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Abstract: In order to integrate genomics in breeding and development of drought-tolerant groundnut
genotypes, identification of genomic regions/genetic markers for drought surrogate traits is essential.
We used 3249 diversity array technology sequencing (DArTSeq) markers for a genetic analysis of 125
ICRISAT groundnut mini core collection evaluated in 2015 and 2017 for genome-wide marker-trait
association for some physiological traits and to determine the magnitude of linkage disequilibrium
(LD). Marker-trait association (MTA) analysis, probability values, and percent variation modelled by
the markers were calculated using the GAPIT package via the KDCompute interface. The LD analysis
showed that about 36% of loci pairs were in significant LD (p < 0.05 and r2 > 0.2) and 3.14% of the pairs
were in complete LD. The MTAs studies revealed 20 significant MTAs (p < 0.001) with 11 markers.
Four MTAs were identified for leaf area index, 13 for canopy temperature, one for chlorophyll content
and two for normalized difference vegetation index. The markers explained 20.8% to 6.6% of the
phenotypic variation observed. Most of the MTAs identified on the A subgenome were also identified
on the respective homeologous chromosome on the B subgenome. This could be due to a common
ancestor of the A and B genome which explains the linkage detected between markers lying on
different chromosomes. The markers identified in this study can serve as useful genomic resources
to initiate marker-assisted selection and trait introgression of groundnut for drought tolerance after
further validation.

Keywords: DArTseq; groundnut; linkage disequilibrium; marker-assisted selection; marker-trait
association; physiological traits
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1. Introduction

Groundnut or peanut (Arachis hypogaea L.) is an important food legume grown worldwide and is
a rich source of protein for both humans and animals. Groundnut seed contains high-quality edible oil
(50%), easily digestible protein (25%), and carbohydrate (20%) [1]. The crop was grown on 27.9 million
hectares worldwide with a total production of 47.1 million metric tons [1].

Developing countries account for 96% (26.8 million hectares) of groundnut areas and 92% of the
global production with the semi-arid tropics (SAT) region cultivating about 90%. Despite the developing
countries being the largest producers of groundnut, the average yield per hectare (China, 2490 kg ha−1

and Nigeria 840 kg ha−1) is low when compared to the United State of America (3673 kg ha−1) [1].
Climate change is a major threat to groundnut yield and quality in the SAT regions. Among the
factors contributing to low yield, drought adversely affects the crop’s performance [2]. Shortage
in the amount and distribution of rainfall in SAT regions has increased in the recent past thereby
exacerbating climate risks including crop failures [3]. Drought stress has an adverse influence on water
relations, photosynthesis, mineral nutrition, metabolism, growth and yield of groundnut [4]. Plants,
being sessile, have evolved specific acclimation and adaptation mechanisms to respond to and survive
short-long-term drought stresses [4]. Some physiological responses that allow adaptation to water
deficit include root traits, stomatal conductance, SPAD (Soil Plant Analysis Development) chlorophyll
meter reading, leaf area, and canopy temperature and are important measures for the agronomic
response of yield under moisture stress [5]. Chlorophyll content and fluorescence parameters determine
the integrity of the internal apparatus for photosynthesis and provide a precise platform for detection
and quantification of plant tolerance to drought stress [6] and were speculated as a useful indicator
for photosynthetic capacity in groundnut [7]. Canopy temperature (CT) was reported to be a marker
for drought tolerance through its negative correlation with transpiration cooling and carbon dioxide
exchange rate [8]. Genotypes that maintain cooler canopies under stress conditions possess a high
potential for water stress tolerance and high yield [8]. Healthy vegetation measured by normalized
difference vegetative index (NDVI) under drought conditions correlates to high photosynthetic potential
and yield of groundnut [8]. Drought reduces leaf area by constraining mitosis, cell proliferation, leaf
expansion and carbohydrate supply [9] and genotypes with wider leaf areas under water stress have
the capacity for high photosynthesis. These drought surrogate traits are adaptation mechanisms used
by groundnut (and other crops) to survive drought conditions [8].

In order to integrate genomics in breeding and development of drought-tolerant groundnut
genotypes, identification of genomic regions associated with drought tolerance traits is essential.
With the advent of genomic tools, marker-assisted breeding (MAB) has been deployed to enhance
the efficiency of the selection of target traits in groundnut [6,10–13]. Very few informative and good
quality single nucleotide polymorphism (SNP) markers are available in groundnut in contrast to
the availability of thousands of simple sequence repeats (SSRs) [12]. However, SNPs can be more
easily generated than SSRs and are usually preferred due to low cost. In recent times, restriction
site-associated DNA sequencing (RADseq) [14] and genotyping by sequencing (GBS) [15] methods
have allowed researchers to identify and genotype thousands of SNPs in plants. Diversity Arrays
Technology (DArT), which is based on genome complexity reduction and SNP detection through
hybridization of PCR fragments [16] has been used in genome-wide association studies (GWAS),
construction of dense linkage maps and mapping quantitative trait loci (QTL) [10,17–19]. DArTseq
is used for SNP discovery and genotyping, which enables considerable discovery of SNPs in a wide
variety of non-model organisms and provides measures of genetic divergence and diversity within
the major genetic groups that comprise crop germplasm [16]. The DArTseq technology from DArT
produces data on bi-allelic SNP markers as well as the older dominant DArT markers. GWAS has lent
itself to extensive application in genome-environment and genome-phenotype association mapping
to identify loci of local adaptation and stress conditions in crops. The GWAS approach begins with
phenotyping traits of interest followed by a forward genetic analysis to identify loci and candidate
genes [20] by marker-trait association (MTA); approach adopted in the present study [21,22]. GWAS has
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improved the identification of MTA with genomic regions by utilizing natural populations without the
need for making large numbers of combinations from bi-parental mating. Furthermore, the magnitude
of linkage disequilibrium (LD) present in genetic resources is important prerequisites to deduce
the genetic makeup, composition and genomic predictions of traits of interest during selection [23].
Linkage disequilibrium per se could also be used as a predictor of the resolution at which significant
genomic regions with influence on traits can be detected through marker-trait-association analysis [23].

Plant genetic resources are widely used in breeding programs for imparting resistance to various
stresses [24,25]. Over the years, large numbers of groundnut accessions have been evaluated for
resistance to biotic and abiotic stresses [25]. However, considering the available large number of
groundnut accessions available in gene banks (>15,000), many precious accessions might not get
evaluated for traits of interest, as it is cumbersome to screen such a huge collection under field conditions.
Hence, researchers have developed core [26] and mini core collections [27] of groundnut that represent
the genetic variability of the entire collection and serve as handy germplasm sets for evaluating
important biotic and abiotic stresses. The selection of resistant sources through systematic screening
of mini core collection accessions is in practice for infusing genetic diversity [24]. The International
Crops Research Institute for the Semi-Arid Tropics (ICRISAT) evaluated 184 accessions of the mini
core collections which led to the identification of some accessions with high SPAD chlorophyll meter
reading (SCMR) [28] and the accessions are currently being utilized in the breeding program for
drought tolerance.

The development of climate-smart and stable groundnut varieties will assist in meeting the
growing demands of the increasing population against the threats of climate change. Identification of
genetic markers that are linked to important traits affected by climate change in groundnut is needed
for a reliable approach to the development of new varieties. In this study, SNP markers were used for
the genetic analysis of a groundnut mini core collection from ICRISAT for a genome-wide marker-trait
association for some physiological traits associated with drought tolerance and to determine the
magnitude of LD present in the genetic resource.

2. Materials and Methods

2.1. Plant Materials and Phenotyping

The research was carried out in the research field of ICRISAT located at Minjibir (Latitude 12◦19′

N and Longitude 8◦63′ E) in 2015 and Bayero University, Kano (BUK, Latitude 11◦58′ N and Longitude
8◦25′ E) in 2017; both locations in Sudan Savanna of Nigeria. The long term means annual rainfall of
both locations is about 800 mm, and; variations about this value is up to ±30%. The recorded weather
information is presented in Figure S1a,b for Minjibir and BUK, respectively. The soil at Minjibir was
typic Utipsamments and Typic Kanh aplustalf at BUK.

One hundred and twenty-five groundnut mini core accessions including five check varieties were
evaluated using 25 × 5 randomized incomplete block design with three (3) replications. The description
of the mini core collections along with the checks are presented in Table S1. The mini core collection
was obtained from ICRISAT Kano and used in the current study based on seed availability. Sowing
was done at Minjibir on 16 July 2015 and in BUK on 21 July 2017. Each plot in a replication consisted
of a single row measuring 5 m in length with a row spacing of 0.75 m, plant distance of 0.1 m and
1 m alley between replications. Recommended specific practices for growing groundnut were strictly
followed. A basal application of Nitrogen, Phosphorous, and Potassium was done to all plots at the
rate of 20 N kg ha−1, 40 P2O5 kg ha−1 and 40 K2O kg ha−1 at planting. Hand weeding was done using
hoes at 3rd, 8th, and 12th weeks after sowing (WAS) to prevent weed infestation and competition
between plants and weeds.
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Data was collected for canopy temperature (CT) using leaf thermometer (Meco IRT550 Infrared
Thermometer, Sunshine instruments, Tamil Nadu, India), SPAD chlorophyll meter reading (SCMR)
using SPAD 502 PLUS Chlorophyll meter (Spectrum Technologies, Inc., Aurora, IL, USA), normalized
difference vegetative index (NDVI) using Hand Held optical sensor unit (Model 505 NTech Industries,
Inc., Ukiah, CA, USA) and leaf area index (LAI) was measured by the use of Leaf Area Meter (ACCUPAR
LP-80, Meter Group, Inc., Pullman, WA, USA). The data were collected at 60 WAS (peg formation
stage) from five randomly selected plants in each plot.

2.2. DNA Extraction and Genotyping

Groundnut leaves were collected at 2 WAS into 96 deep well sample collection plates and sent to
Integrated Genotyping Service and Support (IGSS) platform located at Biosciences Eastern and Central
Africa (BecA-ILRI) Hub in Nairobi for Genotyping. The DNA extraction was done using the Nucleomag
Plant Genomic DNA extraction kit. The genomic DNA extracted was in the range of 50–100 ng/ul.
DNA quality and quantity were checked on 0.8% agarose. Libraries were constructed according to
Kilian et al. [29]. DArTSeq complexity reduction method through digestion of genomic DNA and
ligation of barcoded adapters was done followed by PCR amplification of adapter-ligated fragments.
Libraries were sequenced using Single Read sequencing runs for 77 bases. Next-generation sequencing
was carried out using Hiseq2500. The DArtSeq protocol was executed according to Kilian et al. [29].

The IGSS platform uses a GBS DArTseqTM technology, which provides rapid, high quality, and
affordable genome profiling, even from the most complex polyploid genomes. DArTseq markers
scoring was achieved using DArTsoft version 14, which is an in-house marker scoring pipeline based
on algorithms. Two types of DArTseq markers were scored, SilicoDArT markers (scored as present
or absent; 1, 0) and biallelic SNP markers which were both scored for the presence of the reference
allele, the alternative allele, or both. In the genomic representation of the sample, both SilicoDArT
markers and SNP markers were aligned to the reference genomes of Arachis duranensis (V14167,
A-genome ancestor) and A. ipaensis (K30076, B-genome ancestor, https://www.peanutbase.org/) to
identify chromosome.

2.3. Data Analysis

The analysis of phenotypic data was done to obtain the best linear unbiased prediction (BLUP)
values for each accession by fitting the following mixed linear model in the R “lme4” package.

yijk = u + gi + ej + r(e)jk + geij + errorijk. (1)

where gi is the effect of the ith line, ej is the effect of the jth environment, r(e)jk is the effect of the kth
replication nested in the jth environment, geij is the genotype by environment interaction and errorijk is
the error associated with each observation. The analysis was run in R with the lme4 package [30].

Entry means broad-sense heritability was calculated as:

H2 =
σ2

g

σ2
g +

σ2
ge
e +

σ2
error
re

(2)

where σ2
g is the variance among lines, σ2

ge is the genotype by environment interaction variance, σ2
error is

the error variance, r is the number of replications, and e is the number of environments. The phenotypic
correlation between traits was also determined.

https://www.peanutbase.org/
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Linkage Disequilibrium and Marker-Trait Association

Polymorphism information content (PIC) and principal component analysis (PCA) were carried
out on the genotypic data using KDCompute. The unweighted pair-group method was used to cluster
the accessions into a dendrogram. The parameter r2 was used to estimate LD between SNPs on each
chromosome via the software package TASSEL 5.0 [31]. Marker-trait association analysis, probability
values, and percent variation modelled by both SilicoDArT and biallelic SNP markers were calculated
using the GAPIT package via the KDCompute interface (https://kdcompute.igss-africa.org/kdcompute/

home). The GWAS threshold for the significant marker-trait association was p < 0.001 without multiple
testing correction due to the small population size used in the present study. The first three principal
components and the relationship matrix were included in the model to account for population structure.
SNPs with minor allele frequency (MAF) of <5% and missing data >20% were excluded from the
analyses. Missing values were imputed using the choice of the nearest neighbor algorithm using
TASSEL 5.0 [31].

3. Results

3.1. Phenotypic Evaluation

The results of the phenotypic evaluations showed highly significant differences (p < 0.01) between
lines for CT, SCMR, and NDVI but no significant genetic variation for LAI (Table 1). The interaction
between lines and the environment was significant (p < 0.01) only for SCMR (Table 1). The heritability
of the traits was moderate to high except for LAI that had a low heritability (0.03) (Table 1). The four
traits were normally distributed (Figure S2). The phenotypic correlation of SCMR with LAI and CT
was negative and non-significant but was positive with NDVI. Among the mini core collections, ICG
9926 had the highest CT (38.03 ◦C) while some collections like ICG 1569, ICG 7190, ICG 12672, ICG
81, ICG 14106, and ICG 442 had CT that ranged from 37.67 ◦C–37 ◦C (Table S1). The lowest CT was
recorded by ICG 1668 (24.1 ◦C) followed by ICG 76 (25 ◦C), ICG 1274 (25.1 ◦C), ICG 7437 (25.5 ◦C) and
ICG 10092 (25.7 ◦C). For LAI, ICG 8567 had the highest LAI of 4.6 followed by ICG 9809 with LAI of
4.05 while ICG 11426 had the lowest LAI of 0.61. ICG 7483 had the highest SCMR of 55.43 followed by
ICG 7243 with 55.03. The highest NDVI reading was recorded by ICG 3055 (0.82) followed by ICGs
7897 and 3126 both having readings of 0.81. The lowest NDVI reading of 0.45 was recorded by ICG
9449 (Table S1). A negative and significant correlation was observed between CT and LAI as well as
CT with NDVI. The correlation between LAI and NDVI was negative and non-significant (Table 2).
A cluster analysis on the accessions based on the geographical origin of the accessions revealed two
groups with group two having sub-group 2A and 2B (Figure 1).

Table 1. Mean squares of four physiological traits of groundnut mini core collections.

Effect df Canopy
Temperature

Leaf Area
Index

SPAD Chlorophyll
Meter Reading NDVI

Rep (Environment) 2 679.62 7.28 18.73 0.47
Environment 1 4820.38 ** 54.69 ** 7149.59 ** 13.81 **

Lines 124 7.82 ** 0.66 49.14 ** 0.43 **
Environment × Lines 124 7.69 0.49 26.09 ** 0.001

Error 248 7.25 0.84 15.42 0.02
Heritability 0.22 0.03 0.55 0.25

** = significant at 0.01 level of probability. df = degree of freedom.

https://kdcompute.igss-africa.org/kdcompute/home
https://kdcompute.igss-africa.org/kdcompute/home
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Table 2. Correlation between physiological traits of groundnut mini core collections (above value = correlation and below value are p-values).

SPAD Chlorophyll Meter Reading Leaf Area Index Canopy Temperature Normalized Difference Vegetative Index (NDVI)

SPAD (Soil Plant Analysis
Development) chlorophyll reading

Leaf area index −0.03
0.72

Canopy temperature −0.16 −0.19
0.08 0.03

NDVI 0.08 0.12 −0.25
0.37 0.19 0.01
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3.2. Marker Data

The DArTseq genotyping produced 3591 biallelic SNP markers of which 3396 had a call rate that
exceeded 70%. The average PIC of the 3396 markers was 0.077. Of the 3396 markers, just 396 had a
MAF that exceeded 0.05. A total of 3124 markers were successfully assigned to their chromosome by
mapping them to the A and B genomes: 368 (11.8%) were aligned to only the A genome, 449 (14.4%) to
only the B genome, and 2308 (73.8%) to both genomes. Over 73% of the markers that aligned with
both the A and B genomes were assigned to homoeologous chromosomes and the correlation of their
position on those two sets of homologues was 0.87. In the principal component (PC) analyses of
the data from the 3,124 markers assigned to a chromosome(s), the first PC accounted for 61% of the
variation and the first two PCs accounted for 78% of the variation (Figure 2). Cluster analysis of the
marker data suggested two groups of lines with one group having two subgroups named 2A and 2B
(Figure S3).Agronomy 2019, 9, x FOR PEER REVIEW 2 of 15 
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Figure 2. Graph of the scores of the first two principal components of the analysis of the marker data
from the groundnut mini core collection.

The DArTseq genotyping produced 12,693 dominant silico markers with a call rate that also
exceeded 70%. Only 2349 (18.5%) of these had a minor allele frequency (MAF) > 0.05. The average PIC
of the 2349 markers was 0.070. A total of 12,611 markers were given chromosome assignments: 1709
(13.6%) were aligned to only the A genome, 2502 (19.8%) to only the B genome, and 8400 (66.7%) to
both genomes. Over 76% of the markers aligned with both the A and B genomes were assigned to
homoeologous chromosomes and the correlation of their position on those two sets of homologues
was 0.91. This reflects the common origin of the A and B genomes.

There was some evidence for the inter-genome exchange of genes between non-homoeologous
chromosomes. A set of 46 markers located in a 16.72 Mbp region of chromosome A08 was also found
in a 73.95 Mbp region of B07. The correlation of positions for the 46 markers was 0.769. Another set of
20 markers spanning a 3.93 Mbp region of chromosome A02 and an 11.67 Mbp region of B09 were also
found (Figures S4 and S5). The correlation of positions for the 46 markers was −0.604 showing any
putative exchange involved an inversion.
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3.3. Linkage Disequilibrium

Linkage disequilibrium analysis conducted using 305,919 loci pairs within chromosomes showed
that 36.3% of loci pairs had significant LD (Table S1). Furthermore, 9592 (3.14%) of the pairs were
in complete LD (r2 = 1). There was a rapid decline in LD with distance and the correlation analysis
revealed negative correlation (r = −0.0795) between the LD (R2) and the physical distance; as well as
between the R2 and p-value (r = −0.5381), revealing the existence of linkage decay (Figure S6).

3.4. Marker-Trait Association

Due to the insignificant genotype by environment interaction for all traits except for SCMR, the
GWAS was performed using phenotypic BLUPs estimated over all environments. The marker-trait
association (MTA) analysis was done for both the dominant silico and biallelic SNP markers. However,
significant associations were only detected from the dominant silico markers and none was detected from
the biallelic SNP markers. Only the MTAs from the dominant silico markers that had p-values < 0.001
(Table 3) were considered as significant for all traits (details of significant MTAs with p-values between
0.05 and 0.001 are presented in Table S2). We found 20 MTAs with 11 markers (Table 3). Two markers
(M1, M2) identified four possible loci for LAI. Marker M1 was associated with chromosomes A03 and
B03 with allelic effects of −1.33 and −1.31, respectively while M2 was associated with chromosomes
A06 and B07 with allelic effects of 1.96 and 1.97, respectively. The individual markers explained 6.8% to
7.3% of the total phenotypic variation observed (Table 3). Thirteen loci within seven markers (M3–M9)
showed MTAs with CT and six of these markers (M3–M8) were located in chromosomal regions on
both the A and B genomes. The CT markers explained between 9.6% to 16.6% of the variation observed
and all had negative allelic effects. One marker (M10) on chromosome B05 was found to be associated
with SCMR and explained 20.8% of the observed phenotypic variation with an allelic effect of −11.65.
Another marker (M11) located on chromosomes A04 and B02 was associated with NDVI and had an
allelic effect of 0.16 for both chromosomes. From all the 20 MTAs detected, the B genome had 11 and
the A genome had nine. An equal number of associations were found on each genome except for CT
and SCMR. The A genome had six MTAs and the B genome had seven MTAs for CT. The MTA with
SCMR was exclusively detected on the B genome.
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Table 3. Marker-trait associations of four physiological traits of groundnut in the groundnut mini core collection.

Trait Marker Chromosome Position (Mbp) p-Value Marker R2 Allelic Effect

Leaf area index M1 100028731 A03 112.30 0.0007 0.073 −1.33
M1 100028731 B03 114.70 0.00084 0.068 −1.31
M2 100055743 A06 29.59 0.00089 0.069 1.96
M2 100055743 B07 39.39 0.00083 0.068 1.97

Canopy temperature M3 100002202 A02 14.18 0.00099 0.098 −1.74
M3 100002202 B02 17.44 0.00089 0.097 −1.95
M4 100006533 A03 12.02 2.06 × 10−5 0.166 −4.27
M4 100006533 B03 14.68 2.19 × 10−5 0.163 −4.22
M5 100057474 A05 4.01 0.00017 0.128 −2.86
M5 100057474 B05 3.92 0.00018 0.125 −2.87
M6 100007799 A05 4.75 0.00078 0.102 −2.33
M6 100007799 B05 4.84 0.00046 0.109 −2.56
M7 100008002 A08 7.71 0.00097 0.098 −2.29
M7 100008002 B07 113.51 0.00057 0.105 −2.52
M8 100007218 A10 78.51 0.00069 0.104 −1.51
M8 100007218 B10 103.61 0.00062 0.104 −1.49
M9 100002387 B01 135.56 0.00097 0.096 −4.75

SPAD chlorophyll meter reading M10 100000269 B05 17.00 0.00099 0.208 −11.65

NDVI M11 100118763 A04 67.54 0.00069 0.070 0.16
M11 100118763 B02 106.74 0.001 0.066 0.16
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4. Discussion

The core, mini core, and reference collections developed by several germplasm resource centers are
significant sources of genetic variation. By screening these groundnut sources, sources of tolerance or
resistance to traits needed for the development of climate-smart varieties can be identified. Physiological
traits such as LAI, SCMR, canopy conductance and canopy temperature are important measures
of agronomic response to yield under water stress [32]. The phenotypic evaluation showed that
the groundnut collections varied significantly for the physiological traits except for LAI (Table 1).
Nageswara Rao et al. [7] also reported similar specific leaf area between peanut genotypes. These
physiological traits (LAI, CT, SCMR, and NDVI) are important in improving productivity and are used
as indirect indices for improving drought tolerance in peanut [8]. Traits such as SCMR and NDVI
determine the photosynthetic potential of plants and have been reported to be highly associated with
yield and can be effective as in-season predictors of yield [33,34]. Some of the identified mini cores
with desirable physiological traits can be integrated into breeding programs for the development of
varieties that are drought tolerant. The heritability of CT, SCMR, and NDVI ranged from moderate to
high and contribution of genetics to the phenotypic variation in LAI was low. The low correlation
coefficients between most of the traits suggests that the traits are fairly independent (Table 2).

The low genetic diversity of both SNP and silico markers and their non-distinct separation on
the PC plot suggests that the populations were not highly structured. The two groups of mini core
collections and one group having two subgroups as suggested by the marker data may be due to
different origins of the collections as evident from the cluster analysis of the accessions based on origins.
Cluster 1 consisted solely of accessions from India while cluster 2B consisted of only USA accessions.
The accessions from other countries were all grouped in cluster 2A. Pandey et al. [10] also observed
three groups in groundnut using SSR and DArT markers. The A genome is more conserved because it
has fewer markers than the B genome. Both markers systems assigned a similar portion of the markers
to both genomes pointing to a common ancestry of the collections. While many polymorphic markers
were detected, a large portion had MAF < 0.05 and the average PIC values for both types of markers
were very low; about 0.07. Taken together, the results of the current study support earlier reports on
the low polymorphism rate and low genetic diversity of groundnut [35–37].

In general, most markers assigned to the A and B genomes were assigned to homoeologous
positions and their genetic positions in the A and B genome were highly correlated and suggest that
their position in the genomes has been mostly conserved since evolving from their common ancestor.
Of the markers mapped to non-homoeologous chromosomes in the A and B genome there was some
evidence for the exchange of chromosome segments between chromosomes A02 and B09 and then A08
and B07.

Linkage disequilibrium analysis showed that about 36% of loci pairs were in significant LD
(p < 0.05) and 3.14% of the pairs were in complete LD with an average distance of 31 kb among these
pairs, indicating that LD extended quite some distance in groundnut. This is not surprising given the
low polymorphism rate and PIC values in groundnut which means that detectable recombination is
likely to be very low. Several studies have reported LD decay with distance [10,38,39] which agrees
with the findings of the present study.

GWAS has created a considerable need for downstream studies including genetics, physiology, and
biochemistry to ascertain genotype–phenotype associations that can be used to decipher the underlying
mechanisms for intricate traits such as yield and stress responses [31]. The current study revealed
20 significant MTAs (p < 0.001) involving 11 markers. The p-values used for identifying significant
MTAs were not adjusted using multiple testing corrections because of the small sample size used in
the study and we want to be able to identify QTL of moderate effect. Our analysis cannot distinguish if
a single marker on more than one chromosome exhibits MTA independently or is a result of additive
contribution from the two homoeologous chromosomes. Markers associated with physiological traits
show uneven distribution among chromosomes and between the genomes. Chromosome B05 of the B
genome houses three markers that showed MTA with CT and SCMR. In addition, two markers each
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were found on chromosomes A03, B03 and A05. Genome-wise comparison showed that all the eleven
markers detected are found on B-genome while only 9 were found on the A genome. Three of these
markers (M2, M7, and M11) are found on non-homoeologous chromosomes. It is possible that some
chromosome rearrangement has caused the marker sequence to appear on different homeologs in
the course of evolution of groundnut, although an error in sequencing or bioinformatics alignment
can result in a similar outcome. Validation studies will, therefore, be needed to see if these markers
are identifying one locus or perhaps a locus duplicated in the two genomes. The allelic effects of
the markers identified for CT and SCMR were negative which shows that the markers are identified
in genomic regions that have decreasing effects for these traits. Plants with lower CT are preferred
in drought-prone areas because the lower CT enables the plant to reduce its transpiration rate and
therefore conserved moisture [8]. However, for SCMR, groundnut genotypes with higher SCMR are
preferred to maintain healthy vegetation which will promote kernel yield. The marker identified for
NDVI had an increasing effect on the phenotype while for LAI, M1 had a decreasing effect and M2 had
an increasing effect. Though the difference between the accessions was not significant phenotypically
for LAI, the two markers were identified to be associated with LAI. A previous study reported the
additive and additive × additive gene actions for specific leaf area in groundnut [40]. We would
assume that the contrasting effects of M1 and M2 might act additively and lead to insignificance of the
overall difference in LAI between the accessions. Nevertheless, the identified markers could be used
for selection of LAI genomic region in groundnut. Furthermore, after validation of all the identified
markers, they can be deployed in marker-assisted breeding for the selection of groundnut genotypes
with desirable physiological traits.

Pandey et al. [10] used SSR markers to identify some significant MTAs for physiological traits
including LAI and SCMR in groundnut which were also observed in the present study. All the Four
MTAs identified for LAI were associated with two markers (M1 and M2) found among which the MTA
on chromosomes A06 and B07 may be the same as those previously identified by Pandey et al. [10] for
total leaf area and leaf area respectively. Eight of the thirteen (13) MTAs identified for CT are associated
with four markers located on homoeologous chromosomes in both A and B genomes. The one MTA
associated with M1 was located on chromosome B05 but absent on its homeolog. Interestingly, M10
accounts for >20% of the phenotypic variation in SCMR and is different from the previously reported
loci on A06 [11]. It is therefore suggested to be novel. Markers M5 and M6 were in high LD and may
possibly suggest the same MTA. The two markers associated with NDVI were located on both the A
and B genome but on different chromosomes.

From the analysis, most of the MTAs identified on the A subgenome were also identified on
the respective homoeologous chromosome on the B subgenome. Argawal et al. [13] reported that
a significant proportion of marker loci with assigned physical locations to the chromosome of one
genome were mapped to respective homeologous positions on chromosomes of the other genome.
Our results support this hypothesis as the correlation of markers positions between the A and B
genome exceeded 0.87 for both marker types. Most of the homeologous MTAs were seen between
chromosomes A03 and B03 which is similar to the study of Argawal et al. [13]. Other homeologous
MTAs detected in the present study are located between chromosomes A02 and B02, and A05 and B05.
Homeologous mapping of QTLs in groundnut has also been reported between chromosomes A07 and
B07, and A08 and B08 [41]. We found some evidence for genetic exchanges occurring between the
groundnuts genomes as reported earlier [38]. Also, many similar markers were placed on the genetic
map on different chromosomes. The possible translocation we noted does not appear to be terminal or
reciprocal unlike the translocations noted by Farre et al. [42]. Translocations of markers have been
previously reported in groundnut [13,41]. Some of these observed ‘translocated’ markers might be also
due to miss-assignments because of the highly repetitive structure of the groundnut genome [37].

From the present study, the DArTs markers showed the highest reproducibility and consistency
than the SNP markers. The DArTseq approach generated a large set of useful SNPs with broad
genome coverage which represented both coding and non-coding regions thereby allowing for the
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accurate assessment of structure and quantity of genetic diversity in the mini core collections. This
study identified a total of 20 highly significant marker-trait associations for four physiological traits of
importance in groundnut; LAI, CT, SCMR, and NDVI. Chromosome B05 of the B genome contained
more markers associated with drought surrogate physiological traits in groundnut. The markers
identified in this study can serve as useful genomic resources to initiate marker-assisted selection and
trait introgression of groundnut for drought tolerance. The identified MTAs can also be used for fine
mapping and cloning of the underlying genes. Further studies are required to validate significant
markers identified in the present study using a larger population size.

Supplementary Materials: The following are available, Table S1: Table S1-Name, botanical grouping, origin and
physiological performances of the mini core collections. Table S2: LD of markers for A and B genomes, Table S3:
Significant marker-trait associations, Figure S1: Weather information for (A) Minjibir 2015 and (B) BUK 2017.
Figure S2: Histogram of BLUP of leaf area index (LAI), canopy temperature (CT), chlorophyll content (SPAD) and
NDVI from the groundnut mini core collection. Figure S3: Dendrogram from unweighted pair-group clustering
of accession from the mini core collections. Figure S4: Distribution of markers on A genome of the groundnut
accessions, Figure S5: Distribution of markers on the B genome of the groundnut accessions. Figure S6: Scatter plot
showing the association between linkage disequilibrium (r2) and distance (a) and significance of the r2 value (b).
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