
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection (Open
Access) Dissertations and Theses

9-2019

Exploiting approximation, caching and specialization to accelerate Exploiting approximation, caching and specialization to accelerate

vision sensing applications vision sensing applications

Nguyen Loc HUYNH
Singapore Management University, nlhuynh.2014@phdis.smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
HUYNH, Nguyen Loc. Exploiting approximation, caching and specialization to accelerate vision sensing
applications. (2019). Dissertations and Theses Collection (Open Access).
Available at:Available at: https://ink.library.smu.edu.sg/etd_coll/242

This PhD Dissertation is brought to you for free and open access by the Dissertations and Theses at Institutional
Knowledge at Singapore Management University. It has been accepted for inclusion in Dissertations and Theses
Collection (Open Access) by an authorized administrator of Institutional Knowledge at Singapore Management
University. For more information, please email library@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F242&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F242&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F242&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F242&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library@smu.edu.sg

EXPLOITING APPROXIMATION, CACHING AND
SPECIALIZATION TO ACCELERATE VISION

SENSING APPLICATIONS

by

LOC NGUYEN HUYNH

SINGAPORE MANAGEMENT UNIVERSITY
2019

Exploiting Approximation, Caching and
Specialization to Accelerate Vision Sensing

Applications

by
Loc Nguyen Huynh

Submitted to School of Information Systems in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy in Computer Science

Dissertation Committee:

Rajesh Krishna BALAN (Supervisor / Chair)
Associate Professor of Information Systems
Singapore Management University

Youngki LEE (Co-supervisor / Co-chair)
Assistant Professor
Seoul National University

Lingxiao JIANG

Associate Professor of Information Systems
Singapore Management University

Kotaro HARA

Assistant Professor of Information Systems
Singapore Management University

Matthai PHILIPOSE

Principal Researcher
Microsoft

Singapore Management University
2019

Copyright (2019) Loc Nguyen Huynh

I hereby declare that this PhD dissertation is my original work
and it has been written by me in its entirety.

I have duly acknowledged all the sources of information
which have been used in this dissertation.

This PhD dissertation has also not been submitted for any degree
in any university previously.

Loc Nguyen Huynh
17 September 2019

Exploiting Approximation, Caching and
Specialization to Accelerate Vision Sensing

Applications
Loc Nguyen Huynh

Abstract

Over the past few years, deep learning has emerged as state-of-the-art solutions

for many challenging computer vision tasks such as face recognition, object detec-

tion, etc. Despite of its outstanding performance, deep neural networks (DNNs) are

computational intensive, which prevent them to be widely adopted on billions of

mobile and embedded devices with scarce resources. To address that limitation, we

focus on building systems and optimization algorithms to accelerate those models,

making them more computational-efficient.

First, this thesis explores the computational capabilities of different existing pro-

cessors (or co-processors) on modern mobile devices. It recognizes that by leverag-

ing the mobile Graphics Processing Units (mGPUs), we can reduce the time con-

sumed in the deep learning inference pipeline by an order of magnitude. We further

investigated variety of optimizations that work on the mGPUs for more accelera-

tions and built the DeepSense framework to demonstrate their uses.

Second, we also discovered that video streams often contain invariant regions

(e.g., background, static objects) across multiple video frames. Processing those re-

gions from frame to frame would waste a lot of computational power. We proposed

a convolutional caching technique and built a DeepMon framework that quickly de-

termines the static regions and intelligently skips the computations on those regions

during the deep neural network processing pipeline.

The thesis also explores how to make deep learning models more computational-

efficient by pruning unnecessary parameters. Many studies have shown that most

of the computations occurred within convolutional layers, which are widely used

in convolutional neural networks (CNNs) for many computer vision tasks. We de-

signed a novel D-Pruner algorithm that allows us to score the parameters based on

how important they are to the final performance. Parameters with little impacts will

be removed for smaller, faster and more computational-efficient models.

Finally, we investigated the feasibility of using multi-exit models (MXNs), which

consist many neural networks with shared-layers, as an efficient implementation to

accelerate many existing computer vision tasks. We show that applying techniques

such as aggregating results cross exits, threshold-based early exiting with MXNs

can significantly speed up the inference latency in indexed video querying and face

recognition systems.

Table of Contents

1 Introduction 1

1.1 Vision Sensing Systems . 1

1.2 Motivation Scenarios . 4

1.3 Accelerate Vision Sensing Applications 6

1.3.1 Mobile deep learning framework for vision sensing 6

1.3.2 Exploiting similarity in video frames for smart caching . . . 6

1.3.3 Exploiting model approximation and compression for fast

inference . 7

1.3.4 Exploiting multi-exit models for efficient computational pipeline: 7

1.4 Key Challenges . 8

1.5 Thesis Statement . 10

2 DeepSense: A GPU-based deep convolutional neural network frame-

work on commodity mobile devices 12

2.1 Introduction . 13

2.2 Background . 15

2.2.1 OpenCL . 15

2.2.2 Convolutional Neural Network 16

2.3 CNN Performance Breakdown . 17

2.4 System Overview . 18

2.5 Design Considerations . 19

2.5.1 Branch Divergence . 20

i

2.5.2 Memory Coalescing vs Memory Vectorization 22

2.5.3 Memory Representation 23

2.5.4 Half Floating Point . 26

2.5.5 Performance Overview . 27

3 DeepMon: Mobile GPU-based Deep Learning Framework for Contin-

uous Vision Applications 29

3.1 Introduction . 30

3.2 Deep Learning Pipelines . 33

3.2.1 Background on Various Models 34

3.2.2 Workload Characterization 36

3.3 Design Considerations . 38

3.4 Implementation . 39

3.4.1 Architecture Overview . 39

3.4.2 Loading Models into Mobile GPUs 41

3.4.3 Convolutional Layer Caching 43

3.4.4 Convolutional Layer Decomposition 47

3.4.5 Optimizing Convolutional Operation 49

3.4.6 Scaling to Various Mobile GPUs 50

3.5 Experiments . 52

3.5.1 Experimental Setup . 52

3.5.2 Processing Latency . 54

3.5.3 Recognition Accuracy . 55

3.5.4 Comparison with Other Approaches 57

3.5.5 Power Consumption . 59

3.5.6 Latency on Other Mobile GPUs 60

3.5.7 Latency of Vulkan . 61

3.5.8 Performance on First-Person-View Videos 61

3.5.9 Convolutional Layer Caching Performance 64

ii

3.5.10 Memory Footprint . 65

4 D-pruner: Filter-based pruning method for deep convolutional neural

network 67

4.1 Introduction . 68

4.2 Convolutional Neural Network . 70

4.3 D-Pruner Algorithm . 71

4.3.1 Masking Block . 72

4.3.2 Pruning Method . 73

4.4 Experiments . 74

4.4.1 Experiment Setup . 74

4.4.2 Overall Results . 77

4.4.3 Performance Breakdown 78

5 Exploiting Cost-Quality Trade-off with Multi-Exit Networks 83

5.1 Introduction . 84

5.2 Multi-Exit Model Overview . 89

5.2.1 Overall performance of multi-exit models on general tasks. . 90

5.2.2 Enhancing Accuracy of MXNs via Features Aggregation Be-

tween Exits . 93

5.2.3 Improving Accuracy of Threshold-based approach using Fo-

cal Loss. 96

5.2.4 Accelerating models serving using prefix batching 97

5.3 Evaluations on Real Applications 98

5.3.1 Video Query System . 98

5.3.2 Face Recognition in Videos 104

5.4 Discussions . 110

6 Literature Review 112

6.1 Deep Learning for Vision Sensing 112

iii

6.2 Deep Learning Optimizations . 114

7 Conclusions and Future Directions 116

7.1 Summary of Contributions . 116

7.1.1 Publications . 117

7.2 Future Directions . 117

iv

List of Figures

2.1 Convolutional Neural Network [54] 16

2.2 Processing Flow of Single Layer 17

2.3 DeepSense System Overview . 20

2.4 Explicit and Implicit padding . 21

2.5 Memory Coalescing vs Memory Vectorization 22

2.6 Memory Coalescing and Memory Vectorization. 23

2.7 Latency of Memory Representations 25

3.1 Macroarchitecture of VGG-VeryDeep-16 [1] 35

3.2 DeepMon System Architecture . 40

3.3 The Flow of Model Conversation and Loading 42

3.4 Example First-Person-View Images 43

3.5 Effect of the Number of Bins on Caching 45

3.6 Effect of the Distance Values on Caching 46

3.7 Caching on the Edge of an Image Block 47

3.8 Speedup Comparison with ClBlast 50

3.9 Overall Processing Latency . 54

3.10 DeepMon Latency Breakdown . 55

3.11 Recognition Accuracy . 56

3.12 Breakdown of DeepMon Accuracy Drop 56

3.13 Comparison to DeepX on Samsung Galaxy S5 58

3.14 Comparison with the Cloud-based Approach 58

v

3.15 Overall Power Consumption . 60

3.16 Processing Latency for Different GPUs 61

3.17 Performance of Vulkan . 62

3.18 Latency on the LENA Dataset . 63

3.19 Accuracy on the LENA Dataset . 63

4.1 Convolutional Neural Network Architecture 70

4.2 Masking Block . 73

4.3 Accuracy . 78

4.4 Parameters and Operations Reduction on CIFAR-10 79

4.5 Latency . 80

4.6 Number of Filters per Iteration on CIFAR-10 81

5.1 Example of MXNs architecture . 90

5.2 MobiletNet-based MXNs for Face Recognition Task 92

5.3 Aggregation Between Low-level and High-level features Block . . . 94

5.4 Focus Architecture [39] . 99

5.5 MXNs-based Face Recognition System Architecture 105

5.6 Alpha exploration . 108

vi

List of Tables

2.1 CNN Models . 18

2.2 CNN Latency Breakdown . 18

2.3 Memory Representation and Maximum Number of Memory Ac-

cesses per Work Item . 25

2.4 Full and Half Floating Point Latency on Note 4 27

2.5 Half Floating Point Accuracy Drop 27

2.6 Consumed Energy on Galaxy Note 4 28

3.1 Comparison of DNN Models . 34

3.2 Latency Breakdown . 37

3.3 Specs for Commodity Mobile GPUs 39

3.4 Summary of DeepMon’s techniques 40

3.5 Benefit of using GPU Local Memory 52

3.6 Caching Performance Analysis . 64

3.7 Memory Footprint . 65

4.1 Overall Performance of D-Pruner 76

4.2 Comparison with DeepIoT . 76

4.3 Network Architectures . 77

5.1 Accuracy of classifying easy/hard objects 85

5.2 Accuracy of Image Recognition task 91

5.3 Training Time and Speedup of Image Recognition Task 91

5.4 Accuracy of Face Recognition Task 93

vii

5.5 Training Time and Speedup of Face Recognition Task 93

5.6 Effect of Feature Aggregation on MXNs 95

5.7 Comparison between Enhanced Multi-Exit Models and Single-Exit

Model . 95

5.8 Effect of Focal Loss on MXNs . 97

5.9 Serving Latency . 98

5.10 Effect of Results Aggregation . 101

5.11 Ingestion Latency . 102

5.12 Query Latency - Threshold explored on Coco Dataset 103

5.13 Performance Breakdown at Query Time 104

5.14 Query Latency - Best threshold . 104

5.15 Face Recognition Accuracy on LFW Dataset 107

5.16 Face Recognition Accuracy - VGG-Face as Oracle 109

5.17 Hit Rate and Accuracy - VGG-Face as Oracle 109

5.18 Face Recognition Accuracy - Last model in MXNs as Oracle 110

viii

Chapter 1

Introduction

1.1 Vision Sensing Systems

The advances in deep learning research has revolutionized many important fields

such as speech recognition, natural language processing, especially computer vi-

sion. Cameras, which are currently deployed on personal smartphones or in public

and private spaces, have become ubiquitous and contributed an important role in the

success of deep learning. By collecting a huge amount of imagery data from cam-

eras, people can use it to train highly accurate deep learning models. Such models

enable many new applications like Amazon Go [7] that allows users to experience

“grab and go” services at retail stores without any lines and checkouts, or local

assistant applications that give guidance advices for individuals who suffer from

dementia. However, despite of its success, deep learning still relies on a massive

amount of computational power and poses several challenges to many emerging vi-

sion sensing systems in terms of efficiency and scalability This thesis describes a

set of optimizations to address those challenges in order to accelerate deep learning

models that are widely used in many existing vision sensing systems.

Convolutional neural networks, a branch of deep learning, have successfully

boosted the performance of many computer vision tasks (e.g., image recognition,

object detection) and become the core of many vision sensing systems. For instance,

1

the error rate of image classification task on ImageNet dataset [22] has been rapidly

reduced over 75% since 2012, from 18.2% (AlexNet [52]) to 4.49% (ResNet-152

[36]) in 2015. Such exceptional performance has brought a variety of challenging

vision based applications to life such as image search, autonomous self-driving cars,

etc.

The explosive growth of mobile and embedded computing has enabled many

promising DNN-based vision sensing applications. Smartphones with built-in cam-

eras allow developers to capture users’ first person views, analyze the data using

state-of-the-art CNN models to understand more about their users. However, out-

standing performance from deep learning models comes at the cost of computational

complexity. Original AlexNet requires 727 MFLOPS for a single inference while

other models such as VGG-16 [76], ResNet-152 [36] require 16 and 11 GFLOPS

respectively. Such requirement prevents deep learning models to be widely adopted

on mobile and embedded devices with limited amount of computational power.

Despite the challenges, many compression techniques have been proposed to

bring down the memory footprint and computational cost of state-of-the-art models

by pruning unnecessary parameters [33, 49]. However, randomly removing model

parameters results in irregular patterns in the network structures and requires re-

searchers to build the customized hardware to speedup those compression algo-

rithms in the most effective manners [32, 31]. Therefore, billions of existing mobile

devices without specialized hardware would not be beneficial to those optimiza-

tions. In fact, modern mobile devices consist of many co-processors that compu-

tations can be offloaded on. We found that CNN models could be efficiently run

on mobile GPUs via the support of OpenCL [80] and Vulkan [6]. Those frame-

works allow us to build high performance deep learning framework that can be run

directly on variety of mobile devices using existing processors and co-processors.

Furthermore, by co-designing compression algorithms with mobile framework, we

can make deep learning models to be smaller and faster on commodity mobile de-

vices without any support from specialized hardware.

2

On the other hand, many works have explored various optimizations at

application-level to improve overall performance [17, 45]. For example, one of

the widely used techniques is to exploit the idea of reusable computation to avoid

unnecessary works without compromising the final results. In video analytic, it is

well-known that video stream often contains a lot of similarities between consecu-

tive frames. Therefore, processing every frame would waste a lot of computational

resources if the video contains a lot of duplicated data. As more vision sensing

applications emerge, domain-specific optimizations would be beneficial to signifi-

cantly boost up the performance of whole applications.

Finally, many existing works assume every object has the same difficulty

[70, 36, 76]. In the case of Yolo object detector [70], detecting a cat is far more

accurate than detecting a bottle, which implies that each object might have different

difficulty level. Hence, time spending to detect easy objects should be less than time

spending on hard objects. To achieve that goal, there should be changes in compu-

tational pipeline to intelligently switch between variant of models with different

computational cost based on the context of input stream.

We believe the next generation of vision sensing systems would focus on:

• Platform-specific frameworks: highly optimized systems, which are built

specifically for particular platforms (e.g., smartphones, smart-glasses), to

maximize the overall performance,

• Domain-specific optimizations: ability to understand application’s behav-

iors and exploit them to build efficient optimizations.

• Compressed and specialized models: the move towards using smaller and

more computational-efficient models,

• Efficient computational pipeline: changes in network architectures and in-

ference pipeline to speed up the computations.

3

This thesis is a step towards exploring above directions to improve the perfor-

mance of vision sensing systems.

• We co-designed mobile framework and domain-specific optimization tech-

niques for deep CNN models to enable continuous vision sensing applications

on commodity mobile devices.

• We proposed pruning algorithm to intelligently remove redundant parameters

within deep learning models to make them smaller and less computational

intensive while preserving the regular patterns within network architecture to

work on existing frameworks.

• We explored the use of multi-exit models, which consists of multiple models

that share a network backbone, as an efficient implementation to accelerate

many existing computer vision systems.

1.2 Motivation Scenarios

Elderly assistance: Alex, who is suffering from early stage of Alzheimer demen-

tia, often forget the names of surrounding people around him. In order to help

him communicate with others easily, one suggests Alex to use an application called

WhoIsThis which proactively detects faces and reminds him names of surrounding

people via a smart-glass device. However, Alex is aware that the application keeps

sending captured videos to a cloud server to do detection and his privacy maybe

severely violated. The development team explains to Alex that in order to provide

useful reminders, they have to use cloud infrastructure to run state-of-the-art deep

neural network model to recognize faces which is extremely computational inten-

sive. The current model cannot be run locally on the smart-glass within acceptable

delay. Alex denies to use the application unless the videos can be processed lo-

cally without leaving his device. However, thanks to the rapid advances in mobile

processors, the team believes that they can leverage the latest generation of mobile

4

processor and its co-processors to achieve Alex’s needs. In this scenario, the team

has to build the system that should be able to

• run entirely on local devices without any supports from the cloud to preserve

user’s privacy,

• execute any pre-trained deep neural network models using available proces-

sors on the local device,

• provide the inference results within reasonable time to assure user’s experi-

ence.

Video surveillance system: The government is building a traffic surveillance

system that has video analytic feature that allows their agents to search for “inter-

esting” events and objects. For example, the system provides search feature for a

car accident event and returns all related objects such as cars, pedestrians that ap-

pear during the event. However, analyzing whole video stream using existing CNN

models such as Yolov2 [71] requires a lot of computational resources (e.g., GPUs)

and operational investment. For instance, searching for a single month-long video

takes approximately 190 GPU-hour and costs over $380 in the Azure cloud [39].

Deploying such system at city scale would cost a huge amount of money on in-

vestment and maintenance. The consultant team observed that most of the traffic

videos only contain a few objects comparing to the number of objects in commonly

used datasets such as ImageNet [22]. Furthermore, they realize that the surveillance

cameras are often set up statically and all the objects are captured from a same

viewpoint. However, traditional CNN models are trained on general datasets such

as ImageNet or Coco [61] that contain images from different viewpoints and angles.

Observing the differences between traditional datasets and static traffic datasets, the

consultant team believes that they can leverage those characteristics to build much

smaller and faster models and propose new optimizations to achieve the same goals

while consuming less computational resources. In the end, the team proposes a

video analytic system that should be able to perform:

5

• construct a learning pipeline to find an computational-efficient model that is

specialized to achieve best performance for a particular task,

• minimize the amount of time required to search for that optimal model,

• construct a efficient inference pipeline to minimize the waiting time of users.

1.3 Accelerate Vision Sensing Applications

1.3.1 Mobile deep learning framework for vision sensing

Deep learning has already made huge impact on many computer visions tasks

[36, 70, 71, 27, 68]. Many deep learning frameworks (e.g., Tensorflow [8] and

Caffe [47]) have been built and carefully optimized to maximize the performance

on server-class processors and co-processors (e.g., GPUs). However, we found that

those optimizations do not consider the differences between mobile and server co-

processors. For example, server-class GPU has a separated high-bandwidth memory

while mobile GPU shares the low-bandwidth system memory with the processors.

Due to many differences in architectures, those frameworks perform poorly on mo-

bile devices.

In chapter 2, we explore a suit of optimizations that can be used to 1) perform

model inference in the fastest way using available mobile GPU, 2) reduce the preci-

sion during inference step while maintaining accuracy loss within acceptable level.

1.3.2 Exploiting similarity in video frames for smart caching

Continuous vision sensing applications often need to analyze video frames to gain

insights. However, consecutive frames within a video often contain similar or static

regions such as background or static objects. Spending resources to process those

regions from frame to frame would not only waste a lot of computational power but

also decrease efficiency of the systems. Furthermore, many caching systems, which

6

reuse outputs directly from previous frames [17], often fail to adapt to swift changes

in the scene (e.g., sudden appearance of new object). Therefore, we should only skip

computation on some regions of the video frame that do not contain changes, not a

whole frame.

In chapter 3, we propose an algorithm that quickly determines similar regions

between frames and explore the idea of caching intermediate results of those re-

gions within CNN pipeline to reuse them for next frame. By ignoring unnecessary

computations on several parts of input frame, we show that overall performance of

the systems can be improved.

1.3.3 Exploiting model approximation and compression for fast

inference

Approximation is a common technique that widely used to make deep learning mod-

els more computational efficient with little accuracy drop. In section 3.4.4, we ex-

plore the use of Tucker-2 decomposition to approximate various CNN models in

order to reduce the computation cost.

However, approximation often requires huge effort in finding a good trade-off

between latency speedup and accuracy drop. In chapter 4, we propose a compres-

sion technique D-Pruner that automatically learn which parameters are redundant

during the training process. By attaching a simple block into the CNN models dur-

ing training, the attached block learns the importance of each filters within CNN

models and gives guidance to remove unnecessary filters while preserving the orig-

inal accuracy.

1.3.4 Exploiting multi-exit models for efficient computational

pipeline:

Most of widely used network architectures [70, 36, 76] use the same inference

pipeline for every input. However, as suggested in [41], computational cost for easy

7

inputs should be less than for harder ones. Hence, it’s more efficient to have adap-

tive computational pipeline whose computational cost can be scaled up depending

on the application context.

In chapter 5, we exploit the idea of using multi-exit models as an efficient imple-

mentation of DNNs to accelerate existing computer vision tasks. By having multiple

models that can share some layers with each other, we can exploit the shared-layers

structure and design many optimization to speedup the inference pipeline in many

existing vision sensing workloads.

1.4 Key Challenges

In this section, we quickly summarize the key challenges to address in this thesis.

Lack of supported frameworks on mobile devices: Desktop-class and server-

class deep learning frameworks often leverage highly optimized linear algebra li-

braries for GPUs such as CuDNN [18], Viennacl [73], ClBlast [66]. However, due

to the differences in architectures, those libraries are either not supported or not

optimized to run commodity mobile devices. In section 2.3 and 2.5, we study the

computational bottleneck of many CNN models and carefully design optimizations

to parallel the executions on mobile GPUs using OpenCL framework.

Computational intensive models: Many state-of-the-art models such as VGG-

16 [76], ResNet-152 [36] often require huge amount of computational capacity. For

example, VGG-16 and ResNet-152 require 16 and 11 GFlops for a single inference.

Naively running those models using un-optimized frameworks on mobile devices

would take up to multiple seconds. Hence, to address the problem, we adopt ap-

proximation technique (section 3.4.4) and propose compression algorithm (4.3) to

remove redundant parameters and make those models more computational-efficient.

Lack of efficient frame similarity measurement algorithm : It is well-known

that video stream often contains similarity between consecutive frames. However,

measuring the similar regions between two frames quickly is a challenging task,

8

especially on mobile devices. In section 3.4.3, we observe that color distribution

between static regions we propose a fast and efficient algorithm that divide each

frame into several blocks and measures differences between two blocks across two

consecutive frames using histogram-based technique. We incorporate proposed al-

gorithm with our novel convolutional caching and show the improvement in session

3.5.9.

Un-optimized models for special tasks: Some applications only interest in

a small set of objects. For example, surveillance application using traffic cameras

only need to recognize vehicles and pedestrians rather than detect boats or airplanes.

However, most of existing models, which are trained on general datasets [22, 61,

26] that contain variety of different objects, are not optimized for those specific

applications. Instead of using existing models, we could build specialized models

that are targeted for those applications to bring out the best performance. Those

specialized models can be much smaller in terms of size and computational cost

comparing to general models but still provide similar or more accurate results.

Inefficient computational pipeline: [41] has suggested that easy objects should

consume less computation resources than hard objects. However, existing models

use the same inference pipeline for every input and waste a lot of resources on de-

tecting easy inputs. Therefore, a change in network architecture should be made to

allow early exiting for easy inputs. By attaching multiple early classification layers

along the network backbone and treat them as multi-exit models, we can stop the

execution at anytime whenever the model provides confident result. However, de-

ciding what degree of confidence to stop execution is a challenging task. In chapter

5, we intend to use agreements between multiple classification layers as a voting

mechanism to flexibly stop the execution.

9

1.5 Thesis Statement

This thesis shows that it is possible to significantly reduce the memory usage

and latency of deep learning pipelines, with minimal loss of accuracy, by

utilizing novel system optimizations such as 1) a smart caching algorithm

that reuses feature data between multiple video frames, 2) a pruning tech-

nique that removes redundant filters of existing models and, 3) an efficient

implementation of shared computations across many models by exploiting

multi-exit models.

The thesis is established through the following steps:

• First, it recognizes the inefficiency of existing server-class deep learning

frameworks on mobile devices, identifies the performance bottleneck of vari-

ous deep learning models and proposes an optimized mobile framework that

can run many existing deep learning models directly on mobile GPUs.

• Second, it proposes a novel convolutional caching technique that exploits

the similarity between consecutive frames in video stream and the internal

processing structure of convolutional layers to reuse the intermediate results

without re-executing them for every frame. It also presents a fast histogram-

based algorithm to quickly detect similar regions between two consecutive

frames.

• Third, it addresses the computational complexity problem of existing models

by automatically learning the importance of each filter within CNN models. It

then proposes a novel compression algorithm, called D-Pruner, to iteratively

remove unnecessary filters during training steps while maintaining original

accuracy.

• Finally, it studies the adoption of multi-exit models (MXNs), which consists

of many early classification/detection layers to enable early stopping the com-

10

putation, to accelerate many existing computer vision workloads. In particu-

lar, it explores the degree of agreements across many models within MXNs

and proposes a aggregation mechanism to speedup the inference pipeline.

Moreover, it also proposes using Focal Loss to enhance the accuracy of early

exiting decision to improve the performance of MXNs.

11

Chapter 2

DeepSense: A GPU-based deep

convolutional neural network

framework on commodity mobile

devices

Recently, a branch of machine learning algorithms called deep learning gained huge

attention to boost up accuracy of a variety of sensing applications. However, exe-

cution of deep learning algorithm such as convolutional neural network on mobile

processor is non-trivial due to intensive computational requirements. In this paper,

we present our early design of DeepSense - a mobile GPU-based deep convolutional

neural network (CNN) framework. For its design, we first explored the differences

between server-class and mobile-class GPUs, and studied effectiveness of various

optimization strategies such as branch divergence elimination and memory vector-

ization. Our results show that DeepSense is able to execute a variety of CNN models

for image recognition, object detection and face recognition in soft real time with

no or marginal accuracy tradeoffs. Experiments also show that our framework is

scalable across multiple devices with different GPU architectures (e.g. Adreno and

Mali).

12

2.1 Introduction

A variety of smart glasses are continuously emerging, opening up new opportunities

for continuous vision sensing applications. For example, WhoIsThis application re-

minds user of names of nearby people in a large conference by recognizing faces

from first-person-view video streams. The conventional processing pipeline in these

applications is to continuously capture videos or images, extract a set of distinguish-

ing features, and run inference algorithms. Nowadays, various deep learning algo-

rithms such as deep neural network (DNN) or convolutional neural network (CNN)

are getting huge attention, as they are known to achieve higher inference accuracy

for various vision-based applications [52, 76, 68].

Deep learning algorithms, however, incur heavy computational overhead and

power consumption when executing on wearable or mobile devices. A conventional

approach to overcome these challenges is offloading computation onto powerful

clouds. However, this approach has a few fundamental limitations. First, it has

potential threats to expose private data of users. Captured first-person-view im-

ages often contain sensitive information such as where they are located, who they

are with, which activities they are doing. This may prevent users from offloading

data to the clouds, invalidating the use of cloud resources. Second, continuously

sending video streams to clouds consumes huge bandwidth which is a big concern

when users are connected via cellular networks. Moreover, offloading is no longer

effective in scenarios where network connectivity is poor or unavailable.

In this paper, we propose and explore an alternative approach, a DeepSense

framework, to execute deep learning algorithms on mobile devices without cloud

offloading. By leveraging mobile graphical processing unit (GPU) recently inte-

grated into smartphones, we aim to support developers for 1) adopting a wide range

of existing DNN, CNN models trained to run on server-class machines with minimal

programming effort, 2) achieving real-time or soft real-time latency for continuous

sensing and intervention, 3) minimizing energy consumption on the computing mo-

13

bile devices. Our DeepSense framework is built up on OpenCL [80], which is now

officially supported by a number of mobile GPUs such as Adreno and Mali.

As a first step towards this direction, our work is focused on supporting CN-

N/DNN that is widely adopted by various vision sensing applications. We first

investigated several existing CNN models (such as AlexNet [52], Vgg-F [15], Vgg-

M [15], Vgg-verydeep-16 [76], Vgg-Face [68], etc.), and found out that over 90% of

computation occurred within convolutional layers, increasing the processing latency

significantly. To reduce the latency, DeepSense offloads the convolutional layers to

mobile GPUs considering unique characteristics of mobile GPUs as well as the data

representation within the CNN structure. Moreover, it adopts various optimization

strategies such as branch divergence elimination and memory vectorization to fur-

ther reduce latency. Finally, DeepSense provides developers the ability to trade off

accuracy and latency with the use of half floating points in computation.

We conducted extensive experiments on 3 commodity smartphones (Samsung

Galaxy S5, Note 4 and S7) with three 3 CNN models (Vgg-F, Vgg-M and Vgg-16

). Our results show that DeepSense can achieve soft real-time latency (less than 1.5

second) for various CNN models. With the use of half floating points, DeepSense

can further reduce latency; for instance, running Vgg-F takes 403ms, 259ms and

155.2ms with only 4.62% accuracy drop on Samsung Galaxy S5, Note 4 and S7

respectively. We believe that more carefully devised optimization techniques and

adoption of more powerful GPUs on smartphones would make it feasible to execute

large-scale models on mobile devices in real time.

The contribution of our paper can be summarized as follows:

• We proposed DeepSense , an OpenCL-based framework to run various deep

learning inference algorithms on mobile GPUs; it now supports various CNN

models with low latency and power consumption. Note that OpenCL has

highly advantageous in that it supports a wide range of commodity mo-

bile GPUs (e.g., Adreno and Mali) comparing to CUDA-based devices (e.g.,

14

Nvidia Jetson [54]).

• We explored a variety of design choices and optimization techniques to effi-

ciently execute CNN on mobile devices (such as memory vectorization, data

representation, usage of half floating points).

• We conducted experiments using various models (AlexNet, Vgg-F, Vgg-M,

Vgg-16, Vgg-Face, etc.) on variety of mobile GPU (Adreno 330, 410 and

Mali T880). Our preliminary results show that we are able to execute Vgg-F

in real-time (803ms on S5, 480ms on Note 4 and 361ms on S7) without any

accuracy drop. In addition, with the calculation of half floating point enabled,

the execution time of Vgg-F on S5 is reduced to 450ms by sacrificing only

4.62% accuracy.

2.2 Background

We begin with a brief introduction of the two underlying techniques of our system:

OpenCL and CNN.

2.2.1 OpenCL

OpenCL [80] is a framework to support parallel programming across heteroge-

neous platforms such as central processing units (CPUs), graphical processing units

(GPUs) or even digital signal processors (DSPs). Recently, OpenCL has been

widely supported on both popular smartphone processors (e.g., Snapdragon and

Exynos) and popular mobile GPUs(e.g., Adreno and Mali).

In order to use OpenCL for parallel programming, developers first need to di-

vide their problem into a number of small identical sub-problems, then implement

each sub-problem as OpenCL kernel code. The OpenCL run-time will spawn mul-

tiple parallel processing units (i.e., work-items), each runs independent compiled

15

Figure 2.1: Convolutional Neural Network [54]

kernel program and is scheduled to be executed on multi-core CPU, GPU or both

depending on the charateristics of application requirements.

Its flexible parallel programming model and applicability on a wide range of

mobile processors serve the goal and functionality of DeepSense, and thus we adopt

OpenCL as our underlying programming and execution framework.

2.2.2 Convolutional Neural Network

Convolutional neural network (CNN) is a type of feed-forward neural network that

is widely adopted for image and video recognition [52, 68].

Figure 2.1 shows an example of CNN architecture which consists three funda-

mental layers: convolutional, pooling and fully connected. To briefly explain, each

convolutional layer applies multiple filters to convert lower-level features from the

previous layer into higher-level features. A pooling layer is used to capture in-

variants that do not change even when an image output by a convolutional layer is

translated, rotated or scaled. Finally, a fully connected layer aggregates extracted

high-level features for further classification task.

As shown in figure 2.2, a CNN layer consists of two main processing steps:

Input Padding and Main Computation. The input padding step is required to match

the output of previous layer as an input of current layer. For example, borders

of input images can be zero-padded to match the input size of the current layer.

Once padding is done, each layer conducts the core computational operations; for

convolutional layers, dot products are the key operations. For pooling and fully-

16

Figure 2.2: Processing Flow of Single Layer

connected layers, comparison and matrix multiplications are the core operations,

respectively.

2.3 CNN Performance Breakdown

In this section, we breakdown the performance of CNN in order to identify its bottle-

neck for optimization. To study the performance of CNN, we use five existing mod-

els including AlexNet, VGG models (Vgg-f, Vgg-m, Vgg-verydeep-16, Vgg-Face).

Table 2.1 shows the important properties (such as application, accuracy, number of

parameters and architecture) of the models. Vgg-Face is trained to recognize human

faces (out of 2,622 candidates) within an image while the other models are trained

to classify images into one of 1,000 categories. It is noticeable that the accuracy

is affected by two factors: (1) the number of convolutional layers, and (2) the size

of model (which implies the size of filters and the stride to apply the filter on the

input).

To understand the bottleneck, we measure the running time of different CNN

layers on Samsung Galaxy Note 4. We implemented a CPU version of a CNN

executor in C/C++ using Android NDK. For best CPU performance, we compiled

the program with armeabi-v7a ABI(Application Binary Interface) to enable external

floating point processing unit.

Table 2.2 shows the excution time per types of layers. Most importantly, com-

17

App Size Top-1 Top-5 Arch.
(M) Acc. Acc.

AlexNet IR 60.8 58.2% 80.8% 5c,3p,3fc
Vgg-f IR 60.8 58.6% 80.9% 5c,3p,3fc
Vgg-m IR 102.9 63.1% 84.5% 5c,3p,3fc
Vgg-16 IR 138.4 71.7% 90.5% 13c,5p,3fc
Vgg-face FR 145 98.95% - 13c,5p,3fc

Application(IR: image recognition, FR: face recognition), Size: number of
parameters

Architecture(c: convolutional layers, p: pooling layers, fc: fully connected
layers)

Table 2.1: CNN Models

Conv.(ms) FC.(ms) Pooling(ms) Total(ms)

Vgg-F 8072 1079 26 9177
Vgg-M 19521 2122 156 21800
Vgg-16 213371 2408 882 216662

Table 2.2: CNN Latency Breakdown

putation bottleneck is occurred within convolutional layers for all three inspected

models. For instances, over 87% of the processing time in Vgg-F is occupied by

the convolutional layer followed by 11% and 0.2% for fully-connected and pooling

layers, respectively. For a large model such as Vgg-16, over 98% of computation

time is taken in convolutional layers. We also figured out that the total number of

addition-multiplication operations within convolutional layers is much higher than

operations within fully connected layers (e.g. Vgg-16 requires 15346M addition-

multiplication operations for convolutional layers comparing to only 123M for fully

connected layers).

2.4 System Overview

Figure 2.3 shows the overall architecture of DeepSense which consists of four main

components including model converter, model loader, inference scheduler, executor.

Model converter: Each of DNN frameworks adopts different representation of

its models. This module translates existing pre-trained models from multiple repre-

18

sentations into our predefined format. At present, DeepSense supports 3 formats of

DNN trained by Caffe, MatConvNet and Yolo for different types of applications.

Model loader: Application triggers this module to load converted models into

memory. It allocates appropriate host(CPU) and device(GPU) memory for individ-

ual layer’s data structure to store both CNN/DNN’s meta-data and weights. Our cur-

rent implementation of DeepSense stores model’s meta-data in host memory while

all weights of convolutional and fully connected layers are stored in device mem-

ory. Other configurations such as enabling half floating point optimization is also

processed by this module.

Inference Scheduler: Inference requests are submitted into this module’s queue

to be scheduled for execution. Since GPU is known to be good at executing SIMD

(Single Instruction Multiple Data) task, submitting multiple requests to mobile GPU

might interfere each other tasks and increase the latency. In order to prevent inter-

ference, this scheduler is built to guarantee that only a single request is executed at

a time.

Executor: Execution of inference request is taken place in this module. Ex-

ecutor takes allocated model’s memory from model loader, input data from infer-

ence request and compute the output of CNN/DNN. During execution pipeline, only

parts of operations such as padding, intermediate memory allocation are executed

by CPU while the other heavy computation parts (e.g. convolutional, pooling and

fully connected operations) are done by mobile GPU.

2.5 Design Considerations

In this section, first, we investigate behaviours of branch divergence and memory co-

alescing on mobile GPU. Second, based on our observations, we propose a memory

layout to represent input and parameters in effective manner to achieve low latency

on mobile GPU. Finally, we study the impact of half floating point approximation

on both the latency and accuracy for different CNN models.

19

Figure 2.3: DeepSense System Overview

We perform evaluations on three different devices including Samsung Galaxy

S5, Note 4 and S7 to make our design choices. These devices are powered by two

different mobile GPU architectures, Adreno and Mali. Our version of Galaxy S7

integrates Mali T880 GPU while S5 and Note 4 are powered by Adreno 330 and

420 respectively. All platforms support at least OpenCL 1.1 embedded profile.

2.5.1 Branch Divergence

One important issue to improve the latency of CNN execution on GPU is handling

padding operation efficiently. This operation takes the input and pads data into in

order to get desired size. Most of existing CNN models requires padding operations

in many layers. Conventional CPU approach to solve this problem is to ignore

padded input values when processing. However, this approach imposes condition

branches which are inefficient to run on GPU (branch divergence problem). Since

DeepSense is proposed to executing existing models, this problem should be studied

carefully.

Within GPU program, branch divergence is a common problem which causes

the GPU to process both conditional blocks of code. This problem increases the

20

Figure 2.4: Explicit and Implicit padding

execution time of every work item running openCL kernel. However, behaviour of

branch divergence when executing CNN on mobile GPU is still not fully evaluated.

To address this problem, we consider two types of padding including implicit and

explicit padding when executing CNN. The former one processes padding (e.g. ig-

nore padded input using conditional branch) within GPU kernel code and possibly

leads to branch divergence. On the other hand, the latter approach tries to avoid

branch divergence by allocating new memory block and migrating corresponding

input data into new location before executing GPU kernel. However, overhead oc-

curred by multiple memory copying operations may significantly overwhelm the

running time of GPU code.

We carefully evaluate both approaches with two different models (Vgg-16 and

Vgg-f) on Samsung Galaxy Note 4 with Adreno 420 GPU. For easy comparison,

we use speedup which is defined as a latency fraction between using implicit and

explicit approaches.

speedup =
runtimeimplicit

runtimeexplicit

Figure 2.4 shows speedup over the first six layers of two models. In most of

cases, running explicit padding is faster than executing implicit padding within GPU

kernel. We observe that the sixth layer of model Vgg-F has high speedup due to two

21

Figure 2.5: Memory Coalescing vs Memory Vectorization

reasons. First, this is one of the bottom layers in VGG-F and the input size of

that layer is small so there is little overhead of padding operations. Second, the

amount of addition and multiplication operations that needs to be processed is large

so the processing latency is overwhelming the padding overhead. Finally, as Vgg-

16 consists of more layers than Vgg-F, we also notice the similar characteristic as

the processing reaches later layers.

2.5.2 Memory Coalescing vs Memory Vectorization

In this section, we show that correctly reading data into GPU’s work items can

significantly reduce latency.

One approach is to make used of a well-known technique in GPGPU community

called memory coalescing. Memory coalescing makes multiple work items to access

memory within single transaction. For instances, 4 input values of memory need

to be loaded together to fit into memory bank within a single transaction and are

distributed across 4 work items to do computation in parallel as shown in figure

2.5a.

We compare memory coalescing with another approach which we call memory

vectorization. Instead of relying memory architecture to reduce latency as men-

tioned above, we optimistically read a contiguous memory block into single work

item and process it locally. Figure 2.5b shows the example that each of 4 work

items read and process a block of 4 input values. As multiple work items access

to memory concurrently using OpenCL supported functions, memory bandwidth of

the system is utilized.

22

Each work item computes a fraction of output values (2, 4, 8, 16 and 32
values)

Figure 2.6: Memory Coalescing and Memory Vectorization.

We use vector addition program to evaluate two proposed techniques. To com-

pute each value within output vector, it requires only a single addition operation but

accesses to three memory locations (two input and one output locations). This appli-

cation is best fit for us to measure the memory throughput and latency of two above

approaches. Similar to previous evaluation, we define speedup as a latency fraction

between using memory coalescing and memory vectorization for comparison.

speedup =
runtimecoalescing

runtimevectorization

Figure 2.6 shows the speedup between two techniques. First, we observe that

memory vectorization outperforms memory coalescing in all cases. Second, using

block size of 4 values results in speedup around 1.7 on S5 and 2.0 on Note 4.

As the result, we organize our data in a way to be loaded as a block of contiguous

data into each work item using memory vectorization.

2.5.3 Memory Representation

Representation of data in memory also affect latency of executing CNN.

23

In OpenCL kernel, parameters are represented as 1D array or 3D image of data.

The input and parameters of convolutional layer is 3D and 4D array respectively

which have to be reshaped into 1D array or 3D image. However, maximum size of

3D image is also limited by OpenCL framework and the running GPU hardware.

To address arbitrary size of parameters and input, all data is reshaped into 1D array.

The question is how to represent it in order to achieve best performance.

Suppose we have a convolutional layer with these characteristics:

• Input: size of [h x w] and c channels

• Weight parameters: n filters, each filter has size of [d x d] and c channels

• Output: size of [h’ x w’] and n channels

To compute single output value, CNN does a dot product between a single filter

and portion of input data with identical size to filter. This operation requires to read

filter’s parameters and portion of input into work item. In the end, each work item

will trigger a lot of memory reading operations. Reducing number of memory read-

ing operations per work item may result in improving latency. Fortunately, OpenCL

provides vloadn/vstoren to allow reading/writing a block of contiguous memory up

to 16 float values at a time. Reducing total number of memory reading operations

is now corresponding to maximizing the size of contiguous memory block. We try

to organize data in CNN in the way that we can maximize the size of single block

that each work item has to read into its memory space.

The filter size and input which is used in dot product operation can be repre-

sented in 2 ways: [c x d x d] and [d x d x c]. However, since the input to this

operation is only a portion of layer’s input, its memory is not contiguous. In this

case, the former approach can access a block size of maximum d contiguous val-

ues while the latter approach can access to a block size of maximum c contiguous

values.

Table 2.3 shows the total number of accesses to contiguous memory block

24

Mem Repre. # blks to access Max blk size

1 [c x d x d] c*d blocks of d 11
1 [d x d x c] d*d blocks of c 512

Table 2.3: Memory Representation and Maximum Number of Memory Accesses
per Work Item

Figure 2.7: Latency of Memory Representations

for each representation. We investigate several models including AlexNet, Vgg-

verydeep-16, Vgg-f, Vgg-M and observe that the maximum size of d is much

smaller than the maximum size of c. As a result, using [d x d x c] as represen-

tation of filter, we can maximize the size of contiguous memory block as well as

reduce the number of memory reading operations that needed to be called.

Figure 2.7 shows the latency comparison between using two representation ap-

proaches for different CNN models on Samsung Galaxy Note 4. Important obser-

vation is that using [d x d x c] approach is more efficient than other approach. For

instances, Vgg-16 reduces latency 1.96 times when migrating from using [c x d x

d] to [d x d x c] representation.

Finally, input and filters are represented as [h x w x c] and [n x h x w x c]

corresponding to our design choice.

25

2.5.4 Half Floating Point

Another optimization technique to improve executing latency on GPU is to mini-

mize transferring data between host memory and GPU. In this section, we propose

an algorithm to convert parts of CNN into half floating point to reduce memory

bandwidth usage for data transferring in order to improve executing time.

During CNN inference using GPU, a large amount of memory bandwidth and

latency is consumed for reading/storing floating point values from/to main memory.

To address this problem, we convert parts of CNN’s parameter into floating point

16 bits instead of 32 bits. Cutting half of data to load into single work item reduces

latency significantly. However, this approach may suffer accuracy drop. To address

this problem, we develop a greedy algorithm to choose the most suitable layers to

convert parameters into half floating point as follow:

Algorithm 1 Half floating point approximation algorithm
Data: (1)desired accuracy loss L, (2)Network N, (3)Network accuracy Acc , (4)list

of convolutional layers T, (5) validation set V
Result: list of convolutional layers T’

1 loss← 0
2 T’← {}
3 while loss ≤ L and size(T’) ≤ size(T) do
4 tmp list← {}
5 for ∀ l in T do
6 if l ∈ T’ then
7 l’← convert l into FP16
8 N’← N with l← l’
9 tmp acc loss← Acc - N’(V)

10 tmp list← tmp list ∪ {l, tmp acc loss}
11 end
12 end
13 l, tmp acc loss← argmin(tmp list[tmp acc loss])
14 if tmp acc loss < L then
15 l← convert l into FP16
16 T’← T’ ∪ l
17 L← L - tmp acc loss
18 end
19 end

We set desired accuracy drop at 5% and run proposed algorithm on three image

26

Model CPU-FP32(ms) GPU-FP32(ms) GPU-FP16(ms)

Vgg-F 9177 480 259
Vgg-M 21800 1166 558
Vgg-16 216662 6315 2922

Table 2.4: Full and Half Floating Point Latency on Note 4

Model Top-1 Acc. Drop Top-5 Acc Drop

Vgg-F 5.82% 4.62%
Vgg-M 3.96% 3%
Vgg-16 2.62% 1.66%

Table 2.5: Half Floating Point Accuracy Drop

recognition models (Vgg-f, Vgg-m and Vgg-16). We use the first 5000 images from

ILSVRC2012 validation set [52] to measure accuracy drop since it is also validation

set used to evaluate original models.

First, it is surprising that we can convert all convolutional layers into using half

floating point for less than 5% of top-5 accuracy drop. Table 2.5 also points out

that low accurate model suffers accuracy drop more than high accurate models even

though the number of layers and parameters to be converted into half floating point

are less than other models.

Second, inference time reduces significantly in our experiments on Samsung

Galaxy Note 4 as shown in table 2.4. Converting to half floating point, latency

reduces 1.85, 2.08, 2,16 times when executing Vgg-F, Vgg-M, Vgg-16 respectively.

That means within convolutional layers, memory bandwidth is highly utilized and

needed to be taken into consideration for further improvement.

2.5.5 Performance Overview

We combine several proposed techniques to design DeepSense framework. As

shown in table 2.4, DeepSense significantly reduces inference time up to 74 times

comparing to conventional CPU implementation. For small and medium models

such as Vgg-F and Vgg-M, DeepSense executes one inference within 600ms. For

27

Model FP-32(mJ) FP-16(mJ)

Vgg-F 1135 665
Vgg-M 2584 1487
Vgg-16 14491 8767

Table 2.6: Consumed Energy on Galaxy Note 4

large model such as Vgg-16, DeepSense is still able to provide reasonable latency

within 3 seconds. Furthermore, energy consumption for single inference request is

also shown in table 2.6. From our calculation, continuously executing DeepSense

for vision sensing with Vgg-F model can last up to 2.5 hours on commodity devices

with only modest battery capacity at 2000mAh.

28

Chapter 3

DeepMon: Mobile GPU-based Deep

Learning Framework for Continuous

Vision Applications

The rapid emergence of head-mounted devices such as the Microsoft Holo-lens

enables a wide variety of continuous vision applications. Such applications often

adopt deep-learning algorithms such as CNN and RNN to extract rich contextual in-

formation from the first-person-view video streams. Despite the high accuracy, use

of deep learning algorithms in mobile devices raises critical challenges, i.e., high

processing latency and power consumption. In this paper, we propose DeepMon, a

mobile deep learning inference system to run a variety of deep learning inferences

purely on a mobile device in a fast and energy-efficient manner. For this, we de-

signed a suite of optimization techniques to efficiently offload convolutional layers

to mobile GPUs and accelerate the processing; note that the convolutional layers

are the common performance bottleneck of many deep learning models. Our exper-

imental results show that DeepMon can classify an image over the VGG-VeryDeep-

16 deep learning model in 644ms on Samsung Galaxy S7, taking an important step

towards continuous vision without imposing any privacy concerns nor networking

cost.

29

3.1 Introduction

The popularity of head-mounted augmented reality (AR) devices such as the Mi-

crosoft Hololens [3] and the Google Glass [2] has given rise to a new class of con-

tinuous mobile vision applications. These range from identifying road signs in real

time to provide directions [17], to identifying people in the environment to give

guidance to individuals suffering from dementia [13]. In all these use cases, the

commonality is the need to perform computer vision algorithms in real time on a

continuous video stream provided by the AR devices.

The current state-of-the-art approach to continuous video processing is to use

a deep neural network (DNN) approach where the video streams are processed by

a large and well-trained convolutional neural network (CNN) or recurrent neural

network (RNN). However, these networks require large amounts of CPU and mem-

ory resources to run efficiently. It has thus proved challenging to achieve adequate

performance when executing large deep learning networks on commodity mobile

devices. For example, a commonly used object recognition model, VGG-Verydeep-

16 [76], has 13 convolutional layers and three fully connected layers and takes≈100

seconds to process a single image using CPU on a Samsung Galaxy S7 smartphone.

One way to overcome this limitation is to use cloud resources to run the required

DNNs [35]. However, this introduces significant privacy concerns (as the video feed

is now available on the cloud server) in addition to possible latency, and energy

concerns depending on where the cloud is located and what network interface (LTE

etc.) is used.

In this paper, we present a system, called DeepMonthat uses the graphics pro-

cessing unit (GPU) on mobile devices to execute the large DNNs required for con-

tinuous video processing. DeepMon can achieve continuous video processing (at

about 1-2 frames per second) of full HD (1080p) video frames using just the mem-

ory, CPU, and GPU resources of a commodity smartphone. This speedup allows

DeepMon to be used, with a larger processing pipe-line where DeepMon can ex-

30

tract features from video frames that can then be processed by cloud resources to

produce a complete knowledge. This greatly reduces the privacy impact of using a

cloud (as only features and not actual video frames are sent to the cloud) as well as

the latency and energy concerns (the feature set is much smaller than the full video

image). However, in this paper, we focus solely on the optimisations and techniques

to reduce the local processing time from multiple seconds to≈600ms per frame and

leave the integration with a complete cloud-enabled solution to future work.

Before building DeepMon, we analysed various deep learning models (e.g.,

VGG-Verydeep-16 [76] and YOLO [70]) to identify their performance bottlenecks.

We noticed that they commonly adopt a large number of convolutional layers (to

extract and refine features) along with a small number of fully connected layers (to

make inferences). Our measurement showed that the convolutional layer processing

takes a significant portion of the entire processing – e.g. 88.7% for VGG-Verydeep-

16 and 85% for YOLO (see Section 3.2).

We thus focused on techniques to reduce the processing latency of convolutional

layers. One clear solution was to offload the DNN convolutional layer computation

to the mobile GPU as these layers have highly parallel and repetitive processing

structures. However, prior offloading techniques were developed for server-class

GPUs and required re-design/optimization for mobile GPUs with much smaller

number of processing cores and memory bandwidth; for instance, NVidia GTX

980 GPU for desktops have 2,048 GPU cores and 224GB/s memory read/write

bandwidth while Mali T880 GPU on Samsung Galaxy S7 has 12 GPU cores and

25.6GB/s memory bandwidth.

We developed a suite of optimizations for processing convolutional layers on

mobile GPUs. First, we designed a smart caching mechanism specially designed

for convolutional layers. The key idea is to exploit the similarity between consecu-

tive frames in first-person-view videos. Our mechanism is unique in that it utilizes

the internal processing structure of convolutional layers to reuse the intermediate

results of the previous frame to calculate the current frame, instead of just simply

31

reusing its final output. Second, we decompose the matrices used in the convolu-

tional layers to accelerate the multiplications between high-dimensional matrices,

which are the bottleneck when running convolutional layers on GPUs. Also, we ap-

plied a number of system-level optimizations (described in Section 3.4 to accelerate

the matrix calculation in mobile GPUs).

We implemented DeepMon using OpenCL [80] and Vulkan [6] and tested it on

various mobile GPUs (Adreno 420, Adreno 430, and Mali T 880) with multiple

large DNN models. For developers to adopt various DNN models in DeepMon,

we also developed a tool that automatically converts pre-trained legacy models and

loads them to DeepMon with its various optimization strategies applied.

Our results show that DeepMon significantly accelerates the processing of large

DNNs. For example, the latency of VGG-VeryDeep-16 model-based inference

reduces ≈5 times compared to the naive GPU-based implementation with just a

marginal reduction in inference accuracy (≈5%). This enables low-latency image

classifications (i.e., 3 frames per 2 seconds). Note: VGG-Verydeep-16 is the model

many applications such as face recognition (Deep Face from Oxford [68]) and ob-

ject detection (YOLO [70] and Fast R-CNN [27]) rely on. In addition, we conducted

experiments on other models for object detection (such as YOLO) on commod-

ity smartphones (Samsung Galaxy S7, Note 4, etc.). Our results showed that our

proposed techniques could achieve a latency of 644ms for VGG-Verydeep-16 and

1,006ms for YOLO on Samsung Galaxy S7.

The contributions of our paper can be summarized as follows:

• To the best of our knowledge, DeepMon is the first system to allow large

DNNs to run on commodity mobile devices at a low latency. Prior work,

such as DeepX [54] and MCDNN [35], has focused on smaller DNNs, cloud

computation, and non-commodity more powerful mobile devices such as the

Tegra K1.

• We devised a suite of optimization techniques to reduce the processing latency

32

of the convolutional layers of DNNs. Our smart caching mechanism leverages

similarities of consecutive images to cache internally processed data within

the deep convolutional neural network. Also, we adopted and improved state-

of-the-art matrix multiplication techniques such as model decomposition [49]

and unfolding [16] to accelerate multiplication operations (the bottleneck op-

eration in convolutional layers) on mobile GPUs.

• We shared lessons about implementing DeepMon on OpenCL and Vulkan and

scaling it to support various mobile GPUs. Prior work has focused primarily

on CUDA [5] which, to the best of our knowledge, is not supported by com-

modity smartphones. DeepMon’s OpenCL implementation can be deployed

on a variety of Android-based devices with Snapdragon and Exynos chipsets

while its Vulkan implementation (the first such implementation we could find)

can be deployed on recent iPhone models such as the iPhone 7. Finally, devel-

opers can easily load pre-trained legacy DNN/CNN/RNN models on various

mobile GPUs by using DeepMon’s model converting tool.

• We conducted extensive experiments showing that DeepMon can execute very

deep models such as VGG-Verydeep-16 on video streams in near real-time,

reducing the processing latency to execute one frame from 3 seconds down to

644 ms.

3.2 Deep Learning Pipelines

Vision applications use many deep learning pipelines. We explored the most pop-

ularly used models, such as AlexNet, VGG-F, VGG-VeryDeep-16, YOLO, Fast R-

CNN (Region-based CNN), to characterize their computational requirements and

performance – summary provided in Table 3.1. In this paper, we primarily focus

on models (VGG-VeryDeep-16 and YOLO in particular) that adopt more than 15

processing layers to achieve higher accuracy.

33

App Size Top-1 Top-5 Arch.
(M) Acc. Acc.

(%) (%)

Deep Models
VGG-VeryDeep-16 IR 138.4 71.7 90.5 13c,5p,3fc
VGG-Face FR 145 98.95 - 13c,5p,3fc
YOLO IR 275 63.4 - 24c,4p,2fc

Shallow Models
AlexNet IR 60.8 58.2 80.8 5c,3p,3fc
VGG-F IR 60.8 58.6 80.9 5c,3p,3fc
VGG-M IR 102.9 63.1 84.5 5c,3p,3fc
LRCN AR 62.5 68.2 - 5c,3p,2lrn,
(CNN+LSTM) 3fc

Application (IR: image recognition, FR: face recognition,
AR: activity recognition),
Size: number of parameters,
Architecture (c: convolutional layers, p: pooling layers,
fc: fully connected layers, lrn: local response normalization)

Table 3.1: Comparison of DNN Models

3.2.1 Background on Various Models

VGG-VeryDeep-16 and VGG-Face. Figure 3.1 shows the detailed processing

structure of VGG-VeryDeep-16. The architecture is composed of 13 convolutional

layers, 5 pooling layers, and 3 fully-connected layers. Convolutional layers are in

charge of extracting various features from an image and refining them while fully

connected layers make inferences from extracted features. Pooling layers convert

the data from the previous layer to feed to the next input layer. The softmax layer

is the final layer to aggregate and normalize the scores generated by the last fully

connected layer and outputs the final classification result.

VGG-VeryDeep-16 [76] is used to classify images into one of 1,000 different

image types with a confidence probability; it outputs top-N image types with the

probability per type. VGG-Face [68], is based on VGG-VeryDeep-16, and performs

face recognition. We only use VGG-VeryDeep-16 in our evaluation as VGG-Face

has the same structural and algorithmic properties.

YOLO [70] recognizes and locates objects in an image. YOLO can be trained

34

Figure 3.1: Macroarchitecture of VGG-VeryDeep-16 [1]

with different datasets. For example, YOLO trained with the VOC dataset [61]

identifies 20 objects and tracks their locations while YOLO trained with the Pascal

VOC dataset [26] can identify and localize 80 different objects. The architecture

of YOLO is composed of 24 convolutional layers and two fully connected layers,

resulting in higher computational requirements compared to VGG-VeryDeep-16 or

VGG-Face.

Other Models. There are other smaller-sized but popular models used for im-

age classification, such as VGG-F, VGG-M [15] and AlexNet [52]. Their archi-

tecture incorporates a much smaller number of layers; for example, they use just

5 convolutional layers to extract features and 4 fully connected layers for infer-

ence. These models are much smaller than VGG-VeryDeep-16 or YOLO with cor-

respondingly lower accuracies given the same train and test data. We omit these

shallow models from the rest of the paper as (i) they have already been studied by

prior work [54, 55], and (ii) higher accuracy object and face recognition would be

more usable for end user applications.

At the other end, some extremely deep models achieve even higher accuracies.

For instance, ResNet-152 [36] has 152 layers and achieves 3.62% higher accuracy

35

compared to VGG-VeryDeep-16. However, we noticed that the accuracy improve-

ments of such models are marginal compared to the models that have 15 to 25 layers

while incurring much higher computational costs. We do not expect those extremely

deep models can be run on mobile devices in near real-time and thus exclude them

from this work.

There are other models such as Faster-RCNN [27] for object detection and Long-

term Recurrent Convolutional Networks (LRCN [25]) for activity recognition –

LRCN is the combination of CNN and Long Short Term Memory (LSTM [37]).

These models have some common characteristics with VGG-VeryDeep-16 or

AlexNet and also modify the structures to achieve better performance and accu-

racy. Even though they are applied in different scenarios, we noticed that they have

lots of commonality with VGG-based models and our workload characterization

and optimization techniques apply well to these models.

Effect of the model depth on accuracy and latency. In general, the deeper

the model becomes, the higher accuracy it achieves for the same classification task.

This increase in accuracy has been validated by recent results [84] (although there

are a few special cases where a shallow network is equally accurate). For instance,

AlexNet with 5 convolutional layers achieves 80.8% top-5 accuracy to recognize

an image while VGG-Verydeep-16 with 13 convolutional layers achieves 90.5%

top-5 accuracy. Also, ResNet-152 with 152 layers shows 94.3% top-5 accuracy.

On the other hand, deeper models impose much higher computational or memory

requirements; For example, the number of operations required to execute VGG-

VeryDeep-16 is 21 times more than that of AlexNet while ResNet-152 requires 4

times more memory space than VGG-VeryDeep-16.

3.2.2 Workload Characterization

We noticed important common characteristics in the workloads of deep deep-

learning models that drove the optimisations in DeepMon. First, each deep model

36

Conv. FC. Pooling Total
(ms) (ms) (ms) (ms)

VGG-VeryDeep-16 2,647 294 40 2,984
YOLO 3,345 536.1 44.9 3,935
(CNN+LSTM) 5,488.8 161.7 2,158.8 8,301

Table 3.2: Latency Breakdown

has a large number of computational layers – with the accuracy of the model in-

creasing as more layers (convolutional layers in particular) were added. Second, the

majority of the layers are convolutional layers. Convolutional layers play a critical

role to extract useful features from images and then refine them; in particular, they

apply various types of filters over the small blocks of an image to abstract out visual

features such as edges and shapes. Table 3.1 confirms that, in deep models, the most

processing layers are convolutional layers, with a small number of fully connected

layers and pooling layers.

Hence, it is likely that most of the processing time is spent in convolutional

layers. To check if this was the case, we measured the running time of different deep

learning models on a Samsung Galaxy S7 and broke down the processing latency

per layer type. To do this, we implemented a GPU-based deep learning execution

framework (without any optimization techniques applied).

Table 3.2 shows the execution time broken down per layer type (i.e., convo-

lutional, fully-connected, and pooling). It indicates that the convolutional layers

dominate the processing time. For VGG-VeryDeep-16, over 88.7 % of the process-

ing time is occupied by the convolutional layers followed by 9.8% and 1.3% for

fully-connected layers and pooling layers, respectively. For the YOLO model, over

85% of computation time is spent in convolutional layers. The reasons for these

time breakdowns are (i) there are many more convolutional layers than other layers

in deep models, and (ii) the total number of addition and multiplication operations

within convolutional layers is much higher compared to fully connected layers and

pooling layers (e.g. VGG-VeryDeep-16 requires 15,346M addition and multiplica-

37

tion operations for convolutional layers while only 123M operations are necessary

for fully connected layers). These results suggest that optimizing the processing

time of convolutional layers would lead to huge improvements in overall model

processing latencies.

3.3 Design Considerations

We developed DeepMon with the following design goals:

No cloud offloading: Our primary design goal, for this paper, was to use local

phone resources only without any cloud offloading to process deep DNNs as this

area has compelling use cases without any viable solutions. There are also scenar-

ios, such as processing of sensitive video feeds or video processing in places with

poor or expensive networking connectivity, where offloading is either unwanted

(due to privacy concerns) or impossible (due to networking issues). We do plan to

extend our solution to support cyber foraging (e.g. MAUI [20] and Chroma [9, 10]),

where local and cloud resources are used in a dynamic fashion.

Near real-time latency: Our intended application scenarios require near-real

time processing of image streams to give on-the-fly feedback to the users. However,

we do not aim to provide strict real-time support (e.g., ¡ 50ms with strict inter-frame

timings) as we do not believe this is possible with current commodity smartphones

and deep DNNs. Instead, we aim to push the research boundary to provide 1-2

frames per second processing capability (the current state-of-the-art is 1 frame every

3-4 seconds).

Minimal accuracy loss: While achieving near-real-time processing latencies

is good, it cannot be done at the cost of accuracy – otherwise improving latency

becomes trivially easy. We thus require DeepMon to be only about 5% less accurate

than running the same model on a desktop PC.

Efficient power use. Minimizing the energy use of DeepMon is essential as we

aim at running complex deep learning pipelines on mobile devices. In this paper,

38

GPU Memory Memory
Phone GPU APIs Cores Size Bandwid.

(#ALUs) (GB) (GB/s)

Samsung Mali OpenCL/ 12 4 25.6
S7 T880 Vulkan

Samsung Adreno OpenCL 4 3 12.8
Note 4 420 (128)

Sony Adreno OpenCL 4 3 12.8
Z5 430 (192)

Table 3.3: Specs for Commodity Mobile GPUs

we focused on reducing the power consumption of executing deep learning pipeline

on a mobile device and rely optimising the power consumption of the video camera

(to capture and store continuous video feeds) to prior work [57].

Support a wide range of mobile GPUs and programming APIs: There has

been prior work [35, 54] that used external mobile development boards, such as the

Tegra K1, to test their solutions. We designed DeepMon to work well on commodity

smartphones and tested it across a range of mobile phones and programming APIs

(the full list of test devices is shown in Table 3.3). In particular, DeepMon supports

both the OpenCL [80] and Vulkan [6] programming APIs.

3.4 Implementation

In this section, we first show the overall architecture of DeepMon, and then de-

scribe, in detail, the various techniques we adopted to optimize the execution of

deep learning pipelines.

3.4.1 Architecture Overview

DeepMon is built on top of DeepSense framework to leverage the low-level opti-

mizations of DeepSense. Figure 3.2 shows the overall architecture of DeepMon,

and Table 3.4 summarizes our techniques. DeepMon works through two different

39

Vgg-16

(mobile)

Yolo

(mobile)

GPU-based Recognizer

Continuous Vision Applications

Children

counting
Emotion

tracking
Activity

Couch

Model Repository

…

Adaptive Frame

Dispatcher

Model

Loader

Model

Converter First-person-view

Image/video streams

Convolutional layer

processors

Convolutional

 Layer Cache

Developers

Output (e.g., faces, objects, etc)

Processors

Fully-connected

layer processors

Maxpool layer

processors

GPU Memory

Manager

Kernel

Manager

Figure 3.2: DeepMon System Architecture

Techniques Description Evaluation

Model Conversion/Loading Section 3.4.2 -
Convolutional Layer Caching Section 3.4.3 Section 3.5.2–3.5.5&

Section 3.5.8–3.5.9
Layer Decomposition Section 3.4.4 Section 3.5.2–3.5.5
Convolution Optimizations Section 3.4.5 Section 3.5.2–3.5.5
Scaling to various GPUs/APIs Section 3.4.6&3.4.2 Section 3.5.6&3.5.7

Table 3.4: Summary of DeepMon’s techniques

phases: (1) the model conversion phase to convert existing models to run on mobile

GPUs, and (2) the inference phase to process image streams using the converted

model to recognize useful information.

Model conversion and loading. To use DeepMon, developers first need to con-

vert existing deep learning models (built for desktop GPUs) to fit on mobile GPUs.

For this, we provide model converter and model loader tools – the current Deep-

Mon prototype can convert a variety of existing models including the ones described

in Table 3.1. The model converter adapts the configurations and parameters of an

40

existing model and generates a new model that can run efficiently on mobile GPUs

(See Section 3.4.4). The model loader then loads the generated model on DeepMon–

it allocates adequate memory spaces to lay out input data for efficient convolution

computation and structures the processors for all the layers composing the model

(See Section 3.4.2)

DeepMon currently supports the models from three different deep learning

frameworks, namely Caffe [47], Matconvnet [86] and YO-LO [70].

Real-time Inference. During the inference phase, DeepMon takes a stream of

first-person-view images as its input. The frame dispatcher selects important frames

to recognize and feeds them to the GPU-based recognizer. Then, the GPU-based

recognizer executes the deep learning pipeline and outputs its inference results to

the applications of interest. During the execution, it applies a suite of optimization

techniques, such as convolutional layer caching and matrix multiplication optimiza-

tions, to boost the recognition speed (explained in detail in Sections 3.4.3 and 3.4.5).

DeepMon supports both OpenCL and Vulkan and was tested on phones with

Adreno and Mali GPUs. We present our evaluation results for various GPUs and

Vulcan in Section 3.5.6 and 3.5.7.

3.4.2 Loading Models into Mobile GPUs

Figure 3.3 shows the detailed flow of the model conversion and loading process.

First, the model convertor decides how to layout the input data into the memory

space. The challenge here occurs mainly because the memory space is linear while

the input data are multi-dimensional matrices. The wrong unfolding of the multi-

dimensional data into a linear space would result in huge fragmentation of the

data, which will slow down the convolution processing significantly. Intuitively,

the model converter lays out the data such that matrix multiplications can be done

by reading consecutive memory blocks and reusing them as much as possible once

they are in memory. This is particularly important for devices with low memory

41

Figure 3.3: The Flow of Model Conversation and Loading

bandwidth (e.g. Samsung Galaxy Note 4 and Sony Xperia Z5).

Once the data layout is decided, the model loader initializes all the necessary

additional layers (e.g. convolutional, pooling, fully-connected, etc.) within the

DeepMon’s recognizer. During initialization, DeepMon performs two important

tasks: (a) memory allocation and (b) kernel code compilation.

First, upon layer initialization, DeepMon needs to allocate memory spaces to

store the metadata (e.g. size of filters, input size, output size, etc.) or parameter

values. DeepMon stores all the metadata in the host memory (or CPU memory)

for easy data access and stores all the parameters in the device memory (or GPU

memory). The GPU memory space is allocated based on the API used (OpenCL or

Vulkan). The memory space for the actual input and output data is also allocated in

the GPU memory for efficient computation. This space can be mapped to the host

memory when necessary (e.g. to return final output to application).

Second, a specific kernel code, containing the code block to be parallelized by

42

(a) An image at time t0 (Left)
(b) An image at time t0 + 500ms (Middle)

(c) The same image blocks marked as black (Right)

Figure 3.4: Example First-Person-View Images

the layer, needs to be built and loaded. Building these kernel code is handled dif-

ferently for OpenCL and Vulkan. For OpenCL, a kernel is written in the OpenCL

C-like language. It does not require pre-built binary code for any specific device

– Instead, it supports compilation capabilities on the target device itself, making it

easy to be ported to other OpenCL-enabled devices. Vulkan, on the other hand, uses

SPIR-V (Standard Portable Intermediate Representation), an intermediate language

for graphics and parallel computation. In Vulkan, SPIR-V code can be loaded onto

various Vulkan-enabled devices without building binary code. DeepMon prepares

two separate convolutional implementations in advance and compiles the kernel

code on demand, based on the chosen API, when a layer is initialized and loads the

kernel into memory.

3.4.3 Convolutional Layer Caching

As shown earlier (Section 3.2), the convolutional layers are the main performance

bottlenecks. To accelerate the computation of these layers, we designed a caching

mechanism optimised for convolutional layers. Our key observation is that first-

person-view images tend not to change much over a short time duration. For ex-

ample, Figure 3.4 shows three first-person-view images; the left and middle images

were taken at time t0 and t0 + 500ms while the rightmost image, taken at time

43

t0 + 500ms shows the same image blocks (marked as black).

In particular, the background of images across multiple continuous image

frames often remains still while foreground objects tend to move. Such common-

ality in images incurs heavy repetition in the execution of convolutional layers as

applying the full pipeline on one image at a time applies the same convolution com-

putations on many different “repeated” frames and sub-frames.

Our caching mechanism reduces this repetitive computation significantly. A

plausible caching approach would be to reuse the final result from the previous

frame when the difference between frames is under a certain threshold (Chen et

al. [17] proposed a similar idea). However, this approach would not work in many

cases as foreground objects (that take a small portion of the entire image but are

important to recognize) tend to change noticeably while the background images do

not. This makes the previously cached results either stale (on a cache hit) or incurs

lots of cache misses. To overcome this, we cache the partial results of convolutional

layers – i.e., we reuse the convolution outputs for the unchanged blocks of an image

while recalculating convolutions for the changed blocks.

3.4.3.1 Caching Mechanism

The overall flow of our caching mechanism is as follows. First, we divide the image

into a grid (e.g. an 8x8 grid) where each grid block contains a fixed number of

pixels. During the execution, we compare corresponding blocks, b(t−1) and bt of two

consecutive images to determine if the outputs of the previous convolutional layer,

b(t−1), are reusable (i.e., it is a cache hit). Upon a cache hit, DeepMon skips the

convolution computation on the pixels within the entire block. DeepMon caches the

convolution outputs for the first N convolutional layers only (where N is determined

empirically for every model) since the computation for the later convolutional layers

are often quite small, and the caching overhead is higher than the benefit. Cached

values expire after a certain duration – for example, we set the default expiration

times, determined empirically, to 650ms for VGG-VeryDeep-16 and 1000ms for

44

0

10

20

30

40

50

60

0

20

40

60

80

100

4 6 8 10 12 14 16 18 20 22 24

H
it

 R
at

e
(%

)

C
ac

h
in

g
A

cc
u

ra
cy

 (
%

)

Number of Bins

Caching Accuracy Hit Rate

Figure 3.5: Effect of the Number of Bins on Caching

YOLO.

However, the key challenge with this caching scheme is that it is a non-trivial

task to determine if the two image blocks are similar or not. Indeed, if the image

comparison is too heavyweight, the caching overhead will quickly exceed its bene-

fit. There are a few image comparison algorithms with high comparison accuracy,

for example SIFT-based [64] and Hog-based [21] algorithms. However, their com-

putational cost is high and not suitable for our cache design (See Section 3.5.9 for

the relevant results.).

To solve this problem, we adopted a light-weight algorithm based on colour

histograms. For the two image blocks to compare, we compute the histogram of the

colour distribution and compute a chi-square distance metric. If the distance is less

than a pre-defined threshold, the cell is marked as ”reusable”.

For efficient caching, it is important to choose the right number of bins (to cal-

culate the histogram) and the distance threshold. We carefully chose the right pa-

rameters through empirical studies using AlexNet. First, we investigated the effect

of the number of bins by fixing the distance parameter to 0.005. Figure 3.5 shows

that as the number of bins increases, the accuracy increases while the number of

45

0

10

20

30

40

50

60

70

82

84

86

88

90

92

94

96

98

100

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

H
it

 R
at

e
(%

)

C
ac

h
in

g
A

cc
u

ra
cy

 (
%

)

Chi-Square Distance

Caching Accuracy Hit Rate

Figure 3.6: Effect of the Distance Values on Caching

“cacheable” blocks decreases; in the figure, the caching accuracy indicates how

closely DeepMon outputs the final classification results with respect comparing to

the original model. We also explored the effect of distance threshold – the number

of bins was set to 16. Figure 3.6 shows the trade-off between accuracy and cache

hit rates for various distance threshold values. We use the cross-over points of the

accuracy and hit rate to decide a plausible number of bins and distance threshold

value.

To make caching work efficiently along with our GPU-based recognizer, we

carefully re-implemented our GPU-specific kernels. Intuitively, we first initialize all

the memory spaces (that need to contain the output of a convolutional layer) with

the cached results. Only for those blocks with cache misses, DeepMon maps the

new outputs into the corresponding memory spaces. This makes updating uncached

results easy.

When reusing cached results, we had to be careful about the edges of an image

block. Figure 3.7 shows two examples of caching applied on a block size of 4x4

in a convolutional layer with a filter size of 3x3. Figure 3.7(a) shows an example

where a convolutional filter is applied to the edge of the cached block. In this case,

46

(a) Example with a 4x4 Block and a 3x3 Filter (Top)
(b) Example with two 4x4 Consecutive Blocks and a 3x3 Filter (Bottom)

Figure 3.7: Caching on the Edge of an Image Block

the output value becomes non-cachable as the 3x3 block being calculated may refer

to non-cachable data (data outside of cached block). For that reason, DeepMon

will not reuse the results for the edges of the block. However, when two or more

consecutive blocks can be cached, as shown in Figure 3.7(b), DeepMon reuses the

cached results for the edges that are shared by the cacheable consecutive blocks.

Importantly, for the models we are considering, the block size is quite large for

the first few convolutional layers (e.g. 28x28 pixels for the first layer for VGG-

VeryDeep-16), making this caching technique effective for all those layers.

3.4.4 Convolutional Layer Decomposition

We further optimize convolutional layers by decomposing the convolutional pa-

rameters. Convolutional layers are well-known to have redundant parameters [46],

making them computationally inefficient on resource-constrained devices. Prior re-

search have provided a few different methods (such as the tucker decomposition [50]

and CP decomposition [56]) to decompose a convolutional layer into three smaller

convolutional layers so that the total computation of the decomposed layers is less

than that of the original layer.

47

DeepMon adopts a variance of the Tucker decomposition named Tucker-

2 [50] over other alternatives since it is a better match to DeepMon’s caching

algorithm. The weights of a convolutional layer are often represented as a

tensor T of size [N x C x D x D] in which N and C are the numbers

of input and output channels, respectively, while D is the size of the filters.

Tucker-2 decomposes T into three smaller tensors T1, T2, T2 with the sizes of

[C’ x C x 1 x 1], [N’ x C’ x D x D], [N x N’ x 1 x 1] respectively, where the num-

ber of new input and output channels (i.e. N ′ and C ′) are reduced compared to

those in the original tensor (i.e. N and C). Intuitively, the decomposition reduces

the number of dot product operations from (N x C x D x D) to (C’ x C) + (N’ x C’ x

D x D) + (N x N’), enabling DeepMon to further reduce the latency.

Tucker-2 decomposition is more appropriate to be used with our caching tech-

nique due to its unique characteristic – two of the decomposed layers have the filters

with the size of [1 x 1]. [1 x 1] filters do not reduce the input size to the subsequent

layers, keeping the cacheable block size across layers; note that if the block sizes

get reduced, the overhead to compute cache hit/miss will increase, compromising

the benefit of caching. On the other hand, other decomposition methods use filters

larger than [1 x 1], reducing the size of cachable blocks and making the caching

less effective. Moreover, the [1 x 1] filter does not require separate handling of the

edges of cacheable blocks (as shown in the Figure 3.7). This enables us to develop

a more efficient GPU-kernel to reduce the latency further.

The non-trivial problem, here, is to choose the right N’ and C’. In practice,

manual trial and error is still a common yet inefficient approach that requires a

lot of effort. Instead, we devised a double binary search algorithm to reduce the

amount of effort needed. The key idea behind the algorithm is to find N’ and C’

that maximizes the variance when we reconstruct the original tensor (e.g. similar

to principle component analysis). We define the desired variance that we need to

sufficiently reconstruct the tensor and then use binary search to find the parameters

that best produce the required variance. Finally, we fine-tune the model to recover

48

from the possible loss in its accuracy.

3.4.5 Optimizing Convolutional Operation

The execution of a deep learning pipeline heavily relies on matrix multiplication.

However, linear algebra libraries for OpenCL (such as ClBlast and ViennaCL used

in Caffe) are tuned for desktop GPUs and do not perform efficiently on smartphones.

To accelerate convolutional operation, existing frameworks use a technique

called unfolding that converts inputs into a large matrix and then uses matrix multi-

plication on the unfolded input and filters to compute the result [16]. The unfolding

technique requires a large amount of memory and bandwidth when executing con-

volutional layers. Unfortunately, the memory bandwidth on mobile GPU is quite

small compared to server GPU. This makes the unfolding technique unsuitable for

DeepMon.

Deeper observations showed that convolutional operations performed without

unfolding tend to consume less bandwidth for memory access. However, it also

stores the data, in memory, in a non-contiguous fashion, making it inefficient when

running on memory-constrained mobile GPUs. Our second observation is that care-

fully laying out the convolutional weights in the format of [N x D x D x C] and its

input in [H x W x C] makes it more GPU friendly as we can read multiple items at

the same time using OpenCL functionality. We also note that Caffe and YOLO use

the format of [N x C x D x D] for the weights of convolutional layers.

Figure 3.8 shows the speedup between our implementation and conventional

unfolding approach. We benchmark two approaches using convolutional layers ex-

tracted from VGG-VeryDeep-16. We drop convolutional layer 7, 10, 12 and 13

from our benchmark since they have similar parameters to the other layers. We

extract unfolding kernel from Caffe and use ClBlast library (one of three linear al-

gebra used in Caffe) to do convolutional operations. Results show that on lower

bandwidth devices (Note 4 and Z5), our approach almost provides the better latency

49

0

0.5

1

1.5

2

2.5

3

Z5 - Adreno 430 Note4 - Adreno 420 S7 - Mali T880

Sp
ee

d
u

p

CONV1 CONV2 CONV3 CONV4 CONV5 CONV6 CONV8 CONV9 CONV11

Figure 3.8: Speedup Comparison with ClBlast

(speedup> 1). However, on S7, since the device has integrated LPDDR4 which has

doubled bandwidth comparing to two other devices, conventional approach starts to

benefit at some layers. We additionally validated the latency of convolutional lay-

ers with another commonly-used library, ViennaCL (on Caffe). We found out that

ViennaCL performs slower than ClBlast on Samsung Galaxy S7 – mainly due to its

lack of support to optimize various parameters.

We further reduce the processing latency of the convolutional operations by us-

ing half floating point precision in OpenCL. Since the memory bandwidth is limited

on the mobile devices (compared to desktop machines), it is highly useful to reduce

the size of memory reads and writes by half by dropping the last half digits of the

data. Our results, shown in Section 3.5, indicate that this optimisation is effective at

reducing latency without any significant impact on the accuracy.

3.4.6 Scaling to Various Mobile GPUs

We implemented a number of techniques to allow DeepMon to support various types

of mobile GPUs. The most important consideration was to adapt to the different

memory architectures of different mobile GPUs and the ways in which they read-

50

/write data from the main memory.

Mobile GPUs support unified memory access that allows GPUs to directly ac-

cess the main memory and use it as its own memory. However, the main memory

is shared among the many components of a mobile device and its data read/write

bandwidth is limited. This limited bandwidth could slow down the processing of

DeepMon as DNN execution usually requires the GPU to read a large amount of

data from the main memory.

One possible solution is to use local memory on the GPU chipset itself. The local

memory is a small memory (for instance 8KB on Adreno 330 and 32KB on Adreno

430) which is used as a cache to accelerate memory access during computation (data

is first loaded into local memory and is reused during computation). However, the

size and architecture of the local memory vary across different GPUs. For example,

different Adreno boards have different sizes of local memory while Mali GPUs

have no local memory. Such differences are the key challenge in making DeepMon

support different mobile GPUs.

We address this issue by building kernel codes that can exploit different amounts

of local memory (including a kernel code for no memory) and dynamically uses the

appropriate code at runtime. In particular, when executing convolution layers, if

the memory requirement for a single filter fits into the small local memory, we

adaptively use kernel code that supports that amount of local memory. Otherwise,

we use the non-local-memory version.

We also build the kernel code in a way that the filters within a convolutional

layer are shared to evaluate all input values. Accordingly, for the first layer of

VGG-VeryDeep-16, we can fit all 64 filters with the size of [3 x 3 x 3] into the

8KB local memory of the Xperia Z5. For the deeper layers that require more than

available local memory, DeepMon loads a subset of filters into the local memory

and compute partial outputs at a time. We also find out that the half floating point

approximation reduces the size of filters by half, allowing DeepMon to load more

filters into the local memory. Table 3.5 shows the processing time for the four first

51

conv 1 conv 2 conv 3 conv 4
(ms) (ms) (ms) (ms)

Host memory 78.66 667.10 340.59 757.12
GPU local memory 63.98 526.9 262.57 584.80

Table 3.5: Benefit of using GPU Local Memory

convolutional layers while executing VGG-VeryDeep-16 on the Sony Xperia Z5

phone. It indicates that the use of local memory accelerates the processing time by

23-30%.

3.5 Experiments

3.5.1 Experimental Setup

We extensively measured the performance of DeepMon with a variety of deep learn-

ing models and mobile GPUs.

Workloads. We used a variety of deep learning models as shown in Table 3.1.

We mainly report the results for two deep models, VGG-VeryDeep-16 and YOLO,

and report the results for other models only when they are significant. We used

the VGG-VeryDeep-16 model trained with the ILSVRC2012 train dataset [22] and

YOLO trained with the Pascal VOC 2007 train dataset [26].

Metrics and datasets. We used processing latency, accuracy, and power con-

sumption as our key evaluation metrics. For the latency, we measured the duration

to process an image, i.e., t1 − t2 where t1 is the time that DeepMon outputs the

inference result and t2 is the time that DeepMon receives the input image. For the

latency evaluation, we used two test datasets: (i) the UCF101 dataset [78] compris-

ing 13,421 short videos (less than a minute long) created for activity recognition

and (ii) LENA dataset [77] consists of 200 first-person-view videos captured from

Google Gla-sses, and report the average latency across all processed frames along

with the 95% confidence interval. We used the UCF101 dataset by default while we

report the performance for LENA dataset in Section 3.5.8 and Section 3.5.9.

52

For accuracy, we measured the percentage of accuracy drop compared to the

original models. We focused on the drop as our goal is not to improve the accuracy

but to keep it close to that of the original models while accelerating inference speed.

Note: unlike prior work [35], we did not reduce the total number of possible output

categories (e.g., the number of objects that can be recognized by the model). For

the accuracy evaluation, we used the ILSVRC2012 [22] validation dataset for VGG-

VeryDeep-16 and the Pascal VOC 2007 test dataset [26] for YOLO, and calculated

the average accuracy over each test dataset. For YOLO, we used the mean aver-

age precision (mAP), which is a standard metric to evaluate the YOLO’s accuracy

regarding both object recognition and localization [26].

Finally, we measured the power consumption using the Monsoon power mon-

itor [4]. We reported the average energy consumption of the smartphone while

processing an image in uAh by measuring the baseline energy consumption before

running the processing logic and deducting the baseline from the measured value.

For energy evaluation, we used the UCF101 dataset (the same dataset used in the

latency evaluation), and report the average energy consumption across all processed

frames along with the 95% confidence interval.

Alternatives. We compared the performance of DeepMon with other plausi-

ble smartphone-based alternatives such as basic-CPU and basic-GPU, and a few

cloud-based alternatives. basic-CPU only uses the mobile CPUs to compute the

full deep learning pipelines while basic-GPU utilizes the mobile GPUs for all pro-

cessing layers without optimization. For the cloud-based approaches, the mobile

device sends images to a cloud server, the server processes the images and return

the results back to the mobile device (details of the cloud-based alternatives are ex-

plained in Section 3.5.4). Also, to look into the benefit of DeepMon, we applied

different combinations of the optimization techniques presented in Section 3.4 such

as convolutional layer caching (denoted as CA in the figures), layer decomposition

(DC), and half floating-point calculation (HF).

Devices and APIs. We used a Samsung Galaxy S7 (with Mali T880 GPU), a

53

386
139

2976.79

644.84

3934.42

1006.73

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Basic-GPU DeepMon

La
te

n
cy

 (
m

s)

AlexNet
VGG-16
Yolo

Figure 3.9: Overall Processing Latency

Samsung Galaxy Note 4 (with Adreno 420), and a Sony Xperia Z5 (with Adreno

430) as our experiment devices. Unless mentioned, we used the S7 as the default

device. Also, we used the OpenCL implementation of DeepMon by default while

we measured the performance of the Vulkan 1.0 implementation in Section 3.5.7.

3.5.2 Processing Latency

We first study the overall processing latency of DeepMon in comparison with naive

approaches. Figure 3.9 shows the results, on an S7, for the three models: AlexNet

(trained with the ILSVRC2012 train dataset), VGG-VeryDeep-16 and YOLO.

The figure shows that DeepMon accelerates the processing of deep learning

models by 3-5 times compared to basic-GPU. DeepMon processes VGG-VeryDeep-

16, a model with 13 convolutional layers and 3 fully-connected layers, at the latency

of 644ms, enabling near real-time processing of continuous image streams. YOLO

takes about 1 second as it includes more number of convolutional layers to track

their locations of the objects.

For smaller models such as AlexNet (or equivalents such as VGG-F or VGG-M

with 5 convolutional layers and 3 fully-connected layers), DeepMon can process

54

2976

2196

1344 1414

912
1116

943

644

3934

3344

2098

1772 1773

1480

1172
1006

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Basic-GPU DeepMon
(CA)

DeepMon
(HF)

DeepMon
(DC)

DeepMon
(CA+HF)

DeepMon
(CA+DC)

DeepMon
(DC+HF)

DeepMon
(DC+HF+CA)

La
te

n
cy

 (
m

s)

VGG-16

Yolo

CA: Convolutional Layer Caching
DC: Layer Decomposition
HF: Half Floating-Point Optimization

Figure 3.10: DeepMon Latency Breakdown

an image with just 139 ms of latency. Note: The processing time of basic-CPU is

slower by one or two orders of magnitude depending on the model. It takes 6345ms

for basic-CPU to process an image using AlexNet, which is 45.6 times slower than

DeepMon.

Digging deeper, we analysed which DeepMon techniques contribute to the pro-

cessing benefits. Figure 3.10 shows the latency breakdown for VGG-VeryDeep-16

and YOLO while cumulatively applying the various optimization techniques. The

results show that all techniques significantly contribute to the latency reduction for

VGG-VeryDeep-16. For YOLO, the benefit of the caching was smaller than VGG-

VeryDeep-16 as the layer decomposition technique highly optimizes the first few

convolutional layers, making the reuse of the cached results less beneficial.

3.5.3 Recognition Accuracy

Next, we investigate how much accuracy DeepMon compromises in return for the

latency benefits. Figure 3.11 shows the classification accuracy of the original VGG-

55

89.9
83.94

63.4
58.14

0

20

40

60

80

100

0

20

40

60

80

100

Original Models DeepMon

m
A

P
 (

%
)

R
ec

o
gn

it
io

n
 A

cc
u

ra
cy

 (
%

)

VGG-16

Yolo

We reported the classification accuracy for VGG-VeryDeep-16 and the
mean average precision (mAP) for YOLO.

Figure 3.11: Recognition Accuracy

0.5

2.83
2.6

5.43

3.21 3.12

5.95

0.7

3.06

1.62

4.6

3.7

2.2

5.26

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

DeepMon
(DC)

DeepMon
(CA)

DeepMon
(HF)

DeepMon
(CA+HF)

DeepMon
(CA+DC)

DeepMon
(DC+HF)

DeepMon
(DC+HF+CA)

m
A

P
 D

ro
p

 (
%

)

R
ec

o
gn

it
io

n
 A

cc
u

ra
cy

 D
ro

p
 (

%
)

VGG-16
Yolo

CA: Convolutional Layer Caching
DC: Layer Decomposition
HF: Half Floating-Point Optimization

Figure 3.12: Breakdown of DeepMon Accuracy Drop

56

VeryDeep-16 and the mAP of YOLO as well as the converted models optimized to

run on DeepMon. The figure shows that DeepMon drops about 5-6% of accuracy

while accelerating the latency 4-5 times. We designed our techniques to keep the

properties of the original architecture, thus minimizing the impact on the recogni-

tion output. Note that Fast-YOLO [70], a lightweight version of YOLO shows the

lower mAP of 52.7%, which is 5.44% lower than that of DeepMon, while the latency

benefit of Fast-YOLO was similar to DeepMon (i.e.,≈4.5 times when experimented

on Samsung S7).

We further analysed which of DeepMon’s components contributed to the accu-

racy drop. Figure 3.12 shows the results by applying the three different techniques

that affect the accuracy. The accuracy drop by layer decomposition is marginal, in-

dicating that our binary-search-based decomposition selects suitable decomposition

parameters. Also, the convolutional layer caching reduces accuracy by about ≈3%,

showing that the use of cached results marginally affects the accuracy for video

streams.

3.5.4 Comparison with Other Approaches

We now compare the processing latency of DeepMon with DeepX, the state-of-

the-art mobile deep learning inference engine. Figure 3.13 shows the latency and

accuracy drop of DeepX and DeepMon; we ran AlexNet using the SnapDragon 801

processor. DeepX consumes 500ms to process an image with an accuracy drop of

5%. DeepMon’s latency was 269ms, twice as fast as DeepX, when all techniques

are applied while its accuracy drop was 1% higher at 6%. DeepMon can be adjusted

to only use the layer decomposition method which achieves 333ms latency (≈33%

faster than DeepX), but with only a 1.6% accuracy drop.

We also compared the latency of DeepMon with the cloud-based alternatives.

Figure 3.14 shows the results. We used three different cloud variants: edge-strong,

remote-strong, and remote-weak. For, edge-strong, the mobile phone and the server

57

500

334

268.8

0

100

200

300

400

500

600

DEEPX DEEPMON
(DC)

DEEPMON
(DC+HF+CA)

La
te

n
cy

 (
m

s)

5

1.6

6

0

1

2

3

4

5

6

7

DEEPX DEEPMON
(DC)

DEEPMON
(DC+HF+CA)

A
cc

u
ra

cy
 D

ro
p

 (
%

)

(a) Inference Latency (Left)
(b) Accuracy Drop (Right)

Figure 3.13: Comparison to DeepX on Samsung Galaxy S5

238.59

502.17

644.84

170.75 181.1

1006.73

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Edge-Strong Remote-Strong Remote-Weak DeepMon

La
te

n
cy

 (
m

s)

VGG-16

Yolo

21694 12114

Figure 3.14: Comparison with the Cloud-based Approach

58

was connected through the local Wi-Fi network while the server is equipped with a

NVidia GTX 980 GPU (2,048 GPU cores, 8GB memory size and 224GB/s memory

bandwidth). For remote-strong and remote-weak, we used Amazon EC2 servers (in

particular g2.2xlarge and t2.medium instances respectively) located in the EC2 Asia

Pacific (Singapore) datacenter. remote-strong was equipped with a K520 GPU (with

8 cores and 15 GB of memory) with while remote-weak had no GPU. We used the

Caffe [47] and YOLO [70] frameworks to run the models on the cloud.

edge-strong is 2.7 times faster than DeepMon while remote-strong is only 28%

faster than DeepMonfor VGG-VeryDeep-16. The latencies of remote-weak were

33.6 and 12 times slower than DeepMon , respectively, due to its CPU-based exe-

cution of deep learning models. This suggests that we can leverage cloud services

for home- or office-based applications where the user can offload the data safely

to the edge servers with low networking latency and fewer privacy concerns. On

the other hand, we need to be careful about using the remote clouds even when

the users are willing to send the data. The cost for remote-strong (using g2.2xlarge

server instance) is 1 USD per hour, imposing huge service cost for continuous vi-

sion applications. We can use less powerful instances, although doing so might not

improve the latency as indicated by the numbers for remote-weak.

3.5.5 Power Consumption

We now investigate the power consumption of DeepMon in comparison with basic-

GPU, remote-strong, and remote-weak. Figure 3.15 shows the overall power con-

sumption for each approach along with the breakdown. All DeepMon measurements

were done on Samsung Note 4 as it has a detachable battery that could be tapped

with the Monsoon power meter.

The figure shows that DeepMon is lower than the power consumption of basic-

GPU by more than 5 times for both VGG-VeryDeep-16 and YOLO. This savings is

mostly from the reduced processing time. remote-strong consumes 3 times lesser

59

1441.21

569.97

402.37

267.02

86.01

0

200

400

600

800

1000

1200

1400

1600

Basic-GPU DeepMon (DC) DeepMon
(DC+HF)

DeepMon
(DC+HF+CA)

Remote-Strong

En
e

rg
y

(u
A

h
)

Figure 3.15: Overall Power Consumption

power as the mobile device consumes power only to send the image to the cloud and

then goes into power saving mode until it receives the result. However, as stated

earlier, you need a large expensive server instance to see small latency benefits

compared to DeepMon.

3.5.6 Latency on Other Mobile GPUs

We next studied the processing latency of DeepMon across different GPUs. We

used a Samsung Galaxy Note 4 (with Adreno 420) and a Sony Xperia Z5 (Adreno

430). Figure 3.16 shows the results. While the latency reduction pattern by all our

optimization strategies remains similar, the absolute processing latency increases by

2.4 times for the Note 4 and 2.34 times for the Z5, compared to the Samsung Galaxy

S7 (with Mali T 880). Even though the direct comparison between Mali and Adreno

is non-trivial, Mali’s faster performance is likely to result from having more GPU

cores and higher memory bandwidth compared to Adreno 420 and 430. We also

noticed that the original VGG-VeryDeep-16 model cannot be run on Z5 due to the

limitations of the heap memory size – although it can run after the decomposition

technique reduces the model size by half.

60

7553

3343

2526

1553

0

3091

2273

1510

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

GPU-Base DeepMon (DC) DeepMon (DC+HF) DeepMon
(DC+HF+CA)

La
te

n
cy

 (
m

s)

Note-4

Z5

Figure 3.16: Processing Latency for Different GPUs

3.5.7 Latency of Vulkan

We also explored the performance of the Vulkan implementation of DeepMon.

We used the Samsung Galaxy S7 that supports both Vulkan and OpenCL. Fig-

ure 3.17 shows the processing time per convolutional layer for VGG-VeryDeep-16.

Even though there are small differences in processing time per layer (compared to

OpenCL), all our techniques are equally effective on Vulkan as well, resulting in

similar overall processing times.

3.5.8 Performance on First-Person-View Videos

We further evaluated the latency and accuracy of DeepMon over the first-person-

view dataset, LENA, which could be the typical workload for DeepMon. For ac-

curacy, we reported the percentage of frames that the base model and DeepMon

outputs the different classification result – we define this as the output difference ra-

tio. For VGG-VeryDeep-16, we consider that the output is different when the top-1

classification results of the base model and DeepMon are different. For YOLO, we

consider that the output is different when the positions of the detected object (in-

dicated as rectangles on the image) overlap less than 50% (i.e., Intersection-Over-

61

0

50

100

150

200

250

300

350

400

450

La
te

n
cy

 (
m

s)

OpenCL

Vulkan

Figure 3.17: Performance of Vulkan

Union (IoU) ¡ 50%).

Figure 3.18 shows the latency of DeepMon on the entire LENA dataset. Deep-

Mon shows ≈4 times of overall latency reduction, which is comparable to the ben-

efit over the UCF101 dataset. In particular, our caching technique reduced ≈22%

and ≈13% of the total execution times of VGG-Verydeep-16 and YOLO, respec-

tively. The reduction rate was slightly decreased compared to that of the UCF101

dataset since the first-person-view videos tend to have more frequent changes in the

recorded scenes due to continuous head movement. However, the results show that

our caching technique is still effective for the first-person-view videos.

Figure 3.19 shows the output difference ratio. DeepMon produces different

outputs for 25.89% and 12.28% of the total frames compared to the base VGG-

VeryDeep-16 and YOLO models, respectively. We empirically looked into such

differently-classified frames and found out that most of those frames are not cor-

rectly classified or do not have a matching class in the base model, margin-ally

affecting the actual accuracy.

Interestingly, the output difference ratio of VGG-Verydeep-16 is much higher

than that of YOLO. This is because VGG-Verydeep-16 always outputs one of the

62

2989

2450

766

3979

3524

1123

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Basic-GPU DeepMon (CA) DeepMon (DC+HF+CA)

La
te

n
cu

y
(m

s)

VGG-16

Yolo

Figure 3.18: Latency on the LENA Dataset

25.89

6.21

9.59

12.28
13.72

11.72

0

5

10

15

20

25

30

VGG-16 VGG-16
(≥75%)

VGG-16
(≥50%)

YOLO YOLO
(≥75%)

YOLO
(≥50%)

O
u

tp
u

t
D

if
fe

re
n

t
R

at
io

 (
%

)

VGG-16(≥75%) indicates the accuracy evaluated only on the videos with
the average confident score above 75%. Similar explanation applies to
VGG-16(≥50%), YOLO(≥75%), and YOLO(≥50%).

Figure 3.19: Accuracy on the LENA Dataset

63

SIFT-based Histogram-based
Overhead (ms) 2,580 4.77
Overall latency change (ms) 2,064 -534

(increased) (decreased)
Output difference ratio (%) 3.875 6.21
Cache hit rate (%) 31.4 35.52

Table 3.6: Caching Performance Analysis

1,000 pre-trained classes even though the target frame is unlikely to be one of

the 1,000 classes; for the consecutive frames with low classification confidences,

their top-1 classified objects vary sensitively from one frame to another (although

the frames include the same object), making our caching results different from the

newly calculated ones. We further calculated the output difference ratio only over

the videos that have the average classification confidence higher than 75% and 50%,

and the output difference ratio was reduced to 6.21 and 9.59, respectively. For

YOLO, the output difference ratio did not vary much since the model eliminated

”others” when its classification confidence was below a certain threshold.

3.5.9 Convolutional Layer Caching Performance

We further studied how our caching technique performed over the LENA dataset.

We used Vgg-VeryDeep-16 for this study. Table 3.6 shows the results on the videos

with the average confidence score over 75%. DeepMon (with its histogram-based

caching) shows the average latency reduction of 538 ms. The benefit comes from

35.52% of cache hits, significantly reducing unnecessary recalculation of convolu-

tion operations. We noticed that the latency reduction was ≈20% less than that of

the UCF101 dataset. As expected, the cache hit rate over LENA, the first-person-

view dataset, was lower compared the cache hit rate over the UCF101 dataset. This

is mainly because head-mounted cameras tend to move more than third-person-view

cameras, resulting in bigger differences between the two consecutive images.

We also compared our proposed histogram-based caching algorithm against an

alternative using SIFT features [64]. Although SIFT-based algorithm provides the

64

Base Base+HF DC DC+HF
VGG-Verydeep-16(MB) 578 289 517 258.5
YOLO(MB) 1,116 558 1,002 501

”Base” indicates the original model.

Table 3.7: Memory Footprint

lower output difference ratio (3.875%) than the ratio of the histogram-based algo-

rithm (6.21%), extracting SIFT features from multiple blocks of an image is highly

time-consuming; it took over 2.5 seconds to calculate SIFT features for an image

(across all convolutional layers). Due to high overhead to calculate the SIFT fea-

tures, it cannot be used to compare image blocks for caching. On the other hand, our

histogram-based approach can compare blocks of an image within 5 ms, making it

much more suitable to be adopted for our caching algorithm.

3.5.10 Memory Footprint

Table 3.7 shows the memory footprint for VGG-Verydeep-16 and YOLO. The mem-

ory usage is well within the available memory spaces of commodity mobile devices,

showing that DeepMon manages its memory usage efficiently. Also, the decompo-

sition and half-floating point approximation reduce the memory usage of DeepMon;

they reduce the memory usage from 578MB and 1116MB down to 258.5MB and

501MB for VGG-Verydeep-16 and YOLO, respectively. For the models that re-

quire large memory spaces, other optimization techniques such as Singular Value

Decomposition (SVD) [54] can be applied to further reduce the memory usage.

DeepMon mainly uses the memory to load the model and stores input and output

of a layer. DeepMon stores the entire model within system memory for efficient

inference since it is time-consuming to load the model on-demand from the external

memory. On the other hand, DeepMon only stores input and output of the currently

executing layer – it discards all output data from previous layers once they become

of no use to keep memory usage as low as possible. Accordingly, memory usage of

65

DeepMon is capped at the size of the model and the largest input and output size of

a single layer.

66

Chapter 4

D-pruner: Filter-based pruning

method for deep convolutional neural

network

The emergence of augmented reality devices such as Google Glass and Microsoft

Hololens has opened up a new class of vision sensing applications. Those applica-

tions often require the ability to continuously capture and analyze contextual infor-

mation from video streams. They often adopt various deep learning algorithms such

as convolutional neural networks (CNN) to achieve high recognition accuracy while

facing severe challenges to run computationally intensive deep learning algorithms

on resource-constrained mobile devices. In this paper, we propose and explore a

new class of compression technique called D-Pruner to efficiently prune redundant

parameters within a CNN model to run the model efficiently on mobile devices.

D-Pruner removes redundancy by embedding a small additional network. This net-

work evaluates the importance of filters and removes them during the fine-tuning

phase to efficiently reduce the size of the model while maintaining the accuracy of

the original model. We evaluated D-Pruner on various datasets such as CIFAR-10

and CIFAR-100 and showed that D-Pruner could reduce a significant amount of pa-

rameters up to 4.4 times on many existing models while maintaining accuracy drop

67

less than 1%.

4.1 Introduction

The appearance of augmented reality devices such as Google Glass and Microsoft

Hololens has been opening up various new vision sensing applications. The core

function of these applications is to continuously capture contexts of users and sur-

roundings from streaming video data and enable situational interactions with users.

For example, a virtual assistant system for dementia patients identifies objects and

people near to the patient and provide the patient with the intelligent guidance in

real-time [13]. Recently, deep learning algorithms such as a convolutional neural

networks (CNN) have been actively adopted for various computer vision tasks such

as image recognition, object detection, and identification tasks to achieve higher

recognition accuracy [36, 76, 81].

The key challenge to enable continuous vision applications is to run the state-

of-the-art CNN models efficiently on resource-constrained mobile devices. Recent

CNN models such as VGG-16 [76], ResNet [36], and Inception [81] often require

a huge amount of computational resources regarding CPU/GPU cycles or mem-

ory usage, making their execution slow on mobile devices. For instance, VGG-16

and ResNet-152 require 15.3 GLOPS and 11.6 GLOPS to recognize a single im-

age, which often takes at least hundreds of milliseconds on the commodity smart-

phones [44, 45, 54]. To address this problem, cloud offloading is often considered.

However, the offloading approach has critical privacy concerns as it may expose a

massive volume of private images and videos of users to the cloud.

Previous works [12, 24, 33, 50, 87] have shown that CNNs usually have a lot

of redundancy in terms of filters and parameters. The problem is further aggravated

since developers often leverage transfer learning [67] to fine-tune the state-of-the-

art models on new datasets to increase recognition accuracy. For example, the first

13 convolutional layers in VGG-16 can be used to provide robust features for a

68

variety of new tasks such as classifying different types of fruits or animals which are

not available in the ImageNet dataset [22]. Developers can attach a few additional

layers on top of the existing 13 layers to fine-tune the network on new datasets.

In many cases, if we don’t process it carefully, transfer learning makes the model

unnecessarily large and redundant to run on mobile devices.

Compression of the neural networks has been actively studied for efficient exe-

cution of deep neural networks. Some works [12, 24] focus on approximating each

layer separately via factorization techniques and fine-tune the whole network to re-

store accuracy. However, without global knowledge about relationships between

lower and upper filters, independent pruning of filters might lead to significant loss

in recognition accuracy.

In this paper, we propose a general technique called D-Pruner to reduce the

memory footprint and computational cost of many existing and transferred CNN

models. D-Pruner automatically figures out redundant filters in convolutional lay-

ers and removes them to make the model smaller in terms of memory and computa-

tional requirements. Its key idea is to embed a small network called masking layer

into every convolution layer to score how effectively each filter contributes to the

outcome. Masking layers removes only low scored filters and fine-tune the network

to keep the accuracy while pruning out the unnecessary filters. By learning the ex-

tended network end-to-end, D-Pruner can figure out the relationship between filters

and make a better pruning decision.

We conducted several experiments on two different datasets (CIFAR-10 and

CIFAR-100 [51]) to evaluate D-Pruner. Our results show that D-Pruner can com-

press existing models to be 4.4× and 2.76× smaller in terms on memory footprint,

4.57× and 2.9× better in term of computational cost on CIFAR-10 and CIFAR-

100 respectively. In our latency tests, pruned models on CIFAR-10 and CIFAR-100

achieve the speedup of 1.85× and 1.61× on Samsung Galaxy S7 device. Further-

more, D-Pruner achieves 8% smaller in size with accuracy of 90.48% comparing to

pruned VGGNet with accuracy of 90.5% as proposed in DeepIoT [87] on CIFAR-

69

Figure 4.1: Convolutional Neural Network Architecture

10. We believe that mobile developers would be beneficial from D-Pruner to build

small and efficient CNN models for many vision sensing tasks.

The contribution of our paper can be summarized as follows:

• We propose D-Pruner , a simple but effective compression technique to re-

move redundancy within existing and transferred CNN models. D-Pruner

introduces a novel concept of the masking block to figure out redundant fil-

ters which have low impacts on final accuracy.

• We leverage the knowledge from the training set to effectively remove only a

subset of redundant filters to maintain accuracy at the highest level.

• We conducted intensive experiments using two different datasets on two net-

work architectures to demonstrate the usefulness of D-Pruner. Our results on

CIFAR-10 and CIFAR-100 [51] show that D-Pruner can compress existing

models to be 4.4× and 2.76× smaller in terms on memory footprint, 4.57×

and 2.9× better in term of computational cost on CIFAR-10 and CIFAR-100

respectively. In our latency evaluation, pruned models on CIFAR-10 and

CIFAR-100 achieve the speedup of 1.85× and 1.61× on Samsung Galaxy

S7 device.

4.2 Convolutional Neural Network

Since AlexNet architecture was proposed in 2012 [22], there have been many sig-

nificant changes in the first network architecture (Figure 4.1) to improve the ca-

70

pabilities of CNN on many computer vision tasks. One interesting change is the

replacement of fully connected layers or dense layers by [1×1] convolutional layer

and global average pooling in many state-of-the-art models such as ResNet [36], In-

ception network [81]. As dense layers consume the most parameters in CNN [44],

this change significantly reduces the size (or memory footprint) of state-of-the-art

models. However, as modern networks still rely heavily on convolutional layers to

extract meaningful visual features, high computational cost is still an open prob-

lem [44].

There are two widely used methods to reduce computational cost in CNN. The

first method is to use factorization techniques such as SVD (singular-value decom-

position) to approximate the weights matrices during inference step to reduce the

total processing operations. However, this approach tends to have high accuracy

loss on very deep networks [12, 54]. The second method is to prune the redundant

filters to achieve simpler but more efficient CNNs. As the computational cost is

proportional to the number of filters, pruning unnecessary filters will result in im-

proving both training and inference time. Many works have shown potential results

using this approach [50, 87].

D-Pruner follows the latter approach by recognizing redundancy automatically

during fine-tuning process. D-Pruner is designed as a general technique to com-

press any modern CNN models to be smaller and less resource-consuming to work

efficiently on both servers and mobile devices.

4.3 D-Pruner Algorithm

In this section, we first introduce briefly how the technique works. Secondly, we

provide details about our novel masking block to determine removable filters. Fi-

nally, we show how the training process takes place to prune unnecessary parame-

ters based on the knowledge from masking blocks.

The algorithm works in multiple pruning iterations. In each iteration, we first

71

expand all convolutional layers with extra layers called masking blocks to score

how much each filter impacts on final accuracy. Each masking blocks will output

a set of candidate filters to be removed for each particular image input. In order to

prune only filters that have little impacts on the outcome, we leverage the all training

images to collect the probability to be removed of each filter. We only remove those

with high probability of being removed (e.g. over 95% on training set). We then

fine-tune the new network to recover original accuracy and achieve a smaller model.

Finally, we repeat the pruning process again until it converges (e.g. accuracy drop

is above certain threshold.).

4.3.1 Masking Block

The goal of masking block is to determine removable filters during the pruning

process. For example, fine-tuning ImageNet models such as VGG-16 or ResNet

to detect multiple types of fruits might contain a lot of redundant filters to recog-

nize animals, which can be removed to make the model smaller and simpler. By

attaching masking block to convolutional layer, it will inspect the output of every

filter and score how effectively they affect the final outcome. Hence, unnecessary

filters may be removed if they have no or little impact on the final accuracy. Fur-

thermore, masking block incurs very small computational overhead and should be

easily fine-tuned.

Our masking block is inspired by SE block in Squeeze-and-Excitation net-

work [40] which is used to measure the importance of each filter within a single

convolutional layer. We leverage SE block and add masking function in order to

filter out top-K unimportant filters.

Masking block as shown in Figure 4.2 consists of an average pooling followed

by 2 dense layers and a softmax layer to compute the score of each particular filter.

Afterwards, the masking layer takes the scores, a maximum number of filters K to be

removed and outputs the binary masks which zero out top-K lowest scores. At the

72

Conv

Avg.
Pooling

FC -
RELU

FC

M
U

L

Soft-
max

Masking

Output

Masking block

Figure 4.2: Masking Block

end, we multiply the masks and previous output of convolutional layer to remove

all unnecessary outputs corresponding to removed filters. Hence, only remaining

output will contribute to the final outcome during fine-tuning process.

4.3.2 Pruning Method

The pruning process consists four main stages as described in Algorithm 2.

• Firstly, we attach masking blocks to original network as shown in Figure 4.2

and fine-tune the network on training set (line 4). We fix the original network

and train only the masking blocks for first few epochs and then fine-tune the

whole network for few more epochs afterwards. (line 5)

• Secondly, we predict which filters should be removed within the final network

architecture. As the masking block outputs a set of removable filters for every

single image input, one filter can be removed for a particular input but can be

preserved for another. We collect the removal distribution of each filter on the

all training images and only remove the filters that have removable probability

higher than predefined threshold (e.g. 95%) (line 6-14). For instance, the first

convolutional layer of VGG-16 has 64 filters. If we use K=10 filters, during

73

the training phase, masking block will automatically zero-out all the output of

10 filters with lowest scores on each training image. Only 54 remaining filters

will contribute to the final output. However, masking block does not always

produce the same 10 filters for every training image. In order to make correct

pruning decision, we use all training images to collect the probability to be

removed of all 64 filters and remove only those have higher than a threshold

T.

• Finally, we build a new network by removing masking blocks and removed

filers from previous step (line 15). We transfer the learned parameters to the

new network and fine-tune it for few epochs to recover original accuracy (line

16-17).

• We update the new model if validation accuracy is within affordable range

(line 18-21) and repeat the pruning process until we satisfy with the result or

final accuracy drops below a certain threshold (line 3).

4.4 Experiments

4.4.1 Experiment Setup

Datasets. We evaluated D-Pruner by compressing existing models on two datasets:

CIFAR-10 and CIFAR-100 [51]. Each dataset consists of 60.000 32x32 color im-

ages (50.000 images for training and 10.000 images for validation). CIFAR-10 and

CIFAR-100 contains images in 10 and 100 classes respectively.

Models. We trained the ALL-CNN-C model from [79] which achieves accu-

racy of 90.19% on CIFAR-10 and 61.71% on CIFAR-100. In order to show the

robustness of D-Pruner on variety of architectures, we also trained NIN (network

in network) model from [59] which achieves accuracy of 89.39% on CIFAR-10

for further evaluations. Unlike other models such as VGGNet [87] that use dense

74

Algorithm 2 Pruning Algorithm
Data: Network O, Dataset D, const K, theshold T, epochs N
Result: Network P

1 acc← acc(O)
2 P← Network O
3 while acc ≥ expected accuracy do
4 P’← Network P + {masking blocks}
5 Finetune P’ on D for N epochs
6 R← {}
7 for ∀ masking block l in P’ do
8 for ∀ filter f in l do
9 Prf ← P(mask(f) == 1 — D)

10 if Prf ≤ T then
11 R← R ∪ {f}
12 end
13 end
14 end
15 P”← Network P - R
16 Transfer learned paraemters from P’ to P”
17 Finetune P” on D for N epochs
18 if acc(P”) ≥ acc then
19 acc← acc(P ′′)
20 P ← P ′′

21 end
22 end

75

CIFAR-10
M1 M1(*) Impr. NIN NIN(*) Impr.

Acc.(%) 90.19 89.34 -0.85 89.39 88.83 -0.44
Params. 1.3M 310K 4.4× 966K 348K 2.77×

Ops 281M 61M 4.57× 222M 132M 1.68×
Lat (ms) 211(±8) 113(±14) 1.85× 185(±25) 131(±11) 1.41×

CIFAR-100
M1 M1(*) Impr.

Acc.(%) 61.71 61.08 -0.63
Params. 1.3M 501K 2.76×

Ops 282M 97M 2.9×
Lat (ms) 208(±11) 129(±14) 1.61×

M1 : ALL-CNN-C (*): pruned model
Impr.: Improvement

Table 4.1: Overall Performance of D-Pruner

CIFAR-10
M1 M1(*) M1(**) VGGNET VGGNET-DEEPIOT

Acc.(%) 90.19 90.48 89.34 90.5 90.5
Params. 1.3M 664K 310K 29.7M 724K

M1: ALL-CNN-C (*): Pruned model at 4th iteration (**): Final pruned
model

Table 4.2: Comparison with DeepIoT

layers for classification, both networks in our evaluations use only convolutional

layers which results in fewer number of parameters while achieving similar accu-

racy. ALL-CNN-C and NIN uses approximately about 281M and 222M Mul-Add

operations respectively. Network architectures of ALL-CNN-C and NIN models on

CIFAR-10 are shown in Table 4.3.

Training process. We used Keras [19] in D-Pruner’s implementation. For every

pruning step, we tried to remove K = 20% of the filters and fine-tuned the network

for N = 35 epochs (10% of number of epochs we used to train original network). We

used Nesterov Gradient Descent [65] for fine-tuning with learning rate, momentum

and decay set to 0.01, 0.9 and 0.000001 respectively. We also used threshold T of

0.95 to determine which filter will be removed. We repeated the pruning process for

several iterations until there was no filter to be removed or the expected accuracy

76

Filter Shape
Type / Stride - Activation ALL-CNN-C NIN

Conv1 / s1 - ReLU 3×3×3×96 5×5×3×192
Conv2 / s1 - ReLU 3×3×96×96 1×1×192×160
Conv3 / s2 - ReLU 3×3×96×96 1×1×160×96
Conv4 / s1 - ReLU 3×3×96×192 5×5×96×192
Conv5 / s1 - ReLU 3×3×192×192 1×1×192×192
Conv6 / s2 - ReLU 3×3×192×192 1×1×192×192
Conv7 / s1 - ReLU 3×3×192×192 3×3×192×192
Conv8 / s1 - ReLU 1×1×192×192 1×1×192×192
Conv9 / s1 - ReLU 1×1×192×10 1×1×192×10

Global Average Pool / s1
Softmax

Table 4.3: Network Architectures

loss was larger than 1%.

Metrics. We use accuracy, number of parameters, amount of mul-add opera-

tions and processing latency as our key performance metrics. For latency evaluation,

we evaluated pruned models using DeepMon framework [45] and report the average

latency on Samsung Galaxy S7 (with Exynos 8890 processor and Mali-T880 GPU).

4.4.2 Overall Results

Overall, D-Pruner successfully compresses investigated models to be much smaller

and less computational consuming. Table 4.1 shows the performance of pruned

versions of ALL-CNN-C and NIN models on both CIFAR-10 and CIFAR-100.

On CIFAR-10, D-Pruner easily compress both ALL-CNN-C and NIN models

to be 4.4× and 2.77× smaller in memory footprint (in terms of number of parame-

ters). It also reduces 4.57× and 1.68× computational cost (in terms of the amount

of require Mul-Add operations) in ALL-CNN-C and NIN models respectively. We

notice that performance of D-Pruner on ALL-CNN-C model is significantly higher

than on NIN network due to several reasons. First, original NIN model has 1.34×

less number of parameters comparing to ALL-CNN-C model which makes reduc-

tion in memory footprint seem to be lower. Second, NIN network leverages [1×1]

77

90.2

90.8

90.4
90.1

90.5
90.3

90.4

89.8
89.9

90.0
90.2

89.9

89.3 89.3

88.8

87

87.5

88

88.5

89

89.5

90

90.5

91

91.5

Orig. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
cc

u
ra

cy
 (

%
)

Pruning Iteration
(a) CIFAR-10

61.7

63.1

63.4

62.8 62.8

62.4

61.1

60.6

59

59.5

60

60.5

61

61.5

62

62.5

63

63.5

64

Orig. 1 2 3 4 5 6 7

A
cc

u
ra

cy
 (

%
)

Pruning Iteration
(b) CIFAR-100

Figure 4.3: Accuracy

convolutional filter which results in significantly reduction in computational cost,

which explains why computation cost is reduced only 1.68× while memory foot-

print is reduced 2.77×. In latency evaluations, pruned models from ALL-CNN-C

and NIN networks improves inference time up to 1.85× and 1.41× respectively.

Similarly, pruned version of ALL-CNN-C achieves 2.76×, 2.9× and 1.61× re-

duction in memory footprint, computational cost and inference time on CIFAR-100.

4.4.3 Performance Breakdown

Next, we investigate how D-Pruner affects the models during each pruning iteration

in terms of accuracy, amount of parameters, number of Mul-Add operations and

the amount of filters in each convolutional layer using results from pruning ALL-

CNN-C model. In general, giving the expected accuracy drop, D-Pruner gradually

compresses the model by pruning unnecessary filters over various iterations and

makes it smaller in terms of memory footprint and computational cost while trying

its best to maintain the highest accuracy.

Impacts on Accuracy We now investigate the impact of D-Pruner on the final

accuracy. Figure 4.3 shows the accuracy of pruned models during multiple pruning

78

0

200

400

600

800

1000

1200

1400

1600

0

50

100

150

200

250

300

Orig. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
u

m
b

er
 o

f
Pa

ra
m

et
er

s
(i

n
 K

 p
ar

am
s.

)

N
u

m
b

er
 O

f
M

u
l-

A
d

d
 O

p
er

at
io

n
s

(i
n

 M
 o

p
s.

)

Pruning Iteration

Num Ops.

Params

Figure 4.4: Parameters and Operations Reduction on CIFAR-10

iterations on both CIFAR-10 and CIFAR-100. We achieve accuracy of 89.34% and

61.08% comparing to 90.19% and 61.71% from original models after 13 and 6

pruning iterations on CIFAR-10 and CIFAR-100 respectively.

Firstly, we notice that it takes us 14 and 7 iterations to make the accuracy loss

above 1% threshold on CIFAR-10 and CIFAR-100. This implies that the original

models tend to have a lot of redundancy and D-Pruner can effectively prune them

without significant loss in the final accuracy.

Secondly, we figure out that accuracy increases for the first few iterations which

indicates that the some redundancy negatively affects the accuracy. Hence, D-

Pruner can be used to slightly improve accuracy by eliminating most negatively

redundant parameters.

Finally, we also want to note that the pruning process converges faster on

CIFAR-100 than CIFAR-10. As we use same architecture on both tasks, it is under-

standable that classifying 100 classes requires more network capacity in terms of

filters and parameters than classifying 10 classes.

79

100

120

140

160

180

200

220

Orig. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

La
te

n
cy

 (
m

s)

Pruning Iteration

CIFAR-10
CIFAR-100

Figure 4.5: Latency

4.4.3.1 Impacts on Parameters and Operations

Next, we investigate on how many parameters and number of operations D-Pruner

can prune during each iteration. Figure 4.4 shows that both the number of param-

eters and operations gradually decrease during pruning process. At 13th iteration,

we achieve 4.4× and 4.57× reduction in number of parameters and Mul-Add oper-

ations on CIFAR-10. As D-Pruner’s optimization is to reduce the number of filters

during each pruning iteration, both parameters and number of operations would al-

ways decrease during the pruning process.

Similarly, we also see the same trend on CIFAR-100 dataset which results in

2.76× and 2.9× improvement on model’s parameters and number of Mul-Add op-

erations.

4.4.3.2 Impacts on Latency

We also explore the performance of pruned models on existing mobile deep learning

frameworks. Figure 4.5 shows the latency per pruning iteration on both datasets us-

ing DeepMon framework. We achieve the speedup of 1.85× and 1.61× on CIFAR-

10 and CIFAR-100 respectively.

80

10

30

50

70

90

110

130

150

170

190

Orig. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
u

m
b

er
 o

f
[3

x3
]

Fi
lt

er
s

Pruning Iteration

Conv1 Conv2 Conv3 Conv4 Conv5 Conv6

Figure 4.6: Number of Filters per Iteration on CIFAR-10

However, we notice that the latency slowly decreases after 9th iteration. One

reason is that number of operations per layer become too small to make DeepMon

utilize GPU resources efficiently. However, batching multiple images as input could

improve the average inference time.

4.4.3.3 Impacts on Number of Filters

Finally, we investigate the reduction of filters during the pruning process on CIFAR-

10. We plot the amount of filters within two first blocks in ANN-CNN-C model

which consist the first 6 convolutional layers as shown in Figure 4.6. Each block

consists of 3 convolutional layers which have 96 and 192 filters respectively. Both

blocks end with spatial dimension reduction using convolutional layer with stride is

set to 2 instead of using Max-Pooling.

Interestingly, two blocks share the same trend in filters reduction. The first and

last convolutional layers within the block stop reducing after a certain threshold

while the middle layer keeps reducing during pruning process. This shows some

insights for us the build better network architecture where last layer inside a block

should have few filters comparing to previous layers.

81

4.4.3.4 Comparisons with DeepIoT

We compare our pruned models with compressed VGGNet from DeepIoT [87] on

CIFAR-10 dataset as shown in Table 4.2. At 4th iteration, D-Pruner provides a

model with 8% less parameters than DeepIoT’s model while achieving comparable

accuracy (90.48% vs 90.5%), even though we start with less accurate model. If

we are willing to sacrifice 1.16% (comparing to DeepIoT), we will achieve 2.33×

smaller model.

We also notice that DeepIoT leverages recurrent neural network (RNN) to prune

the parameters. However, RNN is prone to gradient vanishing problem and may

not work well in very deep neural network such as ResNet or Inception network.

Instead, D-Pruner ’s masking blocks can be easily integrated into CNN and can be

trained at ease.

82

Chapter 5

Exploiting Cost-Quality Trade-off

with Multi-Exit Networks

In recent years, cameras have become ubiquitous with billions of them deployed

on personal smartphones, in public and private spaces such as traffic intersections,

organizations, etc. As deep learning has shown huge success in yielding state-of-

the-art performance in many computer vision tasks, video analytics systems have

adopted deep learning models to improve overall performance. However, pre-

trained state-of-the-art models often use a fixed computational pipeline for every

inference without any considerations whether the input is easy or not. In this work,

we did an intensive study of how multi-exit models (MXNs) can be used to acceler-

ate variety of machine learning workloads and which techniques can be applied to

improve their efficacy.

We evaluated multi-exits models and their optimization techniques on two real

applications including indexed video querying and object re-identification in video-

based recognition. Our results show that MXNs reduce the latency of current ex-

isting systems up to 4.4× in video query system and 1.29× in video-based face

recognition system with minimal loss in accuracy.

83

5.1 Introduction

The popularity of cameras has enabled many vision sensing applications such as

video query system that allow users to seek for interesting moments. Those appli-

cations often have to run a pipeline of computer vision algorithms on multi-hour-

length videos to provide the information to users. Hence, minimizing user’s waiting

time is crucial.

The current state-of-the-art approach for video processing is to apply pre-trained

deep neural network models on video frames. Advances in deep learning algorithm,

especially deep convolutional neural networks (CNNs), have significantly boosted

the accuracy of many computer vision tasks such as object detection, image clas-

sification. For example, EfficientNet [82] has reduced the error rate of image clas-

sification task on Imagenet dataset up to 2.67× comparing to the famous Alexnet

model [52].

Despite having high accuracy, state-of-the-art models such as EfficientNet [82],

ResNet152 [36] and Yolov2 [71] require huge amount of computational capability,

making it inefficient to use on lengthy videos. Hsieh at el. has shown that contin-

uously running Yolov2 object detector on a month-long video costs over 380$ on

Azure cloud using a high-end GPU [39]. Many works have adopted a cascade of

multi-models approach to speedup inference time by using a computational-efficient

but less accurate model along with a computational-intensive but highly accurate

model. Recently, video query system NoScope [48] leverages a low-cost binary

classification model, which is trained to recognize only queried class using a small

segment of the video as training dataset at run-time, to classify the remaining video

frames. NoScope only triggers the big but accurate model on video frames that

the low-cost classifier does not provide confident results. Other works [35, 75] ex-

ploit the skewed class distributions over time, track the changes in the dominant

classes and train a lightweight specialized model at run-time to recognize only a

set of dominant classes in order to speedup the inferences. Whenever a specialized

84

PASCAL VOC2012 Dataset

Model MFlops
Easy Objects Hard Objects

Object 1 Object 2 Object 3 Object 4
Model 1 567 94.15 93.47 50.95 62.30
Model 2 437 85.71 93.17 34.32 60.95
Model 3 333 86.68 86.35 16.84 37.61

Table 5.1: Accuracy of classifying easy/hard objects

model recognizes classes that are not in the skewed set via a special ”other” class,

the system will trigger a general model to get the correct result. By not triggering

high-cost models, previous systems can save unnecessary computation and reduce

the incurred latency. However, there are two drawbacks with this approach. First,

if low-cost models are not confident about their results, the system has to trigger

bigger and more expensive models. In this case, all computations spent on former

models is wasted and the efficiency of cascaded approach is significantly reduced if

heavy models are triggered frequently. For example, if we use three classification

models as a cascade to recognize 20 objects in VOC dataset [26] as shown in table

5.1, there are chances that model 2 and 3 will fail to provide correct results on class

3 and we have to fallback on using model 1 for the final outcome. In this case,

approximately 770 Mflops spent on model 2 and 3 are wasted and will be treated as

an overhead of the system. Second, training a cascade of models is time consuming

as we need to train multiple models separately. For instance, training ResNet-50 on

a single NVIDIA M40 GPU takes up to 14 days [90]. As the number of models

and the complexity of each model increase, the cost of training a cascade would be

significantly high.

In this work, we adopt the idea of multi-exit models (MXNs) by attaching classi-

fication or regression layers along a existing network backbone (e.g., ResNet, Mo-

bilenet) to generate multiple cheap and expensive models [83, 41]. This approach

allows computations, which have been done at early classification/regression layers,

to be reused to compute latter layers with a small amount of overhead. Moreover,

MXNs help us build multiple cheap and expensive models with different complex-

85

ity and accuracy at a single training cost. At early stages, models in MXNs only

rely on low-level features, which require little computations to compute, for clas-

sification/detection tasks. Hence, early models often perform well on easy objects

but fail to detect complex instances. As the depth and complexity increases, latter

models in MXNs become more accurate in detecting complex objects. Table 5.1

shows the accuracy of three models with different computational cost on four easy

and hard objects within VOC dataset [26]. There is an accuracy gap between rec-

ognizing easy and hard objects across all three models. Second, as the capacity of

the model decreases, accuracy on hard objects drops significantly while accuracy

on easy objects only decreases slightly. These observations support the idea of us-

ing cheap models to recognize easy objects while using heavy models only on hard

cases. Similar to a cascade of models, processing MXNs is done by executing the

models in a sequence, from cheapest model to most expensive one. During a MXNs’

processing pipeline, if we are satisfied with the results, we can stop the execution

immediately at any model without wasting computation on more expensive models.

However, the major difference between MXNs and a cascade of models is that inter-

mediate features, which are computed from early models, can be reused to compute

latter models due to parameters sharing feature.

In this work, we study two key questions when using multi-exit models. 1)

When MXNs are applied to problems beyond anytime inference, and become drop-

in replacements for DNNs? How do they perform in terms of training, inference,

indexed inference, similarity matching, etc? 2) If they are inadequate for these

purposes, can they be improved by other optimizations?

We conduct experiments using MXNs on many general tasks such as image

recognition and face recognition to understand the performance of MXNs. Then,

we propose two key techniques to optimize for applications using MXNs: 1) using

focal loss [60] to improve the accuracy of early exiting decision, 2) aggregating re-

sults across multi-models and early exiting based on confidence score to improve

performance of indexed video querying and object re-identification in video-based

86

recognition systems.

(1) Improving accuracy of confidence-score-based systems. Conventional ap-

proach to check how confident a model is to its result is to look at the confidence

score. For example, Yolov2 [71] uses confidence score to filter out uncertain pre-

dictions that may lead to incorrect results. However, given a particular threshold,

it is hard to determine if the result with confidence score that is higher than prede-

fined threshold is correct. In the case of using MXNs, we need our models to be

highly accurate at deciding whether to exit a computation or to let the latter and

more accurate models handle current input.

To improve above mentioned accuracy, we adopt Focal Loss technique [60] to

make a model more conservative when outputting a result. Comparing with the

traditional softmax cross entropy loss, MXNs trained with Focal Loss gives better

early exiting decisions given a arbitrary threshold.

(2) Improving performance of video query system via aggregation of predictions

across MXNs’ models. State-of-the-art video query system Focus [39] separates the

processing pipeline into two steps, ingestion and query step. At ingestion step, the

system leverages a cheap model, which is specialized to recognize majority of ob-

jects that appear in the target video, to index incoming video frames. At query step,

Focus retrieves the frames associated to user’s query label and use high computa-

tional cost but accurate ground-truth CNN model to classify them. By separating

into two steps, Focus can balance the latency cost between ingestion and query time.

Furthermore, in order to guarantee high recall at ingestion time, Focus leverages

top-K predictions from the cheap model to index video frames instead of using only

the prediction with highest probability. However, if we use high ”Top-K” value at

ingestion step, we need to process and store more indices into a database and even-

tually affect the performance at query time as we need to trigger ground-truth CNN

model on a large number of video frames.

Instead of relying on high ”Top-K” results of a single model as in Focus, we

replace that single model with MXNs and aggregate predictions of multiple models

87

within MXNs. We use lower ”Top-K” at each model and remove duplicated predic-

tions within aggregated results. As multiple models are likely to agree on a same

correct answer, it will significantly reduce number of indices we need to ingest into

database. In case of disagreement, it will automatically fallback to use higher ”Top-

K” value. For example, if we have two models and ”Top-K” is set to one, agreement

between two models results in only one index while disagreement will result in two

indices. This approach considerably reduces the latency at both ingestion and query

time as we can reduce the number of video frames that we need to process, store

and trigger big ground-truth CNN model on.

(3) Improving performance of video-based face recognition systems via early fa-

cial features matching from MXNs . Existing works [35, 75] use a cascade of mul-

tiple models to speedup the inference latency of video-based face recognition task.

In this work, we treat that problem as an object re-identification task in video-based

system and propose an approach by adopting MXNs to accelerate the inference pro-

cess. We use MXNs of face verification models, trained on general face dataset such

as Casia Webface [88], with different levels of accuracy to match incoming input

with existing faces within our database. If an early model is not confident about its

face matching output, the system triggers the next model in MXNs with only min-

imal amount of overhead. If a new face is not existed in the database, our system

will trigger an oracle model (e.g., a separated model or the last model within MXNs

that is trained as a face classifier) to get the label, store it and all facial features

extracted from our MXNs into the database for further face verification requests. By

leveraging MXNs, not only do we allow most of computations to exit at early mod-

els on easy samples to reduce the inference latency but also minimize the overhead

of switching between models.

We evaluate MXNs by applying the idea to improve performance of existing

video sensing systems such as video query system Focus [39] and propose a new

approach to improve video-based face recognition sytem. By using optimizations

based on MXNs, our approach accelerates up to 4.4× and 1.29× improvements

88

over two existing applications including video query systems and face recognition

in videos accordingly. In summary, we make the following contributions:

• We adopt multi-exit models as an efficient implementation to enable flexible

computational pipeline for many computer vision workflows such as image

classification, face recognition.

• We show that by using MXNs, we can train and serve shared-models faster

than training and serving catalog implementations based on many distinct

models.

• We propose using 1) threshold-based approach with MXNs to do early exiting

efficiently, 2) aggregation of results from multiple models within MXNs to

achieve accurate predictions, 3) Focal Loss to improve the accuracy of early-

exiting decisions,

• We evaluate the idea of MXNs on two existing applications and show that

adopting MXNs and MXNs’ optimizations helps accelerate existing systems.

We achieve up to 4.4× and 1.29× in latency reduction in video query and

video-based face recognition systems.

5.2 Multi-Exit Model Overview

Figure 5.1 illustrates an example of multi-exit models (MXNs) that consists of multi-

ple exits instead of a single one (i.e., exit 3), which is normally seen in typical neural

network models. Each model (or exit) within MXNs uses different sets of features

from many shared layers for its classification/regression output. For instance, exit

1 and 2 share the first three convolutional layers to extract low-level features. If

we have already computed the output of exit 1, the features extracted from the third

convolutional layer would be instantly available to compute the forth layer without

the need of recomputing the features again from the first layer.

89

Conv 5x5

Conv 3x3

Conv 3x3

Conv 3x3

Conv 3x3

Conv 3x3

Conv 3x3

Global Pool

Exit 3

Global Pool Exit 1

Global Pool Exit 2

Figure 5.1: Example of MXNs architecture

Similar to previous works [83, 41] on anytime neural network, we use loss

functions such as cross entropy loss function Lfi for all the classifier/detector us-

ing features fi extracted from layer i. We adopt weighted sum of loss across all

classifiers/detectors on training dataset D as shown in BranchyNet [83]: L =

1

|D|
∑

(x,y)∈D
∑N

l=1wi ∗ Lfi . Herein, wi is the constant weight of each classifier

i in MXNs , set by users before training, to trade-off between accuracy and compu-

tational cost across multiple models (or exits). For example, we can assign high wi

to early exits to focus more on those early classifiers during the training process.

5.2.1 Overall performance of multi-exit models on general tasks.

In this session, we evaluate the idea of MXNs on two general tasks including im-

age classification and face recognition without any further optimizations. For all

the experiments, we use same configuration to train MXNs and multiple single-exit

models. We use SGD optimizer with momentum set at 0.9. The learning rate is set

at 0.1 and will be reduced by 10 whenever the error plateaus. We also use early

stopping to stop the training process instead of having fixed number of training it-

erations.

90

Exit Index
Accuracy (%)

Single-Exit Model MXNs
1 47.84 45
2 57.82 55.76
3 61.16 59.52
4 66.25 64.51
5 66.44 65.68

Table 5.2: Accuracy of Image Recognition task

(a) Image Classification - Training Time (×1000s)
Single-Exit Models

MXNs
Exit 1 Exit 2 Exit 3 Exit 4 Exit 5
56.66 86.4 106.27 106.61 82.86 102.01

(b) Image Classification - Training Speedup
Training Time of 5 models (s) Training Time of MXNs (s) Speedup

521702 102016 5.11

Table 5.3: Training Time and Speedup of Image Recognition Task

First, we train MXNs for image classification task based on ResNet-18 architec-

ture [36] on ImageNet dataset [22] to recognize 1000 objects. We choose 5 layers

to add classification layers on top of them and train MXNs. Similarly, we train

5 separated models based on 5 chosen layers for comparison. Table 5.2 reports

the validation accuracy of MXNs of 5 models and 5 separated single-exit models.

Overall, naively training MXNs results in lower accuracy at each exit comparing to

corresponding single-exit model because of the inferences between classifiers using

low and high level features as explained in [42]. The accuracy loss ranges from

0.75% to 2.84%. However, it is worth pointing out that although these results hold

for the hard 1000-class ImageNet dataset, as table 5.2 shows, for many day-to-day

problems that are much easier than ImageNet, the gap may be even smaller (i.e.,

less than 0.75% or 2.84%).

Moreover, completely training MXNs of 5 models is 5.11x times faster than

training 5 separated models as shown in table 5.3. This significantly reduces the

time we need to search for efficient models that fit to our particular goals of many

different applications.

91

Conv 1

...

Conv 5

...

Conv 7 Exit 2

Exit 1

...

Conv 9 Exit 3

MXNs 2

Conv 1

...

Conv 5

...

Conv 7 Exit 2

Exit 1

...

Conv 9 Exit 3

...

Conv 11 Exit 4

MXNs 3

Conv 1

...

Conv 5

...

Conv 7 Exit 2

Exit 1

...

Conv 9 Exit 3

...

Conv 11 Exit 4

...

Conv 13 Exit 5

MXNs 4

Conv 1

...

Conv 5

...

Conv 7 Exit 2

Exit 1

MXNs 1

Figure 5.2: MobiletNet-based MXNs for Face Recognition Task

Second, we also train 5 single-exit models and MXNs of 5 models with differ-

ent number of exits for face recognition task using mobilenet-based architecture on

Casia-Webface dataset [88] to learn facial features and compute the accuracy of face

recognition task on LFW dataset [43]. We specifically choose 5 layers from Mo-

bileNetv1 including Conv3, Conv5, Conv7, Conv9, Conv11 to train both single-exit

models and multiple MXNs. For single-exit models, we attach a classification layer

to one of 5 chosen convolutional layers and train a model with only one classifier.

For MXNs , we train a set of 4 MXNswith 2 up to 5 classification layers from 5

chosen layers as shown in figure 5.2 in order to study the performance of different

MXNs. We use the input size of 152x152 and the training configuration similar to

previous one used in training image recognition task.

Table 5.4 shows that the accuracy of MXNs is within 1.5% different with single-

exit models. Table 5.5(a) shows the training time in seconds of each model. In most

cases, training a single-exit model is faster than training MXNs. However, as shown

in table 5.5(b), when we aggregate the training time of multiple single-exit models

and compare it with the training time of corresponding MXNs, training MXNs is

always faster, from 1.61x up to 4.14x faster when the number of exits increases

92

Face Recognition - Accuracy (%)
Single-exit Model MXNs

Exit Layer 2 Exits 3 Exits 4 Exits 5 Exits
Conv 3 89.58 89.66 89.43 88.41 88.15
Conv 5 96.16 95.93 95.78 95.6 95.78
Conv 7 98.00 - 97.41 98.20 97.86
Conv 9 98.1 - - 97.85 98.13

Conv 11 98.36 - - - 98.06

Table 5.4: Accuracy of Face Recognition Task

(a) Face Recognition - Training Time (×1000s)
Single-Exit Models MXNs

C3 C5 C7 C9 C11
2 3 4 5

Exits Exits Exits Exits
58.77 58.90 121.03 57.13 58.28 72.92 73.98 71.43 87.88

(b) Face Recognition - Training Speedup
2 Exits 3 Exits 4 Exits 5 Exits

Speedup 1.61 3.22 4.14 4.02

Table 5.5: Training Time and Speedup of Face Recognition Task

from 2 to 5 respectively.

5.2.2 Enhancing Accuracy of MXNs via Features Aggregation

Between Exits

Previous works [41] have shown that there is interference between lower and up-

per classification/regression layers. In order to mitigate that problem, we adopt the

technique in [41] which forwards the lower-level features to upper layers in a resid-

ual approach. This technique allows latter exits make concrete predictions based

on both low-level and high-level features. However, instead of aggregating features

in densenet-style [42] similar in [41], we directly aggregate low-level and high-

level features using concatenation layers, following a 1 × 1 convolutional layer to

compress those features into lower dimension to minimize additional computational

cost. In case low-level and high-level features have different size, we apply max-

pool layer on low-level features to reduce its size. Figure 5.3 shows the building

93

f1, f2: features extracted from backbone network

Figure 5.3: Aggregation Between Low-level and High-level features Block

block that we use to improve MXNs by aggregating features.

In order to demonstrate the effective of feature aggregation, we use three

datasets including VOC Pascal [26], Coco [61] and ImageNet [22] to train MXNs

to classify 20, 80 and 1000 objects respectively. We use ResNet18 [36] as a base

network architecture to train those MXNs , each with 4 classification layers. Table

5.6 shows that aggregation between low-level and high-level features improves the

overall accuracy of proposed MXNs on both VOC, Coco and ImageNet datasets,

especially latter classifiers, which can re-use lower-level features to improve the re-

sults. For instance, this approach improves accuracy of every classifier in MXNs

94

(a) VOC Dataset - Accuracy (%)
Classification layer

Model 1 2 3 4
Base MXNs 60.03 71.0 73.66 77.68

Improved MXNs 62.43 74.50 75.97 79.16

(b) Coco Dataset - Accuracy (%)
Classification layer

Model 1 2 3 4
Base MXNs 47.59 57.24 58.87 65.41

Improved MXNs 47.58 60.96 63.33 68.86

(c) ImageNet Dataset - Accuracy (%)
Classification layer

Model 1 2 3 4 5
Base MXNs 45 55.76 59.52 64.51 65.68

Improved MXNs 45.69 58.88 62.88 67.64 67.93

Table 5.6: Effect of Feature Aggregation on MXNs

Exit Index
Accuracy (%)

Single-Exit Model Multi-Exit Model
1 47.84 45.69
2 57.82 58.88
3 61.16 62.88
4 66.25 67.64
5 66.44 67.93

Table 5.7: Comparison between Enhanced Multi-Exit Models and Single-Exit
Model

on VOC dataset from 1.48% up to 3.5%. On Coco dataset, it also increases up

to 4.46% at latter layers while maintaining the similar accuracy at the first classi-

fier to original MXNs . Even on complex dataset such as Imagenet, the proposed

approach still outperforms original MXNs, ranging from 0.68% up to 3.36%. Fur-

thermore, table 5.7 shows the accuracy comparison between our enhanced MXNs

and single-exit models as shown in table 5.4. We notice that enhanced MXNs out-

perform single-exit models from 1.06% to 1.49% on 4 upper exits where features

aggregation occurs. This indicates that using features aggregation not only helps

improve the accuracy of MXNs but also closes the accuracy gap between single-exit

and multi-exit models.

95

5.2.3 Improving Accuracy of Threshold-based approach using

Focal Loss.

One of the challenges when using multi-exit models is to determine when to stop

the execution. A conventional approach to make that decision is to use a confidence

score threshold at each model [48]. If a confidence score is above the threshold,

we will stop the execution. Otherwise, we will go to upper exit. As the overall

accuracy of multi-exit models depends on the accuracy of early-exit decision, we

want to make decisions that are highly accurate. If the early exit does not provide

confident result, we will use upper and more accurate exit to maintain overall accu-

racy. However, it is challenging to determine if the result with a confidence score

above a given threshold is correct or not. In this session, we introduce a method

to improve the accuracy of such decisions by applying focal loss [60] instead of

traditional cross entropy loss during the training process.

Focal loss is defined as: FL(pt) = −(1−pt)γlog(pt) where pt is the probability

of being a correct class of input t and γ is a constant value to control the rate how

much weight easy inputs are reduced. The modulating factor (1−pt)γ controls how

much weight we will add to a particular input during the training process. When the

model misclassifies an input t, p(t) will be small, the modulating factor will be near

1 and the loss will be unaffected. However, if the model classifies an input correctly

with high probability p(t), the modulating factor will be very low and the loss will

be down-weighted. In this way, focal loss focuses more on hard cases during the

training process and only gives high confidence score to easy instances.

We conduct experiments by training two small models based on ResNet18 on

two datasets to show the benefits of using focal loss. We define precision as the per-

centage of instances that correctly exit and recall as the percentage of instances that

exit. Table 5.8 shows the precision/recall of focal loss comparing to traditional cross

entropy loss on 2 datasets (i.e., VOC, Coco) with two predefined thresholds. Given

a arbitrary confidence score threshold, using focal loss always provides higher pre-

96

(a) VOC Dataset - Threshold Score 0.5
Precision Recall

Model C1 C2 C3 C4 C1 C2 C3 C4
ResNet18 79.77 84.02 83.07 84.05 50.86 70.26 79.25 87.33

ResNet18-FL 84.69 88.72 87.55 88.16 32.41 58.29 67.7 77.29

(b) VOC Dataset - Threshold Score 0.7
Precision Recall

Model C1 C2 C3 C4 C1 C2 C3 C4
ResNet18 89.41 92.13 90.46 90.46 26.12 48.8 59.08 71.95

ResNet18-FL 92.76 95.95 95.72 95.21 8.49 32.61 43.08 57.11

(c) Coco Dataset - Threshold Score 0.5
Precision Recall

Model C1 C2 C3 C4 C1 C2 C3 C4
ResNet18 75.98 80.54 79.79 82.16 37.39 52.3 56.54 67.31

ResNet18-FL 82.48 86.51 86.03 87.43 24.12 43.86 49.86 59.54

(d) Coco Dataset - Threshold Score 0.7
Precision Recall

Model C1 C2 C3 C4 C1 C2 C3 C4
ResNet18 86.94 90.46 89.78 90.62 20.59 34.07 38.58 50.26

ResNet18-FL 92.11 94.97 94.48 95.21 7.27 23.84 29.31 39.79

Table 5.8: Effect of Focal Loss on MXNs

cision than normal softmax cross entropy in the trade-off for lower recall. In the

scenario of multi-exit models, it is beneficial to achieve high precision to make sure

the model only exits when the result is correct. Otherwise, the more accurate models

will handle that input.

5.2.4 Accelerating models serving using prefix batching

In this session, we investigate benefit of MXNs in terms of serving latency. We

setup an experiment in which we use 50,000 validation images from ImageNet

dataset [22] to measure the latency of getting result from all exits using both MXNs

and a set of multiple single-exit models. We use ResNet18-based image classifica-

tion models from table 5.2 and measure the total latency using Tensorflow frame-

work [8] on a single NVIDIA Geforce GTX 1080Ti GPU.

Table 5.9 reports the best latency spent on each single-exit model and MXNs

97

Serving 50k images using Image Classification Models
Latency (s)

SpeedupSingle-Exit Model MXNs
M1 M2 M3 M4 M5 5-Models 5-Models

48.68 54.18 59.67 65.84 68.02 296.4 76.1 3.89

M1, M2, M3, M4, M5: Model 1, Model 2, Model 3, Model 4 and Model 5
Speedup is computed between serving 5 single-exit models and MXNs .

Table 5.9: Serving Latency

using batch size of 32 images. Overall, serving user’s requests using MXNs is 3.89x

faster than executing a set of 5 separated models. As multiple models within MXNs

can share some layers (or prefix) with each other, we only need to compute those

layers for a batch of multiple images once per request. We call it a prefix batching

technique. On the other hand, because multiple single-exit models don’t share any

parameters or layers, we will need to process every layer in all models for each

single batch. Without the prefix sharing, it is significantly slower to process every

single-exit models comparing to MXNs .

5.3 Evaluations on Real Applications

We evaluate MXNs approach on two real applications including indexed video

querying and object re-identification in video-based recognition.

We run all the experiments on a machine with a Quad-core Intel i7 7700, a

NVIDIA GeForce GTX 1080Ti GPU and 64 GB of Ram. We use Tensorflow as a

framework to train and evaluate MXNs in our experiments.

5.3.1 Video Query System

In this session, we demonstrate the effect of multi-exit models on existing video

query system Focus [39]. Focus is a video query system that allows users to seek

for some particular objects within a single or multiple videos. The optimal solution

to minimize the user’s query time is to use highly accurate model to index all video

98

frames into a database. However, Hsieh at el. argues that if only a small fraction

of frames are queried, most of the computations used for indexing the remaining

frames would be wasted. He proposed Focus system, in which he separates the pro-

cessing pipeline into two steps including ingestion step and query step, to balance

time spent on indexing and querying. Figure 5.4 shows the overview of Focus sys-

tem. Focus defines precision as the percentage of frames in the query’s results that

contains queried object and recall as the percentage of frames that actually contains

queried object and the total frames in video that contains queried object. The goal

of Focus is to achieve 99% of both precision and recall.

Figure 5.4: Focus Architecture [39]

At ingestion step, Focus uses very fast background subtraction technique to

swiftly filter out frames that do not contain interesting objects. In order to fur-

ther reduce ingestion latency, Focus leverages small specialized models, which are

trained to classify majority of objects in a target video, to process interesting frames

and index which objects appear in a database. However, lightweight models often

have low accuracy both in terms of precision and recall. In order to compensate

low accuracy of cheap models, Focus uses an empirical observation that correct la-

bel often falls into top-k confident results of a cheap model and indexes incoming

frame using top-k results instead of relying only on the top confident result. This

approach increases the chance that correct result will be indexed into the database

and improves the final recall. Furthermore, to reduce the work at query time, Focus

relies on a clustering algorithm to cluster similar objects into a single group using

features extracted from cheap model and stores the centroid and its object members

99

into the database. Overall, for each frame, Focus needs to extract k labels from a

cheap model and compares each label to N clusters’ centroids in a database. Thus,

the overhead at ingestion step is O(Nk). If we can replace the cheap model with

MXNs in such way that k can be reduced, we can improve the ingestion latency.

At query time, Focus uses a large but accurate model as a ground-truth CNN

(GT-CNN) to re-classify indexed frames. First, Focus retrieves all the centroids

whose labels are similar to queried object and runs GT-CNN on those centroids

to filter out incorrect centroids from ingestion step. Second, Focus retrieves the

all clusters’ members associated with correct centroids and return them to users

as final outputs. In general, query time depends on the number of centroids (or

clusters) that the system needs to trigger GT-CNN on. However, as the number of

clusters increase significantly over time, query time would be severely impacted.

By adopting MXNs to filter out easy centroids, we can limit the number of times to

trigger GT-CNN and further reduce the overall query latency.

5.3.1.1 Reduce Top-K by Aggregating Results Across MXNs

For each input x, Focus infers k possible classes c1, ..., ck. Each class input-class

association (x, ci) is inserted into a distinct cluster-set Ci. The cluster-set Ci for

each class i, contains up to N=100 clusters. Thus, indexing overhead is O(Nk).

Focus typically uses a k ranging from 2 through 6. Reducing k thus provides a

possible way to speed up the ingesting step.

In order to reduce the k value used in Focus, we replace Focus’s specialized

model with our MXNs of n models M1, ...,Mn. At ingestion time, each model Mj

infers top k′ ≤ k classes cj1, ..., c
j
k′ . Those results are then aggregated into a set

R = {c11, ..., c1k′ , ..., cnk′}. As each model classifies the input independently, there is

highly chance that one of those models infers correct label even if we use smaller

k value. Furthermore, as models tend to agree on correct results, there would be

many duplicates inR that can be removed to reduce the total objects that we need to

index into a database. For example, many models can agree with each other on easy

100

Focus Model MXNs
Video Top-k Exit #indexing Top-k Exits #indexing

Auburn 1 4 16724 1 0,1 16823
Auburn North Ross 2 4 23746 1 0,1 12003

Bellevue 150th Road 1 2 1365 1 0,1 1374
Bellevue Ne8th Road 1 2 4933 1 0 4933

Jackson Hole 2 4 53744 1 0,1,2,3 31157
Jackson Town 6 4 4410 3 0,1,2,3 3346

Lausanne 3 2 462045 2 0,1,2 314411
Sittard 2 2 45240 1 0,1,2,3 23712

#indexing: number of times to trigger clustering algorithm
Exit(Exits): index(indices) of exits that is(are) used as classifier

Network architecture: ResNet-18 with 5 chosen layers to be exits for both
Focus model and MXNs

Table 5.10: Effect of Results Aggregation

samples while they can disagree with each other on hard samples. This approach

leverages the agreements and disagreements between models in MXNs to lower the

total number of indexing over entire video frames.

Table 5.10 shows the configurations of Focus and our approach on 8 traffic

videos used in [39]. Overall, using MXNs can reduce the top-K value and num-

ber of images that need to be indexed to the database in 5 videos while maintaining

up to 99% recall, similar to Focus system. For example, the original model in Focus

system uses the full ResNet-18 and top-2 results on Auburn North Ross video to

achieve 99% recall while MXNs of 2 models (at lower layers) can reduce from top-2

to top-1 by using results from both exits. Hence, MXNs can reduce the number of

images that need to be indexed to the database by 1.97 times. Furthermore, MXNs

also allow use to search for more efficient models while achieving similar recall on

Auburn, Bellevue 150th Road and Bellevue Ne8th Road videos. By attaching early

exits into existing models used in Focus, we find that aggregating results from those

early exits also achieves 99% recall while having lower computational cost.

Table 5.11 shows the ingestion latency and speedup on 8 traffic videos. Overall,

using MXNs is faster than using single-exit model in all 8 videos, ranging from 1.06x

to 1.41x. Specifically, we can perform faster clustering algorithms on 6 videos (i.e.,

101

Video
Focus MXNs

Speedup
Model-only

Latency(s) Latency(s) Speedup
Auburn 32.3±0.38 22.89±0.18 1.41 1.71

Auburn North Ross 29.79±0.56 23.83±0.21 1.25 1.11
Bellevue 150th Road 3.82±0.19 3.43±0.2 1.11 0.99
Bellevue Ne8th Road 9.13±0.28 7.58±0.18 1.2 1.37

Jackson Hole 82.03±0.69 77.53±0.23 1.06 0.87
Jackson Town 6.93±0.19 5.53±0.21 1.25 0.91

Lausanne 321.2±0.54 271.78±0.53 1.18 0.9
Sittard 58.79±0.13 52.2±0.25 1.13 0.95

Table 5.11: Ingestion Latency

Auburn North Ross, Bellevue 150th Road, Jackson Hole, Jackson Town, Lausanne,

Sittard), by lowering the top-K value to reduce the number of indexing times. For 2

remaining videos, MXNs helps us find smaller and more efficient models comparing

to the models used in Focus to improve the latency.

We also noticed that running MXNs is slower than running a single bigger model

in Bellevue 150th road, Jackson Hole, Jackson Town, Lausanne and Sittard videos

as shown as Model-only speedup in table 5.11. The problem occurs due to the

overhead of partial run operation in Tensorflow which allows us to reuse computed

variables during MXNs’ execution. However, there is a small overhead between

each pause (e.g., getting current exit’s result) and resume (e.g., execute next model)

during MXNs’ execution. Fortunately, this overhead only contributes little to the

total latency as a lot of time was spent on clustering algorithm. Overall, we still

achieve speedup, ranging from 1.06× to 1.41×, across 8 videos.

5.3.1.2 Reduce Query-Time by Co-Processing MXNs and Ground-Truth

Model

At ingest time, Focus uses a ground-truth CNN model (GTCNN) to classify the

centroids of clusters and return results to users. However, if the number of clusters is

too high, we have to trigger GTCNN a lot and increase the query latency. Instead of

running the GTCNN on all cluster’s centroids, we use extra MXNs, which are trained

with focal loss, to early accept results using strict confidence score thresholds. In

102

Video
Focus MXNs

Speedup
Latency (s) Latency (s) Precision (%)

Auburn 21.61±0.12 5.67±0.23 99.01 3.81
Auburn North Ross 29.42±0.16 18.93±0.28 98.71 1.55

Bellevue 150th Road 2.66±0.05 0.6±0.16 99.26 4.43
Bellevue Ne8th Road 2.37±0.06 1.35±0.21 99.4 1.76

Jackson Hole 57.06±0.22 38.68±0.21 99.8 1.48
Jackson Town 18.03±0.14 20.78±0.21 98.9 0.87

Lausanne 3.16±0.1 0.96±0.14 99.01 3.3
Sittard 88.49±0.23 29.55±0.25 99.89 2.99

Table 5.12: Query Latency - Threshold explored on Coco Dataset

order to find out the thresholds, we use Coco dataset [61], which is used to train

GTCNN or Yolov2, to search for the average thresholds that achieve 99% of true

positive rate.

Table 5.12 shows the overall performance of applying MXNs into Focus system

in terms of latency and precision. Our MXNs-based approach improves the query

latency from 1.48x to 4.43x while preserving nearly 99% precision rate on 7 videos

similar to Focus system. However, we don’t improve the latency on Jackson Town

video as it contains the most number of objects to recognize among 8 videos. In or-

der to achieve 99% of true positive rate on multiple objects in Coco dataset, we end

up using very high thresholds given a limited amount of computational capacity of

ResNet-18. Hence, we often need to trigger the GTCNN to achieve such accuracy.

Table 5.13 shows the breakdown of number of times to trigger the GTCNN

during MXNs’ execution. We only need to trigger the GTCNN on less than 25% and

50% of cluster’s centroids in 4 and 7 over 8 videos respectively. As we mentioned

above, Jackson Town video has the most number of GTCNN triggers (89.2% miss

rate).

To explore the potential of MXNs, we manually search for the best thresh-

olds, measure the latency and speedup at query time based on new thresholds. As

shown in table 5.14, most the videos can benefit from better thresholds to gain more

speedup comparing to previous results from table 5.12. We believe MXNs can ben-

efit from better techniques to choose the thresholds.

103

Video
MXNs

Clusters # GTCNN Miss Rate (%)
Auburn 2177 149 6.84

Auburn North Ross 2336 913 39.08
Bellevue 150th Road 60 12 20
Bellevue Ne8th Road 299 37 12.37

Jackson Hole 5268 1881 35.7
Jackson Town 1250 1115 89.2

Lausanne 72 32 44.44
Sittard 5717 1170 20.47

Clusters: number of clusters’ centroids
GTCNN: number of times to trigger GTCNN

Missrate = #GTCNN∗100
#Clusters

Table 5.13: Performance Breakdown at Query Time

Video
Focus Model MXNs

Speedup
Latency (s) Latency (s) Precision (%)

Auburn 21.61±0.12 4.061±0.28 98.89 5.32
Auburn North Ross 29.42±0.16 13.47±0.36 98.63 2.18

Bellevue 150th Road 2.66±0.05 0.42±0.18 98.96 6.33
Bellevue Ne8th Road 2.37±0.06 0.737±0.26 99.15 3.21

Jackson Hole 57.06±0.22 18.87±0.44 99.2 3.02
Jackson Town 18.03±0.14 17.78±0.26 99 1.01

Lausanne 3.16±0.1 0.96±0.14 99.01 3.3
Sittard 88.49±0.23 17.48±0.34 99.52 5.06

Table 5.14: Query Latency - Best threshold

5.3.2 Face Recognition in Videos

In this session, we propose a novel approach for face recognition in videos by adopt-

ing MXNs for facial features extraction along with an accurate face classifier.

Shen at el. shows that only a set of dominant classes occur during a window of

time within a video [75]. Hence, he uses a cascade of cheap model, which is trained

to recognize a few dominant faces, and a heavy but accuracy model to detect variety

of faces. However, as time goes by, if the set of dominant classes changes, the

system has to train new cheap model to recognize a new set of dominant faces. This

approach suffers from the overhead of switching and training models if there are

frequent changes in dominant classes.

104

Figure 5.5: MXNs-based Face Recognition System Architecture

To solve the above-mentioned problem, we replace the cheap model with multi-

exit face verification models. Instead of using cheap models to recognize faces

directly, we use MXNs to extract facial features of recent faces and maintain them in

a database. In order to match extracted facial features with a label, we use a large but

accurate classifier to classify incoming face image into name and assign that name

to extracted features and store them in database. When a new face image comes

in, our system extracts the facial features from the incoming image using MXNs

and match those features with recent facial features in the database using distance

measurements such as mean square error. Facial features are commonly used to

check face similarity [68, 43]. If it matches a face in the database, we retrieve

the name from a database and return it to users. Otherwise, we will trigger a face

classifier to recognize the face and store the name and its associated facial features

into the database. Figure 5.5 shows the overview of our computational pipeline to

recognize faces within video.

The processing pipeline for a single image is shown in Algorithm 3. First, we

use each single model in MXNs to generate the facial features from input image and

check with all existing faces in our database associated with current model as shown

in line [3-14]. If the distance between incoming face and stored face is less than a

pre-defined threshold, we will return the stored face as a result and jump to update

phase (line [10-11]). Otherwise, if we cannot find any matches, we will trigger

105

Algorithm 3 MXNs-based Face Recognition Algorithm
Data:
Incoming face image I,
Oracle classifier O,
MXNs of n models C={M1, ..., Mn },
thesholds T={T1, ..., Tn},
Database D={[M1 : {face1 : f1,1, ..., facek : f1,k}, ...,Mn : {face1 :
fn,1, ..., facek : fn,k}]},
α
Result: label l

1 F ← []
2 l← unknown
3 for Mi in C do
4 f ←Mi(I)
5 F ← F ∪ f
6 for facej in D[Mi] do
7 fj ← D[Mi][facej]
8 d← distance(f, fj)
9 if d ≤ Ti then

10 l← facej
11 goto update

12 end
13 end
14 end
15 l← O(I)
16 update:
17 for i from [1, ..., length(F)] do
18 D[Mi][l]← (1−α)∗D[Mi][l] + α*F [i]
19 end
20 return l

106

MXNs VGG-Face
Exit Accuracy(%) Accuracy(%)

0 88.57

97.28
1 93.47
2 94.82

Table 5.15: Face Recognition Accuracy on LFW Dataset

oracle classifier in line 15 to get the label. Finally, we update the facial features

associated with the label for every executed models to compute the average facial

features for each face over time as shown in line [17-19] and return the face label to

user in line 20.

5.3.2.1 Experiment Setups

We use CasiaWebface [88] to train 3-exit mobilenetv1-based models [38] with 7

separable convolutional layers and residual connections between exits as shown in

figure 5.3 for facial features extractions. To keep the computation cost low, we use

the input size of 112x112 as proposed in [23]. For face recognition task, we use

pre-trained VGG-Face [68] which is trained on VGG-Face-v1 dataset. Table 5.15

shows the accuracy of our MXNs and VGG-Face on LFW dataset [43], which is

widely used to evaluate face recognition models.

In order to prevent MXNs providing incorrect results (i.e., stopping the execution

when two faces don’t match to each other), we collected 3 extra videos and use them

to search for a distance threshold at each exit to achieve 99% of accuracy on all 3

videos.

We evaluate our proposed approach on 4 videos in [75] including Friends, The

Departed, Good Will Hunting and Ocean’s videos.

5.3.2.2 Explore The Facial Update Configurations

In this section, we explore the α value in algorithm 3 to keep the best facial features

associated with a single face in order to achieve high matching accuracy.

The formula of facial features updating as follow: F = (1 − α) ∗ F + α ∗

107

0

10

20

30

40

50

60

70

80

90

100

99.55

99.6

99.65

99.7

99.75

99.8

99.85

99.9

99.95

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

H
it

 R
at

e
(%

)

A
cc

u
ra

cy
 (

%
)

α-1

Video: Friends Accuracy - M1 Hit Rate - M1

0

10

20

30

40

50

60

70

80

90

100

88

90

92

94

96

98

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

H
it

 R
at

e
(%

)

A
cc

u
ra

cy
 (

%
)

α-1

Video: The Departed
Accuracy - M1 Hit Rate - M1

75

80

85

90

95

100

88

90

92

94

96

98

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

H
it

 R
at

e
(%

)

A
cc

u
ra

cy
 (

%
)

α-1

Video: Good Will
Hunting Accuracy - M1 Hit Rate - M1

75

80

85

90

95

100

96.5

97

97.5

98

98.5

99

99.5

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

H
it

 R
at

e
(%

)

A
cc

u
ra

cy
 (

%
)

α-1

Video: Ocean
Accuracy - M1 Hit Rate - M1

Figure 5.6: Alpha exploration

F ′. Herein, F is the current features in our database, F ′ is the new facial features

extracted from incoming image. In our case, α controls how much information

about the facial features, associated with a particular label in our database, we need

to keep and how much information we should get from the new features.

We fix the thresholds at each model in MXNs and use 4 videos in [75] to explore

the α value. Figure 5.6 shows the accuracy and hit rate of the first model M1 in

MXNs. The graphs show the relationships between 1
α

, hit rate and accuracy. As

the 1
α

increases, we will response less to new changes to stored facial features so

the algorithm only accepts incoming faces it is already familiar with. Hence, the

accuracy tend to improve when we increase 1
α

. However, as the algorithm is getting

more conservative, we suffer from hit rate decrements with low α. Furthermore,

We can use 3 videos to explore for α and easily find the sweet spot, ranging from 8

to 18, to trade-off between hit rate and accuracy for the remaining video. For that

reason, in all our experiments, we fix 1
α

to 15 to achieve high accuracy and evaluate

the performance of proposed face recognition algorithm.

108

Video
VGG-Face MXNs

Speedup
Acc. Lat. Acc. Lat.
(%) (s) (%) (s)

Friends 99.26 1120.67±1.52 99.76 93.76±0.81 11.95
The Departed 94.56 297.22±1.55 95.79 43.56±0.55 6.82

Good Will Hunting 97.32 333.1±1.32 98.95 25.57±0.56 13.03
Ocean 98.84 278.47±1.39 97.42 20.8±0.53 13.39

Acc.: Accuracy , Lat.: Latency

Table 5.16: Face Recognition Accuracy - VGG-Face as Oracle

Video
Hit Rate (%) Accuracy (%)

M0 M1 M2
VGG

M0 M1 M2
VGG

Face Face
Friends 87.99 3.35 3.28 5.38 99.99 100 99.86 95.75

The Departed 85.38 1.61 1.81 11.2 97.86 100 96.94 79.21
Good Will

93.37 1.26 1 4.37 99.67 100 93.44 84.64
Hunting
Ocean 93.87 1.18 0.75 4.2 97.77 96.67 100 89.2

M0, M1, M2: 3 models in MXNs

Table 5.17: Hit Rate and Accuracy - VGG-Face as Oracle

5.3.2.3 Evaluation Results

Table 5.16 shows the performance of our approach comparing to using VGG-Face

model. Overall, by not triggering the heavy VGG-Face model frequently, MXNs sig-

nificantly improve the latency over VGG-Face, ranging from 6.82x-13.39x, while

achieving comparable accuracy over existing systems using a VGG-Face model.

Next, we examine the effects of MXNs by counting the number of face images

processed at each exit in terms of hit rate. Table 5.17 shows the hit rate and ac-

curacy at each exit. More than 87% of the inputs exit at the first model with high

accuracy. This implies that the proposed system can effectively learn and update

the facial features associated to each face over time in a video and only forward the

hard cases to more expensive models. Among all the hard instances that M0 for-

wards to upper models, 55.2%, 23.39%, 34.09% and 31.48% stops at M1 and M2

without triggering the VGG-Face in Friends, The Departed, Good Will Hunting and

Ocean videos respectively. This indicates that MXNs successfully process a partial

109

Video
Oracle MXNs
Acc. Acc. Max

Speedup
Miss

(%) (%) Speedup Rate(%)
Friends 95.01 98.91 1.71 1.28 5.56

The Departed 93.34 96.55 1.72 1.23 11.35
Good Will Hunting 89.21 92.53 1.71 1.29 4.44

Ocean 90.91 98.86 1.7 1.29 4.91

Acc.: Accuracy

Table 5.18: Face Recognition Accuracy - Last model in MXNs as Oracle

of hard cases with only a small amount of extra computations given that VGG-Face

is approximately 32x times more computational intensive than our models in terms

of FLOPS.

To understand better the effectiveness of MXNs , we add a fourth exit into our

existing MXNs and use it to replace VGG-Face as a oracle classifier. Table 5.18

shows the performance of 4-exit models comparing to only the fourth model as an

oracle classifier. Interestingly, using MXNs improves the accuracy on all 4 videos,

ranging from 3.2% to 7.95%. This confirms that using the average facial features

over time to match incoming face helps to improve the accuracy of a single model.

The max speedup shows the most benefit in latency that we can achieve if we only

use the cheapest model comparing to using the most expensive model within MXNs

. Overall, we achieve a speedup from 1.23 up to 1.29 given the maximum speedup

we can achieve limited to 1.72.

5.4 Discussions

Here, we discuss some of the limitation of proposed MXNs.

• Inefficient partial run implementation: We rely on partial run of

Tensorflow[8] to reuse the computations done at early exit for the next ex-

its. However, the current implementation of partial run has some overhead

that may reduce the performance of MXNs with too many exits. Choosing the

110

number of exits and where to put them should be carefully in considered to

maximize the performance of the system.

• Inefficient batching execution: One of the techniques to maximize the

GPU’s utilization is to batch multiple images into a single request and use

the GPU to process them at once. However, our experiment currently uses

only a single image at a time. If multiple images are batched, some of them

may exit at the first exit while the others might need to go further. This rises

a problem that we need to read out the temporary outputs out of the GPU, re-

move the outputs associated with those exit early and resubmit new data into

the GPU. That process causes a lot of overhead and hence, might out-weight

the benefits of having MXNs. In order to support batching feature, new GPU

operations should be introduced to allow easy modifications of the temporary

data on the GPU itself.

111

Chapter 6

Literature Review

6.1 Deep Learning for Vision Sensing

Deep learning models Krizhevsky [52] at el. won ILSVRC (ImageNet Large Scale

Visual Recognition Challenge) in 2012 by using a first deep convolutional neural

network called AlexNet to push the error rate of image classification task down to

18.2%. After that, a lot of efforts have been done to improve the performance of

deep learning models. For example, Simonyan at el. [76] introduced the potential

of stacking multiple layers of 3x3 filters to construct VGG network and achieve sig-

nificant boost in accuracy. He at el. [36] introduced the residual connections, which

are used to learn the identification mapping to mitigate the gradient vanishing prob-

lem, to achieve outstanding performance in ResNet. Object detection task was also

seen a huge boost in performance [27, 72, 62, 70, 71]. Girshick at el. proposed

Fast-RCNN and Faster-RCNN frameworks [27, 72] that firstly detect regions of in-

terests (ROIs - those that may contain objects) and secondly use image classification

on those regions to classify the labels. Despite of achieving highly accurate results,

those systems are slow because they have to run image classification task on huge

number of regions of interests. Yolo object detection [70] was proposed to solve

the latency issue by treating both ROIs detection and label classification as a single

regression problem and learning it end-to-end. By simplifying the ROI detection,

112

Yolo allows use to detect multiple objects within a frame by just a single inference

step. Liu at el. [62] pointed out that using features at different layers could help

detect objects at multiple scales. Unlike Yolo, which only use features at the last

layer to do detection, Liu proposed SSD framework that aggregates features across

multiple layers to learn the regression models and significantly boost up the detec-

tion accuracy comparing to Yolo framework. There are also a tremendous works

on various computer vision tasks such as activity recognition in video [25], image

captioning [89] and many more.

Deep learning frameworks: Caffe [47], Theano [11] and Tensorflow [8] are

the most common deep learning frameworks that are highly optimized to run on

desktops and servers. Later on, Lane at el. have taken crucial first steps towards

real-time execution of DNN and CNN on mobile devices [54, 55]. In [55], the au-

thors showed that it is feasible to run entire DNN for audio sensing applications on

low-power mobile DSPs. In addition, the DeepX framework enables the execution

of DNN and CNN on mobile devices [54] by splitting computations across multiple

co-processors. We believe that our work can complement DeepX in the following

ways. First, DeepX is designed with a ML principal-driven approach where our

works takes a system-driven optimization approach, giving the potential opprotuni-

ties to use both approaches together for further latency reduction. Second, DeepX

is effective in reducing the latency of fully-connected layers while our framework

focused on reducing latency of convolutional layers.

Vision Sensing Systems Ha et el. proposed the Gabriel framework [30] to sup-

port cognitive assistance applications using cloudlet to minimize occurred latency.

Recently, Glimpse [17] leveraged the cloud to enable real-time object detection and

tracking while MCDNN [35] executed deep learning algorithms across mobile de-

vices and clouds. MCDNN [35] proposed efficient optimization techniques such

as building multiple smaller DNN models to recognize frequently appearing ob-

jects, sharing visual features between applications and optimizing task offloading

to the clouds. Gabriel [30] uses cloudlets to support cognitive assistance applica-

113

tions while LiKamWa et al. presented optimization techniques for image sensors to

enable continuous mobile vision [57] and Starfish [58] to support concurrent execu-

tion of multiple vision applications. Kang [48] at el. proposed NoScope query video

system that deploys specialized models, which mimic the behaviors of full model

but only for a small set of potential classes, on particular video stream. Focus [39]

improves the idea of NoScope by leveraging top-K results of specialized models

at ingestion time to achieve high recall and fast indexing. After that, during query

time, Focus uses state-of-the-art model to correct the mistakes made by specialized

models. By doing so, Focus found a sweat spot to trade-off for ingestion latency

and query latency.

6.2 Deep Learning Optimizations

Inference optimization: There has been a number of prior work to reduce training

time of CNN and DNN [63]. However, little work has focused on optimizing in-

ference time as most prior works used powerful servers and desktop machines for

inferences. A few works aim at optimizing inference time. For instance, Vanhoucke

et al. [85] develops a suite of low-level optimization techniques to reduce the in-

ference latency (e.g., using fixed point arithmetic and SSSE3/SSE4 instructions on

x86 machines). Also, approximation techniques are developed to reduce latency

with trade-offs in accuracy [46]. However, these studies were focused on powerful

desktop or server machines.

Model Quantization: HashNet [14] quantizes the network parameters by hash-

ing weights into different groups before training. HashNet only needs to store

shared weights and the hash to reduce the storage space. However, during the infer-

ence, shared weights need to be restored to original shape. Hence, neither inference

time or memory usage is improved. [69] proposed an approach to quantize param-

eters into binary values and used bit-wise operations to speed up the inference for

moderate accuracy loss.

114

Model approximation and pruning: Restructuring DNN models has been

widely studied to reduce the size of the model and accelerate the inference speed

[24, 29, 46, 50, 53, 74]. [24] explored the use of Singular Value Decomposition

(SVD) to approximate the weight matrices within neural network to reduce both

memory consumption and computational cost. However, it works well with fully

connected layers but doesn’t provide advantages on convolutional layers. Han at

el. [34] pruned the unimportant connections within a model during training step.

This method helps to remove near-zero weights and save a lot of storage space.

However, inference time improvement is limited due to irregular network patterns

and it requires dedicated hardware to achieve significant inference speedup. Re-

cently, Bhattacharya and Lane proposed a framework to sparsify fully-connected

layers and separate convolutional kernels, reducing the memory and computational

costs of DNN/CNN significantly for wearables [53]. Kim et al. proposed a Tucker-

2 decomposition technique [50]. It decomposes a tensor into three smaller ones,

accelerating convolutional layer execution for mobile devices. Han et al. proposed

a method to prune network connection based on magnitude of parameters during

fine-tuning phase [33]. However, weights matrix becomes sparse after pruning pro-

cess and makes it hard to leverage optimized library to execute inference step effi-

ciently. Yao et al. proposed DeepIot system that leverages recurrent neural network

(RNN) to learn the relationship between parameters across many layers and prune

the redundancy automatically [87]. However, RNN is prone to gradient vanishing

problem and may not work well if the input sequence is too large.

115

Chapter 7

Conclusions and Future Directions

In this chaper, I conclude this thesis by summarizing my contributions and outline

some future directions.

7.1 Summary of Contributions

Mobile Deep-Learning Framework Optimizations: I explored a variety of de-

sign choices and optimization techniques to efficiently execute CNN models on

mobile devices (such as memory vectorization, data representation, usage of half

floating points) in order to build DeepSense and DeepMon frameworks. I proposed

a smart caching mechanism leverages similarities of consecutive images to cache

internally processed data within the deep convolutional neural network to reduce

the latency of processing video data. I also show that we can leverage new pro-

gramming API for graphics processing such as Vulkan, which is recently available

on both Android and iOS platforms, to do CNN computation.

Deep Learning Models Compression: I proposed D-Pruner, a simple but effec-

tive compression technique to remove redundancy within existing CNN models.

D-Pruner introduces a novel concept of the masking block to automatically figure

out redundant filters which have low impacts on final accuracy during the training

116

process.

Multi-exit Models as Efficient Implementation to Accelerate Computer Vision

Workloads: I adopted multi-exit models as efficient implementation to replace

DNNs to improve the performance of many machine learning workflows. I propose

using focal loss to improve the accuracy of early exiting decisions. By applying

the idea of MXNs into many existing systems such as video query system Focus

and face recognition system, it enables us to use many optimizations such as results

aggregation across models, facial features matching, etc., which cannot be done

before, to improve the overall performance.

7.1.1 Publications

The research work described in this thesis have led to publications in peer–reviewed

conferences. Below is a list of selected publications.

WearSys ’16 Huynh, Loc Nguyen, Rajesh Krishna Balan, and Youngki Lee.
”Deepsense: A gpu-based deep convolutional neural network framework
on commodity mobile devices.” Proceedings of the 2016 Workshop
on Wearable Systems and Applications. ACM, 2016.

Mobisys ’17 Huynh, Loc N., Youngki Lee, and Rajesh Krishna Balan.
”Deepmon: Mobile gpu-based deep learning framework for continuous vision
applications.” Proceedings of the 15th Annual International Conference on
Mobile Systems, Applications, and Services. ACM, 2017.

EMDL ’18 Huynh, Loc N., Youngki Lee, and Rajesh Krishna Balan.
”D-pruner: Filter-based pruning method for deep convolutional neural network.”
Proceedings of the 2nd International Workshop on Embedded and Mobile Deep
Learning. ACM, 2018.

7.2 Future Directions

Efficient layers for generative models: Many generative models such as

GAN [28] to generate artificial images relies on convolutional-transpose to upscale

117

lower input size into higher output size. However, the current implementation of

convolutional transpose operations in many frameworks such as Tensorflow [8] is

to upscale the input into output’s size by padding zero and use convolutional op-

erations on higher output size to yield the final output. This approach requires a

lot of computational cost and will not run fast on resource-constraint devices such

as embedded board. So I ask a question if there is a similar approach to separable

convolution layers [38] to reduce the computational cost of convolutional transpose

operation?

MXNs-based Optimizations at GPU operations: As I mentioned in 5.4, one of

the technique to maximize the GPU’s utilization is to batch multiple images into

a single request and use the GPU to process them at once. In case of processing

MXNs, if some instances exit early, we will have to read the data out of the GPU

at every exit, modify and submit it back to the GPU. This process introduces a

huge overhead to the system. What if we can introduce more operations at GPU-

level to process it directly on the GPU without reading/writing GPU data back and

forward? With those operations, we can enable supporting many more features

for the catalog not just at framework-level but also at GPU-operational kernel-level

such as batching, or dynamic re-sizing of a batch, etc.

Efficient Storage for Video Query Systems: Storing multiple month-long videos

might consume a lot of data storage. However, there are many sessions within

a single video that do not contain any objects/activities of interest. For example,

many videos of traffic road at night only contain few objects for a short window of

time. Hence, storing the video for a whole night would be inefficient. If we can

use fast object detectors on those videos and only store video segments that contain

objects/activities of interest, we would significantly reduce the amount of data that

needs to be stored.

118

Bibliography

[1] A brief report of the heuritech deep learning meetup
5. https://blog.heuritech.com/2016/02/29/
a-brief-report-of-the-heuritech-deep-learning-meetup-5/.
Accessed: 2016-12-8.

[2] Google glass. https://developers.google.com/glass/. Accessed:
2016-12-8.

[3] Hololens. https://www.microsoft.com/microsoft-hololens/
en-us. Accessed: 2016-12-8.

[4] Monsoon power monitor. https://www.msoon.com/LabEquipment/
PowerMonitor/. Accessed: 2016-12-8.

[5] Nvidia cuda toolkit. https://developer.nvidia.com/cuda-toolkit.
Accessed: 2016-12-8.

[6] Vulkan. https://www.khronos.org/vulkan/. Accessed: 2016-12-8.

[7] 2019-05-10. https://www.amazon.com/b?ie=UTF8&node=
16008589011.

[8] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine learning.
In 12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16), pages 265–283, 2016.

[9] R. K. Balan, D. Gergle, M. Satyanarayanan, and J. Herbsleb. Simplifying cyber forag-
ing for mobile devices. In Proceedings of the 5th International Conference on Mobile
Systems, Applications and Services, MobiSys ’07, pages 272–285, New York, NY,
USA, 2007. ACM.

[10] R. K. Balan, M. Satyanarayanan, S. Y. Park, and T. Okoshi. Tactics-based remote
execution for mobile computing. In Proceedings of the 1st International Conference
on Mobile Systems, Applications and Services, MobiSys ’03, pages 273–286, New
York, NY, USA, 2003. ACM.

[11] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian,
D. Warde-Farley, and Y. Bengio. Theano: a cpu and gpu math expression compiler.
In Proceedings of the Python for scientific computing conference (SciPy), volume 4.
Austin, TX, 2010.

[12] S. Bhattacharya and N. D. Lane. Sparsification and separation of deep learning layers
for constrained resource inference on wearables. In Proceedings of the 14th ACM

119

https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/
https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/
https://developers.google.com/glass/
https://www.microsoft.com/microsoft-hololens/en-us
https://www.microsoft.com/microsoft-hololens/en-us
https://www.msoon.com/LabEquipment/PowerMonitor/
https://www.msoon.com/LabEquipment/PowerMonitor/
https://developer.nvidia.com/cuda-toolkit
https://www.khronos.org/vulkan/
https://www.amazon.com/b?ie=UTF8&node=16008589011
https://www.amazon.com/b?ie=UTF8&node=16008589011

Conference on Embedded Network Sensor Systems CD-ROM, pages 176–189. ACM,
2016.

[13] J. Boger, J. Hoey, P. Poupart, C. Boutilier, G. Fernie, and A. Mihailidis. A planning
system based on markov decision processes to guide people with dementia through ac-
tivities of daily living. IEEE Transactions on Information Technology in Biomedicine,
10(2):323–333, 2006.

[14] Z. Cao, M. Long, J. Wang, and P. S. Yu. Hashnet: Deep learning to hash by continua-
tion. In Proceedings of the IEEE International Conference on Computer Vision, pages
5608–5617, 2017.

[15] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the
details: Delving deep into convolutional nets. arXiv preprint arXiv:1405.3531, 2014.

[16] K. Chellapilla, S. Puri, and P. Simard. High Performance Convolutional Neural Net-
works for Document Processing. In G. Lorette, editor, Tenth International Workshop
on Frontiers in Handwriting Recognition, La Baule (France), Oct. 2006. Université de
Rennes 1, Suvisoft. http://www.suvisoft.com.

[17] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan. Glimpse:
Continuous, real-time object recognition on mobile devices. In Proceedings of the
13th ACM Conference on Embedded Networked Sensor Systems, SenSys ’15, pages
155–168, New York, NY, USA, 2015. ACM.

[18] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shel-
hamer. cudnn: Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759,
2014.

[19] F. Chollet et al. Keras: Deep learning library for theano and tensorflow. URL:
https://keras. io/k, 7:8, 2015.

[20] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, and
P. Bahl. Maui: Making smartphones last longer with code offload. In Proceedings
of the 8th International Conference on Mobile Systems, Applications, and Services,
MobiSys ’10, pages 49–62, New York, NY, USA, 2010. ACM.

[21] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, volume 1 of CVPR ’05, pages 886–893. IEEE, 2005.

[22] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[23] J. Deng, J. Guo, N. Xue, and S. Zafeiriou. Arcface: Additive angular margin loss for
deep face recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4690–4699, 2019.

[24] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus. Exploiting linear
structure within convolutional networks for efficient evaluation. In Advances in neural
information processing systems, pages 1269–1277, 2014.

120

[25] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan,
K. Saenko, and T. Darrell. Long-term recurrent convolutional networks for visual
recognition and description. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, CVPR ’15, pages 2625–2634, 2015.

[26] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pas-
cal visual object classes (voc) challenge. International journal of computer vision,
88(2):303–338, 2010.

[27] R. Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on
computer vision, pages 1440–1448, 2015.

[28] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in neural
information processing systems, pages 2672–2680, 2014.

[29] L. Grasedyck, D. Kressner, and C. Tobler. A literature survey of low-rank tensor
approximation techniques. GAMM-Mitteilungen, 36(1):53–78, 2013.

[30] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan. Towards wear-
able cognitive assistance. In Proceedings of the 12th annual international conference
on Mobile systems, applications, and services, pages 68–81. ACM, 2014.

[31] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao, Y. Wang, et al.
Ese: Efficient speech recognition engine with sparse lstm on fpga. In Proceedings of
the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
pages 75–84. ACM, 2017.

[32] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally. Eie:
efficient inference engine on compressed deep neural network. In 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA), pages 243–
254. IEEE, 2016.

[33] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[34] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for
efficient neural network. In Advances in neural information processing systems, pages
1135–1143, 2015.

[35] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krishnamurthy.
Mcdnn: An approximation-based execution framework for deep stream processing
under resource constraints. In Proceedings of the 14th Annual International Confer-
ence on Mobile Systems, Applications, and Services, MobiSys ’16, pages 123–136,
New York, NY, USA, 2016. ACM.

[36] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[37] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

121

[38] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam. Mobilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861, 2017.

[39] K. Hsieh, G. Ananthanarayanan, P. Bodik, S. Venkataraman, P. Bahl, M. Philipose,
P. B. Gibbons, and O. Mutlu. Focus: Querying large video datasets with low latency
and low cost. In 13th {USENIX} Symposium on Operating Systems Design and Im-
plementation ({OSDI} 18), pages 269–286, 2018.

[40] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. arXiv preprint
arXiv:1709.01507, 2017.

[41] G. Huang, D. Chen, T. Li, F. Wu, L. Van Der Maaten, and K. Q. Weinberger.
Multi-scale dense convolutional networks for efficient prediction. arXiv preprint
arXiv:1703.09844, 2, 2017.

[42] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4700–4708, 2017.

[43] G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller. Labeled faces in the wild:
A database forstudying face recognition in unconstrained environments. In Workshop
on faces in’Real-Life’Images: detection, alignment, and recognition, 2008.

[44] L. N. Huynh, R. K. Balan, and Y. Lee. Deepsense: A gpu-based deep convolutional
neural network framework on commodity mobile devices. In Proceedings of the 2016
Workshop on Wearable Systems and Applications, pages 25–30. ACM, 2016.

[45] L. N. Huynh, Y. Lee, and R. K. Balan. Deepmon: Mobile gpu-based deep learning
framework for continuous vision applications. In Proceedings of the 15th Annual
International Conference on Mobile Systems, Applications, and Services, pages 82–
95. ACM, 2017.

[46] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up convolutional neural net-
works with low rank expansions. CoRR, abs/1405.3866, 2014.

[47] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In Pro-
ceedings of the 22nd ACM international conference on Multimedia, pages 675–678.
ACM, 2014.

[48] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia. Noscope: optimizing
neural network queries over video at scale. Proceedings of the VLDB Endowment,
10(11):1586–1597, 2017.

[49] Y. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin. Compression of deep
convolutional neural networks for fast and low power mobile applications. CoRR,
abs/1511.06530, 2015.

[50] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin. Compression of deep con-
volutional neural networks for fast and low power mobile applications. arXiv preprint
arXiv:1511.06530, 2015.

[51] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images.
2009.

122

[52] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105, 2012.

[53] N. Lane and S. Bhattacharya. Sparsifying deep learning layers for constrained resource
inference on wearables. In Proceedings of the 14th ACM Conference on Embedded
Network Sensor Systems, pages 176–189. ACM, 2016.

[54] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro, and
F. Kawsar. Deepx: A software accelerator for low-power deep learning inference
on mobile devices.

[55] N. D. Lane, P. Georgiev, and L. Qendro. Deepear: Robust smartphone audio sensing
in unconstrained acoustic environments using deep learning. In Proceedings of the
2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing,
UbiComp ’15, pages 283–294, New York, NY, USA, 2015. ACM.

[56] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky. Speeding-up
convolutional neural networks using fine-tuned cp-decomposition. arXiv preprint
arXiv:1412.6553, 2014.

[57] R. LiKamWa, B. Priyantha, M. Philipose, L. Zhong, and P. Bahl. Energy characteriza-
tion and optimization of image sensing toward continuous mobile vision. In Proceed-
ing of the 11th Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys ’13, pages 69–82, New York, NY, USA, 2013. ACM.

[58] R. LiKamWa and L. Zhong. Starfish: Efficient concurrency support for computer
vision applications. In Proceedings of the 13th Annual International Conference on
Mobile Systems, Applications, and Services, MobiSys ’15, pages 213–226, New York,
NY, USA, 2015. ACM.

[59] M. Lin, Q. Chen, and S. Yan. Network in network. arXiv preprint arXiv:1312.4400,
2013.

[60] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object
detection. In Proceedings of the IEEE international conference on computer vision,
pages 2980–2988, 2017.

[61] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick. Microsoft coco: Common objects in context. In European conference on
computer vision, pages 740–755. Springer, 2014.

[62] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. Ssd:
Single shot multibox detector. In European conference on computer vision, pages
21–37. Springer, 2016.

[63] M. Mathieu, M. Henaff, and Y. LeCun. Fast training of convolutional networks
through ffts. arXiv preprint arXiv:1312.5851, 2013.

[64] J.-M. Morel and G. Yu. Asift: A new framework for fully affine invariant image
comparison. SIAM Journal on Imaging Sciences, 2(2):438–469, 2009.

[65] Y. Nesterov et al. Gradient methods for minimizing composite objective function,
2007.

123

[66] C. Nugteren. Clblast: A tuned opencl blas library. In Proceedings of the International
Workshop on OpenCL, page 5. ACM, 2018.

[67] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359, 2010.

[68] O. M. Parkhi, A. Vedaldi, A. Zisserman, et al. Deep face recognition. In bmvc,
volume 1, page 6, 2015.

[69] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Imagenet clas-
sification using binary convolutional neural networks. In European Conference on
Computer Vision, pages 525–542. Springer, 2016.

[70] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 779–788, 2016.

[71] J. Redmon and A. Farhadi. Yolo9000: better, faster, stronger. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 7263–7271, 2017.

[72] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object de-
tection with region proposal networks. In Advances in neural information processing
systems, pages 91–99, 2015.

[73] K. Rupp, F. Rudolf, and J. Weinbub. Viennacl-a high level linear algebra library for
gpus and multi-core cpus. In Intl. Workshop on GPUs and Scientific Applications,
pages 51–56, 2010.

[74] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran. Low-rank
matrix factorization for deep neural network training with high-dimensional output
targets. In Proceedings of 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP ’13, pages 6655–6659. IEEE, 2013.

[75] H. Shen, S. Han, M. Philipose, and A. Krishnamurthy. Fast video classification via
adaptive cascading of deep models. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 3646–3654, 2017.

[76] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[77] S. Song, V. Chandrasekhar, N.-M. Cheung, S. Narayan, L. Li, and J.-H. Lim. Activ-
ity recognition in egocentric life-logging videos. In Asian Conference on Computer
Vision, pages 445–458. Springer, 2014.

[78] K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A dataset of 101 human actions
classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

[79] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for simplicity:
The all convolutional net. arXiv preprint arXiv:1412.6806, 2014.

[80] J. E. Stone, D. Gohara, and G. Shi. Opencl: A parallel programming standard for
heterogeneous computing systems. Computing in science & engineering, 12(1-3):66–
73, 2010.

[81] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. Inception-v4, inception-resnet
and the impact of residual connections on learning. In AAAI, volume 4, page 12, 2017.

124

[82] M. Tan and Q. V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. arXiv preprint arXiv:1905.11946, 2019.

[83] S. Teerapittayanon, B. McDanel, and H.-T. Kung. Branchynet: Fast inference via early
exiting from deep neural networks. In 2016 23rd International Conference on Pattern
Recognition (ICPR), pages 2464–2469. IEEE, 2016.

[84] G. Urban, K. J. Geras, S. E. Kahou, Ö. Aslan, S. Wang, R. Caruana, A. Mohamed,
M. Philipose, and M. Richardson. Do deep convolutional nets really need to be deep
(or even convolutional)? CoRR, abs/1603.05691, 2016.

[85] V. Vanhoucke, A. Senior, and M. Z. Mao. Improving the speed of neural networks on
cpus. In Proc. Deep Learning and Unsupervised Feature Learning NIPS Workshop,
volume 1, 2011.

[86] A. Vedaldi and K. Lenc. Matconvnet: Convolutional neural networks for matlab. In
Proceedings of the 23rd ACM International Conference on Multimedia, pages 689–
692. ACM, 2015.

[87] S. Yao, Y. Zhao, A. Zhang, L. Su, and T. Abdelzaher. Deepiot: Compressing deep
neural network structures for sensing systems with a compressor-critic framework.
In Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems.
ACM, 2017.

[88] D. Yi, Z. Lei, S. Liao, and S. Z. Li. Learning face representation from scratch. arXiv
preprint arXiv:1411.7923, 2014.

[89] Q. You, H. Jin, Z. Wang, C. Fang, and J. Luo. Image captioning with semantic atten-
tion. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 4651–4659, 2016.

[90] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer. Imagenet training in
minutes. In Proceedings of the 47th International Conference on Parallel Processing,
page 1. ACM, 2018.

125

	Exploiting approximation, caching and specialization to accelerate vision sensing applications
	Citation

	1 Introduction
	1.1 Vision Sensing Systems
	1.2 Motivation Scenarios
	1.3 Accelerate Vision Sensing Applications
	1.3.1 Mobile deep learning framework for vision sensing
	1.3.2 Exploiting similarity in video frames for smart caching
	1.3.3 Exploiting model approximation and compression for fast inference
	1.3.4 Exploiting multi-exit models for efficient computational pipeline:

	1.4 Key Challenges
	1.5 Thesis Statement

	2 DeepSense: A GPU-based deep convolutional neural network framework on commodity mobile devices
	2.1 Introduction
	2.2 Background
	2.2.1 OpenCL
	2.2.2 Convolutional Neural Network

	2.3 CNN Performance Breakdown
	2.4 System Overview
	2.5 Design Considerations
	2.5.1 Branch Divergence
	2.5.2 Memory Coalescing vs Memory Vectorization
	2.5.3 Memory Representation
	2.5.4 Half Floating Point
	2.5.5 Performance Overview

	3 DeepMon: Mobile GPU-based Deep Learning Framework for Continuous Vision Applications
	3.1 Introduction
	3.2 Deep Learning Pipelines
	3.2.1 Background on Various Models
	3.2.2 Workload Characterization

	3.3 Design Considerations
	3.4 Implementation
	3.4.1 Architecture Overview
	3.4.2 Loading Models into Mobile GPUs
	3.4.3 Convolutional Layer Caching
	3.4.4 Convolutional Layer Decomposition
	3.4.5 Optimizing Convolutional Operation
	3.4.6 Scaling to Various Mobile GPUs

	3.5 Experiments
	3.5.1 Experimental Setup
	3.5.2 Processing Latency
	3.5.3 Recognition Accuracy
	3.5.4 Comparison with Other Approaches
	3.5.5 Power Consumption
	3.5.6 Latency on Other Mobile GPUs
	3.5.7 Latency of Vulkan
	3.5.8 Performance on First-Person-View Videos
	3.5.9 Convolutional Layer Caching Performance
	3.5.10 Memory Footprint

	4 D-pruner: Filter-based pruning method for deep convolutional neural network
	4.1 Introduction
	4.2 Convolutional Neural Network
	4.3 D-Pruner Algorithm
	4.3.1 Masking Block
	4.3.2 Pruning Method

	4.4 Experiments
	4.4.1 Experiment Setup
	4.4.2 Overall Results
	4.4.3 Performance Breakdown

	5 Exploiting Cost-Quality Trade-off with Multi-Exit Networks
	5.1 Introduction
	5.2 Multi-Exit Model Overview
	5.2.1 Overall performance of multi-exit models on general tasks.
	5.2.2 Enhancing Accuracy of MXNs via Features Aggregation Between Exits
	5.2.3 Improving Accuracy of Threshold-based approach using Focal Loss.
	5.2.4 Accelerating models serving using prefix batching

	5.3 Evaluations on Real Applications
	5.3.1 Video Query System
	5.3.2 Face Recognition in Videos

	5.4 Discussions

	6 Literature Review
	6.1 Deep Learning for Vision Sensing
	6.2 Deep Learning Optimizations

	7 Conclusions and Future Directions
	7.1 Summary of Contributions
	7.1.1 Publications

	7.2 Future Directions

