2 empty, we have p1,0 = 1 and p1,i = 0, for i = 1, 2. The following lemma

determines pm,i, for m = 2, ...,M .

Lemma 1. For m = 2, p2,0 = π(2 � 1), p2,1 = π(2 ≺ 1), and p2,2 = 0.

For m = 3, ...,M ,

pm,0 = π(m � m− 1)pm−1,0 + π(m � m− 2)π(m � m− 1)(pm−1,1 + pm−1,2);

pm,1 = π(m ≺ m− 1)pm−1,0 + π(m � m− 2)π(m ≺ m− 1)(pm−1,1 + pm−1,2);

pm,2 = π(m ≺ m− 2)(pm−1,1 + pm−1,2).

Using the equations in Lemma 1, we can determine all pm,i recursively from m = 1. We calculate

the expected makespan using the probabilities pm,i for the rest of this section.

The expected makespan E[DM] under a general non-idling policy can be represented as the

sum of the following four components:

E[DM] = E[WM] + E[XM] + E[YM] + E[ZM],

where the random variable of each component is defined in Table 2.

Table 2: Time durations of job m = 1, . . . ,M

Wm : Duration of job m staying at the initial position (before entering station 1)

Xm : Duration of job m staying at station 1

Ym : Duration of job m staying at the buffer (before entering station 2)

Zm : Duration of job m staying at station 2

Duration at station 1

The following proposition determines the expected duration of job m staying at station 1.

Proposition 1. For m = 1, E[X1] = 1

µ
(1)
1,1+µ

(1)
2,1

.

9

For m = 2,

E[X2] = τ1(2 ≺ 1)p2,1 +

(
τ2(2 � 1) +

1

µ
(2)
1,1 + µ

(2)
2,1

)
p2,0.

For m = 3, ...,M ,

E[Xm] =

(
τ1(m ≺ m− 2) +

1

µ
(m−2)
1,2 + µ

(m−2)
2,2

)
pm,2 + τ1(m ≺ m− 1)pm,1 +

(
τ2(m � m− 1) +

1

µ
(m)
1,1 + µ

(m)
2,1

)
pm,0 + τ2(m � m− 2)π(m � m− 2)(pm−1,2 + pm−1,1).

Duration at the initial position

For m = 1, E[W1] = 0. For m = 2, ...,M , the expected duration of job m staying at the initial

position equals the sum of the expected durations of job m− 1 staying at the initial position and

at station 1. That is, E[Wm] = E[Wm−1] + E[Xm−1]. After obtaining E[Xm], m = 1, ...,M , from

Proposition 1, we can determine E[Wm] recursively, starting from m = 1.

Duration at station 2

The following proposition determines the expected duration of job m staying at station 2.

Proposition 2. For m = 1, ...,M − 2,

E[Zm] =

[(
τ1(m+ 2 ≺ m) +

1

µ
(m)
1,2 + µ

(m)
2,2

)
π(m+ 2 ≺ m) + τ2(m+ 2 � m)π(m+ 2 � m)

]
(pm+1,2 + pm+1,1) + τ1(m+ 1 ≺ m)pm+1,1 + τ2(m+ 1 � m)pm+1,0.

For m = M − 1,

E[ZM−1] =
1

µ
(M−1)
1,2 + µ

(M−1)
2,2

(pM,2 + pM,1) + τ1(M ≺M − 1)pM,1 + τ2(M �M − 1)pM,0.

For m = M ,

E[ZM] =
1

µ
(M)
1,2 + µ

(M)
2,2

.

Duration at the buffer

The following proposition determines the expected duration of job m staying at the buffer.

Proposition 3. For m = 1, E[Y1] = 0.

For m = 2,

E[Y2] =

[
τ2(3 � 1)π(3 � 1) +

(
τ1(3 ≺ 1) +

1

µ
(1)
1,2 + µ

(1)
2,2

)
π(3 ≺ 1)

]
p2,1.

10

For m = 3, ...,M − 1,

E[Ym] =

[
τ2(m+ 1 � m− 1)π(m+ 1 � m− 1) +

(
τ1(m+ 1 ≺ m− 1) +

1

µ
(m−1)
1,2 + µ

(m−1)
2,2

)

π(m+ 1 ≺ m− 1)

]
(pm,2 + pm,1).

For m = M ,

E[YM] =
1

µ
(M−1)
1,2 + µ

(M−1)
2,2

(pM,2 + pM,1).

After determining all the four time durations, the expected makespan under a general non-idling

policy can be obtained as E[DM] = E[WM] + E[XM] + E[YM] + E[ZM].

5 Three specific non-idling policies

We analyze three specific non-idling policies: the summation-myopic policy, the product-myopic

policy, and the teamwork policy. We derive the expected makespan under each policy using the

results in Section 4.

Summation-myopic policy: If station 2 is starved, then both servers work at station 1. If station

1 is blocked or job M has finished its service at station 1, then both servers work at station 2. If

both of the above conditions do not hold, then let k and l denote the indices of the jobs currently

at stations 1 and 2, respectively, and one of the following conditions holds:

(I) If µ
(k)
1,1 ≥ µ

(l)
1,2 and µ

(k)
2,1 ≥ µ

(l)
2,2, then both servers work at station 1.

(II) If µ
(k)
1,1 < µ

(l)
1,2 and µ

(k)
2,1 < µ

(l)
2,2, then both servers work at station 2.

(III) If µ
(k)
1,1 ≥ µ

(l)
1,2 and µ

(k)
2,1 < µ

(l)
2,2, then servers 1 and 2 work at stations 1 and 2 respectively.

(IV) If µ
(k)
1,1 < µ

(l)
1,2 and µ

(k)
2,1 ≥ µ

(l)
2,2, then servers 1 and 2 work at stations 2 and 1 respectively.

The summation-myopic policy chooses the assignment that maximizes the sum of the service

rates of the two servers for the system’s current state. For case I, the maximum rate is µ
(k)
1,1+µ

(k)
2,1, so

the policy chooses assignment I. For case II, the maximum rate is µ
(l)
1,2 +µ

(l)
2,2, so the policy chooses

assignment II. For case III, the maximum rate is µ
(k)
1,1 + µ

(l)
2,2, so the policy chooses assignment III.

For case IV, the maximum rate is µ
(l)
1,2 +µ

(k)
2,1, so the policy chooses assignment IV. Note that under

this policy, each server independently chooses to work on the job that he is good at. The indicator

functions under this policy can be defined as follows:

δI(k, l) =

1, if µ
(k)
1,1 ≥ µ

(l)
1,2 and µ

(k)
2,1 ≥ µ

(l)
2,2;

0, otherwise.

δII(k, l) =

1, if µ
(k)
1,1 < µ

(l)
1,2 and µ

(k)
2,1 < µ

(l)
2,2;

0, otherwise.

11

δIII(k, l) =

1, if µ
(k)
1,1 ≥ µ

(l)
1,2 and µ

(k)
2,1 < µ

(l)
2,2;

0, otherwise.

δIV(k, l) =

1, if µ
(k)
1,1 < µ

(l)
1,2 and µ

(k)
2,1 ≥ µ

(l)
2,2;

0, otherwise.

Product-myopic policy: If station 2 is starved, then both servers work at station 1. If station

1 is blocked or job M has finished its service at station 1, then both servers work at station 2. If

both of the above conditions do not hold, then let k and l denote the indices of the jobs currently

at stations 1 and 2, respectively, and one of the following conditions holds:

If µ
(k)
1,1µ

(l)
2,2 ≥ µ

(k)
2,1µ

(l)
1,2, then servers 1 and 2 work at stations 1 and 2 respectively.

If µ
(k)
1,1µ

(l)
2,2 < µ

(k)
2,1µ

(l)
1,2, then servers 1 and 2 work at stations 2 and 1 respectively.

The product-myopic policy chooses the assignment that maximizes the product of the service

rates at the two stations for the system’s current state. If the maximum product is µ
(k)
1,1µ

(l)
2,2, then

the policy chooses assignment III. If the maximum product is µ
(l)
1,2µ

(k)
2,1, then the policy chooses

assignment IV. Note that the two servers work at different stations unless the system is starved or

blocked. Under the product-myopic policy, we have the following: δI(k, l) = δII(k, l) = 0.

δIII(k, l) =

1, if µ
(k)
1,1µ

(l)
2,2 ≥ µ

(k)
2,1µ

(l)
1,2;

0, otherwise.

δIV(k, l) =

1, if µ
(k)
1,1µ

(l)
2,2 < µ

(k)
2,1µ

(l)
1,2;

0, otherwise.

If the jobs are homogeneous (that is, µ
(m)
i,j = µi,j , for all m), then the product-myopic policy is

equivalent to the policy in Theorem 4.1 by Andradóttir et al. (2001). The authors showed that

this policy is optimal for maximizing the long-run average throughput of a system with an infinite

number of homogeneous jobs. We will show that this policy is also optimal for minimizing the

expected makespan of a system with a finite number of homogeneous jobs.

Using the above indicator functions, we can then obtain π(k ≺ l), π(k � l), τ1(k ≺ l), τ2(k �

l), and follow the procedure in Section 4 to derive the expected makespan E[DM] under the

summation-myopic policy and the product-myopic policy.

Teamwork policy: The two servers work together on the same job all the time. They serve each

job at station 1, and then complete the job at station 2, before they initiate a new job.

The teamwork policy is proposed by Van Oyen et al. (2001). It is straightforward to calculate

the expected makespan under the teamwork policy without using the indicator functions. That is,

E[DM] =
M∑
m=1

(
1

µ
(m)
1,1 +µ

(m)
2,1

+ 1

µ
(m)
1,2 +µ

(m)
2,2

)
.

It is worth noting that we do not need the service rates of all the jobs at t = 0 in order to

12

implement the three policies above. Furthermore, although the summation-myopic policy considers

more flexible server assignments than the other two policies, it is not clear whether the former can

always outperform the latter policies. We discuss their relative performance in the next section.

6 Performance evaluation

We first prove that some of the policies above are optimal for some special cases. For general cases,

we compare numerically the performance of these policies against the optimal policy derived from

the dynamic program in Table 1.

6.1 Optimality for some special cases

Theorem 1. If µ
(m)
1,1 /µ

(m)
2,1 = µ

(m+1)
1,1 /µ

(m+1)
2,1 and µ

(m)
1,2 /µ

(m)
2,2 = µ

(m+1)
1,2 /µ

(m+1)
2,2 , for m = 1, ...,M−1,

then the product-myopic policy is optimal.

Theorem 1 shows that if the servers maintain the same service-rate ratio at each station over all

the jobs, then the product-myopic policy is optimal.

Corollary 1. If µ
(m)
i,j = µi,j, for m = 1, ...,M , then the product-myopic policy is optimal.

Recall that if the jobs are homogeneous, then the product-myopic policy is equivalent to the policy

in Theorem 4.1 by Andradóttir et al. (2001). In contrast to Theorem 4.1 by Andradóttir et al.

(2001) (which studies a system with an infinite number of homogeneous jobs), Corollary 1 shows

that the product-myopic policy is also optimal for minimizing the expected makespan of a system

with a finite number of homogeneous jobs.

Theorem 2. If µ
(m)
1,1 /µ

(m)
2,1 = µ

(n)
1,2/µ

(n)
2,2 , for all jobs n and m, 0 < m−n ≤ B+1, then the teamwork

policy is optimal.

Theorem 2 shows that the teamwork policy is optimal if the servers maintain the same service-rate

ratio at different stations for all jobs n and m, 0 < m− n ≤ B + 1.

Theorem 3. The expected makespan of the summation-myopic policy is no larger than that of the

teamwork policy.

It is worth noting that the server assignments under the summation-myopic policy combine the

server assignments under the teamwork policy and the product-myopic policy. Theorem 3 shows

that the summation-myopic policy is no worse than the teamwork policy. On the other hand, our

13

numerical study in Section 6.2 below suggests that the summation-myopic policy can be better or

worse than the product-myopic policy.

It is straightforward to show that the conditions in Theorem 2: µ
(m)
1,1 /µ

(m)
2,1 = µ

(n)
1,2/µ

(n)
2,2 , for all

jobs n and m, 0 < m − n ≤ B + 1, imply that the conditions in Theorem 1 hold. Under these

conditions, the product-myopic policy assigns server 1 to station 1 and server 2 to station 2, unless

station 1 is blocked or station 2 is starved. It is surprising to find that the product-myopic and

the teamwork policies, though using very different server assignments, both generate the minimum

expected makespan. Combining this result with Theorem 3 leads to the following corollary.

Corollary 2. If µ
(m)
1,1 /µ

(m)
2,1 = µ

(n)
1,2/µ

(n)
2,2 , for all jobs n and m, 0 < m − n ≤ B + 1, then the

summation-myopic policy, the product-myopic policy, and the teamwork policy are all optimal.

6.2 Numerical study for general service rates

We conduct a numerical study to compare the policies for general cases. Figure 2 benchmarks the

expected makespan under the summation-myopic, the product-myopic, and the teamwork policies

against the optimal expected makespan (from the dynamic program in Table 1).

In Figure 2a, we set µ
(m)
1,1 = µ

(m)
2,1 = 0.5 + m−1

M−1 , µ
(m)
1,2 = 1, and µ

(m)
2,2 = 3, for m = 1, 2, 3,

Note that the servers are initially less familiar with the work at station 1, but their rate at station

1 increases as they serve more jobs. Under this setting, we have µ
(m)
1,1 /µ

(m)
2,1 = µ

(m+1)
1,1 /µ

(m+1)
2,1 and

µ
(m)
1,2 /µ

(m)
2,2 = µ

(m+1)
1,2 /µ

(m+1)
2,2 , for m = 1, ...,M − 1. According to Theorem 1, the product-myopic

policy is optimal. Note that under this parameter setting, the summation-myopic policy behaves as

the teamwork policy when m is small, but behaves as the product-myopic policy when m is large.

Thus, the expected makespan of the summation-myopic policy lies between that of the teamwork

and the product-myopic policies.

We set µ
(m)
1,1 = µ

(m)
2,1 = 0.5 + m−1

M−1 , µ
(m)
1,2 = 1, and µ

(m)
2,2 = 1, for m = 1, 2, 3, ..., in Figure 2b.

Under this setting, we have µ
(m)
1,1 /µ

(m)
2,1 = µ

(n)
1,2/µ

(n)
2,2 , for all jobs n and m, 0 < m−n ≤ 2. According

to Corollary 2, the summation-myopic policy, the product-myopic policy, and the teamwork policy

are all optimal. Figure 2b confirms this result.

Figure 2c shows an example where none of the three non-idling policies is optimal. We set

µ
(m)
1,1 = 10 and µ

(m)
2,1 = 1, for m = 1, 3, 5, ..., µ

(m)
1,1 = 1 and µ

(m)
2,1 = 10, for m = 2, 4, 6, ..., µ

(m)
1,2 = 1

and µ
(m)
2,2 = 10, for m = 1, 2, 3, In this setting, there are two different types of jobs that are

sequenced in an alternative manner. At station 1, server 1 is good at one type and server 2 is good

at another type. This causes each server’s rate at station 1 to oscillate between a high value and a

14

0 50 100

Number of jobs M

0

50

100

E
x
p
ec

te
d
 m

ak
es

p
an

 E
[D

M
]

Summation-myopic

Product-myopic

Teamwork

Optimal

(a)

0 50 100

Number of jobs M

0

50

100

E
x
p
ec

te
d
 m

ak
es

p
an

 E
[D

M
]

Summation-myopic

Product-myopic

Teamwork

Optimal

(b)

0 50 100

Number of jobs M

0

7

14

E
x
p
ec

te
d
 m

ak
es

p
an

 E
[D

M
]

Summation-myopic

Product-myopic

Teamwork

Optimal

(c)

0 50 100

Number of jobs M

0

7

14

E
x
p
ec

te
d
 m

ak
es

p
an

 E
[D

M
]

Summation-myopic

Product-myopic

Teamwork

Optimal

(d)

Figure 2: Expected makespan

low value. Note that the summation-myopic policy and the product-myopic policy have the same

expected makespan under this setting.

Figure 2d shows another example where none of the three non-idling policies is optimal. We set

µ
(m)
1,1 = 20, for m = 1, 3, 5, ..., µ

(m)
1,1 = 1, for m = 2, 4, 6, ..., µ

(m)
2,1 = 1, for m = 1, 5, 9, ..., µ

(m)
2,1 = 5,

for m 6= 1, 5, 9, ..., µ
(m)
1,2 = 20 and µ

(m)
2,2 = 1, for m = 1, 2, 3, In this setting, there are four

different types of jobs that arrive in a rotating manner. At station 1, server 1 is good at the first

and the third types, whereas server 2 is slow for the first type. Note that the summation-myopic

policy leads to a smaller expected makespan than the product-myopic policy, and is very close to

the optimal policy.

Among all the parameter settings in Figure 2, the summation-myopic policy outperforms the

15

teamwork policy, which is consistent with Theorem 3. However, the summation-myopic policy can

be better (see Figure 2d) or worse (see Figure 2a) than the product-myopic policy. We believe that

these different parameter settings cover a wide range of situations that may happen in practice.

As shown in Figure 2, each policy performs differently in different situations.

7 Extension: General buffer size

In this section, we extend the analysis to a system with a general buffer size B ∈ N. We first describe

the dynamic program to determine the optimal policy. We also derive the expected makespan of

a general non-idling policy. We then discuss the expected makespan of the three specific policies

and their performance.

7.1 The optimal policy

Recall that V (t) denote the number of jobs that are finished at station 1 but not yet finished at

station 2 at time t. For a system with a general buffer size B, we have V (t) ∈ {0, . . . , B+ 2}. Note

that V (t) = B + 2 if station 1 is blocked at time t. Table 3 describes the dynamic program for the

system with a general buffer size B. The expected makespan under the optimal policy is f(M,0).

7.2 The expected makespan of a general non-idling policy

To derive the expected makespan of a general non-idling policy, we first calculate pm,i, for i =

0, . . . ,m− 1 and m = 1, ...,M . Given the buffer size B, we have pm,i = 0 for i > B + 1. Since job

1, upon its service completion at station 1, always finds the buffer and station 2 empty, we have

p1,0 = 1. The following lemma determines pm,i, for m = 2, ...,M . For notational convenience, we

define π(k ≺ l) = 1 and τ1(k ≺ l) = 1

µ
(k)
1,1+µ

(k)
2,1

, if k = l; and π(k � l) = 1 and τ2(k � l) = 1

µ
(l)
1,2+µ

(l)
2,2

if k = l +B + 2.

Lemma 2. For m = 2, ...,M , pm,i =
m−2∑

j=max{0,i−1}
pm−1,jPr{Rm = i | Rm−1 = j}, where

Pr{Rm = i | Rm−1 = j} =

π(m ≺ m− i)

m−i−1∏
l=m−j−1

π(m � l), if j ≤ B;

π(m ≺ m− i)
m−i−1∏

l=m−B−1
π(m � l), if j = B + 1.

Similar to Section 4, to determine the expected makespan E[DM], we need to derive the four

components E[WM], E[XM], E[YM], and E[ZM].

16

Table 3: Dynamic programming formulation for a system with a general buffer size B

f(0,0) = 0.

For u = 1, ...,M ,

f(u,0) = 1

µ
(M−u+1)
1,1 +µ

(M−u+1)
2,1

+ f(u−1,1).

For u = 1, ...,M −B − 2,

f(u,B+2) = 1

µ
(M−u−B−1)
1,2 +µ

(M−u−B−1)
2,2

+ f(u,B+1).

For v = 1, ..., B + 2,

f(0,v) = 1

µ
(M−v+1)
1,2 +µ

(M−v+1)
2,2

+ f(0,v−1).

For u = 1, ...,M − v; v = 1, ..., B + 1,

f(u,v) = min
{
f I(u,v), f

II
(u,v), f

III
(u,v), f

IV
(u,v)

}
,

where

f I(u,v) = 1

µ
(M−u+1)
1,1 +µ

(M−u+1)
2,1

+ f(u−1,v+1);

f II(u,v) = 1

µ
(M−u−v+1)
1,2 +µ

(M−u−v+1)
2,2

+ f(u,v−1);

f III(u,v) = 1

µ
(M−u+1)
1,1 +µ

(M−u−v+1)
2,2

+
µ
(M−u+1)
1,1

µ
(M−u+1)
1,1 +µ

(M−u−v+1)
2,2

f(u−1,v+1) +
µ
(M−u−v+1)
2,2

µ
(M−u+1)
1,1 +µ

(M−u−v+1)
2,2

f(u,v−1);

f IV(u,v) = 1

µ
(M−u+1)
2,1 +µ

(M−u−v+1)
1,2

+
µ
(M−u+1)
2,1

µ
(M−u+1)
2,1 +µ

(M−u−v+1)
1,2

f(u−1,v+1) +
µ
(M−u−v+1)
1,2

µ
(M−u+1)
2,1 +µ

(M−u−v+1)
1,2

f(u,v−1).

Duration at station 1

We first calculate E[Xm]: the expected duration of job m staying at station 1. We separate the

duration of job m staying at station 1, Xm, into two parts: the duration of job m staying at station

1 before its service at the station finishes, X1,m, and the duration of job m staying at station 1

after its service at the station finishes, X2,m. Note that X1,m may be longer than the actual service

duration of job m at station 1 because job m could be idle at station 1 while both servers work

at station 2 (depending on the specific policy used). Furthermore, X2,m represents the duration

when job m is blocked at station 1. Thus, we have E[Xm] = E[X1,m] + E[X2,m].

To derive E[X1,m] and E[X2,m], let Sm denote the number of jobs at the buffer and station 2

found by job m upon entering station 1, for m = 2, ...,M . Recall that Rm denote the number of

jobs at the buffer and station 2 found by job m upon its service completion at station 1. Obviously,

we have Rm ≤ Sm. For m = 1, job 1 is first served by both servers at station 1. After that it leaves

station 1 without waiting. Thus, we have E[X1,1] = 1

µ
(1)
1,1+µ

(1)
2,1

and E[X2,1] = 0. For m = 2, ...,M ,

17

we have

E[X1,m] =

m−1∑
j=1

j∑
i=0

E[X1,m | Rm = i, Sm = j]Pr{Rm = i | Sm = j}Pr{Sm = j},

and

E[X2,m] =
m−1∑
i=0

E[X2,m | Rm = i]Pr{Rm = i}.

Recall that Pr{Rm = i} = pm,i is given in Lemma 2. Given the buffer size B, we have Pr{Sm =

j} = Pr{Rm = i | Sm = j} = 0, for j > B + 1. The following proposition determines Pr{Sm = j},

Pr{Rm = i | Sm = j}, E[X1,m | Rm = i, Sm = j], and E[X2,m | Rm = i], for m = 2, ...,M .

Proposition 4. For j = 1, . . . , B + 1, i = 0, . . . , j,

Pr{Sm = j} =

pm−1,j−1, if 1 ≤ j ≤ B;

pm−1,B + pm−1,B+1, if j = B + 1;

Pr{Rm = i | Sm = j} = π(m ≺ m− i)
m−i−1∏
l=m−j

π(m � l);

E[X1,m | Rm = i, Sm = j] =

m−i−1∑
l=m−j

τ2(m � l) + τ1(m ≺ m− i).

For i = 0, ...,m− 1,

E[X2,m | Rm = i] =

1

µ
(m−B−1)
1,2 +µ

(m−B−1)
2,2

, if i = B + 1;

0, otherwise.

Duration at the initial position

Similar to the case with B = 1, we have E[W1] = 0 and E[Wm] = E[Wm−1] + E[Xm−1], for

m = 2, ...,M . After obtaining E[Xm], m = 1, ...,M , from Proposition 4, we can determine E[Wm]

recursively, starting from m = 1.

Duration at station 2

We now calculate E[Zm]: the expected duration of job m staying at station 2. Let Om denote the

number of jobs at the buffer found by job m upon entering station 2, and let Qm denote the number

of jobs at the buffer and station 2 immediately after job m leaves station 2, for m = 1, ...,M − 1.

Obviously, we have Om ≤ Qm. For m = M , job M is served by both servers at station 2 when it

18

enters the station. Thus, we have E[ZM] = 1

µ
(M)
1,2 +µ

(M)
2,2

. For m = 1, ...,M − 1, we have

E[Zm] =
M−m∑
i=0

M−m∑
j=i

E[Zm | Om = i, Qm = j]Pr{Qm = j | Om = i}Pr{Om = i}.

Given the buffer size B, we have Pr{Om = i} = 0, for i > B, and Pr{Qm = j | Om = i} = 0, for

i > B or j > B + 1. The following proposition determines Pr{Om = i}, Pr{Qm = j | Om = i},

and E[Zm | Om = i, Qm = j], for m = 1, ...,M − 1.

Proposition 5. For m = 1, ...,M −B,

Pr{Om = i} =

pm+1,0 + pm+1,1, if i = 0;

i+1∑
j=0

pm+i+1,j −
i∑

j=0
pm+i,j , if 1 ≤ i ≤ B − 1;

pm+B,B+1, if i = B.

For m = M −B + 1, ...,M − 1,

Pr{Om = i} =

pm+1,0 + pm+1,1, if i = 0;

i+1∑
j=0

pm+i+1,j −
i∑

j=0
pm+i,j , if 1 ≤ i ≤M −m− 1;

B+1∑
j=M−m+1

pM,j , if i = M −m.

For m = 1, ...,M − 1, i = 0, ...,M −m,

Pr{Qm = j | Om = i} =

π(m+ j + 1 � m)

m+j∏
k=m+i+1

π(k ≺ m), if i ≤ j ≤M −m− 1;

M∏
k=m+i+1

π(k ≺ m), if j = M −m;

E[Zm | Om = i, Qm = j] =

m+j∑

k=m+i+1

τ1(k ≺ m) + τ2(m+ j + 1 � m), if i ≤ j ≤M −m− 1;

M∑
k=m+i+1

τ1(k ≺ m) + 1

µ
(m)
1,2 +µ

(m)
2,2

, if j = M −m.

Duration at the buffer

To calculate the duration of job m staying at the buffer, Ym, let Γm denote the time point when

job m enters station 2, for m = 1, ...,M . Let Υm denote the duration from the time point when

job m− 1 leaves station 2 to the time point when job m enters station 2, for m = 2, ...,M .

We first derive E[Υm]. If job m finishes service at station 1 before job m− 1 finishes service at

station 2 (that is, Rm > 0), then Υm = 0. Thus, we have E[Υm | Rm > 0] = 0. Otherwise, we have

Rm = 0. In this case, upon job m− 1 completes its service at station 2, station 2 becomes starved,

and both servers work at station 1 on job m. After job m finishes its service at station 1, it enters

19

station 2 immediately (because the buffer is empty). Thus, we have E[Υm | Rm = 0] = 1

µ
(m)
1,1 +µ

(m)
2,1

.

Combining the two cases, we have E[Υm] = E[Υm | Rm > 0]Pr{Rm > 0} + E[Υm | Rm =

0]Pr{Rm = 0} =
pm,0

µ
(m)
1,1 +µ

(m)
2,1

, for m = 2, ...,M .

We now derive E[Γm]. For m = 1, E[Γ1] = 1

µ
(1)
1,1+µ

(1)
2,1

. For m = 2, ...,M , we have E[Γm] =

E[Γm−1] + E[Zm−1] + E[Υm]. After determining E[Γm], the expected duration of job m staying

at the buffer can be calculated as E[Ym] = E[Γm] − (E[Wm] + E[Xm]), where E[Wm] + E[Xm]

represents the expected duration for job m to enter the buffer.

After finding all the four time components, the expected makespan can be obtained as E[DM] =

E[WM] + E[XM] + E[YM] + E[ZM].

7.3 The expected makespans of the three specific non-idling policies

We revisit the three specific non-idling policies: the summation-myopic policy, the product-myopic

policy, and the teamwork policy for the system with a general buffer size B. Note that the

indicator functions δI(k, l), δII(k, l), δIII(k, l), and δIV(k, l) under the summation-myopic policy

and the product-myopic policy remain the same as in Section 5. Using these indicator functions,

we can obtain π(k ≺ l), π(k � l), τ1(k ≺ l), τ2(k � l) in Section 4, and follow the procedure in

Section 7.2 to derive the expected makespan E[DM] under the summation-myopic policy or the

product-myopic policy. Note that the expected makespan under the teamwork policy is given in

Section 5 and is independent of the buffer size.

7.4 Performance evaluation

For the system with a general buffer size B, we have the same results as in Section 6 on the

optimality of the three non-idling policies under certain conditions on the service rates.

Theorem 4. All the results in Theorems 1-3 and Corollaries 1-2 hold for the system with a buffer

size B ∈ N.

A numerical study comparing the summation-myopic, the product-myopic, and the teamwork

policies against the optimal policy (from the dynamic program in Table 3) based on general service

rates gives very similar results as in Figure 2. Thus, we do not show the results here.

20

8 Extensions: Moving costs and service defects of a general non-

idling policy

Since we characterize the servers’ movements between the stations in our analysis, we can incor-

porate the costs for the servers to transfer between the stations and the probability of creating

defects at each station in the model. In this section, we develop methods to calculate the moving

costs and the number of perfect jobs under a general non-idling policy. We then compare the three

specific non-idling policies in terms of these performance measures. For illustration purposes, we

focus on the case with B = 1. To the best of our understanding, moving costs and service defects

are generally under studied in the literature. See Andradóttir et al. (2012) for an analysis of a

system incurring setup costs when servers move between stations. They consider that the system

serves an infinite number of jobs.

8.1 Incorporating moving costs

Our methodology enables us to calculate the expected total moving cost, which serves as a separate

objective besides the expected makespan. We assume that a moving cost c1 (c2) is incurred every

time server 1 (server 2) moves from one station to another. Suppose servers 1 and 2 are currently

at stations s1 and s2, respectively, where s1, s2 = 1, 2. If we choose server assignment I in Section

3, then a moving cost cI(s1, s2) = (s1−1)c1 +(s2−1)c2 is incurred. Similarly, we have cII(s1, s2) =

(2− s1)c1 + (2− s2)c2, cIII(s1, s2) = (s1−1)c1 + (2− s2)c2, and cIV(s1, s2) = (2− s1)c1 + (s2−1)c2,

for server assignments II, III, and IV, respectively.

Suppose in the current state, neither station 1 is blocked nor station 2 is starved, jobs k and l

are at stations 1 and 2 respectively, and servers 1 and 2 are at stations s1 and s2 respectively. For

a system with M jobs, let C(M)(k, l, s1, s2) denote the expected moving cost from the current state

until the completion of all the jobs under a general non-idling policy. For notational convenience,

let k = 0 represent the case when station 1 is blocked or job M has finished its service at station

1, and let l = 0 represent the case when station 2 is starved.

Suppose in the current state, station 1 is not blocked, job M has not finished its service at

station 1, and station 2 is not starved. Assume jobs k and l are at stations 1 and 2 respectively, and

servers 1 and 2 are at stations s1 and s2 respectively. For a system with M jobs, let C(M)(k, l, s1, s2)

denote the expected moving cost from the current state until the completion of all the jobs under

a general non-idling policy. For a state in which station 1 is blocked or job M has finished its

21

service at station 1, let C(M)(0, l, s1, s2) denote the expected moving cost from the state until the

completion of all the jobs under a general non-idling policy. Similarly, for a state in which station 2

is starved, let C(M)(k, 0, s1, s2) denote the expected moving cost from the state until the completion

of all the jobs under a general non-idling policy.

Let Ĉ(M) denote the expected total moving cost of a system with M jobs under a general non-

idling policy. Since the system always starts with the two servers simultaneously serving job 1 at

station 1, we have Ĉ(M) = C(M)(1, 0, 1, 1). To derive C(M)(1, 0, 1, 1), we calculate C(M)(k, l, s1, s2),

for k = 0, l+1, l+2, and s1, s2 = 1, 2, according to Table 4 in the online supplement by enumerating

l from M to 0. Recall that the indicator functions δI(k, l), δII(k, l), δIII(k, l), and δIV(k, l) under the

summation-myopic policy and the product-myopic policy are given in Section 5. For the teamwork

policy, it is straightforward to derive that the expected total moving cost equals (2M − 1)(c1 + c2),

which is the largest among all the policies discussed.

Figure 3 compares the expected total moving costs of the three policies. We set c1 = c2 = 1. For

each sub-figure of Figure 3, we use the same parameter setting as in the corresponding sub-figure of

Figure 2. Figure 3a shows that the teamwork policy leads to the largest expected total moving cost,

followed by the summation-myopic policy. The product-myopic policy has the smallest expected

total moving cost. The rankings of the policies are identical to that of Figure 2a, which is based

on the expected makespan. It is interesting to compare Figures 2b and 3b. Although the three

policies lead to the same expected makespan, they produce very different expected total moving

costs. Comparing Figures 2c and 3c suggests that the summation-myopic and the product-myopic

policies yield not only the same expected makespan, but also the same expected total moving

cost. This suggests that the two policies are identical under this parameter setting. In contrast to

Figures 3a–3c, Figure 3d shows that the summation-myopic policy may lead to a smaller expected

total moving cost than the product-myopic policy.

8.2 Incorporating service defects

We now consider a system that may generate defects. We assume two types of service defects:

Type-1 (type-2) defects only occur at station 1 (station 2). These two types of defects occur

independently. For each job, the probability of having a type-j defect depends on who serves the

job at station j, j = 1, 2. This probability is determined by one of the following scenarios:

(i) The job is finished only by server i at station j (this includes the case in which the job is

first served by another server i′ and later finished by server i at that station). The probability for

22

0 50 100
0

200

400

Summation-myopic

Product-myopic

Teamwork

(a)

0 50 100
0

200

400

Summation-myopic

Product-myopic

Teamwork

(b)

0 50 100
0

200

400

Summation-myopic

Product-myopic

Teamwork

(c)

0 50 100
0

200

400

Summation-myopic

Product-myopic

Teamwork

(d)

Figure 3: Expected total moving cost

the job to have a type-j defect is di,j .

(ii) The job is finished by both servers at station j (this includes the case in which the job is

first served only by one server and later finished by both servers at that station). The probability

for the job to have a type-j defect is dj .

Define d̄i,j = 1− di,j and d̄j = 1− dj , for i, j = 1, 2. A job is called perfect if no defects occur

during its services at stations 1 and 2. For a system with M jobs, let Q(M) denote the expected

number of perfect jobs. Define P(M),m as the probability that job m is perfect, for m = 1, ...,M .

Thus, we have Q(M) =
M∑
m=1

P(M),m. To calculate P(M),m, we need to know whether the job is

finished by only one server or both servers at each station. The following proposition determines

P(M),m, for m = 1, ...,M , under a general non-idling policy.

Proposition 6. If M = 1, then P(1),1 = d̄1d̄2.

23

If M = 2, then

P(2),1 = d̄1

[
p2,0

(
d̄2δ

II(2, 1) + d̄2,2δ
III(2, 1) + d̄1,2δ

IV(2, 1)
)

+ p2,1d̄2

]
,

P(2),2 = d̄2

[
p2,1

(
d̄1δ

I(2, 1) + d̄1,1δ
III(2, 1) + d̄2,1δ

IV(2, 1)
)

+ p2,0d̄1

]
.

If M ≥ 3, for m = 1, ...,M − 2, we have

P(M),m = pm,0d̄1Km +
[
pm,1

(
d̄1δ

I(m,m− 1) + d̄1,1δ
III(m,m− 1) + d̄2,1δ

IV(m,m− 1)
)

+

pm,2

(
d̄1δ

I(m,m− 2) + d̄1,1δ
III(m,m− 2) + d̄2,1δ

IV(m,m− 2)
)]
×[

Jmδ
I(m+ 1,m− 1) +Kmδ

II(m+ 1,m− 1)+(
µ
(m+1)
1,1

µ
(m+1)
1,1 + µ

(m−1)
2,2

Jm +
µ
(m−1)
2,2

µ
(m+1)
1,1 + µ

(m−1)
2,2

Km

)
δIII(m+ 1,m− 1)+(

µ
(m+1)
2,1

µ
(m+1)
2,1 + µ

(m−1)
1,2

Jm +
µ
(m−1)
1,2

µ
(m+1)
2,1 + µ

(m−1)
1,2

Km

)
δIV(m+ 1,m− 1)

]
,

where

Jm = d̄2δ
I(m+ 2,m) + d̄2δ

II(m+ 2,m) +

(
µ
(m+2)
1,1

µ
(m+2)
1,1 + µ

(m)
2,2

d̄2 +
µ
(m)
2,2

µ
(m+2)
1,1 + µ

(m)
2,2

d̄2,2

)
δIII(m+ 2,m)+(

µ
(m+2)
2,1

µ
(m+2)
2,1 + µ

(m)
1,2

d̄2 +
µ
(m)
1,2

µ
(m+2)
2,1 + µ

(m)
1,2

d̄1,2

)
δIV(m+ 2,m),

Km = Jmδ
I(m+ 1,m) + d̄2δ

II(m+ 1,m) +

(
µ
(m+1)
1,1

µ
(m+1)
1,1 + µ

(m)
2,2

Jm +
µ
(m)
2,2

µ
(m+1)
1,1 + µ

(m)
2,2

d̄2,2

)
δIII(m+ 1,m)+(

µ
(m+1)
2,1

µ
(m+1)
2,1 + µ

(m)
1,2

Jm +
µ
(m)
1,2

µ
(m+1)
2,1 + µ

(m)
1,2

d̄1,2

)
δIV(m+ 1,m).

For m = M − 1, we have

P(M),M−1 = pM−1,0d̄1KM−1+[
pM−1,1

(
d̄1δ

I(M − 1,M − 2) + d̄1,1δ
III(M − 1,M − 2) + d̄2,1δ

IV(M − 1,M − 2)
)

+

pM−1,2

(
d̄1δ

I(M − 1,M − 3) + d̄1,1δ
III(M − 1,M − 3) + d̄2,1δ

IV(M − 1,M − 3)
)]
×[

d̄2δ
I(M,M − 2) +KM−1δ

II(M,M − 2) +

(
µ
(M)
1,1

µ
(M)
1,1 + µ

(M−2)
2,2

d̄2 +
µ
(M−2)
2,2

µ
(M)
1,1 + µ

(M−2)
2,2

KM−1

)

δIII(M,M − 2) +

(
µ
(M)
2,1

µ
(M)
2,1 + µ

(M−2)
1,2

d̄2 +
µ
(M−2)
1,2

µ
(M)
2,1 + µ

(M−2)
1,2

KM−1

)
δIV(M,M − 2)

]
,

24

where

KM−1 = d̄2δ
I(M,M − 1) + d̄2δ

II(M,M − 1) +

(
µ
(M)
1,1

µ
(M)
1,1 + µ

(M−1)
2,2

d̄2 +
µ
(M−1)
2,2

µ
(M)
1,1 + µ

(M−1)
2,2

d̄2,2

)
δIII(M,M − 1)+(

µ
(M)
2,1

µ
(M)
2,1 + µ

(M−1)
1,2

d̄2 +
µ
(M−1)
1,2

µ
(M)
2,1 + µ

(M−1)
1,2

d̄1,2

)
δIV(M,M − 1).

For m = M , we have

P(M),M = d̄2

[
pM,0d̄1 + pM,1

(
d̄1δ

I(M,M − 1) + d̄1,1δ
III(M,M − 1) + d̄2,1δ

IV(M,M − 1)
)

+

pM,2

(
d̄1δ

I(M,M − 2) + d̄1,1δ
III(M,M − 2) + d̄2,1δ

IV(M,M − 2)
)]
.

To calculate P(M),m and Q(M) for the summation-myopic policy or the product-myopic policy,

we can substitute the corresponding indicator functions δI(k, l), δII(k, l), δIII(k, l), and δIV(k, l)

from Section 5 into Proposition 6. It is straightforward to see that under the teamwork policy, we

have Q(M) = Md̄1d̄2. If dj < di,j , for i, j = 1, 2 (for example, if the servers help each other to avoid

mistakes when they work jointly), then the teamwork policy yields the largest expected number of

perfect jobs among all the policies discussed.

We conduct a numerical study to compare the three policies in terms of the expected number

of perfect jobs. We consider the following three cases:

(i) d1 < di,1, d2 < di,2. d1,1 < d1,2, d2,2 < d2,1.

(ii) d1 > di,1, d2 > di,2. d1,1 < d1,2, d2,2 < d2,1.

(iii) d1 < di,1, d2 > di,2. d1,1 = d2,1, d1,2 = d2,2.

Figure 4a shows the expected percentage of perfect jobs under each policy for case (i). We

use the same parameter setting as in Figure 2a. We set d1 = d2 = 0.02, d1,1 = d2,2 = 0.1,

and d1,2 = d2,1 = 0.2. Since dj < di,j , for i, j = 1, 2, the teamwork policy yields the largest

expected percentage of perfect jobs in Figure 4a as the servers always work jointly under this

policy. The performance of the summation-myopic policy falls in the middle, producing a larger

expected percentage of perfect jobs than the product-myopic policy. This is because under the

product-myopic policy, the two servers generally work separately (unless the system is blocked or

starved), which leads to more defects. In contrast, the summation-myopic policy mixes the server

assignments of the other two policies, producing the expected percentage of perfect jobs that always

falls between that of the two policies.

Using the same parameter setting as in Figure 2a, Figure 4b shows the expected percentage

of perfect jobs under each policy for case (ii). We set d1 = d2 = 0.3, d1,1 = d2,2 = 0.1, and

25

0 50 100
70%

85%

100%

Summation-myopic

Product-myopic

Teamwork

(a)

0 50 100
40%

55%

70%

Summation-myopic

Product-myopic

Teamwork

(b)

Figure 4: Expected percentage of perfect jobs

d1,2 = d2,1 = 0.2. In this case, we have dj > di,j , for i, j = 1, 2. In contrast to case (i), the teamwork

policy yields the smallest expected percentage of perfect jobs in this situation. The performance

of the summation-myopic policy remains in the middle, and the product-myopic policy gives the

largest expected percentage of perfect jobs.

Figure 5 shows the expected percentage of perfect jobs under each policy for case (iii). In

this case, the servers are less likely to create defects when they work jointly at station 1, but are

more likely to create defects when they work jointly at station 2. For each sub-figure of Figure

5, we use the same parameter setting as in the corresponding sub-figure of Figure 2. We set

d1 = d2 = 0.1, d1,1 = d2,1 = 0.2, and d1,2 = d2,2 = 0.02. The teamwork policy yields the same

expected percentage of perfect jobs in all the sub-figures. Figure 5a shows that the product-myopic

policy outperforms the summation-myopic policy, whereas we have the opposite result in Figure 5d.

Both policies produce fewer defects than the teamwork policy. In Figure 5b, the summation-myopic

policy produces the same expected percentage of perfect jobs as the teamwork policy, whereas the

product-myopic policy creates the largest number of defects. Figure 5c shows that the summation-

myopic and the product-myopic policies produce the same expected percentage of perfect jobs.

This again verifies that these two policies are identical under this parameter setting.

26

0 50 100
70%

80%

90%

Summation-myopic

Product-myopic

Teamwork

(a)

0 50 100
70%

80%

90%

Summation-myopic

Product-myopic

Teamwork

(b)

0 50 100
70%

80%

90%

Summation-myopic

Product-myopic

Teamwork

(c)

0 50 100
70%

80%

90%

Summation-myopic

Product-myopic

Teamwork

(d)

Figure 5: Expected percentage of perfect jobs

9 Conclusion

We study a two-station, two-server tandem system serving a finite number of jobs. There is a

finite buffer between the stations. The servers are cross-trained such that they can work at both

stations. The duration for each server to serve a job at each station is exponentially distributed

with a rate that depends on the server, the station, and the job. This tandem system is common in

the manufacturing and the service industries, where workforce is a major operating cost. In these

environments, it is important to maximize the productivity by effectively using the workforce.

27

We formulate a stochastic dynamic program to identify an optimal policy that dynamically

assigns the servers to the stations to minimize the expected makespan. Unfortunately, the optimal

policy is too complicated to characterize for a large number of jobs. This motivates us to develop

simpler and more intuitive policies. We use the optimal policy as a benchmark when we evaluate

the simpler policies.

Since the optimal policy is non-idling, we focus on non-idling policies in this paper. Using

the basic probability theory, we first derive the expected makespan of a system with a buffer size

B = 1 under a general non-idling policy. We then analyze three specific non-idling policies: the

summation-myopic, the product-myopic, and the teamwork policies. We prove that the product-

myopic policy is optimal in minimizing the expected makespan if the servers maintain the same

service-rate ratio at each station for all the jobs (see Theorem 1). Furthermore, if the service rates

are independent of the jobs (that is, the jobs are homogeneous), then the product-myopic policy

is optimal (see Corollary 1). We also prove that the teamwork policy is optimal if the servers

maintain the same service-rate ratio at different stations for all jobs n and m, 0 < m− n ≤ B + 1

(see Theorem 2). Finally, we prove that the expected makespan of the summation-myopic policy

is no larger than that of the teamwork policy (see Theorem 3). On the other hand, our numerical

study based on general service rates suggests that the summation-myopic policy can be better or

worse than the product-myopic policy.

We extend the analysis to a system with a general buffer size B ∈ N. We derive the expected

makespan of a general non-idling policy and the three specific policies. We prove that all the

optimality results for the system with a buffer size B = 1 still hold. We also extend the model to

incorporate moving costs and service defects, which are under studied in the literature. We derive

the expected total moving cost and the expected number of perfect jobs (without service defects)

under a general non-idling policy. A numerical study suggests that in terms of the expected total

moving cost, the teamwork policy is always the worst, whereas the relative performance of the

summation-myopic and the product-myopic policies depends on the service rates. Furthermore,

each of the three policies can possibly produce the largest expected number of perfect jobs.

Acknowledgment

The authors thank the senior editor and the two anonymous referees for their valuable comments

that have substantially improved the paper. The first author is grateful for the support from

the Singapore Management University under the Lee Kong Chian Fellowship and the Ministry of

28

Education, Singapore under the MOE Tier 1 Academic Research Fund.

References

Ahn, H.-S., I. Duenyas, R. Zhang. 2004. Optimal control of a flexible server. Adv. Appl. Prob. 36(1): 139–170.

Andradóttir, S., H. Ayhan. 2005. Throughput maximization for tandem lines with two stations and flexible
servers. Oper. Res. 53(3): 516–531.

Andradóttir, S., H. Ayhan, D.G. Down. 2001. Server assignment policies for maximizing the steady-state
throughput of finite queueing systems. Manage. Sci. 47(10): 1421–1439.

Andradóttir, S., H. Ayhan, D.G. Down. 2003. Dynamic server allocation for queueing networks with flexible
servers. Oper. Res. 51(6): 952–968.

Andradóttir, S., H. Ayhan, D.G. Down. 2007a. Compensating for failures with flexible servers. Oper. Res.
55(4): 753–768.

Andradóttir, S., H. Ayhan, D.G. Down. 2007b. Dynamic assignment of dedicated and flexible servers in
tandem lines. Prob. Eng. Inform. Sci. 21(4): 497–538.

Andradóttir, S., H. Ayhan, E. Kirkizlar. 2012. Flexible servers in tandem lines with setup costs. Queueing
Systems 70(2): 165–186.

Armbruster, D., E.S. Gel. 2006. Bucket brigades revisited: Are they always effective? Eur. J. Oper. Res.
172(1) 213–229.

Armony, M., C.W. Chan, B. Zhu. 2018. Critical care capacity management: Understanding the role of a
step down unit. Prod. Oper. Manag. 27(5), 859–883.

Bartholdi, J.J. III, L.A. Bunimovich, D.D. Eisenstein. 1999. Dynamics of two- and three-worker “bucket
brigade” production lines. Oper. Res. 47(3) 488–491.

Bartholdi, J.J. III, D.D. Eisenstein. 1996. A production line that balances itself. Oper. Res. 44(1): 21–34.

Bartholdi, J.J. III, D.D. Eisenstein. 2005. Using bucket brigades to migrate from craft manufacturing to
assembly lines. Manuf. Serv. Oper. Manag. 7(2) 121–129.

Bartholdi, J.J. III, D.D. Eisenstein, R.D. Foley. 2001. Performance of bucket brigades when work is stochas-
tic. Oper. Res. 49(5):710–719.

Bell, S.L., R.J. Williams. 2001. Dynamic scheduling of a system with two parallel servers in heavy traffic
with complete resource pooling: Asymptotic optimality of a threshold policy. Ann. Appl. Prob. 11(3):
608–649.

Cachon, G., C. Terwiesch. 2013. Matching Supply with Demand, 3rd Edition, McGraw-Hill.

Duenyas, I., D. Gupta, T.L. Olsen. 1998. Control of a single server queueing system with setups. Oper. Res.
46(2): 218–230.

Farrar, T.M. 1993. Optimal use of an extra server in a two station tandem queueing network. IEEE Trans.
Autom. Control 38(8): 1296–1299.

Gel, E.S., W.J. Hopp, M.P. Van Oyen. 2002. Factors affecting opportunity of worksharing as a dynamic line
balancing mechanism. IIE Trans. 34(10): 847–863.

Harrison, J.M., M.J. López. 1999. Heavy traffic resource pooling in parallel-server systems. Queue. Sys.
33(4): 339–368.

Hopp, W.J., E. Tekin, M.P. Van Oyen. 2004. Benefits of skill chaining in serial production lines with cross-
trained workers. Manage. Sci. 50(1): 83–98.

29

Hopp, W.J., M.P. Van Oyen. 2004. Agile workforce evaluation: A framework for cross-training and coordi-
nation. IIE Trans. 36(10): 919–940.

Hopp, W.J., M.C. Spearman. 2008. Factory Physics, 3rd Edition, Waveland Press, Inc.

Iravani, S.M.R., M.J.M. Posner, J.M. Buzacott. 1997. A two-stage tandem queue attended by a moving
server with holding and switching costs. Queue. Syst. 26(3-4): 203–228.

Kaufman, D.L., H.-S. Ahn, M.E. Lewis. 2005. On the introduction of an agile, temporary workforce into a
tandem queueing system. Queue. Syst. 51(1-2): 135–171.

Kirkizlar, E., S. Andradóttir, H. Ayhan. 2010. Robustness of efficient server assignment policies to service
time distributions in finite-buffered lines. Naval Res. Logist. 57(6): 563–582.

Lim, Y.F. 2011. Cellular bucket brigades. Oper. Res. 59(6) 1539–1545.

Lim, Y.F. 2017. Performance of cellular bucket brigades with hand-off times. Prod. Oper. Manag. 26(10),
1915–1923.

Lim, Y.F., Y. Wu. 2014. Cellular bucket brigades on U-lines with discrete work stations. Prod. Oper. Manag.
23(7), 1113–1128.

Lim, Y.F., K.K. Yang. 2009. Maximizing throughput of bucket brigades on discrete work stations. Prod.
Oper. Manag. 18(1): 48–59.

Mandelbaum, A., A.L. Stolyar. 2004. Scheduling flexible servers with convex delay costs: Heavy-traffic
optimality of the generalized cµ-rule. Oper. Res. 52(6): 836–855.

Ostolaza, J., J.O. McClain, L.J. Thomas. 1990. The use of dynamic (state-dependent) assembly-line balanc-
ing to improve throughput. J. Manuf. Oper. Manag. 3(2): 105–133.

Rosberg, Z., P.P. Varaiya, J.C. Walrand. 1982. Optimal control of service in tandem queues. IEEE Trans.
Autom. Control 27(3): 600–609.

Van Oyen, M.P., E.S. Gel, W.J. Hopp. 2001. Performance opportunity for workforce agility in collaborative
and noncollaborative work systems. IIE Trans. 33 761–777.

Wallace, R.B., W. Whitt. 2005. A staffing algorithm for call centers with skill-based routing. Manuf. Serv.
Oper. Manag. 7(7): 276–294.

Wang, R., O. Jouini, S. Benjaafar. 2014. Service systems with finite and heterogeneous customer arrivals.
Manuf. Serv. Oper. Manag. 16(3) 329–480.

Williams, R. J. 2000. On dynamic scheduling of a parallel server system with complete resource pooling.
McDonald, D. R. and Turner, S. R. E., eds. Analysis of Communication Networks: Call Centers, Traffic
and Performance. American Mathematical Society, Toronto, 49–71.

Zavadlav, E., J.O. McClain, L.J. Thomas. 1996. Self-buffering, self-balancing, self-flushing production lines.

Manage. Sci. 42(8): 1151–1164.

30

Online supplement

Lemma 3. For independent exponential random variables X and Y , with rates λ and µ, respectively,
E[X | X < Y] = 1

λ+µ .

Proof : From the elementary probability theory, for nonnegative continuous random variable X, we have

E[X] =
∞∫
0

Pr{X > x}dx. So, E[X | X < Y] =
∞∫
0

Pr{X > x | X < Y }dx. Now,

Pr{X > x | X < Y } =
Pr{X > x,X < Y }

Pr{X < Y }
=

Pr{X < Y,X > x, Y > x}
Pr{X < Y }

=
Pr{X < Y | X > x, Y > x}Pr{X > x}Pr{Y > x}

Pr{X < Y }

=
Pr{Y > x+X − x | X > x, Y > x}Pr{X > x}Pr{Y > x}

Pr{X < Y }

=
Pr{Y > X − x | X > x}Pr{X > x}Pr{Y > x}

Pr{X < Y }

=
[1− Pr{X > Y + x | X > x}]Pr{X > x}Pr{Y > x}

Pr{X < Y }

=
[1− Pr{X > Y }]Pr{X > x}Pr{Y > x}

Pr{X < Y }
= Pr{X > x}Pr{Y > x} = e−λxe−µx = e−(λ+µ)x.

Thus, E[X | X < Y] =
∞∫
0

Pr{X > x | X < Y }dx =
∞∫
0

e−(λ+µ)xdx = 1
λ+µ .

Deriving f I(u,v), f
II
(u,v), f

III
(u,v), and f IV(u,v) : The formulations of f I(u,v) and f II(u,v) are straightforward. To

determine f III(u,v), we consider two scenarios. In the first scenario, job M − u+ 1 finishes service at station 1
before job M −u− v+ 1 at station 2. According to Lemma 3, the expected service time of job M −u+ 1 at
station 1 conditioned on this scenario equals 1

µ
(M−u+1)
1,1 +µ

(M−u−v+1)
2,2

. This scenario happens with probability

µ
(M−u+1)
1,1

µ
(M−u+1)
1,1 +µ

(M−u−v+1)
2,2

. In the second scenario, job M − u − v + 1 finishes service at station 2 before job

M − u + 1 at station 1. The expected service time of job M − u − v + 1 at station 2 conditioned on this

scenario equals 1

µ
(M−u+1)
1,1 +µ

(M−u−v+1)
2,2

. This scenario happens with probability
µ
(M−u−v+1)
2,2

µ
(M−u+1)
1,1 +µ

(M−u−v+1)
2,2

. Thus,

we have

f III(u,v) =
µ
(M−u+1)
1,1

µ
(M−u+1)
1,1 + µ

(M−u−v+1)
2,2

[
1

µ
(M−u+1)
1,1 + µ

(M−u−v+1)
2,2

+ f(u−1,v+1)

]
+

µ
(M−u−v+1)
2,2

µ
(M−u+1)
1,1 + µ

(M−u−v+1)
2,2

[
1

µ
(M−u+1)
1,1 + µ

(M−u−v+1)
2,2

+ f(u,v−1)

]

=
1

µ
(M−u+1)
1,1 + µ

(M−u−v+1)
2,2

+
µ
(M−u+1)
1,1

µ
(M−u+1)
1,1 + µ

(M−u−v+1)
2,2

f(u−1,v+1) +

µ
(M−u−v+1)
2,2

µ
(M−u+1)
1,1 + µ

(M−u−v+1)
2,2

f(u,v−1).

Similarly, we have

f IV(u,v) =
µ
(M−u+1)
2,1

µ
(M−u+1)
2,1 + µ

(M−u−v+1)
1,2

[
1

µ
(M−u+1)
2,1 + µ

(M−u−v+1)
1,2

+ f(u−1,v+1)

]
+

µ
(M−u−v+1)
1,2

µ
(M−u+1)
2,1 + µ

(M−u−v+1)
1,2

[
1

µ
(M−u+1)
2,1 + µ

(M−u−v+1)
1,2

+ f(u,v−1)

]

31

=
1

µ
(M−u+1)
2,1 + µ

(M−u−v+1)
1,2

+
µ
(M−u+1)
2,1

µ
(M−u+1)
2,1 + µ

(M−u−v+1)
1,2

f(u−1,v+1) +

µ
(M−u−v+1)
1,2

µ
(M−u+1)
2,1 + µ

(M−u−v+1)
1,2

f(u,v−1).

Proof of Lemma 1: For m = 2, ...,M , to recursively derive pm,i, we link it to pm−1,j by the following

equation, pm,i =
2∑
j=0

pm−1,jPr{Rm = i | Rm−1 = j}.

First, we look at the case of m = 2, noticing that p1,0 = 1 and p1,i = 0 for i = 1, 2.
Case (i), R2 = 0: Job 1 completes service at station 2 before job 2 at station 1. So, Pr{R2 = 0 | R1 =
0} = π(2 � 1).
Case (ii), R2 = 1: Job 2 finishes service at station 1 before job 1 at station 2. So, Pr{R2 = 1 | R1 = 0} =
π(2 ≺ 1).
Case (iii), R2 = 2: This case is infeasible. So, Pr{R2 = 2 | R1 = 0} = 0.

Next, we look at the case of m = 3, ...,M .
Case (i), Rm = 1, Rm−1 = 0: Job m finishes service at station 1 before job m − 1 at station 2. So,
Pr{Rm = 1 | Rm−1 = 0} = π(m ≺ m− 1).
Case (ii), Rm = 1, Rm−1 = 1: Job m − 2 completes service at station 2 before job m at station 1; and
job m finishes service at station 1 before job m − 1 at station 2. So, Pr{Rm = 1 | Rm−1 = 1} = π(m ≺
m− 1)π(m � m− 2).
Case (iii), Rm = 1, Rm−1 = 2: Station 1 is blocked immediately after Tm−1, and both servers work at
station 2 on job m − 3. After that, job m − 2 starts service at station 2 and job m − 1 enters buffer. Job
m − 2 completes service at station 2 before job m at station 1; and job m finishes its service at station 1
before job m− 1 at station 2. So, Pr{Rm = 1 | Rm−1 = 2} = π(m ≺ m− 1)π(m � m− 2).
Case (iv), Rm = 2, Rm−1 = 0: This case is infeasible. So, Pr{Rm = 2 | Rm−1 = 0} = 0.
Case (v), Rm = 2, Rm−1 = 1: Job m finishes service at station 1 before the job m − 2 at station 2. So,
Pr{Rm = 2 | Rm−1 = 1} = π(m ≺ m− 2).
Case (vi), Rm = 2, Rm−1 = 2: Station 1 is blocked immediately after Tm−1, and both servers work at
station 2 on job m− 3. After that, job m− 2 enters station 2 and job m− 1 enters buffer. Job m finishes
service at station 1 before job m− 2 at station 2. So, Pr{Rm = 2 | Rm−1 = 2} = π(m ≺ m− 2).
Case (vii), Rm = 0, Rm−1 = 0: Job m − 1 completes service at station 2 before job m at station 1. So,
Pr{Rm = 0 | Rm−1 = 0} = π(m � m− 1).
Case (viii), Rm = 0, Rm−1 = 1: Job m − 2 and job m − 1 complete service at station 2 before job m at
station 1. So, Pr{Rm = 0 | Rm−1 = 1} = π(m � m− 1)π(m � m− 2).
Case (ix), Rm = 0, Rm−1 = 2: Station 1 is blocked immediately after Tm−1, and both servers work at
station 2 on job m − 3. After that, job m − 2 starts service at station 2 and job m − 1 enters buffer. Job
m− 2 and job m− 1 complete service at station 2 before job m at station 1. So, Pr{Rm = 0 | Rm−1 = 2} =
π(m � m− 1)π(m � m− 2).

Equations in Lemma 1 directly follow the above analysis.
Proof of Proposition 1: For m = 1, job 1 is always served by both servers at station 1. Thus, E[X1] =

1

µ
(1)
1,1+µ

(1)
2,1

.

For m = 2, ...,M , let Sm denote the number of jobs, at the buffer or station 2, found by job m, upon
entering station 1. Sm can take the value of either 1 or 2. Recall that Rm denotes the number of jobs, at the
buffer or station 2, found by job m, upon service completion at station 1. Rm can take the value of either
0, 1, or 2. Obviously, Rm ≤ Sm. The values of the pair (Rm, Sm) give the clue to the puzzle of whether
station 2 is starved. Note that Sm = 2 if and only if Rm−1 = 1 or 2, and Sm = 1 if and only if Rm−1 = 0.
Thus, Pr{Sm = 2} = pm−1,1 + pm−1,2, and Pr{Sm = 1} = pm−1,0.

First, we look at the case of m = 2.
Case (i), R2 = 1, S2 = 1: Job 2 finishes service at station 1 before job 1 at station 2. Thus, E[X2 | R2 =
1, S2 = 1] = τ1(2 ≺ 1). This case happens with probability Pr{R2 = 1, S2 = 1} = π(2 ≺ 1).
Case (ii), R2 = 0, S2 = 1: Job 1 completes service at station 2 before job 2 at station 1. After that, station
2 becomes starved, and both servers work at station 1 on job 2. The expected time duration of job 2 staying
at station 1 conditioned on this case, consists of two parts. The first part is, the conditional expected service

32

time of job 1 at station 2 given that job 1 completes service at station 2 before job 2 at station 1, which
equals τ2(2 � 1). The second part is, the expected service time of job 2 at station 1 under both servers,
which equals 1

µ
(2)
1,1+µ

(2)
2,1

. Thus, E[X2 | R2 = 0, S2 = 1] = τ2(2 � 1) + 1

µ
(2)
1,1+µ

(2)
2,1

. This case happens with

probability Pr{R2 = 0, S2 = 1} = π(2 � 1).
Next, we look at the case of m = 3, ...,M .

Case (i), Rm = 2, Sm = 2: Job m finishes service at station 1 before job m − 2 at station 2. After that,
station 1 becomes blocked. The expected time duration of job m staying at station 1 conditioned on this
case, consists of two parts. The first part is, the conditional expected service time of job m at station 1
given that job m finishes service at station 1 before job m−2 at station 2, which equals τ1(m ≺ m−2). The
second part is, the expected time duration of job m staying at station 1 after service completes (i.e., blocking
time), which equals 1

µ
(m−2)
1,2 +µ

(m−2)
2,2

. Thus, E[Xm | Rm = 2, Sm = 2] = τ1(m ≺ m− 2) + 1

µ
(m−2)
1,2 +µ

(m−2)
2,2

. This

case happens with probability Pr{Rm = 2, Sm = 2} = π(m ≺ m− 2)(pm−1,1 + pm−1,2) = pm,2.
Case (ii), Rm = 1, Sm = 2: Job m− 2 completes service at station 2 before job m at station 1; and job m
finishes service at station 1 before job m− 1 at station 2. The expected time duration of job m staying at
station 1 conditioned on this case, consists of two parts. The first part is, the conditional expected service
time of job m− 2 at station 2 given that job m− 2 completes service at station 2 before job m at station 1,
which equals τ2(m � m− 2). The second part is, the conditional expected service time of job m at station
1 given that job m finishes service at station 1 before job m− 1 at station 2, which equals τ1(m ≺ m− 1).
Thus, E[Xm | Rm = 1, Sm = 2] = τ2(m � m − 2) + τ1(m ≺ m − 1). This case happens with probability
Pr{Rm = 1, Sm = 2} = π(m ≺ m− 1)π(m � m− 2)(pm−1,1 + pm−1,2).
Case (iii), Rm = 1, Sm = 1: Job m finishes service at station 1 before job m − 1 at station 2. Thus,
E[Xm | Rm = 1, Sm = 1] = τ1(m ≺ m − 1). This case happens with probability Pr{Rm = 1, Sm = 1} =
π(m ≺ m− 1)pm−1,0.
Case (iv), Rm = 0, Sm = 2: Job m− 2 and job m− 1 complete service at station 2 before job m at station
1. After that, station 2 becomes starved, and both servers work at station 1 on job m. The expected time
duration of job m staying at station 1 conditioned on this case, consists of three parts. The first part is, the
conditional expected service time of job m− 2 at station 2 given that job m− 2 completes service at station
2 before job m at station 1, which equals τ2(m � m − 2). The second part is, the conditional expected
service time of job m − 1 at station 2 given that job m − 1 completes service at station 2 before job m at
station 1, which equals τ2(m � m − 1). The third part is, the expected service time of job m at station 1
under both servers, which equals 1

µ
(m)
1,1 +µ

(m)
2,1

. Thus, E[Xm | Rm = 0, Sm = 2] = τ2(m � m − 2) + τ2(m �

m − 1) + 1

µ
(m)
1,1 +µ

(m)
2,1

. This case happens with probability Pr{Rm = 0, Sm = 2} = π(m � m − 1)π(m �

m− 2)(pm−1,1 + pm−1,2).
Case (v), Rm = 0, Sm = 1: Job m− 1 completes service at station 2 before job m at station 1. After that,
station 2 becomes starved, and both servers work at station 1 on job m. The expected time duration of
job m staying at station 1 conditioned on this case, consists of two parts. The first part is, the conditional
expected service time of job m−1 at station 2 given that job m−1 completes service at station 2 before job
m at station 1, which equals τ2(m � m−1). The second part is, the expected service time of job m at station
1 under both servers, which equals 1

µ
(m)
1,1 +µ

(m)
2,1

. Thus, E[Xm | Rm = 0, Sm = 1] = τ2(m � m−1)+ 1

µ
(m)
1,1 +µ

(m)
2,1

.

This case happens with probability Pr{Rm = 0, Sm = 1} = π(m � m− 1)pm−1,0.
Equations in Proposition 1 directly follow the above analysis.

Proof of Proposition 2: Let Om denote the number of jobs, at the buffer, found by job m, upon entering
station 2. Om can take the value of either 0 or 1. Let Qm denote the number of jobs, at the buffer or
station 2, found by job m, upon service completion at station 2. Qm can take the value of either 0, 1, or
2. Obviously, Om ≤ Qm. The values of the pair (Om, Qm) give the clue to the puzzle of whether station 1
is blocked. Note that Om = 0 if and only if Rm+1 = 0 or 1, and Om = 1 if and only if Rm+1 = 2. Thus,
Pr{Om = 0} = pm+1,0 + pm+1,1, and Pr{Om = 1} = pm+1,2.

First, we look at the case of m = 1, ...,M − 2.
Case (i), Om = 1, Qm = 1: Job m + 2 enters station 1, while job m enters station 2. Job m completes
service at station 2 before job m + 2 at station 1. Thus, E[Zm | Om = 1, Qm = 1] = τ2(m + 2 � m). This
case happens with probability Pr{Om = 1, Qm = 1} = π(m+ 2 � m)pm+1,2.
Case (ii), Om = 1, Qm = 2: Job m + 2 enters station 1, while job m enters station 2. Job m + 2 finishes
service at station 1 before job m at station 2. After that, station 1 becomes blocked, and both servers work
at station 2 on job m. The expected time duration of job m staying at station 2 conditioned on this case,

33

consists of two parts. The first part is, the conditional expected service time of job m+ 2 at station 1 given
that job m + 2 finishes service at station 1 before job m at station 2, which equals τ1(m + 2 ≺ m). The
second part is, the expected service time of job m at station 2 under both servers, which equals 1

µ
(m)
1,2 +µ

(m)
2,2

.

Thus, E[Zm | Om = 1, Qm = 2] = τ1(m + 2 ≺ m) + 1

µ
(m)
1,2 +µ

(m)
2,2

. This case happens with probability

Pr{Om = 1, Qm = 2} = π(m+ 2 ≺ m)pm+1,2.
Case (iii), Om = 0, Qm = 0: Job m completes service at station 2 before job m + 1 at station 1. Thus,
E[Zm | Om = 0, Qm = 0] = τ2(m + 1 � m). This case happens with probability Pr{Om = 0, Qm = 0} =
pm+1,0.
Case (iv), Om = 0, Qm = 1: Job m + 1 finishes service at station 1 before job m at station 2; and job m
completes service at station 2 before job m+ 2 at station 1. The expected time duration of job m staying at
station 2 conditioned on this case, consists of two parts. The first part is, the conditional expected service
time of job m + 1 at station 1 given that job m + 1 finishes service at station 1 before job m at station 2,
which equals τ1(m+ 1 ≺ m). The second part is, the conditional expected service time of job m at station 2
given that job m completes service at station 2 before job m+ 2 at station 1, which equals τ2(m+ 2 � m).
Thus, E[Zm | Om = 0, Qm = 1] = τ1(m + 1 ≺ m) + τ2(m + 2 � m). This case happens with probability
Pr{Om = 0, Qm = 1} = π(m+ 2 � m)pm+1,1.
Case (v), Om = 0, Qm = 2: Job m + 1 and job m + 2 finish service at station 1 before job m at station
1. After that, station 1 becomes blocked, and both servers work at station 2 on job m. The expected time
duration of job m staying at station 2 conditioned on this case, consists of three parts. The first part is, the
conditional expected service time of job m+ 1 at station 1 given that job m+ 1 finishes service at station 1
before job m at station 2, which equals τ1(m+ 1 ≺ m). The second part is, the conditional expected service
time of job m+2 at station 1 given that job m+2 finishes service at station 1 before job m at station 2, which
equals τ1(m+ 2 ≺ m). The third part is, the expected service time of job m at station 2 under both servers,
which equals 1

µ
(m)
1,2 +µ

(m)
2,2

. Thus, E[Zm | Om = 0, Qm = 2] = τ1(m + 1 ≺ m) + τ1(m + 2 ≺ m) + 1

µ
(m)
1,2 +µ

(m)
2,2

.

This case happens with probability Pr{Om = 0, Qm = 2} = π(m+ 2 ≺ m)pm+1,1.
Next, we look at the case of m = M − 1.

Case (i), OM−1 = 1, QM−1 = 1: Job M finishes service at station 1 before job M−1 enters station 2. After
job M finishes service at station 1, both servers work at station 2. Thus, E[ZM−1 | OM−1 = 1, QM−1 =
1] = 1

µ
(M−1)
1,2 +µ

(M−1)
2,2

. This case happens with probability Pr{OM−1 = 1, QM−1 = 1} = pM,2.

Case (ii), OM−1 = 0, QM−1 = 0: Job M − 1 completes service at station 2 before job M at station
1. Thus, E[ZM−1 | OM−1 = 0, QM−1 = 0] = τ2(M � M − 1). This case happens with probability
Pr{OM−1 = 0, QM−1 = 0} = pM,0.
Case (iii), OM−1 = 0, QM−1 = 1: Job M finishes service at station 1 before job M − 1 at station 2.
After job M finishes service at station 1, both servers work at station 2. The expected time duration of job
M − 1 staying at station 2 conditioned on this case, consists of two parts. The first part is, the conditional
expected service time of job M at station 1 given that job M finishes service at station 1 before job M − 1
at station 2, which equals τ1(M ≺ M − 1). The second part is, the expected service time of job M − 1
at station 2 under both servers, which equals 1

µ
(M−1)
1,2 +µ

(M−1)
2,2

. Thus, E[ZM−1 | OM−1 = 0, QM−1 = 1] =

τ1(M ≺M − 1) + 1

µ
(M−1)
1,2 +µ

(M−1)
2,2

. This case happens with probability Pr{OM−1 = 0, QM−1 = 1} = pM,1.

Last, for m = M , both servers work at station 2 on job M . Thus, E[ZM] = 1

µ
(M)
1,2 +µ

(M)
2,2

.

Equations in Proposition 2 directly follow the above analysis.
Proof of Proposition 3: For m = 1, job 1 always finds buffer and station 2 empty. Thus, E[Y1] = 0.

Now, we look at the case of m = 2.
Case (i), R2 = 0: Job 2 finds buffer and station 2 empty. Thus, E[Y2 | R2 = 0] = 0. This case happens
with probability Pr{R2 = 0} = p2,0.
Case (ii), R2 = 1: Right after T2, job 1 is at station 2; job 2 is at the buffer; and job 3 is at station 1. There
are two scenarios. Scenario (1): job 1 completes service at station 2 before job 3 at station 1. The expected
time duration of job 2 staying at the buffer conditioned on this scenario, is, the conditional expected service
time of job 1 at station 2 given that job 1 completes service at station 2 before job 3 at station 1, which equals
τ2(3 � 1). This scenario happens with probability π(3 � 1). Scenario (2): job 3 finishes service at station 1
before job 1 at station 2. After that, station 1 becomes blocked, and both servers work at station 2 on job 1.
The expected time duration of job 2 staying at the buffer conditioned on this scenario, consists of two parts.
The first part is, the conditional expected service time of job 3 at station 1 given that job 3 finishes service

34

at station 1 before job 1 at station 2, which equals τ1(3 ≺ 1). The second part is, the expected service time
of job 1 at station 2 under both servers, which equals 1

µ
(1)
1,2+µ

(1)
2,2

. So, the expected time duration of job 2

staying at the buffer conditioned on this scenario, equals τ1(3 ≺ 1) + 1

µ
(1)
1,2+µ

(1)
2,2

. This scenario happens with

probability π(3 ≺ 1). Thus, E[Y2 | R2 = 1] = τ2(3 � 1)π(3 � 1) +

(
τ1(3 ≺ 1) + 1

µ
(1)
1,2+µ

(1)
2,2

)
π(3 ≺ 1). This

case happens with probability Pr{R2 = 1} = p2,1.
Next, we look at the case of m = 3, ...,M − 1.

Case (i), Rm = 0: Job m finds the buffer and station 2 empty. Thus, E[Ym | Rm = 0] = 0. This case
happens with probability Pr{Rm = 0} = pm,0.
Case (ii), Rm = 1: Right after Tm, job m − 1 is at station 2; job m is at the buffer; and job m + 1 is at
station 1. There are two scenarios. Scenario (1): job m− 1 completes service at station 2 before job m+ 1
at station 1. The expected time duration of job m staying at the buffer conditioned on this scenario, is, the
conditional expected service time of job m− 1 at station 2 given that job m− 1 completes service at station
2 before job m + 1 at station 1, which equals τ2(m + 1 � m − 1). This scenario happens with probability
π(m + 1 � m − 1). Scenario (2): job m + 1 finishes service at station 1 before job m − 1 at station 2.
After that, station 1 becomes blocked, and both servers work at station 2 on job m− 1. The expected time
duration of job m staying at the buffer conditioned on this scenario, consists of two parts. The first part is,
the conditional expected service time of job m+1 at station 1 given that job m+1 finishes service at station
1 before job m−1 at station 2, which equals τ1(m+1 ≺ m−1). The second part is, the expected service time
of job m− 1 at station 2 under both servers, which equals 1

µ
(m−1)
1,2 +µ

(m−1)
2,2

. So, the expected time duration of

job m staying at the buffer conditioned on this scenario, equals τ1(m + 1 ≺ m − 1) + 1

µ
(m−1)
1,2 +µ

(m−1)
2,2

. This

scenario happens with probability π(m+ 1 ≺ m− 1). Thus, E[Ym | Rm = 1] = τ2(m+ 1 � m− 1)π(m+ 1 �

m − 1) +

(
τ1(m+ 1 ≺ m− 1) + 1

µ
(m−1)
1,2 +µ

(m−1)
2,2

)
π(m + 1 ≺ m − 1). This case happens with probability

Pr{Rm = 1} = pm,1.
Case (iii), Rm = 2: Right after Tm, station 1 becomes blocked. Job m enters the butter only after job
m−2 completes service at station 2. Thus, It is not difficult to see that, E[Ym | Rm = 2] = E[Ym | Rm = 2].
This case happens with probability Pr{Rm = 2} = pm,2.

Last, we look at the case of m = M .
Case (i), RM = 0: Job M finds the buffer and station 2 empty. Thus, E[YM | RM = 0] = 0. This case
happens with probability Pr{RM = 0} = pM,0.
Case (ii), RM = 1: After job M finishes service at station 1, both servers work at station 2. Job M enters
the butter only after job M − 1 completes service at station 2 under both servers. Thus, E[YM | RM = 1] =

1

µ
(M−1)
1,2 +µ

(M−1)
2,2

. This case happens with probability Pr{RM = 1} = pM,1.

Case (iii), RM = 2: After job M finishes service at station 1, both servers work at station 2. Job M enters
the butter only after job M − 1 completes service at station 2 under both servers. Thus, E[YM | RM = 1] =

1

µ
(M−1)
1,2 +µ

(M−1)
2,2

. This case happens with probability Pr{RM = 2} = pM,2.

Equations in Proposition 3 directly follow the above analysis.
Proof of Theorem 1: It is obvious that, when the system is at states (u, 0) for u = 1, ...,M ; (u, 3) for
u = 1, ...,M − 3; and (0, v) for v = 1, ..., 3, the product-myopic policy is optimal. Thus, to show that
the product-myopic policy is optimal in general, we only need to show the optimality for u = 1, ...,M and
v = 1, 2. For notational convenience, define θI(u,v) = 1

µ
(M−u+1)
1,1 +µ

(M−u+1)
2,1

; θII(u,v) = 1

µ
(M−u−v+1)
1,2 +µ

(M−u−v+1)
2,2

;

θIII(u,v) = 1

µ
(M−u+1)
1,1 +µ

(M−u−v+1)
2,2

; and θIV(u,v) = 1

µ
(M−u+1)
2,1 +µ

(M−u+1)
1,2

.

After some algebra (see the definition in Table 1), it is not hard to see that, f III(u,v) ≤ f
I
(u,v) is equivalent

to (1) f(u,v−1) − f(u−1,v+1) ≤
θI(u,v)−θ

III
(u,v)

µ
(M−u−v+1)
2,2 θIII

(u,v)

; f III(u,v) ≤ f II(u,v) is equivalent to (2) f(u−1,v+1) − f(u,v−1) ≤
θII(u,v)−θ

III
(u,v)

µ
(M−u+1)
1,1 θIII

(u,v)

; f IV(u,v) ≤ f
I
(u,v) is equivalent to (3) f(u,v−1) − f(u−1,v+1) ≤

θI(u,v)−θ
IV
(u,v)

µ
(M−u−v+1)
1,2 θIV

(u,v)

; and f IV(u,v) ≤ f
II
(u,v)

is equivalent to (4) f(u−1,v+1) − f(u,v−1) ≤
θII(u,v)−θ

IV
(u,v)

µ
(M−u+1)
2,1 θIV

(u,v)

.

We first prove the following intermediate properties.

(5) If µ
(M−u+1)
1,1 µ

(M−u−v+1)
2,2 ≥ µ

(M−u+1)
2,1 µ

(M−u−v+1)
1,2 ; f III(u,v) ≤ f I(u,v); and f III(u,v) ≤ f II(u,v), then f III(u,v) ≤

35

f IV(u,v). (6) If µ
(M−u+1)
1,1 µ

(M−u−v+1)
2,2 < µ

(M−u+1)
2,1 µ

(M−u−v+1)
1,2 ; f IV(u,v) ≤ f I(u,v); and f IV(u,v) ≤ f II(u,v), then

f IV(u,v) < f III(u,v).

For (5), f(u−1,v+1) = f I(u,v) − θI(u,v) and f(u,v−1) = f II(u,v) − θII(u,v) imply that f IV(u,v) = θIV(u,v)

(
1 −

µ
(M−u+1)
2,1 θI(u,v)−µ

(M−u−v+1)
1,2 θII(u,v)

)
+ θIV(u,v)

(
µ
(M−u+1)
2,1 f I(u,v) +µ

(M−u−v+1)
1,2 f II(u,v)

)
. µ

(M−u+1)
1,1 µ

(M−u−v+1)
2,2 ≥

µ
(M−u+1)
2,1 µ

(M−u−v+1)
1,2 ⇒

(
1− µ(M−u+1)

2,1 θI(u,v) − µ
(M−u−v+1)
1,2 θII(u,v)

)
= θI(u,v)θ

II
(u,v)

(
µ
(M−u+1)
1,1 µ

(M−u−v+1)
2,2 −

µ
(M−u+1)
2,1 µ

(M−u−v+1)
1,2

)
≥ 0⇒ f IV(u,v) ≥ θ

IV
(u,v)

(
µ
(M−u+1)
2,1 f I(u,v)+µ

(M−u−v+1)
1,2 f II(u,v)

)
. Note that θIV(u,v)

(
µ
(M−u+1)
2,1

+ µ
(M−u−v+1)
1,2

)
= 1. Thus, if f III(u,v) ≤ f I(u,v) and f III(u,v) ≤ f II(u,v), then f III(u,v) ≤ f IV(u,v). (6) can be proved by

the same token.
As a result of this, we only need to show that Property (1)-(4) are valid for u = 1, ...,M and v = 1, 2.

We prove this by induction (over u).

Note that, after some algebra, we have (7) θI(u,v−1) − θ
II
(u−1,v+1) −

θI(u,v)−θ
III
(u,v)

µ
(M−u−v+1)
2,2 θIII

(u,v)

=
θI(u,v−1)θ

II
(u−1,v+1)

µ
(M−u−v+1)
2,2(

µ
(M−u+1)
2,1 µ

(M−u−v+1)
1,2 − µ(M−u+1)

1,1 µ
(M−u−v+1)
2,2

)
; and (8) θI(u,v−1) − θ

II
(u−1,v+1) −

θI(u,v)−θ
IV
(u,v)

µ
(M−u−v+1)
1,2 θIV

(u,v)

=

θI(u,v−1)θ
II
(u−1,v+1)

µ
(M−u−v+1)
1,2

(
µ
(M−u+1)
1,1 µ

(M−u−v+1)
2,2 − µ(M−u+1)

2,1 µ
(M−u−v+1)
1,2

)
.

Now, we start the induction with u = 1.

• For state (1, 1), it is connected to states (0, 2) and (1, 0). f(1,0)−f(0,2) = θI(1,0)−θ
II
(0,2) and f(0,2)−f(1,0)

= θII(0,2) − θ
I
(1,0).

Case (i), f(1,1) = f III(1,1): From Property (7), f(1,0) − f(0,2) −
θI(1,1)−θ

III
(1,1)

µ
(M−1)
2,2 θIII

(1,1)

=
θI(1,0)θ

II
(0,2)

µ
(M−1)
2,2

(
µ
(M)
2,1 µ

(M−1)
1,2 −

µ
(M)
1,1 µ

(M−1)
2,2

)
≤ 0 and f(0,2)− f(1,0)−

θII(1,1)−θ
III
(1,1)

µ
(M)
1,1 θ

III
(1,1)

=
θI(1,0)θ

II
(0,2)

µ
(M)
1,1

(
µ
(M)
2,1 µ

(M−1)
1,2 −µ(M)

1,1 µ
(M−1)
2,2

)
≤ 0. From

Property (1), (2), and (5), we have f III(1,1) ≤ f
IV
(1,1).

Case (ii), f(1,1) = f IV(1,1): From Property (8), f(1,0) − f(0,2) −
θI(1,1)−θ

IV
(1,1)

µ
(M−1)
1,2 θIV

(1,1)

=
θI(1,0)θ

II
(0,2)

µ
(M−1)
1,2

(
µ
(M)
1,1 µ

(M−1)
2,2 −

µ
(M)
2,1 µ

(M−1)
1,2

)
< 0 and f(0,2)− f(1,0)−

θII(1,1)−θ
IV
(1,1)

µ
(M)
2,1 θ

IV
(1,1)

=
θI(1,0)θ

II
(0,2)

µ
(M)
2,1

(
µ
(M)
1,1 µ

(M−1)
2,2 −µ(M)

2,1 µ
(M−1)
1,2

)
< 0. From

Property (3), (4), and (6), we have f IV(1,1) ≤ f
III
(1,1).

Thus, Property (1)-(4) are valid at state (1, 1).

• For state (1, 2), it is connected to states (0, 3) and (1, 1). There are two cases for state (1, 1).

Case (i), f(1,1) = f III(1,1): f(1,1)−f(0,3) = θIII(1,1)

(
1+µ

(M)
1,1 f(0,2) +µ

(M−1)
2,2 f(1,0)

)
−θII(0,3)−f(0,2) ≤ θ

III
(1,1)−

θII(0,3)+θ
III
(1,1)µ

(M−1)
2,2

θI(1,1)−θ
III
(1,1)

µ
(M−1)
2,2 θIII

(1,1)

= θI(1,1)−θ
II
(0,3) and f(0,3)−f(1,1) = −θIII(1,1)+θ

II
(0,3)+θ

III
(1,1)µ

(M−1)
2,2 (f(0,2)−

f(1,0)) ≤ −θIII(1,1) + θII(0,3) + θIII(1,1)µ
(M−1)
2,2

θII(1,1)−θ
III
(1,1)

µ
(M)
1,1 θ

III
(1,1)

= θII(0,3) −
µ
(M−1)
1,2

µ
(M)
1,1

θII(1,1). The inequalities come from

the analysis in Case (i) of state (1, 1).

Case (i.i), f(1,1) = f III(1,1); f(1,2) = f III(1,2) (µ
(M)
1,1 µ

(M−1)
2,2 ≥ µ(M)

2,1 µ
(M−1)
1,2 and µ

(M)
1,1 µ

(M−2)
2,2 ≥ µ(M)

2,1 µ
(M−2)
1,2):

From Property (7), f(1,1)−f(0,3)−
θI(1,2)−θ

III
(1,2)

µ
(M−2)
2,2 θIII

(1,2)

≤ θI(1,1)−θ
II
(0,3)−

θI(1,2)−θ
III
(1,2)

µ
(M−2)
2,2 θIII

(1,2)

=
θI(1,1)θ

II
(0,3)

µ
(M−2)
2,2

(
µ
(M)
2,1 µ

(M−2)
1,2 −

µ
(M)
1,1 µ

(M−2)
2,2

)
≤ 0 and f(0,3)−f(1,1)−

θII(1,2)−θ
III
(1,2)

µ
(M)
1,1 θ

III
(1,2)

≤ θII(0,3)−
µ
(M−1)
1,2

µ
(M)
1,1

θII(1,1)−
θII(1,2)−θ

III
(1,2)

µ
(M)
1,1 θ

III
(1,2)

=
θII(0,3)θ

II
(1,1)

µ
(M)
1,1

(
µ
(M−2)
1,2

µ
(M−1)
2,2 − µ(M−1)

1,2 µ
(M−2)
2,2

)
= 0. From Property (1), (2), and (5), we have f III(1,2) ≤ f

IV
(1,2).

Case (i.ii), f(1,1) = f III(1,1); f(1,2) = f IV(1,2) (µ
(M)
1,1 µ

(M−1)
2,2 ≥ µ(M)

2,1 µ
(M−1)
1,2 and µ

(M)
1,1 µ

(M−2)
2,2 < µ

(M)
2,1 µ

(M−2)
1,2):

From Property (8), f(1,1)−f(0,3)−
θI(1,2)−θ

IV
(1,2)

µ
(M−2)
1,2 θIV

(1,2)

≤ θI(1,1)−θ
II
(0,3)−

θI(1,2)−θ
IV
(1,2)

µ
(M−2)
1,2 θIV

(1,2)

=
θI(1,1)θ

II
(0,3)

µ
(M−2)
1,2

(
µ
(M)
1,1 µ

(M−2)
2,2 −

µ
(M)
2,1 µ

(M−2)
1,2

)
< 0 and f(0,3)−f(1,1)−

θII(1,2)−θ
IV
(1,2)

µ
(M)
2,1 θ

IV
(1,2)

≤ θII(0,3)−
µ
(M−1)
1,2

µ
(M)
1,1

θII(1,1)−
θII(1,2)−θ

IV
(1,2)

µ
(M)
2,1 θ

IV
(1,2)

=
θII(0,3)

µ
(M)
1,1 µ

(M)
2,1

(
µ
(M)
1,1

µ
(M−2)
2,2 − µ(M−2)

1,2 µ
(M1)
2,1

)
< 0. From Property (3), (4), and (6), we have f IV(1,2) ≤ f

III
(1,2).

36

Case (ii), f(1,1) = f IV(1,1): f(1,1)− f(0,3) = θIV(1,1)− θ
II
(0,3) + θIV(1,1)µ

(M−1)
1,2 (f(1,0)− f(0,2)) < θIV(1,1)− θ

II
(0,3) +

θIV(1,1)µ
(M−1)
1,2

θI(1,1)−θ
IV
(1,1)

µ
(M−1)
1,2 θIV

(1,1)

= θI(1,1) − θ
II
(0,3) and f(0,3) − f(1,1) = 2 − θIV(1,1) + θII(0,3) + θIV(1,1)µ

(M−1)
1,2 (f(0,2) −

f(1,0)) < −θIV(1,1) + θII(0,3) + θIV(1,1)µ
(M−1)
1,2

θII(1,1)−θ
IV
(1,1)

µ
(M)
2,1 θ

IV
(1,1)

= θII(0,3) −
µ
(M−1)
2,2

µ
(M)
2,1

θII(1,1). The inequalities come from

the analysis in Case (ii) of state (1, 1). We see that Property (1) and (3) holds same as in Case (i).
So, we only need to show Property (2) and (4).

Case (ii.i), f(1,1) = f IV(1,1); f(1,2) = f III(1,2) (µ
(M)
1,1 µ

(M−1)
2,2 < µ

(M)
2,1 µ

(M−1)
1,2 and µ

(M)
1,1 µ

(M−2)
2,2 ≥ µ(M)

2,1 µ
(M−2)
1,2):

f(0,3)−f(1,1)−
θII(1,2)−θ

III
(1,2)

µ
(M)
1,1 θ

III
(1,2)

< θII(0,3)−
µ
(M−1)
2,2

µ
(M)
2,1

θII(1,1)−
θII(1,2)−θ

III
(1,2)

µ
(M)
1,1 θ

III
(1,2)

=
θII(0,3)

µ
(M)
1,1 µ

(M)
2,1

(
µ
(M−2)
1,2 µ

(M)
2,1 −µ

(M)
1,1 µ

(M−2)
2,2

)
≤

0.

Case (ii.ii), f(1,1) = f IV(1,1); f(1,2) = f IV(1,2) (µ
(M)
1,1 µ

(M−1)
2,2 < µ

(M)
2,1 µ

(M−1)
1,2 and µ

(M)
1,1 µ

(M−2)
2,2 < µ

(M)
2,1 µ

(M−2)
1,2):

f(0,3) − f(1,1) −
θII(1,2)−θ

IV
(1,2)

µ
(M)
2,1 θ

IV
(1,2)

< θII(0,3) −
µ
(M−1)
2,2

µ
(M)
2,1

θII(1,1) −
θII(1,2)−θ

IV
(1,2)

µ
(M)
2,1 θ

IV
(1,2)

=
θII(0,3)θ

II
(1,1)

µ
(M)
1,1

(
µ
(M−1)
1,2 µ

(M−2)
2,2 − µ(M−2)

1,2

µ
(M−1)
2,2

)
= 0.

Thus, Property (1)-(4) are valid at state (1, 2). This completes the proof for u = 1.

Now, suppose that Property (1)-(4) are valid for u = 1, ..., n− 1 and v = 1, 2. Then, we look at states
with u = n.

• For state (n, 1), it is connected to states (n− 1, 2) and (n, 0). There are two cases for state (n− 1, 2).

Case (i), f(n−1,2) = f III(n−1,2): f(n,0) − f(n−1,2) = θI(n,0) + f(n−1,1) − θIII(n−1,2)

(
1 + µ

(M−n+2)
1,1 f(n−2,3) +

µ
(M−n)
2,2 f(n−1,1)

)
≤ θI(n,0)− θ

III
(n−1,2) + θIII(n−1,2)µ

(M−n+2)
1,1

θI(n−1,2)−θ
III
(n−1,2)

µ
(M−n)
2,2 θIII

(n−1,2)

= θI(n,0)−
µ
(M−n+2)
2,1

µ
(M−n)
2,2

θI(n−1,2) and

f(n−1,2) − f(n,0) = −θI(n,0) + θIII(n−1,2) + θIII(n−1,2)µ
(M−n+2)
1,1 (f(n−2,3) − f(n−1,1)) ≤ θIII(n−1,2) − θI(n,0) +

θIII(n−1,2)µ
(M−n+2)
1,1

θII(n−1,2)−θ
III
(n−1,2)

θIII
(n−1,2)

µ
(M−n+2)
1,1

= θII(n−1,2) − θ
I
(n,0). The inequalities come from properties of state

(n− 1, 2).

Case (i.i), f(n−1,2) = f III(n−1,2); f(n,1) = f III(n,1) (µ
(M−n+2)
1,1 µ

(M−n)
2,2 ≥ µ(M−n+2)

2,1 µ
(M−n)
1,2 and µ

(M−n+1)
1,1

µ
(M−n)
2,2 ≥ µ(M−n+1)

2,1 µ
(M−n)
1,2): f(n,0)−f(n−1,2)−

θI(n,1)−θ
III
(n,1)

µ
(M−n)
2,2 θIII

(n,1)

≤ θI(n,0)−
µ
(M−n+2)
2,1

µ
(M−n)
2,2

θI(n−1,2)−
θI(n,1)−θ

III
(n,1)

µ
(M−n)
2,2 θIII

(n,1)

=

θI(n,0)θ
I
(n−1,2)

µ
(M−2)
2,2

(
µ
(M−n+2)
1,1 µ

(M−n+1)
2,1 − µ(M−n+1)

1,1 µ
(M−n+2)
2,1

)
= 0 and f(n−1,2) − f(n,0) −

θII(n,1)−θ
III
(n,1)

µ
(M−n+1)
1,1 θIII

(n,1)

≤

θII(n−1,2) − θI(n,0) −
θII(n,1)−θ

III
(n,1)

µ
(M−n+1)
1,1 θIII

(n,1)

=
θI(n,0)θ

II
(n−1,2)

µ
(M−n)
1,1

(
µ
(M−n)
1,2 µ

(M−n+1)
2,1 − µ

(M−n+1)
1,1 µ

(M−n)
2,1

)
≤ 0. From

Property (1), (2), and (5), we have f III(n,1) ≤ f
IV
(n,1).

Case (i.ii), f(n−1,2) = f III(n−1,2); f(n,1) = f IV(n,1) (µ
(M−n+2)
1,1 µ

(M−n)
2,2 ≥ µ(M−n+2)

2,1 µ
(M−n)
1,2 and µ

(M−n+1)
1,1

µ
(M−n)
2,2 < µ

(M−n+1)
2,1 µ

(M−n)
1,2): f(n,0−f(n−1,2)−

θI(n,1)−θ
III
(n,1)

µ
(M−n)
1,2 θIII

(n,1)

≤ θI(n,0)−
µ
(M−n+2)
2,1

µ
(M−n)
2,2

θI(n−1,2)−
θI(n,1)−θ

III
(n,1)

µ
(M−n)
1,2 θIII

(n,1)

=

θI(n,0)

µ
(M−2)
1,2 µ

(M−2)
2,2

(
µ
(M−n+1)
1,1 µ

(M−n)
2,2 − µ

(M−n)
1,2 µ

(M−n+1)
2,1

)
< 0 and f(n−1,2) − f(n,0) −

θII(n,1)−θ
III
(n,1)

µ
(M−n+1)
2,1 θIII

(n,1)

≤

θII(n−1,2) − θI(n,0) −
θII(n,1)−θ

III
(n,1)

µ
(M−n+1)
2,1 θIII

(n,1)

=
θI(n,0)θ

II
(n−1,2)

µ
(M−n)
2,1

(
µ
(M−n+1)
1,1 µ

(M−n)
2,2 − µ

(M−n)
1,2 µ

(M−n+1)
2,1

)
< 0. From

Property (3), (4), and (6), we have f IV(n,1) ≤ f
III
(n,1).

Case (ii), f(n−1,2) = f IV(n−1,2): f(n,0) − f(n−1,2) = θI(n,0) + f(n−1,1) − θIV(n−1,2)
(

1 + µ
(M−n+2)
2,1 f(n−2,3) +

µ
(M−n)
1,2 f(n−1,1)

)
≤ θI(n,0)− θ

IV
(n−1,2) + θIV(n−1,2)µ

(M−n+2)
2,1

θI(n−1,2)−θ
IV
(n−1,2)

µ
(M−n)
1,2 θIV

(n−1,2)

= θI(n,0)−
µ
(M−n+2)
1,1

µ
(M−n)
1,2

θI(n−1,2) and

f(n−1,2) − f(n,0) = −θI(n,0) + θIV(n−1,2) + θIV(n−1,2)µ
(M−n+2)
2,1 (f(n−2,3) − f(n−1,1)) ≤ θIV(n−1,2) − θI(n,0) +

θIV(n−1,2)µ
(M−n+2)
2,1

θII(n−1,2)−θ
IV
(n−1,2)

θIV
(n−1,2)

µ
(M−n+2)
2,1

= θII(n−1,2) − θ
I
(n,0). The inequalities come from properties of state

(n − 1, 2). We see that Property (2) and (4) holds same as in Case (i). So, we only need to show
Property (1) and (3).

37

Case (ii.i), f(n−1,2) = f IV(n−1,2); f(n,1) = f III(n,1) (µ
(M−n+2)
1,1 µ

(M−n)
2,2 < µ

(M−n+2)
2,1 µ

(M−n)
1,2 and µ

(M−n+1)
1,1

µ
(M−n)
2,2 ≥ µ(M−n+1)

2,1 µ
(M−n)
1,2): f(n,0)−f(n−1,2)−

θI(n,1)−θ
III
(n,1)

µ
(M−n)
2,2 θIII

(n,1)

≤ θI(n,0)−
µ
(M−n+2)
1,1

µ
(M−n)
1,2

θI(n−1,2)−
θI(n,1)−θ

III
(n,1)

µ
(M−n)
2,2 θIII

(n,1)

=

θI(n−1,2)

µ
(M−2)
1,2 µ

(M−2)
2,2

(
µ
(M−n)
1,2 µ

(M−n+2)
2,1 − µ(M−n+2)

1,1 µ
(M−n)
2,2

)
< 0.

Case (ii.ii), f(n−1,2) = f IV(n−1,2); f(n,1) = f IV(n,1) (µ
(M−n+2)
1,1 µ

(M−n)
2,2 < µ

(M−n+2)
2,1 µ

(M−n)
1,2 and µ

(M−n+1)
1,1

µ
(M−n)
2,2 < µ

(M−n+1)
2,1 µ

(M−n)
1,2): f(n,0)−f(n−1,2)−

θI(n,1)−θ
IV
(n,1)

µ
(M−n)
1,2 θIV

(n,1)

≤ θI(n,0)−
µ
(M−n+2)
1,1

µ
(M−n)
1,2

θI(n−1,2)−
θI(n,1)−θ

IV
(n,1)

µ
(M−n)
1,2 θIV

(n,1)

=

θI(n,0)θ
I
(n−1,2)

µ
(M−2)
2,2

(
µ
(M−n+2)
1,1 µ

(M−n+1)
2,1 − µ(M−n+1)

1,1 µ
(M−n+2)
2,1

)
= 0.

Thus, Property (1)-(4) are valid at state (n, 1).

• For state (n, 2), the proof is the same as the proof for state (1, 2).

This completes the proof for u = n and the whole induction.
Proof of Corollary 1: This is a direct result from Theorem 1.
Proof of Theorem 2: Notice that, under the teamwork policy, makespan simply equals the summation
of the service time at both stations of all jobs. We can interchange the sequence of service completions
of individual jobs at individual stations without affecting makespan. Define a teamwork-equivalent policy,
which is the same as the optimal policy described in Table 1, except that, for u = 1, ...,M − v and v =
1, 2, f(u,v) = min{f I(u,v), f

II
(u,v)}. Now, we show that the teamwork-equivalent policy is optimal. First,

for system states other than those with u = 1, ...,M − v and v = 1, 2, the teamwork-equivalent policy
matches with the optimal policy. Therefore, we only need to show that, for u = 1, ...,M − v and v = 1, 2,
f(u,v) = f I(u,v) or f(u,v) = f II(u,v). For notational convenience, define θI(u,v) = 1

µ
(M−u+1)
1,1 +µ

(M−u+1)
2,1

; θII(u,v) =

1

µ
(M−u−v+1)
1,2 +µ

(M−u−v+1)
2,2

; θIII(u,v) = 1

µ
(M−u+1)
1,1 +µ

(M−u−v+1)
2,2

; and θIV(u,v) = 1

µ
(M−u+1)
2,1 +µ

(M−u+1)
1,2

.

Because f(u−1,v+1) = f I(u,v) − θ
I
(u,v) and f(u,v−1) = f II(u,v) − θ

II
(u,v), we have f III(u,v) = θIII(u,v)

(
1 + µ

(M−u+1)
1,1

f(u−1,v+1) +µ
(M−u−v+1)
2,2 f(u,v−1)

)
= θIII(u,v)

(
1−µ(M−u+1)

1,1 θI(u,v)−µ
(M−u−v+1)
2,2 θII(u,v)

)
+ θIII(u,v)

(
µ
(M−u+1)
1,1 f I(u,v)

+ µ
(M−u−v+1)
2,2 f II(u,v)

)
and f IV(u,v) = θIV(u,v)

(
1 + µ

(M−u+1)
2,1 f(u−1,v+1) + µ

(M−u−v+1)
1,2 f(u,v−1)

)
= θIV(u,v)

(
1−

µ
(M−u+1)
2,1 θI(u,v)−µ

(M−u−v+1)
1,2 θII(u,v)

)
+θIV(u,v)

(
µ
(M−u+1)
2,1 f I(u,v)+µ

(M−u−v+1)
1,2 f II(u,v)

)
. After some algebra, we see

that 1−µ(M−u+1)
1,1 θI(u,v)−µ

(M−u−v+1)
2,2 θII(u,v) = θI(u,v)θ

II
(u,v)(µ

(M−u−v+1)
1,2 µ

(M−u+1)
2,1 −µ(M−u+1)

1,1 µ
(M−u−v+1)
2,2) = 0

and 1−µ(M−u+1)
2,1 θI(u,v)−µ

(M−u−v+1)
1,2 θII(u,v) = θI(u,v)θ

II
(u,v)(µ

(M−u+1)
1,1 µ

(M−u−v+1)
2,2 −µ(M−u−v+1)

1,2 µ
(M−u+1)
2,1) = 0.

Thus, we have f III(u,v) = θIII(u,v)

(
µ
(M−u+1)
1,1 f I(u,v) + µ

(M−u−v+1)
2,2 f II(u,v)

)
and f IV(u,v) = θIV(u,v)

(
µ
(M−u+1)
2,1 f I(u,v) +

µ
(M−u−v+1)
1,2 f II(u,v)

)
.

Notice that θIII(u,v)

(
µ
(M−u+1)
1,1 + µ

(M−u−v+1)
2,2

)
= 1 and θIV(u,v)

(
µ
(M−u+1)
2,1 + µ

(M−u−v+1)
1,2

)
= 1. So, both

f III(u,v) and f IV(u,v) are convex combinations of f I(u,v) and f II(u,v). If f I(u,v) ≤ f II(u,v), then f I(u,v) ≤ f III(u,v) and

f I(u,v) ≤ f IV(u,v). If f II(u,v) ≤ f I(u,v), then f II(u,v) ≤ f III(u,v) and f II(u,v) ≤ f IV(u,v). Thus, f(u,v) = min{f I(u,v), f
II
(u,v)}.

This implies that the teamwork-equivalent policy is optimal. Thus, the teamwork policy is optimal.
Proof of Theorem 3: Let E[εm]S ; E[εm]S ; E[εm]T ; and E[εm]T denote, the expected service time of job
m, at station 1 and 2, under the summation-myopic policy and the teamwork policy, respectively. We have
E[εm]T = 1

µ
(m)
1,1 +µ

(m)
2,1

and E[εm]T = 1

µ
(m)
1,2 +µ

(m)
2,2

.

For E[εm]S , when job m is under service at the station 1, v can take any value of 0, ...,min{m− 1, 2}.
Case (i), v = 0: In this case, station 2 is starved and both servers work at station 1. E[εm]S = 1

µ
(m)
1,1 +µ

(m)
2,1

=

E[εm]T .
Case (ii), v > 0: In this case, job m is at station 1 while job m−v is at station 2. There are three scenarios.

If µ
(m)
1,1 ≥ µ

(m−v)
1,2 and µ

(m)
2,1 ≥ µ

(m−v)
2,2 , then both servers work at station 1. E[εm]S = 1

µ
(m)
1,1 +µ

(m)
2,1

= E[εm]T .

If µ
(m)
1,1 ≥ µ

(m−v)
1,2 and µ

(m)
2,1 < µ

(m−v)
2,2 , then server 1 works at station 1 and server 2 works at station 2.

E[εm]S = 1

µ
(m)
1,1 +µ

(m−v)
2,2

≤ 1

µ
(m)
1,1 +µ

(m)
2,1

= E[εm]T . If µ
(m)
1,1 < µ

(m−v)
1,2 and µ

(m)
2,1 ≥ µ

(m−v)
2,2 , then server 1 works at

station 2 and server 2 works at station 1. E[εm]S = 1

µ
(m)
2,1 +µ

(m−n)
1,2

≤ 1

µ
(m)
1,1 +µ

(m)
2,1

= E[εm]T .

38

From the above cases, we see that E[εm]S ≤ E[εm]T .
For E[εm]S , when job m is under service at the station 2, v can take any value of 1, ...,min{3,M −m}.

Case (i), v < 3: In this case, job m is at station 2 while job m+v is at station 1. There are three scenarios.

If µ
(m+v)
1,1 < µ

(m)
1,2 and µ

(m+v)
2,1 < µ

(m)
2,2 , then both servers work at station 2. E[εm]S = 1

µ
(m)
1,2 +µ

(m)
2,2

= E[εm]T .

If µ
(m+v)
1,1 ≥ µ

(m)
1,2 and µ

(m+v)
2,1 < µ

(m)
2,2 , then server 1 works at station 1 and server 2 works at station 2.

E[εm]S = 1

µ
(m+v)
1,1 +µ

(m)
2,2

≤ 1

µ
(m)
1,2 +µ

(m)
2,2

= E[εm]T . If µ
(m+v)
1,1 < µ

(m)
1,2 and µ

(m+v)
2,1 ≥ µ(m)

2,2 , then server 1 works at

station 2 and server 2 works at station 1. E[εm]S = 1

µ
(m+v)
2,1 +µ

(m)
1,2

≤ 1

µ
(m)
1,2 +µ

(m)
2,2

= E[εm]T .

Case (ii), v = 3: In this case, station 1 is blocked and both servers work at station 2. E[εm]S = 1

µ
(m)
1,2 +µ

(m)
2,2

=

E[εm]T .
From the above cases, we see that E[εm]S ≤ E[εm]T .

As a result, for makespan,
M∑
m=1

(
E[εm]S + E[εm]S

)
≤

M∑
m=1

(
E[εm]T + E[εm]T

)
. This implies that the

summation-myopic policy is no worse than the teamwork policy.
Proof of Corollary 2: This is a direct result from Theorems 1-3.
Proof of Lemma 2: The structure of the proof of Lemma 2 is similar to that of the proof of Lemma 1.
We omit the detailed proof for the sake of brevity.
Proof of Proposition 4: (i) Pr{Sm = j}, job m enters station 1 while job m − 1 leaves station 1. If
1 ≤ j ≤ B, then Sm = j implies Rm−1 = j − 1. If j = B + 1, then there are two cases. First, Rm−1 = B.
Second, Rm−1 = B+1, which means station 1 is blocked immediately after Tm−1. In this case, job m enters
station 1 only after job m − B − 2 leaves station 2, and job m finds B + 1 jobs, at the buffer or station 2,
upon entering station 1.

(ii) Pr{Rm = i | Sm = j}, the expression for Pr{Rm = i | Sm = j} comes from that for Pr{Rm = i |
Rm−1 = j − 1}, which is given in Lemma 2.

(iii) E[X1,m | Rm = i, Sm = j], Rm = i and Sm = j imply that, jobs m− j, ...,m− i−1 complete service
at station 2 before job m at station 1, and job m finishes service at station 1 before job m− i at station 2
if Rm > 0; or job m is served by both servers at station 1 if Rm = 0. The expression then follows.

(iv) E[X2,m | Rm = i], after job m finishes service at station 1, it stays at station 1 if and only if station
1 is blocked. This time duration equals the service time of job m−B−1 at station 2 under both servers.
Proof of Proposition 5: The structure of the proof of Proposition 5 is similar to that of the proof of
Proposition 2. We omit the detailed proof for the sake of brevity.
Proof of Theorem 4: Theorem 4 is a direct extension of Theorems 1-3 and Corollaries 1-2. We omit the
detailed proof for the sake of brevity.
Proof of Proposition 6: The probabilities that job m is served, by each server or by both servers, at
each station, are fully analyzed in the proofs of Propositions 1-3. Proposition 6 is a direct result from those
analyses. We omit the detailed proof for the sake of brevity.

39

Calculating the expected total moving cost:

Table 4: Expected moving cost of a general non-idling policy

For n = 1, ...,M − 2,

C(M)(n+ 1, n, s1, s2)

=
[
cI(s1, s2) + C(M)(n+ 2, n, 1, 1)

]
δI(n+ 1, n) +

[
cII(s1, s2) + C(M)(n+ 1, 0, 2, 2)

]
δII(n+ 1, n)+[

cIII(s1, s2) +
µ
(n+1)
1,1

µ
(n+1)
1,1 +µ

(n)
2,2

C(M)(n+ 2, n, 1, 2) +
µ
(n)
2,2

µ
(n+1)
1,1 +µ

(n)
2,2

C(M)(n+ 1, 0, 1, 2)
]
δIII(n+ 1, n)+[

cIV(s1, s2) +
µ
(n+1)
2,1

µ
(n+1)
2,1 +µ

(n)
1,2

C(M)(n+ 2, n, 2, 1) +
µ
(n)
1,2

µ
(n+1)
2,1 +µ

(n)
1,2

C(M)(n+ 1, 0, 2, 1)
]
δIV(n+ 1, n);

C(M)(n+ 2, n, s1, s2)

=
[
cI(s1, s2) + C(M)(0, n, 1, 1)

]
δI(n+ 2, n) +

[
cII(s1, s2) + C(M)(n+ 2, n+ 1, 2, 2)

]
δII(n+ 2, n)+[

cIII(s1, s2) +
µ
(n+2)
1,1

µ
(n+2)
1,1 +µ

(n)
2,2

C(M)(0, n, 1, 2) +
µ
(n)
2,2

µ
(n+2)
1,1 +µ

(n)
2,2

C(M)(n+ 2, n+ 1, 1, 2)
]
δIII(n+ 2, n)+[

cIV(s1, s2) +
µ
(n+2)
2,1

µ
(n+2)
2,1 +µ

(n)
1,2

C(M)(0, n, 2, 1) +
µ
(n)
1,2

µ
(n+2)
2,1 +µ

(n)
1,2

C(M)(n+ 2, n+ 1, 2, 1)
]
δIV(n+ 2, n).

C(M)(M,M − 1, s1, s2)

=
[
cI(s1, s2) + C(M)(0,M − 1, 1, 1)

]
δI(M,M − 1) +

[
cII(s1, s2) + C(M)(M, 0, 2, 2)

]
δII(M,M − 1)+[

cIII(s1, s2) +
µ
(M)
1,1

µ
(M)
1,1 +µ

(M−1)
2,2

C(M)(0,M − 1, 1, 2) +
µ
(M−1)
2,2

µ
(M)
1,1 +µ

(M−1)
2,2

C(M)(M, 0, 1, 2)
]
δIII(M,M − 1)+[

cIV(s1, s2) +
µ
(M)
2,1

µ
(M)
2,1 +µ

(M−1)
1,2

C(M)(0,M − 1, 2, 1) +
µ
(M−1)
1,2

µ
(M)
2,1 +µ

(M−1)
1,2

C(M)(M, 0, 2, 1)
]
δIV(M,M − 1).

For n = 1, ...,M − 1,

C(M)(n, 0, s1, s2) = cI(s1, s2) + C(M)(n+ 1, n, 1, 1).

C(M)(M, 0, s1, s2) = cI(s1, s2) + C(M)(0,M, 1, 1).

For n = 1, ...,M − 3,

C(M)(0, n, s1, s2) = cII(s1, s2) + C(M)(n+ 3, n+ 1, 2, 2).

C(M)(0,M − 2, s1, s2) = cII(s1, s2) + C(M)(0,M − 1, 2, 2);

C(M)(0,M − 1, s1, s2) = cII(s1, s2) + C(M)(0,M, 2, 2);

C(M)(0,M, s1, s2) = cII(s1, s2).

40

	Flexibly serving a finite number of heterogeneous jobs in a tandem system
	Citation

	Introduction
	Related literature
	Dynamic server assignment
	Dynamic line balancing

	Problem formulation for buffer size B=1
	The expected makespan of a general non-idling policy for buffer size B=1
	Three specific non-idling policies
	Performance evaluation
	Optimality for some special cases
	Numerical study for general service rates

	Extension: General buffer size
	The optimal policy
	The expected makespan of a general non-idling policy
	The expected makespans of the three specific non-idling policies
	Performance evaluation

	Extensions: Moving costs and service defects of a general non-idling policy
	Incorporating moving costs
	Incorporating service defects

	Conclusion

