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A B S T R A C T

Naringin, a citrus-derived flavonoid with antihyperglycemic, antihyperlipidemic, and antioxidant properties, is
reported to be a useful nutraceutical in the management of diabetes and its complications. This study in-
vestigated the mechanism of antiatherogenic properties of naringin in type 2 diabetes (T2DM) using high fat-low
streptozocin rat model of T2DM. Rats were treated daily with 50, 100 and 200mg/kg naringin orally for 21days.
Levels of biomarkers of T2DM, lipid profile and activity of paraoxonase (PON) were assayed spectro-
photometrically. The levels of expression of hepatic 3-hydroxy-3-methyl-glutaryl-CoA reductase (Hmgcr), sca-
venger receptor class B member 1 (Scarb1), aryl hydrocarbon receptor (Ahr), hepatic Lipase (Lipc), and lecithin-
cholesterol acyltransferase (Lcat) were assessed using relative reverse transcriptase polymerase chain reaction
technique. Naringin treatment resulted in a dose-dependent significant (p < 0.05) decrease in the levels of
plasma cholesterol and triglyceride from 84.84 ± 1.62 to 55.59 ± 1.50mg/dL and 123.03 ± 15.11 to
55.00 ± 0.86 mg/dL, respectively, at 200mg/kg naringin. In the liver, Scarb1 and Ahr were significantly
(p < 0.05) upregulated at 200mg/kg naringin while Lipc and Lcat were significantly (p < 0.05) upregulated by
50mg/kg naringin. T2DM-induced decrease in PON activities in the plasma, liver and HDL was significantly
(p < 0.05) reversed by 200mg/kg naringin treatment. These genes play critical roles in reverse cholesterol
transport and hence our results showed that the antiatherogenic property of naringin in T2DM involves en-
hancement of reverse cholesterol transport and PON activity.

1. Introduction

Type 2 diabetes mellitus (T2DM) is the most prevalent form of
diabetes and it is characterized by hyperglycemia associated with in-
sulin resistance and impairment in insulin secretion with concomitant
alteration in the intermediary metabolism of carbohydrate, protein and
lipid [1,2]. The prevalence of T2DM has continued to be on the rise as a
result of increase in obesity, which has been attributed to change in
lifestyle and diet. Hence, the developing countries are expected to ex-
perience the greatest increase in the morbidity and mortality of this
disease by the year 2025 [3].

T2DM is known to be associated with major complications like
atherosclerotic coronary heart disease, cardiomyopathy, stroke and
nephropathy. These complications are often responsible for increased
mortality due to T2DM and they are associated with dyslipidemia and

hypertension [2]. For example, atherosclerotic coronary heart disease is
promoted by lipoprotein abnormalities which involve elevated very low
density lipoproteins (VLDL) cholesterol and low high density lipopro-
tein (HDL) cholesterol [4]. Although the pathogenesis of atherosclerosis
is complex, its development is dependent on the oxidation of LDL. This
oxidation is prevented by paraoxonases, which are antioxidant protein
component of lipoproteins, and are considered as better predictors of
atherosclerotic risk than HDL in diabetes [5,6].

Although T2DM is a chronic disease, its management often involves
control of both short-term and long-term diabetes-related problems [7].
Hence, the reduction of hyperglycemia and the risk of long-term com-
plications is the target of any effective treatment regimen.

Although, there are a number of anti-diabetic pharmacological
agents; they are however, limited by their unwanted side effects [8].
Thus, there has been a growing interest in nutraceuticals and functional
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food that can be useful in the management of T2DM and its associated
complications.

Citrus is one of such functional foods that has been proposed to be
beneficial in the management of diabetes mellitus and naringin is one of
its active phytochemicals [9]. Naringin (PubChem CID: 442,428), a
flavone glycoside, and aglycone of naringenin that gives grapefruit its
bitter taste, has been reported for its antihyperglycemic, antioxidant
and antihyperlipidemic properties [9,10]. For instance, Xulu and
Oroma Owira [11] showed that naringin could ameliorate dyslipidemia
in type I diabetic rats while Choi et al [10] further demonstrated the
antioxidant effect of this flavonoid in rats fed with high cholesterol diet.
Subsequently, the potential of naringin to improveT2DM in rats was
demonstrated by Parmar et al. [12] using in silico, in vitro and in vivo
inhibition of a biomarker of T2DM. Recently, Pari and Chandramohan
[13] showed that the anti- T2DM property of naringin is due to the
modulation of key carbohydrate metabolism enzymes in type 2 diabetic
rat model.

However, more detailed studies are still needed to understand the
mechanism by which naringin improves T2DM and prevents its asso-
ciated complications. This present study therefore seeks to investigate
the effects of naringin on a high fat fed/streptozotocin-induced T2DM
rat model.

2. Materials and methods

2.1. Chemicals

Streptozotocin (STZ) was a product of Sigma-Aldrich (St. Loius, MO,
USA) while Metformin was a product of Swipha Pharma, Lagos,
Nigeria. Naringin was a product of Human Kang Biotechnology
Company, Human Province, China. RNA later and RNA extraction spin
column kits were products of Aidlab Biotechnologies Co. Ltd (Beijing,
China) while TransGen Easy Script one-step RT-PCR kit was a product
of TransGen Biotech Co. Ltd (Beijing, China). All other chemicals were
products of Sigma-Aldrich (St. Loius, MO, USA).

2.2. Animals

Thirty male inbred albino rats weighing between 150 and 200 g
were used for this study. The rats were housed in specific pathogen-free
polypropylene cages under normal temperature (22 ± 2 °C) with 12-h
light and dark cycle. The animals were allowed to acclimatize for three
weeks before commencement of the experiment. The experiment was
approved by the Covenant University Ethical Committee (CU/BIOSC-
RECU/BIO/2015/004) and carried out according to the guidelines of
the committee.

2.3. Experimental design

The rats were randomly divided into six groups of five rats each.
Five of the groups were maintained on a high fat diet (HFD), which
contained 45% fat (Table 1), throughout the period of the experiment
(9 weeks) while the last group was maintained on normal pellet diet
and served as the normal control. After 4 weeks, the HFD fed groups
were given a low dose (35mg/kg body weight) of STZ intraperitoneally
while the normal control group was administered the vehicle (0.1 mL/
kg body weight of 0.1 M citrate buffer), as described by Zhang et al.
[14]. Another dose of STZ was administered at week 6 of the experi-
ment, after which fasting blood glucose was checked and naringin was
then administered orally for 21 days. The rats were grouped as shown
below;

Group A: Diabetic Control: Rats fed HFD
Group B: Diabetic rats treated with 50mg/kg naringin: Rats fed HFD
Group C: Diabetic rats treated with 100mg/kg naringin: Rats fed

HFD
Group D: Diabetic rats treated with 200mg/kg naringin: Rats fed

HFD
Group E: Diabetic rats treated with 50mg/kg metformin: Rats fed

HFD
Group F: Normal Control: Rats fed normal diet
Twenty-four hours after the last dose of naringin, the rats were

euthanized under light ether anesthesia. Blood was collected from the
anaesthetized animals by cardiac puncture while liver and kidney were
also excised for biochemical and molecular analysis. The blood and
organs were processed as previously described by Rotimi et al. [15],
while portions of the liver were stabilized in RNAlater® for RNA ana-
lysis.

2.4. Biochemical analysis

Glucose, bicarbonate, α-amylase and α-hydroxyl butyrate dehy-
drogenase were determined spectrophotometrically in the plasma using
commercially available kits (BioSino Biotechnology & Science Inc.,
Changping District Beijing, China) while insulin and dipeptidyl pepti-
dase-4 (DPP-IV) were determined using enzyme linked immunosorbent
assay (ELISA) kits (Hangzhou Eastbiopharm Co., Ltd. Hangzhou,
China).

2.5. Plasma lipid profiles

Plasma cholesterol and triacylglycerols were determined spectro-
photometrically using commercially available kits according to manu-
facturer’s instructions. HDL and HDL3 were obtained from the plasma
using the dextran sulfate – MgCl2 precipitation method as described by
Rifai et al. [16]. The supernatant obtained after centrifugation con-
tained the HDL and HDL3, while the precipitate contained VLDL and
VLDL3 respectively. Free fatty acid was determined spectro-
photometrically as described by Rotimi et al. [17].

2.6. Liver lipid profiles

Lipids were extracted from the liver according to the method of
Folch et al. [18] and aliquots of the extract were used for determining
cholesterol and triacylglycerol concentrations as previously described
by Rotimi et al. [19].

2.7. Determination of paraoxonase activity

Paraoxonase was determined in the plasma, HDL, HDL3, VLDL,
VLDL3 and liver homogenate as described by Afolabi et al. [20]. Briefly,
phenylacetate was prepared freshly in 100mM Tris-acetate buffer pH

Table 1
Composition of diet.

Level (g/100 g) in diet

Component Normal diet High fat diet

Fish meal 25 25
Sucrose 10 10
Corn starch 49.5 4.5
Vegetable oil 5 5
Salt/mineral mix* 5.5 5.5
Cellulose 5 5
Tallow – 45

* Salt/mineral mix contains the following (in g/100 g): calcium phosphate, 49.50;
sodium powder, 11.80; potassium sulfate, 5.20; sodium chloride, 7.40; magnesium oxide,
2.40; potassium citrate, 22.40; ferric citrate, 0.60; manganous carbonate, 0.35; cupric
carbonate, 0.03; zinc carbonate, 0.16; chromium potassium sulfate, 0.055; potassium
iodate, 0.001; sodium selenate, 0.001; choline chloride, 0.50; thiamine HCl, 0.06; ribo-
flavin, 0.06; niacin, 0.30; calcium pantothenate, 0.16; biotin, 0.01; vitamin B12, 0.10;
vitamin D3, 0.025; vitamin E acetate, 1.00; pyridoxine, 0.07; folic acid, 0.02; vitamin A
acetate, 0.08.
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7.4 containing 10mM calcium chloride. The mixture was incubated at
37 °C with appropriate volumes of sample. The rate of phenol genera-
tion was monitored at 270 nm and the activity calculated using the
molar extinction coefficient of 1480M−1 cm−1.

2.8. Determination of hepatic carnitine palmitoyl transferase (CPT) activity

Total CPT activity was determined spectrophotometrically ac-
cording to the method of Ling et al. [21]. Briefly, aliquot of the liver
homogenate equivalent to 20 μg protein was mixed in 200 μL of reac-
tion buffer containing 20mM HEPES, 1mM EGTA, 220mM sucrose,
40 mM KCl, 0.1mM 5,5ʹ-dithio-bis (2-nitrobenzoic acid), 1.3 mg/mL
BSA, and 40 μM palmitoyl-CoA, pH 7.4. The reaction was initiated by
adding 1mM L-carnitine and read at 412 nm after 5min incubation at
37 °C. The CPT activity was calculated as amount of CoASH released per
min per mg protein using 13.6 mM/cm as the extinction coefficient for
5-thio-2-nitrobenzoate.

2.9. Determination of angiotensin converting enzyme (ACE) activity

ACE was determined in the kidney spectrophotometrically, using N-
Hippuryl–His-Leu hydrate, hydrochloric acid and ethyl acetate at
228 nm according to the method of Cushman and Cheung [22].

2.10. Gene expression analysis

The levels of expression of certain genes involved in lipid home-
ostasis were quantified using relative reverse transcriptase polymerase
chain reaction (RT-PCR) techniques as described by Chaudhry [23],
with appropriate modifications. Briefly, RNA from the liver samples
was extracted using the spin column kit obtained from Aidlab’s EASY-
spin Plus® according to the manufacturer’s instructions. The RT-PCR
was carried out with 500 ng RNA template using the Transgen Easy-
Script® one-step RT-PCR supermix according to manufacturer’s in-
structions. Samples were subjected to an initial incubation at 45 °C for
30min for cDNA synthesis, followed by PCR amplification, using gene
specific primers (GSP) (Table 2), 94 °C for 5min followed by 40 cycles
of 94 °C for 30s, 5 min at the annealing temperature of GSP and 1min at
72 °C. All amplifications were carried out in C1000 Touch™ Thermal
Cycler (BioRad, CA, USA). The intensity of the amplicon bands on 1.2%
agarose was analyzed using Image J software as earlier described [15,
24].

2.11. Statistical analysis

Data were expressed as mean ± SEM of six replicates in each
group. Analysis of variance (ANOVA) was carried out to test for the
level of homogeneity at p ˂ 0.05 among the groups. Duncan’s multiple
range test was used to separate the heterogeneous groups.

3. Results

3.1. Naringin improves biomarkers of diabetes in rats

The levels of glucose, insulin, bicarbonate, free fatty acids and DPP-
IV in the plasma as well as the activities of plasma α-hydroxyl butyrate
dehydrogenase, plasma amylase and kidney ACE were determined and
the results depicted in Fig. 1(a–h). Diabetes significantly (p < 0.05)
increased the levels of these biomarkers with naringin treatments re-
sulting in a dose-dependent significant (p < 0.05) reduction. Naringin
treatment also significantly (p < 0.05) reduced the level of plasma
DPP-IV and the activity of kidney ACE than metformin did.

3.2. Modulation of paraoxonase activity by naringin

Diabetes resulted in significant (p < 0.05) decrease in the activities
of PON in the plasma, liver and HDL with a concomitant increase in the
VLDL and VLDL3 (Fig. 2a–f). In the plasma, naringin significantly
(p < 0.05) increased the activity of PON with 100 and 200mg/kg
having higher activities, but are still significantly (p < 0.05) lower
than metformin and normal control. In the liver, naringin at 50mg/kg
significantly (p < 0.05) reversed the activity of PON to level that was
not significantly (p > 0.05) different from normal control. Only
200mg/kg naringin significantly (p < 0.05) increased the activity of
PON in HDL. Diabetes resulted in the elevation of PON activities in
VLDL and VLDL3. This increase in the activity of PON was significantly
(p < 0.05) reversed by naringin with 100 and 200mg/kg having the
lowest reduction in VLDL and VLDL3, respectively.

3.3. Effect of naringin on lipid metabolizing proteins in the diabetic rats

The activity of CPT and the levels of expression of Hmgcr, Scarb1,
Ahr, Lipc and Lcat in the liver were depicted in Fig. 3a–f. The activity of
CPT was significantly (p < 0.05) reduced in the diabetic control group.
However, this reduction was significantly (p < 0.05) reversed in a
dose-dependent pattern with 200mg/kg having activity that was sig-
nificantly (p < 0.05) higher than normal control. Naringin treatment
did not significantly (p > 0.05) affect the level of expression of hepatic
Hmgcr. The expression of hepatic Scarb1, Ahr, Lipc and Lcat were sig-
nificantly (p < 0.05) reduced in the diabetic control. This diabetes-
induced suppression was however significantly (p < 0.05) reversed by
naringin. The upregulation of Scarb1 and Ahr by naringin was dose-
dependent. However, 50mg/kg naringin resulted in the highest ex-
pression of Lipc among the three dosages. The effect of naringin on the
expression of Lcat was not significantly (p > 0.05) affected by dosage.
Metformin treatment resulted in the upregulation of Lipc and Lcat to
levels that was significantly (p < 0.05) higher than all the naringin
dosages but not significantly (p > 0.05) different from normal control.

Table 2
List and sequences of Gene Specific Primers.

Gene Code Gene name GSP Sequence (5ʹ - > 3ʹ) Template

Lipc Hepatic lipase C Forward: GAGCCCAGTCCCCCTTCA NM_012597.2
Reverse: ATGTCATTCTTTGCTGCGTCTC

Ahr Aryl hydrocarbon receptor Forward: GGGCCAAGAGCTTCTTTGATG NM_001308255.1
Reverse: GCAAGTCCTGCCAGTCTCTGA

Scarb1 Scavenger receptor class B, member 1 Forward: GGCAAATTTGGCCTGTTCGT NM_031541.1
Reverse: CCACAGCAATGGCAGGACTA

Lcat Lecithin cholesterol acyltransferase Forward: AACTGGCTGTGCTACCGAAA NM_017024.2
Reverse: TAGGTCTTGCCAAAGCCAGG

Hmgcr 3-hydroxy-3-methylglutaryl-CoA reductase Forward: CCTCCATTGAGATCCGGAGG NM_013134.2
Reverse: TCAGCCAGACCCAAGGAAAC

β-ACTIN Beta actin Forward: GTCAGGTCATCACTATCGGCAAT NM_031144.3
Reverse: AGAGGTCTTTACGGATGTCAACGT
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3.4. Effect of naringin on plasma and hepatic levels of cholesterol and
triacylglycerol

Table 3 shows the levels of cholesterol and triacylglycerol in the
plasma, HDL, HDL3 and liver. The diabetic untreated animals had ele-
vated cholesterol, triacylglycerol in the plasma and liver. Naringin
treatment was associated with a significant (p < 0.05) dose-dependent
decrease in the level of plasma cholesterol. However, there was no
significant (p > 0.05) difference in the level of plasma triacylglycerol
among the groups treated with naringin. In the liver, a significant
(p < 0.05) dose-dependent decrease was also observed in the level of

cholesterol; however, 200mg/kg naringin gave no further decrease.
None of the treatments altered the elevated hepatic triacylglycerol
level. Although the level of HDL cholesterol in the diabetic control was
not significantly (p > 0.05) different from that of normal control,
naringin at 200mg/kg significantly (p < 0.05) increased its level.
However, HDL triacylglycerol was significantly (p < 0.05) decreased
in the diabetic control group and naringin caused a further decrease.
Interestingly, the level of HDL3 cholesterol which was significantly
(p < 0.05) decreased in the diabetic control was significantly
(p < 0.05) reversed by naringin in a dose-dependent pattern.

Fig. 1. (a–h): Effects of naringin on biomarkers of T2DM the experimental rats. (a) Level of plasma glucose, (b) level of plasma insulin, (c) level of plasma bicarbonate, (d) level of plasma
free fatty acids, (e) activity of plasma amylase (f) level of plasma DPP IV, (g) activity of plasma α-HBD and (h) activity of kidney ACE.
Bars represent mean ± SEM (n=5). Bars with different statistical markers are significantly different at p < 0.05.
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4. Discussion

In this study, the rise in blood glucose was accompanied by elevated
levels of plasma insulin, bicarbonate, FFA, and DPP-IV as well as the
activities of plasma amylase and kidney ACE. This observation is con-
sistent with T2DM and the model used in this study has been reported
to simulate the human T2DM [25,26].

Insulin secretion following meal ingestion is stimulated by incretin
hormones which are metabolized quickly by DPP-IV. The level of this
enzyme is known to increase in type 2 diabetic patients and a previous
study identified it as good target for antidiabetic therapy [27]. The
naringin induced reduction in the level of DPP-IV observed in this study
is consistent with the findings of Parmar et al. [12], who earlier re-
ported the ability of naringin to inhibit this enzyme in vitro and in vivo.
The role of DPP-IV in glucose metabolism involves the degradation of
incretins-like glucagon like peptide-I and gastric inhibitory peptide thus
affecting the effective functioning of insulin in mopping up glucose in
the post-prandial state [28]. Interestingly, current pharmacotherapies
of T2DM now focus on inhibiting DPP-IV and enhancing insulin avail-
ability and sensitivity of tissues to insulin [29,30].

Hyperglycemia in T2DM is due to increased body fat percentage and
impaired glucose tolerance. The excessive fat intake accelerates insulin
release as well as the influx of triglycerides into the blood. This acti-
vates the release of FFA into the blood stream through the action of

lipoprotein lipase [31]. The increased plasma FFA level results in in-
sulin resistance and that increase has been proposed as one of the
mechanisms underlying the development of ketoacidosis, with con-
comitant increase in plasma amylase and bicarbonate level, in T2DM
[32]. Naringin has recently been reported to reduced diabetic ketoa-
cidosis in a type 1 model [33]; however, it of interest that our findings
showed that naringin is also able to reverse ketoacidosis associated with
T2DM. Apart from ketoacidosis, a major complication of T2DM is
vascular complications, resulting in cardiovascular diseases which are
accompanied with an increase in conversion of angiotensin I to angio-
tensin II by ACE. The elevation of the activity of this enzyme results in
increased blood pressure and it’s a major target of pharmacological
therapy of hypertension [34]. Our findings showed that naringin could
improve microvascular complications associated with T2DM by redu-
cing the activity of ACE. The inhibition of the activity of this enzyme by
naringin has been reported to be due to its flavonoid skeleton [35]. Our
finding therefore provides experimental in vivo evidence for the ACE
inhibitory property of naringin.

Hyperinsulinemia contributes to altered lipid metabolism in T2DM
through the inhibition of triglyceride hydrolysis, thus activating the
production of malonyl CoA through the enzyme, acetyl CoA carbox-
ylase. Malonyl CoA on the other hand allosterically inhibits CPT [36]
and impedes the transfer of fatty acids to the mitochondria for β-oxi-
dation resulting in the accumulation of FFA in the cytosol. Hence, our

Fig. 2. (a–f): Effects of naringin on PON activities in T2DM rats. (a) Activity of PON in plasma, (b) activity of PON in liver, (c) activity of PON in HDL, (d) activity of PON in HDL3, (e)
activity of PON in VLDL and (f) activity of PON in VLDL3.
Bars represent mean ± SEM (n=5). Bars with different statistical markers are significantly different at p < 0.05.
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Fig. 3. (a–f): Effects of naringin on hepatic CPT activity and expression of cholesterol metabolizing genes in T2DM rats. (a) The activity of hepatic CPT, (b) the levels of expression of
hepaticHmgcr (c) the levels of expression of hepatic Scarb1, (d) the levels of expression of hepatic Ahr, (e) the levels of expression of hepatic Lipc and (f) the levels of expression of hepatic
Lcat.
Bars represent mean ± SEM (n=5). Bars with different statistical markers are significantly different at p < 0.05.

Table 3
Effects of naringin on cholesterol and triglycerides levels in plasma, HDL, HDL3 and Liver.

Plasma HDL HDL3 Liver

Cholesterol
(mg/dL)

Triglyceride (mg/dL) Cholesterol
(mg/dL)

Triglyceride (mg/dL) Cholesterol
(mg/dL)

Triglyceride
(mg/dL)

Cholesterol (mg/
100g tissue)

Triglyceride (mg/
100g tissue)

Diabetic
Control

84.84 ± 1.62f 123.03 ± 15.11d 44.47 ± 3.94b 67.00 ± 10.77c 25.63 ± 1.43a 69.50 ± 14.67 22.69 ± 1.02a 49.79 ± 2.61b

50mg/Kg
bw

71.82 ± 1.82e 72.99 ± 2.43c 42.28 ± 2.25b 45.91 ± 3.40a 30.70 ± 0.46b 51.38 ± 5.77 24.44 ± 2.70a 47.69 ± 12.00b

100mg/Kg
bw

64.50 ± 1.00d 63.89 ± 1.57c 35.01 ± 1.74a 48.10 ± 5.22d 33.69 ± 0.43c 66.97 ± 11.47 17.57 ± 1.08b 43.36 ± 54.71b

200mg/Kg
bw

55.59 ± 1.50c 55.00 ± 0.86c 50.50 ± 5.30c 44.39 ± 2.98a 36.19 ± 0.33d 64.59 ± 8.05 19.15 ± 1.30b 49.56 ± 4.97b

Metformin 49.92 ± 0.76b 47.78 ± 1.77b 51.89 ± 6.46c 43.68 ± 4.69a 40.22 ± 0.78e 62.02 ± 11.00 23.13 ± 5.29a 49.75 ± 4.97b

Normal
Control

40.88 ± 1.94a 25.93 ± 4.30a 46.91 ± 5.13b 72.22 ± 10.22b 50.84 ± 2.85f 58.10 ± 8.39 13.62 ± 1.27c 31.78 ± 3.61a

Each value represents the mean ± SEM (n=5). Values within the same column with different superscripts are significantly different at p < 0.05.

S.O. Rotimi et al. Biomedicine & Pharmacotherapy 101 (2018) 430–437

435



finding and that of [37] suggest that the elevation of plasma FFA in
diabetic control group could be linked to the decrease in the activity of
CPT. This inhibition of CPT, however, allows for more storage of fatty
acids as triglyceride through esterification, which forms cholesteryl
esters. This may account for the high level of hepatic cholesterol as
observed in this study. Naringin-induced increase in CPT activity and
expression of hepatic lipase could have resulted in increased lipolysis.
The subsequent reduction in the level of plasma triacyclglycerols could
have also resulted from the upregulation of Ahr by naringin. This re-
ceptor is known to repress the expression of genes involved in reductive
biosynthesis of fatty acid thereby decreasing the overall fatty acid
synthesis and secretion in hepatocytes; and it has been suggested to be a
therapeutic target [38].

The findings of this study also demonstrated that naringin improves
general lipid profile and metabolism in the T2DM animals by sig-
nificantly increasing the expression of Scarb1 and Lcat in the liver.
Although previous studies have reported the ability of naringin to re-
verse dyslipidemia [33], its ability to increase the levels of plasma HDL
cholesterol and HDL3 cholesterol and increase the expression of Scarb1
in a dose-dependent manner indicates that the enhancement of reverse
cholesterol transport could be one of the mechanisms of its anti-dysli-
pidemia property. This finding is of interest because naringin did not
show any significant effect in reducing the expression of Hmgcr.

Lecithin cholesterol acyltransferase enhances the accumulation of
cholesterol in HDL and the fate of the cholesterol could be for: (1)
transfer to triglyceride-rich lipoproteins which are subsequently taken
up by hepatic LDL receptor as part of HDL containing apolipoprotein
(particle uptake) or by (2) a selective uptake of HDL cholesteryl ester in
liver involving Scarb1 [39]. Our findings suggest the later to be the
mechanism by which naringin induced cholesterol clearance in this
study. Scavenger receptor class B, member 1, a cell surface glycopro-
tein, plays a key role in reverse cholesterol transport by mediating the
uptake of cholesterol from HDL-cholesterol by the liver for metabolism
and biliary excretion [39].

There is considerable evidence that the anti-atherogenic property of
HDL is also due to the antioxidant property of its paraoxonase-1 com-
ponent [5]. This apoprotein component of the lipoprotein is a hydro-
lytic enzyme that protects against lipid oxidation and several bioactive
compounds have been reported to stimulate it [40,41]. The ability of
naringin to enhance the activities of PON in the liver, plasma and HDL
is a major contribution to reversing atherosclerosis, - an associated
complication of T2DM

5. Conclusion

The data presented in this study suggest that naringin could reverse
atherosclerosis associated with T2DM by reducing dyslipidemia via
HDL mediated reverse cholesterol transport and protection of lipopro-
tein from oxidation by enhancing the activities of PON.
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