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Abstract 
 

Foodborne Salmonella continues to be a major threat for public health, especially from poultry 
origin. In recent years, an increasing trend of antimicrobial resistance (AMR) in Salmonella sp. 
was noticed due to the misuse of antimicrobials.  To find alternatives to this emerging problem, 
probiotics, particularly lactobacilli, has been proposed. Since data on Salmonella in the Lebanese 
poultry industry is scarce, this study was conducted to determine the prevalence of Salmonella at 
different stages of the broiler production chain and layer flocks in addition to their antibiotic 
resistance profile and molecular patterns. In addition, the probiotic activity of native poultry-
derived Lactobacillus strains was tested against the most relevant and drug resistant Salmonella 
sp. Screening of Lactobacillus strains for anti-Salmonella activity, safety such as antibio-resistance 
and surface probiotic properties was also done.   

Over a period of 3 years, feces samples were collected by a sock method from local Lebanese 
farms (n=237), while poultry meat was collected from slaughterhouses (n=134) and retail 
(n=1907). In parallel, ceca (n=115) and neck skins (n=115) were collected from two major 
slaughter plants. The results highlighted a high prevalence of Salmonella in poultry. Considering 
all samples together, a large diversity of serotypes was identified with predominance among 
Salmonella Infantis (32.9%), Salmonella Enteritidis (28.4%) and Salmonella Kentucky (21.4%) 
with high AMR and multi-drug resistance (MDR) in all Salmonella isolates. The most prominent 
resistance was found in nine strains of S. Kentucky CIPR resistant to Extended Spectrum 
Cephalosporin (ESCs). These strains were genetically characterized by Whole genome sequencing 
(WGS). The results showed, for the first time in Lebanon, a case of detection and dissemination 
of the emerging highly drug resistant S. Kentucky ST198. Comparing S. Enteritidis strains from 
poultry and humans using PFGE, the results indicated that one persistent clone of S. Enteritidis 
(80% of the strains) is common between poultry and humans in Lebanon. Similar genomic profiles 
and antimicrobial resistance phenotypes were detected between farms, slaughterhouses and retail 
suggesting the circulation and transmission of identical clones throughout the food chain and layer 
flocks.  

Results of screening for potential probiotics, four Lactobacillus species have been identified as:  
L. reuteri (n= 22, 44 %), L. salivarius (n=20, 40 %), L. fermentum (n= 2, 4 %) and L. crispatus 
(n=1, 2 %) and two Enterococcus fecalis (n=2, 4 %). Eight Lactobacillus were chosen depending 
on their cell surface hydrophobicity capacity and auto/co-aggregation ability for further adhesion 
assay using Caco-2 cells line. Attachment of the Lactobacillus strains varied from 0.53 to 10.78 
%. L. salivarius A30/i26 and 16/c6 and L. reuteri 1/c24 showing the highest adhesion capacity 
were assessed for their ability to compete and exclude the pathogen for the adhesion site on the 
caco-2 cell line. L. salivarius 16/c6 highly excludes the three Salmonella serotypes from adhesion 
at significant levels. 

 
 



  

 

 

 
Résumé 

 

Les salmonelles d'origine alimentaire continuent de représenter une menace majeure pour la santé 
publique, en particulier celles d'origine avicole. Ces dernières années, une tendance à la hausse de 
la résistance aux antimicrobiens (AMR) chez les salmonelles a été remarqué en raison de la 
mauvaise utilisation des antibiotiques. Pour trouver des alternatives à ce problème émergent, des 
probiotiques, en particulier les lactobacilles ont été proposés. Les données sur les salmonelles dans 
l’industrie avicole libanaise étant rares, cette étude a été menée pour déterminer la prévalence des 
salmonelles à différents stades de la chaîne de production des poulets de chair et de poules 
pondeuses, l’antibiorésistance et leurs profils moléculaires. En outre, l'activité probiotique de 
souches aviaires de Lactobacillus indigènes a été testée contre les salmonelles. Le criblage de 
l'activité anti-salmonelle, de l'innocuité notamment de l'antibiorésistance, et des propriétés 
probiotiques de surface des souches de lactobacilles ont également été effectué.  

Sur une période de 3 ans, les échantillons de matières fécales ont été collectés par la méthode de 
la pédichiffonnette dans des fermes libanaises locales (n = 237), tandis que la viande de volaille a 
été collectée dans des abattoirs (n = 134) et sur le marché (n = 1907). En parallèle, des échantillons 
de caeca (n = 115) et de peaux de cou (n = 115) ont été collectés dans deux grands abattoirs. Les 
résultats ont mis en évidence une forte prévalence de Salmonella chez les volailles. En tenant 
compte de tous les échantillons, une grande diversité de sérotypes a été identifiée, avec une 
prédominance de Salmonella Infantis (32,9 %), Salmonella Enteritidis (28,4 %) et Salmonella 
Kentucky (21,4 %) avec une antibiorésistance élevée dans tous les isolats de Salmonella. La 
résistance la plus importante a été observée chez neuf souches de S. Kentucky résistantes à la 
ciprofloxacine (CIPR) et à la céphalosporine à spectre étendu (ESC). Ces souches ont été 
génétiquement caractérisées par séquençage du génome entier (WGS). Les résultats ont montré, 
pour la première fois au Liban, un cas de détection et de dissémination du S. Kentucky ST198 
hautement résistant. La méthode PFGE a montré la présence d’un clone persistant de S. Enteritidis 
(80% des souches) commun entre les souches aviaires et humaines. Des profils génomiques ainsi 
que des phénotypes de résistance aux antimicrobiens similaires ont été détectés entre les fermes, 
les abattoirs et le marché, suggérant la circulation et la transmission de clones identiques tout au 
long de la chaîne alimentaire et des poules pondeuses. 

Les résultats du criblage des probiotiques potentiels montrent que quatre espèces de Lactobacillus 

ont été identifiées : L. reuteri (n = 22, 44%), L. salivarius (n = 20, 40 %), L. fermentum                            
(n = 2, 4 %) et L. crispatus (n = 1, 2%) et deux Enterococcus  fecalis (n=2, 4 %). Huit lactobacilles 
ont été choisis en fonction de leur capacité d'hydrophobicité et d'auto/co-agrégation, pour un test 
ultérieur d’adhérence sur la lignée cellulaire caco-2. L'attachement des souches de lactobacilles 
variait de 0,53 à 10,78%. L. salivarius A30 / i26 et 16 / c6 et L. reuteri 1 / c24 présentant la capacité 
d'adhérence la plus élevée ont été évalués pour leur aptitude à rivaliser et à exclure l'agent 
pathogène du site d'adhésion sur la lignée cellulaire caco-2. Il a été démontré que L. salivarius 16 
/ c6 excluait fortement l’adhésion des trois sérotypes de Salmonella à des niveaux significatifs. 



  

 

 

 

 

DEDICATION 

 

To my soul mate and life companion, my dearest husband Elie who endured all the hard and the 
good times with me.  

To the joy of my life, my children, Emmanuelle, Anna-Maria and Georges. 

 From all of my heart, to my dearest parents, sisters, Joud, Ramia, and Jeanne, and my brother 
Youssef. 

 

 

  



  

 

 

ACKNOWLEDGMENTS 

The period of four years of this thesis by itself was a life experience for me; it shaped and sharpened 

not only my scientific knowledge but also my social, cultural and human relationship forever. I 

thank the Grace to be surrounded by many people to whom I owe a lot. 

This thesis could not have been completed without the full support of the General Director / CEO 

of the Lebanese Agricultural Research Institute (LARI), Dr. Michel AFRAM. I deeply thank him 

for his unlimited support and confidence in my work, and his faith in the development and 

prosperity of this national institution. Working under his administration is a pleasure and an honor 

because he always encourages his "colleagues" to take a further step in scientific research and 

academic progress. I also thank him for being a member of my thesis jury. 

I want to thank Pr Pierre Aimar, director of Genie Chimique Laboratory- Toulouse for allowing 

me to accomplish my longtime dream, my thesis. Also, I express my gratitude to the Holy Spirit 

University of Kaslik (USEK) for their great support. 

I would like to give great thanks to my thesis director Professor Florence MATHIEU, for giving 

me the opportunity to be a part of her team as a family member. My gratitude for her scientific 

support, her availability and kindness allowed me to take ownership serenely my subject of the 

thesis. 

My greatest appreciation to my co-director Dr. Youssef EL RAYESS for his passion in research 

and innovation, his critical thinking and his exceptional creativity that motivated me during every 

moment of thesis realization. 

I would like to thank the thesis referees Dr. Jean-Yves MADEC and Dr. Mireille KALLASSY, 

and examiners Dr. Patricia THAILANDIER, Dr. Marianne CHEMALY and Dr. Nancy NEHME 

for agreeing to review this work.  

My gratitude also goes to all those who contributed to obtaining the results of this thesis;  

Dr. Antonia RICCI, Carmen LOSASSO, Alexandra LONGO and Sara PETRIN at the Istituto 

Zooprofilattico Sperimentale delle Venezie (Italy), Dr. Ghassan MATAR and Bassam EL HAFI 

at American University of Beirut (AUB) for their tiresome work in Salmonella genotyping and 

sequencing. 



  

 

 

 

 I would like to sincerely thank Dr. Selma SNINI for her immense help and availability, who 

opened the gateway for me to endeavor and explore a new field in her tissue culture laboratory. 

I am infinitely grateful to Dr. Marianne CHEMALY from Anses Institute – Ploufragan, Dr. Eric 

VISCOGLIOSI from Pasteur Institute- Lille and Dr. Monzer HAMZE from Lebanese University- 

Tripoli and their great teams for their collaboration in the Partenariat Hubert Curien (PHC) France 

Lebanon CEDRE 2015, their valuable scientific advice and deep care. 

I sincerely thank my sister Dr. Jeanne EL HAGE, head of Animal Health Laboratory for her 

invaluable help in Lactobacillus sequencing. She has always done everything possible to help me. 

Many thanks to all my colleagues and friends in the Food Microbiology Laboratory, Hala, Joseph, 

Ayman, Rami, Madona, Rawan, Rita, Samia, Diana, Samer and Ali who carried out this burden 

with me, for their continuous help and encouragement during these four years.  

I thank my colleague and friend Nada who encouraged me throughout my studies.  

I thank my colleague Imad who supported me during the writing of this manuscript. 

For Nada, Joseph, and Imad, I wish them good luck with their thesis. 

I sincerely thank Dr. Ziad Abi KHATTAR for his consistent encouragement and immense help. 

To my valuable friend Marianne who never left me in hard deeds. She has been great sources of 

knowledge, support, and inspiration. 

A sincere thanks to my faithful friend Pr Fida Nassar for supporting me, listening to me and always 

found the words to calm my moments of panic all along with my thesis. 

I thank my dearest friend Mima for her excellent mood, support and listen under challenging times. 

A profound thank to my dearest family who has been a driving force enabling me to push on to 

the completion of this thesis. Your words were the best speaking moral; your silence was the best 

listener to my claims and worries, while your hearts and souls were my candles to guide my path 

to the end. 

  



  

 

 

Table of Contents 

List of Figures .................................................................................................................................. i 

List of Tables ................................................................................................................................. iii 

List of Abbreviations ..................................................................................................................... iv 

Introduction ..................................................................................................................................... 1 

Chapter I  Bibliographical review………………………………………………………………… 7 

1. Salmonella ............................................................................................................................... 8 

1.1. Taxonomy and nomenclature ........................................................................................... 8 

1.2. Adaptation capacity .......................................................................................................... 9 

1.3. Pathogenesis and virulence .............................................................................................. 9 

1.3.1. Local inflammatory response .................................................................................. 11 

1.4. Non-Typhoidal Salmonella, a public health concern ..................................................... 12 

1.5. Salmonella and poultry................................................................................................... 14 

1.5.1. Poultry production .................................................................................................. 14 

1.5.2. Salmonella mode of transmission and pathogenesis ............................................... 14 

1.5.3. Salmonella serotypes in poultry .............................................................................. 16 

1.5.3.1. Serotypes shift ................................................................................................. 16 

1.5.3.2. Factors affecting the dissemination and persistence of specific serotypes ...... 18 

1.6. Molecular genotyping .................................................................................................... 19 

1.6.1. Pulse Field Gel Electrophoresis (PFGE) ................................................................. 19 

1.6.2. Whole genome sequencing (WGS) ......................................................................... 20 

1.7. Salmonella control at farm level .................................................................................... 20 

1.7.1. Serotype-specific control programs ........................................................................ 21 

1.7.2. Vaccination program ............................................................................................... 22 

1.7.3. Antibiotic usage in farms ........................................................................................ 22 

1.8. Antibiotic Resistance, the biggest global threat ............................................................. 24 

1.8.1. Antibiotic-resistance Mechanisms .......................................................................... 25 

1.8.2. Key antibiotic classes, resistance mechanisms with related genes ......................... 26 

1.8.2.1. β-lactams. ......................................................................................................... 27 

1.8.2.2. Aminoglycosides: ............................................................................................ 27 



  

 

 

1.8.2.3. Quinolones and fluoroquinolones:................................................................... 28 

1.8.3. Global strategies against AMR ............................................................................... 31 

2. Promising natural alternative: probiotics ............................................................................... 32 

2.1. Origin ............................................................................................................................. 32 

2.2. Types of probiotics ......................................................................................................... 32 

2.3. Lactic acid bacteria (LAB) as probiotic: focus on Lactobacillus ................................... 33 

2.3.1. Classification of LAB ............................................................................................. 33 

2.4. Lactobacillus classification ............................................................................................ 35 

2.4.1. Lactobacillus Niche-Specific Adaptation: The Intestinal Environment ................. 35 

2.5. Gut microbiota, probiotics of poultry origin .................................................................. 36 

2.6. Anti- Salmonella activities ............................................................................................. 37 

2.6.1. Adherence ............................................................................................................... 39 

2.6.2. Competition use of nutrients ................................................................................... 40 

2.6.3. Secretion of active metabolites against Salmonella ................................................ 40 

2.6.4. Maintenance of Epithelial Barrier Function. .......................................................... 41 

2.6.5. Immunomodulation. ................................................................................................ 41 

2.7. Screening of potential probiotics.................................................................................... 42 

2.7.1. Safety criteria .......................................................................................................... 43 

2.7.1.1. Probiotic identification .................................................................................... 43 

2.7.1.2. Antimicrobial resistance .................................................................................. 43 

2.7.2. In vitro assays ......................................................................................................... 44 

2.7.3. In vivo experiments ................................................................................................. 45 

References ..................................................................................................................................... 46 

Chapter II Prevalence, antibiotic resistance and molecular characterization of Salmonella serotypes 

in the Lebanese poultry production ............................................................................................... 67 

Abstract ......................................................................................................................................... 69 

1. Introduction ........................................................................................................................... 70 

2. Materials and Methods .......................................................................................................... 71 

2.1. Sample collection ........................................................................................................... 71 

2.1.1. Farm sample collection ........................................................................................... 71 

2.1.2. Processing plant sample collection ......................................................................... 71 



  

 

 

2.1.3. Poultry meat sample collection ............................................................................... 72 

2.1.4. Avian and Human Salmonella isolates collection .................................................. 72 

2.2. Salmonella isolation and identification .......................................................................... 73 

2.3. Antimicrobial susceptibility testing ............................................................................... 73 

2.4. Pulse Field Gel Electrophoresis- PFGE ......................................................................... 74 

2.5. Statistical Analysis ......................................................................................................... 74 

3. Results ................................................................................................................................... 74 

3.1. Prevalence of Salmonella throughout the broiler food chain and laying hen flocks...... 74 

3.2. Distribution of Salmonella serotypes ............................................................................. 76 

3.3. Antimicrobial resistance phenotypes ............................................................................. 78 

3.4. Pulse-Field- Gel Electrophorese (PFGE) ....................................................................... 86 

4. Discussion .............................................................................................................................. 90 

5. Conclusion ............................................................................................................................. 94 

References ..................................................................................................................................... 95 

Chapter III Genomic characterization of Extended-Spectrum β Lactamases (ESBLs) and 

cephamycinase-producing Salmonella Kentucky ST198 in Lebanese broiler production ......... 102 

1. Introduction ......................................................................................................................... 104 

2. Materials and methods ......................................................................................................... 106 

2.1. Collection of Salmonella Kentucky strains .................................................................. 106 

2.2. Antimicrobial sensitivity test ....................................................................................... 106 

2.3. Genome analyses .......................................................................................................... 107 

2.4. Phylogenomics ............................................................................................................. 108 

3. Results ................................................................................................................................. 108 

3.1. Multi-Locus Sequence typing (MLST) and detection of plasmids and replicon type 
(pMLST).................................................................................................................................. 108 

3.2. Phenotypic and Genotypic antimicrobial resistance and presence of SGI1-K ................. 110 

3.3. Detection of Insertion Sequence ISECP1 ........................................................................ 112 

3.4. Salmonella Pathogenicity Islands and Virulence genes analysis ..................................... 112 

3.5. Phylogenetic Single Nucleotide Polymorphism (SNP) analysis ...................................... 115 

4. Discussion ............................................................................................................................... 116 



  

 

 

5. Conclusion .............................................................................................................................. 119 

6. Supplementary Data ............................................................................................................ 120 

References ................................................................................................................................... 120 

Chapter IV Detection of native potential probiotics Lactobacillus sp. against Salmonella 

Enteritidis, Salmonella Infantis and Salmonella Kentucky ST198 of Lebanese chicken origin 128 

Abstract ....................................................................................................................................... 130 

1. Introduction ......................................................................................................................... 131 

2. Materials and methods ......................................................................................................... 133 

2.1. Isolation and phenotypic characterization of Lactobacillus sp. ................................... 133 

2.2. Salmonella isolates ....................................................................................................... 133 

2.3. Assessment of Lactobacillus antagonism .................................................................... 134 

2.4. Selection of strains depending on their phenotypic aggregation .................................. 135 

2.5. Species Identification and phylogenetic relations ........................................................ 135 

2.6. Antibiotic susceptibility testing .................................................................................... 136 

2.7. Cell surface properties .................................................................................................. 136 

2.7.1. Auto-aggregation and co-aggregation Assay ........................................................ 136 

2.7.2. Hydrophobicity assay............................................................................................ 137 

2.8. Tolerance to simulated gastrointestinal conditions ...................................................... 138 

2.9. Cell Culture .................................................................................................................. 138 

2.9.1. Preparation of cell culture ..................................................................................... 138 

2.9.2. Adhesion to Caco-2 cells ...................................................................................... 139 

2.9.3. Inhibition of Salmonella adhesion to Caco-2 cell ................................................. 139 

2.10. Co-culture Kinetic study ........................................................................................... 140 

2.11. Statistical Analysis ................................................................................................... 141 

3. Results ................................................................................................................................. 141 

3.1. Screening of Lactobacillus sp. from poultry origin and anti-Salmonella activity ....... 141 

3.2. Visual aggregation screening ....................................................................................... 141 

3.3. Phenotypic and genotypic identification of Lactobacillus isolates with Phylogenetic 
relatedness. .............................................................................................................................. 142 

3.4. Antimicrobial resistance ............................................................................................... 144 



  

 

 

3.5. Surface properties assays ............................................................................................. 145 

3.6. Hydrophobicity and auto/co-aggregation correlation .................................................. 147 

3.7. Gastrointestinal tolerance assay ................................................................................... 150 

3.8. Adhesion Assay ............................................................................................................ 150 

3.9. Competition/ Exclusion Assay ..................................................................................... 152 

3.10. Co-culture kinetics .................................................................................................... 153 

4. Discussion ............................................................................................................................ 156 

5. Conclusion ........................................................................................................................... 161 

References ................................................................................................................................... 162 

Conclusion and Perspectives....................................................................................................... 171 

ANNEXES .................................................................................................................................. 174 



  

i 
 

List of Figures 

Figure 1: Salmonella, the host and its microbiota (Thiennimitr et al., 2012). ............................. 12 
Figure 2: MoPH PulseNet report, 2015 (unpublished data) ........................................................ 13 
Figure 3: Overview of carbohydrate fermentation lactic acid bacteria (Gänzle, 2015). ............. 34 
Figure 4: Different mode of action of probiotics against Salmonella infection in poultry (Sherman 
et al., 2009) ................................................................................................................................... 39 
Figure 5: Strategy for selection of potential probiotics to control Salmonella in poultry ........... 42 
Figure 6: Percentage of antimicrobial resistance of S. Enteritidis (A), S. Infantis (B) and S. 
Kentucky (C) from farms, slaughterhouses and retail. The code of antibiotics are: ampicillin 
(Amp), amoxicillin-clavulanic acid (Amc), piperacillin-tazobactam (Tzp), cefalothin (Kf), 
cefuroxime (Cxm), cefoxitin (Fox), cefotaxime (Ctx), ceftriaxone (Cro), ceftazidime (Caz), 
ceftiofur (Eft), cefepime (Fep), imipenem (Imp), gentamycin (Cn), tobramycin (Tob), 
streptomycin (S), amikacin(Ak), netilmycin (Net), nalidixic acid (Na), ciprofloxacin (Cip), 
norfloxacin (Nor), trimethoprim (W), trimethoprim-sulfamethoxazole (Sxt), aztreonam (Atm), 
tetracycline (Te), chloramphenicol (C), enrofloxacin (Enr). ........................................................ 85 
Figure 7: Macrorestriction patterns of S. Kentucky using the Dice coefficient, and the 
dendrograms were generated graphically by using unweighted pair group method with arithmetic 
mean (UPGMA). The codes A, B and K designate the Salmonella isolates from slaughterhouse A, 
slaughterhouse B and retail respectively. The letters C or Q are related to caeca or neck skin 
respectively. .................................................................................................................................. 87 
Figure 8: Macrorestriction patterns of S. Infantis using the Dice coefficient, and the dendrograms 
were generated graphically by using unweighted pair group method with arithmetic mean 
(UPGMA). The code A, B and I designate the Salmonella isolates from slaughterhouse A, 
slaughterhouse B and retail. The letters C or Q are related to caeca or neck skin respectively. .. 88 
Figure 9: Macrorestriction patterns of S. Enteritidis using the Dice coefficient, and the 
dendrograms were generated graphically by using unweighted pair group method with arithmetic 
mean (UPGMA). The code P designate the Salmonella isolates. ................................................. 89 
Figure 10: Virulence determinants of the eight Lebanese S. Kentucky isolates, based on the 
protein sequences of Salmonella sp. database ............................................................................ 114 
Figure 11: SNP-based Phylogenetic tree of the eight Lebanese Cip R S. Kentucky isolates with S. 
Kentucky CVM29188 as reference genome ............................................................................... 115 
Figure 12: Evolutionary relationships Tree of Lactobacillus sp by the Neighbor-Joining method. 
The percentage of replicate trees in which the associated species clustered together in the bootstrap 
test (1000 replicates) are shown next to the branches  (Felsenstein, 1985). L.reuteri KX688655.1, 
L. salivarius MG737855.1, L. fermentum KC113207.1, L. cripatus MH392998.1, and 
Enterococcus fecalis MK584170.1 were selected as reference sequences. ................................ 143 
Figure 13: Antimicrobial resistance of the indigenous Lactobacillus sp isolated from antibiotic-
free (Black columns) and antibiotic-treated broilers (Grey columns).  White columns correspond 
to the total percentage of resistance.  Ampicillin (Amp), chloramphenicol (C), erythromycin (Ery), 
kanamycin (K), gentamycin (Cn) and streptomycin (S). ............................................................ 144 



  

ii 
 

Figure 14: Isolates distribution in defined ranges of percentage of hydrophobicity, auto-
aggregation and co-aggregation with the three Salmonella sp (S. Enteritidis (S.E.), S. Kentucky 
ST198 (S.K.) and S. Infantis (S.I.))............................................................................................. 146 
Figure 15: Principal Component Analysis (PCA) of surface proprieties as hydrophobicity and 
auto/co-aggregation) for the 50 Lactobacillus isolates. Isolates underscored were the selected 
strains .......................................................................................................................................... 148 
Figure 16: Effect of the simile-gastrointestinal conditions on Lactobacillus viability. Black and 
grey columns correspond to lactobacilli subjected to 0.15 % or 0.3 % bile salts respectively... 150 
Figure 17: Adhesion of the eight native poultry-derived Lactobacillus strains and the three 
Salmonella strains (S. Kentucky ST 198 (S.K.), S. Infantis (S.I.) and S. Enteritidis (S.E.)) to caco-
2 cells line. The means and standard deviations of two independent experiments are shown, each 
with three replicates. The differences between strains adhesion were evaluated separately for 
Lactobacillus strains and Salmonella serotypes. L. salivarius 16/c6, 16/i4 and A30/i26, and L. 

reuteri 1/c24 revealed no significant differences (*) in their adhesion capacity which is dissimilar 
from the four remaining tested strains (**). The differences in the adhesion of S. Enteritidis, S. 
Infantis and S. Kentucky ST198 were also not significant among the three serotypes (†)......... 151 
Figure 18: Inhibition of S. Kentucky ST 198 (S.K.), S. Infantis (S.I.) and S. Enteritidis (S.E.) 
adherence to Caco-2 cells by L. salivarius 16/c6 and A30/i26 and L. reuteri 1/c24 in competition 
and exclusion assays. The means and standard deviations of three independent experiments are 
shown, each with three replicates. (*) Lactobacillus strains were fixed and the differences of 
inhibition were calculated between the three serotypes in the same assay; (*) p > 0.05, (**) p ≤ 
0.05. (†) Salmonella serotypes were fixed, and the differences of inhibition were calculated 
between the three Lactobacillus strains in the same assay. (†) p > 0.05, (††) p ≤ 0.05 .............. 153 
Figure 19: Liquid co-culture assay without agitation: Kinetic growth of pure-cultures and co-
cultures of L. salivarius 16/c6 and S. Enteritidis, S. Infantis and S. Kentucky ST198 ............... 155 
Figure 20: Liquid co-culture assay with agitation: Kinetic growth of pure-cultures and co-cultures 
of L. salivarius 16/c6 and S. Enteritidis, S. Infantis and S. Kentucky ST198 ............................. 156 

 
 

 
 
 

 
 

 
 

 
 



  

iii 
 

 

List of Tables 

Table 1: List of some antibiotics for therapeutic used in Lebanese poultry production (MoA, 
unpublished data) .......................................................................................................................... 23 
Table 2: Drug-resistant Salmonella enterica subsp enterica strains isolated from poultry; antibiotic 
resistance phenotypic pattern and their respective resistance genes ............................................. 29 
Table 3: Sample type and prevalence of Salmonella sp at different points of poultry production 
chain .............................................................................................................................................. 74 
Table 4: Occurrence of Salmonella sp in the 2 slaughter plants A and B at different seasons .... 75 
Table 5: Salmonella serotypes diversity isolated along the chicken production chain ................ 77 
Table 6: Antimicrobial resistance patterns of S. Enteritidis, S. Infantis and S. Kentucky isolates
....................................................................................................................................................... 80 
Table 7: Antimicrobial resistance, MDR and ESC occurrence of the main serotypes isolated in 
this study ....................................................................................................................................... 82 
Table 8: Results of Genomic Assembly, SeqSero, MLST, PlasmidFinder and pMLST and 
Accession Number of the eight Lebanese S. Kentucky isolates ................................................. 109 
Table 9: Phenotypic and Genotypic antimicrobial resistance results of the eight Lebanese CipR S. 
Kentucky isolates using ResFinder 2.1, ResFinder 3.0 and MyDbFinder. ................................. 111 
Table 10: Results related to the presence/absence of ISEcp1 in the genomes of the Lebanese CipR 
S. Kentucky strains and the co-localized antimicrobial resistance genes in the same contig. .... 113 
Table 11: Type of age, breed, and diet of the broilers and hens deprived of antibiotics and additives 
coded from 1to16 and antibiotic- treated commercial broilers coded as A. ............................... 134 
Table 12: Identity, surface properties and antimicrobial resistance pattern of the eight selected 
Lactobacillus sp .......................................................................................................................... 149 
Table 13: Correlation of Pearson coefficients between hydrophobicity, auto-aggregation, and co-
aggregation of the 50 Lactobacillus isolates. The Principal Component Analysis (PCA) was done 
using. The index of Pearson was used to evaluate the correlation between the six assays, 
hydrophobicity, auto-aggregation and co-aggregation between the Lactobacillus strains and S. 
Enteritidis, S. Infantis and S. Kentucky. ..................................................................................... 149 

 

 

 

 

 

 

 

 

 



  

iv 

 

List of Abbreviations 

ACSSUT: ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline 

AGPs:  Antibiotic Growth Promoters 

AMR:  Antimicrobial resistance 

AP-1: activator protein 

AUB: American University of Beirut 

Aw: water activity 

BRICS: Brazil, Russia, India, China, South Africa 

CDC: Centers of Disease and Control and Prevention 

Cip: Ciprofloxacin 

CSP: cold shock proteins 

CU: chaperone-usher 

DC: dendritic cells  

EC: European Commission 

EFSA: European Food Safety and Authority 

EPS: Exopolysaccharide 

ESBL: Extended- spectrum β-lactamase  

ESC: Extended-spectrum cephalosporin 

Esumoh: Epidemiological Surveillance Program 

EU, European Union 

FAO: Food and Agriculture Organization 

FDA: Food and Drug Administration 



  

v 

 

G: Goblet cells  

GIT: Gastro-intestinal tract 

GRAS: Generally recognized as Safe 

IMP: imipenemase 

IS: Insertion sequences 

KPC: K. pneumonia carbapenemase 

LAB: Lactic acid bacteria 

LARI: Lebanese Agricultural Research Institute 

LPS: lipopolysaccharide 

MAMPs: Microbe-associated molecular patterns 

MAPK: mitogen activated protein kinase 

MDR:  Multi-drug resistance 

MGEs: Mobile genetic elements 

MLS: Macrolide-lincosamide-streptomycin 

MLST: Multi-locus sequence typing 

MoA: Ministry of Agriculture 

MoPH: Ministry of public health 

NF-kB: nuclear factor kappa-light-chain-enhancer of activated B cells 

NPIP: National Poultry Improvement Plan 

OIE: Organization Internationale des Epizooties 

OXA: oxacillinase 

P: pathogen  



  

vi 
 

pAmpC: plasmidic AmpC- β-lactamase 

PAMPs: pathogen-associated molecular patterns 

PB: probiotic  

PC: Paneth cell  

PCR: Polymerase chain reaction 

pESI: plasmid-emerging S. Infantis 

PFGE: Pulse field Gel electrophoresis 

PMQR: plasmid-mediated quinolone resistance 

ProP: Proline permease 

PRR: pathogen recognition receptors 

QRDRs: quinolone resistance determining regions 

ROS: Reactive Oxygen Species 

Salmonella (S.): Salmonella enterica subspecies enterica 

SCV: Salmonella-containing vacuole 

SGI1: Salmonella Genomic Island 

Slp: surface layer protein  

SPI4: Salmonella pathogenicity island 4 

SPIs: Salmonella pathogenicity islands 

ST: sequence type 

T1SS: Type I secretion systems 

T3SS: Type III secretion systems 

T6SS: Type VI secretion systems 



  

vii 
 

TC: T lymphocyte  

US: United State 

VIM: Verona integrin encoded metallo β-lactamase 

WGS: Whole Genome Sequencing 

WHO: World Health Organization 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Introduction



Introduction  

2 

 

Food safety is a major problem worldwide in both developed and developing countries. The World 

Health Organization (WHO) estimates that 550 million people fall ill yearly and 230 000 died from 

diarrheal diseases caused mainly by ingestion of contaminated food or water (WHO, Food safety, 

2017). In Lebanon, a total of 294 sporadic food poisoning cases and 109 outbreaks, affecting 765 

persons were reported by the Ministry of Public health (MoPH) between 2014 and 2015 

(unpublished data, MoPH, PulseNet report, 2015).  

Salmonella genus is an important public health concern due to its widespread. This zoonotic 

foodborne bacterium is one of the leading causes of acute diarrhea in Europe (EFSA/ ECDC, 

2017).  It is estimated that Non-Typhoidal Salmonella causes 93.8 million cases of gastroenteritis 

and 155,000 annual deaths worldwide (Majowicz et al., 2010). Furthermore, this pathogen is an 

economic and social burden, resulting in high medical costs and a decrease in productivity. 

Consequent economic losses due to Non-Typhoidal Salmonella have been estimated to exceed 14 

billion dollars/ year in the United States (US) alone (Cosby et al., 2015). In Europe, European 

Food Safety Authority (EFSA) has recently estimated that the overall cost of all salmonellosis is 

EUR 3 billion per year (EFSA BIOHAZ Panel , 2019). In Lebanon, the heavy contamination and 

outbreaks caused by Salmonella were relayed by the media to the general public and were not 

without consequences. 

The ubiquitous Salmonella enterica subsp enterica, colonizing indifferently animal and humans 

intestines, are widely spread in different animal reservoirs (pigs, cattle, and poultry) and foods 

(Lamas et al., 2018). Poultry meat and eggs remain the major sources of human salmonellosis 

(Foley et al., 2011). These subspecies contain more than 2500 different serotypes; however, few 

are responsible for most infections such as S. Enteritidis and S. Typhimurium (MoPH, PulseNet 

report, 2015) (including the monophasic variant of Typhimurium 1.4, [5], 12, i :-) (EFSA/ECDC, 

2017). 

Salmonella can contaminate the poultry products at any stage of the production chain from the 

primary level to the final stage of retail and handling. Therefore, monitoring, surveillance and 

prevention programs should be in every step through infection control measures at farm level 

(biosecurity and vaccination), proper sanitary conditions at slaughterhouse (Good Manufacturing 

Practices) and appropriate manipulation (Good Hygiene Practices) at retail. In Lebanon, even 

though that this reservoir is largely contaminated, an effective Salmonella surveillance is currently 
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non-existent, and little is known about its epidemiology in poultry farms, slaughterhouses, and 

retail stores. 

Facing these conditions, the use of antimicrobials in animal production which is introduced as 

therapeutic, Growth Promoters (AGPs) and disease prevention, have improved animal health and 

led to higher yields (Pan and Yu, 2014). However, their excessive and indiscriminate practices 

have contributed to the development and emergence of antibiotic resistant (AMR) or multi-drug 

resistant (MDR) strains that can reach humans through the food chain (Ferri et al., 2017). Over the 

past decade, the emergence of MDR S. Typhimurium phage DT104, resistant to ampicillin, 

chloramphenicol, streptomycin, sulfonamides, and tetracycline (ACSSuT-resistant type) with 

decreased susceptibility to ciprofloxacin has been linked to the licensing of enrofloxacin 

(fluoroquinolone) in poultry industry (Threlfall, 2000). In Salmonella, the emergence of beta-

lactam resistance that was attributed to the expression of a wide variety of Extended-spectrum β-

lactamase (ESBL) and AmpC-type β-Lactamases as well as fluoroquinolone resistance was of 

great concern (Folster et al., 2016, Saliu et al., 2017). These two classes are categorized as critically 

important antibiotics to treat invasive salmonellosis in elderly and immune-depressed patients and 

infants’ respectively (Medalla et al., 2017). To combat this significant problem, policies and 

strategies were set at national, regional and international level with either gradual withdraw of 

several AGPs as in the USA (Patel et al., 2018) or strictly taking it off in the poultry industry as in 

European Union (EU) (Regulation (EC) No 1831/2003, 2003).  As a result, several alternative 

prophylactic measures to antibiotics have been introduced such as probiotics. 

Although the concept of probiotics is not new, their use in animal farming and poultry industry 

have recently been growing. Research for the development of new products with high probiotic or 

even antimicrobial potency continues to receive considerable interest. FAO & WHO (2002) 

defines probiotics as “live microorganisms (bacteria or yeasts) that, when administered in adequate 

amounts, have beneficial effects on their host”. Indeed, multiple beneficial effects such as the 

balance and the proper functioning of the intestinal flora, reinforcing the intestinal barrier, 

modulation of the immune system are claimed (Alagawany et al., 2018). Two fundamental 

mechanisms of inhibition of pathogenic organisms were detected either by direct cell competitive 

exclusion or by the production of inhibitory compounds, namely lactic and acetic acid, hydrogen 

peroxide, bacteriocin or bacteriocin-like inhibitors, fat and amino acid metabolites (Ayeni et al., 
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2018). Most of the strains used are of enteric origin isolated from the gastrointestinal tract of 

human and especially poultry. Lactic acid bacteria are considered to be the probiotics of choice 

both for their great capacity for survival and adhesion in the intestinal environment and their role 

in the restoration of the gut microbiota (Wang and Gu, 2010). 

The aim of this thesis is to identify and characterize circulating Salmonella sp. in the Lebanese 

poultry production and layer hen farms, within a farm to fork approach. The second main objective 

of our study is discovering possible live lactic acid bacteria (LAB) probiotic to be applied as 

prophylactic administration to control Salmonella dissemination. 

 

To achieve our goals, the work plan proposed in this thesis is divided into two parts: 

-  The first part aims to determine Salmonella prevalence in Lebanon starting from broiler breeder 

farms to slaughterhouses and the retail (supermarkets and restaurants) and layer flocks. Serotypes 

circulation, antibiotic resistance and their genotypic relatedness were also studied. At the end, this 

work will serve as a database for a national strategy, surveillance programs and intervention 

measures, set by local authorities (Ministry of Agriculture (MoA)) and regional risk analysis 

Initiative ( “Arab Food Safety Initiative For Trade Facilitation- SAFE) for prevention and control 

of salmonellosis in human and Salmonella dissemination in the poultry industry.  

  

- The second part targets to isolate and identify native poultry-derived Lactobacillus strains and 

to characterize their probiotic ability against the most relevant and drug-resistant Salmonella sp in 

Lebanese poultry farms. 

The manuscript is divided into four main chapters: 

Chapter 1 consists in a bibliographical review describing Salmonella sp; serotypes, pathogenicity, 

antimicrobial resistance and the main control strategies applied worldwide at farm level. A detailed 

view on the latest approach of the use of probiotic in poultry farming focusing on Lactobacillus 

sp. The methods used for screening and evaluating the potential probiotic are also well described.  

The results of this scientific research are presented in the form of three chapters where two of them 

have been submitted:  
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 Chapter 2: The prevalence, antibiotic resistance and molecular characterization of 

Salmonella serotypes in the Lebanese poultry production have been assessed in this part of 

the study.  

 Chapter 3: This article focuses on genetically characterization of eight strains of S. 

Kentucky resistant to ciprofloxacin (Cip) and ESCs by Whole Genome Sequencing 

(WGS). 

 Chapter 4: It describes the isolation and in-vitro screening of native Lactobacillus sp. 

isolated from the ileum and cecum of broilers and layers. Their anti-Salmonella activities 

are also defined in co-culture as well as by competitive exclusion to caco-2 cell lines. 

 

At the end, a general conclusion and the most relevant perspectives are presented.
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1. Salmonella  

1.1.Taxonomy and nomenclature 

The genus Salmonella is a rod, Gram-negative bacterium that belongs to the family of 

Enterobacteriaceae. It is subdivided taxonomically into two species: Salmonella bongori and 

Salmonella enterica. Within S. enterica, six subspecies were individualized: enterica (I), 

Salamae (II), arizonae (IIIa), diarizonae (IIIb), houtenae (IV) and indica (VI) (Grimont and 

Weill, 2007). The majority of strains (99%) isolated in humans and warm-blooded animals 

belong to Salmonella enterica subspecies enterica (I), abbreviated Salmonella. 

Currently, 2610 serotypes have been identified, 1547 belonged to Salmonella enterica subspecies 

enterica (I) (Achtman et al., 2012). They were characterized by their cell-surface antigens within 

lipopolysaccharide (O antigen coded by rfb genes) and their flagellar antigens (flagellar 1 and 2 

of H antigen coded by fliC and fljB genes) according to the classification developed by White in 

1926 and then by Kauffman 1972 and completed by Minor in 1978. Salmonella serotypes of 

clinical importance are noted in the White-Kauffman-Le Minor scheme (Grimont and Weill, 

2007). At this time, names attributed to serotypes are written in roman letters with capital letters 

and not in italic. Nowadays, the whole genome sequencing (WGS) with multi-locus sequence 

typing (MLST) approach has been adopted by some Public Health laboratories to replace the 

traditional serotyping (Ashton et al., 2016). MLST is built on the basis of sequences of several 

house-keeping genes and isolates with matching alleles for seven gene fragments studied are 

given a common sequence type (ST). This method affords advance understanding on the real 

evolutionary relatedness between isolates. Another novel in-silico web-based tool is serotyping 

by SeqSero, to determine Salmonella serotypes from rfb gene cluster, fliC and fljB alleles, 

responsible for Salmonella antigenic structure using both raw sequences and assembled data 

generated from the WGS. It has been successfully introduced confirming the in vitro serotyping 

(Zhang et al., 2015). 
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1.2. Adaptation capacity  

Salmonella is a mesophilic bacterium with an optimal growth temperature between 35oC and 

37oC, with a pH between 6.5 and 7.5 but can tolerate a higher range from 4.5 to 9 and necessitates 

a water activity (aw) > 0.93 for growth (Andino and Hanning, 2015). The process of adaptation 

to new inconvenient environment involves the mechanism of different sigma factors. These 

alternate factors are structural proteins of prokaryotic RNA polymerase which can increase gene 

transcription appropriated to the environmental conditions. 

When the bacteria is exposed to extreme heat stress, RpoH (heat shock sigma factor) mechanism 

is triggered (Andino and Hanning, 2015). In S. Enteritidis, gene transcription was the highest 

level when cultured at 42o C. In response to quick adaptation to temperature downshifts, Andino 

and Hanning (2015) reported that Salmonella could well survive due to the expression of cold 

shock proteins (CSP). As a result, the survival rate of S. Enteritidis increases in chicken parts at 

2oC, and shell eggs at 4o C. 

Salmonella  are acid- tolerant due to express acid shock proteins (RpoS -factor, PhoPQ, and Fur) 

enabling their survival at a low gastrointestinal pH (Foley et al., 2013). Cheng et al.(2014) 

demonstrated that S. Kentucky expresses a high level of rpoS (starvation/stationary phase sigma 

factor) - regulated genes, a potential factor responsible for its new wave of dissemination in 

poultry. 

In dehydrated products, they can survive for a long time, which is related to their ability to survive 

in outdoor environments such as broiler farms, dry litter, and environmental dust. This protective 

mechanism against dryness is due to the expression of proP (Proline permease II)(Finn et al., 

2013) and rpoS- regulated genes (Andino and Hanning, 2015). Maserati et al, (2017) also 

demonstrated that the virulence factors sopD and sseD are implicated in Salmonella’s survival 

during desiccation.  

1.3. Pathogenesis and virulence 

The natural reservoir of Salmonella is vast. This bacterium is intestinal parasite, a well-known 

pathogen associated with both animals and humans. Each Salmonella serotype has its 

characteristic pathogenicity that manifests the variation of the virulence factors among these 
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different serotypes. Few are strictly host-specific such as S. Typhi and S. Paratyphi A, B and C 

in humans, S. Gallinarum- Pullorum in poultry, S. Cholerasuis in pigs, S. Dublin in cattle, and S. 

Abortusequi in horses and S. Abortusovis in sheep, while the majority are zoonotic such as S. 

Typhimurium, S. Enteritidis.... agents of non-typhoidal salmonellosis (Arya et al., 2017).  

The Non-typhoidal Salmonella are usually self-limiting foodborne gastroenteritis, but illness 

becomes complicated and life-threatening for the elderly, infants, and immunosuppressed, and 

necessitates antimicrobial treatment. Therefore, the host-bacterium status reflects the result of a 

Salmonella infection. While age, genetic and environmental factors determine the host status, the 

Salmonella status is shaped by the virulence factors including the toxins, virulence plasmids, 

fimbriae and flagella, clusters of virulence genes and type III secretion systems (T3SSs, 

injectisome-mediated delivery of “effector” proteins from bacteria to host cells) encoded by the 

horizontally acquired Salmonella pathogenicity islands (SPIs) (Foley et al., 2013; Jennings, 

2017). There are six secretion systems categorized from type I (T1SS) to type VI (T6SS) in 

addition to the CU (chaperone-usher) system (Ramos-Morales, 2012). These effector proteins 

play important role in pathogenicity, biofilm formation, modulation of the eukaryote host, and 

nutrient acquisition. 

 After oral infection, Salmonella adhered to the intestinal cell surface through fimbriae and other 

adherence- associated non-fimbrial proteins with SPI4-encoded T1SS and the non-fimbrial giant 

adhesin SiiE as Salmonella contact initiator with host cells (Peters et al., 2017). Within less than 

24h, Salmonella colonizes the intestinal epithelial cells, triggering gastroenteritis symptoms 

(Thiennimitr et al., 2012). Motility and two T3SSs are considered as the main Salmonella 

virulence factors necessary for intestinal inflammation. Salmonella encodes two virulence-

associated T3SSs, namely T3SS-1 and T3SS-2 which are located on two SPI1 and SPI2, 

respectively. The SPI-1 protein effectors, SipA, SopD, SopB, SopA, SopE2 and SptP mediate 

the invasion and colonization of epithelial cells causing localized inflammation (Jennings et al., 

2017). These effectors remodel the actin cytoskeleton of the host cell inducing the pathogen 

engulfment by phagocytes in a modified phagolysosome, Salmonella-containing vacuole (SCV). 

Salmonella replication and dissemination inside the SCV is assured by approximately thirty 

T3SS-2 protein effectors encoded by SPI-2 (Figueira and Holden, 2012). The functionality of 

T3SS-2 helps to distinguish virulent from non-virulent Salmonella strains. The reduced virulence 
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of S. Kentucky was therefore partially attributed to the absence of sopD2, pipB2, sspH2 and sseI 

gene(Cheng et al., 2014). 

1.3.1. Local inflammatory response 

S. Typhimurium is considered as the most studied pathogen in humans. In this case, its presence 

in the host is detected through two recognition patterns which are a part of the Salmonella 

structure; pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharides, curli 

and flagella and patterns of pathogenesis via the translocation of the effectors T3SS-1 into the 

cytosol. These patterns are recognized by pathogen recognition receptors (PRR) of the host 

expressed by the cytosol (NOD1, NOD2, NLRC4, and NLRP3), the cell membrane 

(TLR1/TLR2, TLR4, and TLR5) or the humoral compartment (complement). It causes the 

stimulation of mitogen activated protein kinase (MAPK) transduction pathways that activate the 

transcription factors, activator protein 1 (AP-1) and nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-kB) leading to a pro-inflammatory expression (innate immune response). 

As a result, a cocktail of cyto- and chemokines are produced targeting the pathogen by three 

major responses: macrophage stimulation (via IFN-ᵧ), neutrophil recruitment (via the chemokine 

CXC) and the epithelial release of antimicrobials (via Il-22 cytokine which stimulates the release 

of the antimicrobial Lipocalin-2). The production of specific antibodies by the adaptive immune 

response further boosts phagocyte-killing mechanisms (Thiennimitr et al., 2012). 

The immune system is activated against Salmonella pathogen in its three locations; intracellular 

(in SVC), extracellular (in epithelial tissue) and luminal gut (Figure 1). The inflammatory 

response is very effective against the first two. However, it enhanced its growth in the intestinal 

lumen; the antimicrobial (lipocalin-2) secreted by the epithelial cells sequesters the iron chelator 

(enterobactin) produced by the microflora, but not the iron chelator (salmochelin) produced by 

Salmonella. In addition, during neutrophils migration, in an attempt to neutralize the pathogen, 

Reactive Oxygen Species (ROS) are produced and oxidize an endogenous sulfur compound 

(thiosulfate), that generate a respiratory electron acceptor (tetrathionate) enabling Salmonella to 

growth anaerobically. Bacterial growth in intestine promotes Salmonella transmission by the 

fecal-oral route. 
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Figure 1: Salmonella, the host and its microbiota (Thiennimitr et al., 2012). 

 

1.4. Non-Typhoidal Salmonella, a public health concern 

Non-Typhoidal Salmonella is one of the leading pathogens causing foodborne illness with 94,530 

confirmed cases reported in European countries in 2016 (EFSA/ECDC, 2017). In USA, 

Salmonellosis account for approximately 1.2 million cases, 23.000 hospitalizations and a 

mortality rate of 450 people yearly (CDC, 2019). Few serotypes are responsible for human 

infections; S. Enteritidis and S. Typhimurium being the most prevalent and commonly reported 

worldwide  including Lebanon (MoPH, PulseNet report, unpublished data; Fadlallah et al., 2017) 

(Figure 2). S. Enteritidis is frequently associated with eggs and poultry products, whereas S. 

Typhimurium infection is attributed to a broader species range, such as pigs, cattle and poultry. 

Therefore, foods of animal origin, in particular, contaminated poultry products (eggs and poultry 

meat) have been considered the primary vehicles of Salmonella infection (Antunes et al., 2016). 

Parallel evolutions of the serotypes in poultry and humans argue in favor of the reality of this 

concept. The new pandemic S. Enteritidis in the 1980s was in line with its high occurrence in 
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1.5. Salmonella and poultry 

The group of Salmonella serotypes is considerably large, till present, 2610 serotypes have been 

identified. However, few are circulating in the food chain causing main outbreaks. 

1.5.1. Poultry production 

Poultry is one of the most advanced and fasted food industry worldwide. To supply the increasing 

market demand, more than 90 billion tons of chicken meat are produced yearly where chickens 

are the most commonly farmed species (FAO, 2018). In the local Lebanese market, broiler 

production is estimated at 150 million kilos/ year.  In the United States, more than 9 billion 

broilers are processed each year and 77 billion table eggs (Foley et al., 2011). Country members 

of BRICS (Brazil, Russia, India, China, and South Africa) turned toward a highly cost-effective 

and vertically integrated intensive livestock production systems (Van Boeckel et al., 2015). This 

industry is also concentrated in Lebanon where four leading large producers share with more 

than 50 % of the local poultry market. Concerning egg production, this field comprises two big 

traders with one sold its output while the other collects the eggs from the medium and small 

producers. 

These new husbandry practices (increased stocking density, larger farms, and bird stress) largely 

contribute to the risk of Salmonella dissemination either vertically or horizontally (Bailey, 1988).  

1.5.2.  Salmonella mode of transmission and pathogenesis 

Poultry are commonly known to be Salmonella reservoirs, mainly harboring this pathogen in the 

gastrointestinal tracts. Incidence of Salmonella in poultry flocks varied considerably within 

countries. The EU summary report 2016 concluded that 3.7 % of commercial broiler flocks were 

positive for Salmonella, with values ranging from 0 % to 16.2 % of flocks within individual 

countries. Similarly, the same study indicated that 2.8 % of European laying flocks were positive 

for Salmonella with values ranging from 0% to 87.5 % of flocks in individual countries 

(EFSA/ECDC, 2016). In developing countries, higher prevalences were recorded; in Algeria and 

Constantine, broiler farms were contaminated at 34.4% and 36.6 % respectively (Djeffal et al., 

2017; Elgroud et al., 2009). Whereas in Bangladesh, results showed a level of 18 % Salmonella 

contamination at layer farms (Barua et al., 2012). In poultry products, the prevalences were also 

high ranging from 13 % to 39 % in South America, 35 % to 50 % in Asia and 35 % in Africa 
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(Antunes et al., 2016). Salmonella prevalence on broiler carcasses collected from Lebanese 

slaughterhouses was about 41.6 % (El Hage, 2013 unpublished data). 

At farm level, the route of horizontal transmission occurs via fecal-oral pathway (Foley et al., 

2013). Infected animals shed pathogens in the feces which, in turn, contaminate the environment 

and cause new infections or reinfection. The source of farm infection could be cross-

contaminated by feed, humans, domestic, wild animal, insects, contaminated equipment or water 

(Chousalkar et al., 2018). 

In broiler, Salmonella can within a few hours colonize and invade the ceca, reaching other 

internal organs like the liver and spleen (Muyyarikkandy and Amalaradjou, 2017). Poultry 

carcasses and poultry products can, therefore, be contaminated at the slaughterhouse (Shah et al., 

2012). Several production processes could infect the carcasses with Salmonella mainly 

defeathering, evisceration, and chilling operations. Consequently, bacteria can thus survive 

during all these stages and human consumption and causing subsequent illness. 

In laying hens, vertical transmission of Salmonella caused by some serotypes such as S. 

Enteritidis , S. Typhimurium, and S. Heidelberg led to systemic dissemination, colonization, and 

invasion of the reproductive system and therefore internally contaminated eggs (Ricke et al., 

2018; Kaldhone et al., 2017; Chousalkar et al., 2018). Moreover, external eggshell could be 

contaminated while the egg is laid due to the joint opening of the intestinal, urinary, and 

reproductive tracts. S. Enteritidis is well known for its capacity to survive in the hostile 

microbicidal properties of egg albumen by producing a capsular-like lipopolysaccharide (LPS). 

As a result, S. Enteritidis is primarily responsible for egg-borne Salmonella outbreaks throughout 

the world (Shah et al., 2012). Eggs could also be contaminated by horizontal route via fecal trans-

shell penetration (Pande et al., 2016). Some Salmonella serotypes such as S. Typhimurium, S. 

Agona and S. Infantis might form a biofilm on the eggshell surface (Chousalkar and Gole, 2016). 

Colonization mechanisms are so complex that they are variable between hosts, serotypes, and 

within the serotype (Foley et al., 2011). Except for host-specific S. Pullorum and S. Gallinarum, 

which cause Pullorosis and fowl typhoid respectively (Andino and Hanning, 2015) leading to 

severe flock illnesses and high mortality, other Salmonella serotypes establish non- clinical signs 

of variable duration, which is a potential threat of zoonosis. Such animals (healthy carriers of 
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Salmonella) could either spread infection between flocks or cause foodborne disease when 

contaminated poultry products such as meat and eggs, enter the food chain. 

1.5.3. Salmonella serotypes in poultry 

1.5.3.1. Serotypes shift  

Population dynamics of Salmonella serotypes have been noticed over time, and have been 

affected by different control programs and strategies (Foley et al., 2011), livestock trade and 

travel (Barbour et al., 2015). 

Until the 1960s, S. Gallinarum and S. Pullorum were among the most severe diseases in poultry 

worldwide (Foley et al., 2011). Despite their eradication in most countries, these host-specific 

biovars still a big challenge in developing countries such as India (Barbour et al., 2015). The 

sudden rise of ubiquitous Salmonella outbreaks recalled that S. Gallinarum and S. Pullorum were 

not the only entero-invasive serotype in poultry although not pathogenic to humans. During the 

period 1950s-1970s, S. Typhimurium was well recorded in the most frequently isolated serotypes 

from poultry origin in many countries including USA (Bullis, 1977) and  England (Sojka and 

Wray, 1975). Similar results were obtained locally as mentioned by Nabbut and Jamal, (1970); 

S. Typhimurium (35.5%) and S. Bareilly (25.2%) were the most isolated serotypes from 214 

examined chickens. And at lower but significant rate S. Pullorum was also isolated (5.1 %).  

In the 1980s, began a new wave of serotypes and clones of public health concern. A phenomenon 

called "pandemic" appeared; the vertical transmission via egg of S. Enteritidis. This strain was 

particularly pronounced in the industrialized countries when lysovar 4 appeared, which was 

invasive in layer hens and broilers (Rabsch et al., 2000). In Lebanon, 112 proliferating strains of 

S. Enteritidis have been reported in 11 broiler farms (Barbour et al., 1998). At the same period, 

LARI Microbiological department isolated S. Blockley, S. Typhimurium, and S. Enteritidis from 

liver of diseased chicken. The work of El Hage et al., (2003), revealed only two serotypes S. 

Enteritidis and S. Blockley at a contamination rate of 64.7% and 35.5% respectively. Analyzed 

samples were broiler ceca collected from Lebanese slaughterhouses (LARI, internal report, 

2004).  
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Due to the outbreaks of S. Enteritidis in humans, this serotype has been set as new target in 

developed countries, namely in USA and EU in the 1989 and 2007 respectively. Whereas S. 

Typhimurium was also added to the list of targeted strains in EU. In the USA, the decline of S. 

Enteritidis prevalence in eggs and poultry meat since the mid-1990s favored the emergence of 

new serotypes as S. Heidelberg from 1997 to 2006 and in 2007 S. Kentucky was the most 

common serotype with contamination of 50 % in retail poultry carcasses (Foley et al., 2011). This 

latter serotype has highly disseminated worldwide in boilers and layers, in developed (Antunes 

et al., 2016) and developing countries (Barua et al., 2012). A new clone CipR S. Kentucky ST198, 

linked to travel to Africa and the Middle East, has emerged and rapidly disseminated worldwide 

both in humans and animals, especially in broilers (Le Hello et al., 2013; Ramadan et al., 2018). 

In EU, the prevalence of S. Enteritidis declined significantly reaching 1.0 % and 0.9 % in 2013 

and 2014 respectively but still ranked second isolated serotype in broilers. Simultaneously an 

increase of S. Infantis was observed in diverse European countries reaching 38.3% in broiler 

farms (EFSA/ECDC, 2015). Besides, a Hungarian clone has also been reported worldwide 

(Nógrády et al., 2007; Hindermann et al., 2017; Tate et al., 2017; Aviv et al., 2014; Franco et al., 

2015) possessing a unique megaplasmid (pESI) (plasmid emerging S. Infantis). 

S. Enteritidis and S. Typhimurium remain the most circulating serotypes in both broilers and 

layers.  In Australian layer farms, S. Typhimurium is prevailing (Chousalkar et al., 2018), 

whereas it is dominant in Chinese broiler industries (Li et al., 2017). In Egypt, high prevalence 

of S. Enteritidis (37.25 %) and S. Typhimurium (29.41 %) was recovered from broiler flocks S. 

Infantis (19.6 %), S. Kentucky (7.84 %) were also isolated. Another  study showed a 15 % 

contamination of chicken samples was due to S. Heidelberg (Barbour et al., 2015)..  

Variation of serotypes have been observed between countries; In China, several authors 

frequently reported S. Indiana as the most common serotype in chicken carcasses (Bai et al., 

2015). In Australia, Pande et al. (2016) reported that S. Mbandaka (54.4 %) was the most 

frequently recovered serotype along with S. Typhimurium (11.5 %) in layer farms. Furthermore, 

S. Heidelberg is mainly isolated from layer and broiler farms from Canada and USA 

(Edirmanasinghe et al., 2017; Shah et al., 2017).  
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1.5.3.2. Factors affecting the dissemination and persistence of specific serotypes 

Many hypotheses have been raised trying to identify the factors that contributed to the 

colonization and spread of a particular serotype or new clone in poultry.  

The first hypothesis was established by Rabsch et al. (2000) supposing that competitive exclusion 

plays an essential role in such phenomenon. The authors concluded that S. Gallinarum might 

competitively exclude S. Enteritidis in poultry and the eradication of the first one facilitates the 

dissemination of second.  One serotype could yield a cross-immunity against a second one if both 

organisms share the same immunodominant O-antigen on their cell surface. Indeed, the two 

serotypes have the same O9 lipopolysaccharide antigen. The presence of S. Gallinarum at the 

beginning of the 20th century may have generated adaptive flock immunity, thereby excluding 

S. Enteritidis strains from circulation in poultry flock. The same concept of competitive exclusion 

has been thought to be the cause of dissemination of S. Heidelberg since it shares same surface 

antigens with S. Enteritidis. 

The second hypothesis concerning the persistence of S. Enteritidis in the poultry population is 

thought to be due to its rodent reservoir. Unlike the avian-adapted S. Gallinarum, this serotype 

could be reintroduced into flocks via horizontal contamination by rodents and therefore more 

challenging to eliminate (Andino and Hanning, 2015). Moreover, the changes in poultry 

production practices such as higher densities and increased vertical integration may have 

facilitated S. Enteritidis dissemination. 

Another hypothesis assumed to be the acquisition of new genetic elements enrolled in the 

virulence or adaptation in specific clones; in the case of Hungarian S. Infantis,  megaplasmid 

(pESI) has been acquired, contributing in significant increase in tolerance to stress factors (e.g. 

mercury and oxidative stress) and virulence (e.g. biofilm formation, adhesion and invasion into 

host cell)(Aviv et al., 2014). Others such as S. Kentucky through the acquisition of an E.coli 

CoLIV plasmid that encodes for colicins, iron-scavenging genes and the HlyF hemolysin 

(Johnson et al., 2010). Some mechanisms involve the differential regulation of core Salmonella 

genes via the stationary-phase sigma factor RpoS, to the metabolic adaptation of S. Kentucky in 

the chicken caecum(Cheng et al., 2014). 
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Human illness and economic consequences of Salmonella contamination are not to be neglected; 

this justifies putting in place methods of fine characterization and means of effective prevention 

against this pathogen.  

1.6. Molecular genotyping 

Several methods have been used for pathogen identification and characterization including 

Salmonella. While phenotypic characterization such as serotyping and antimicrobial 

susceptibility testing was still in use, more sensitive genomic methods have been introduced, and 

there are many.  

1.6.1.  Pulse Field Gel Electrophoresis (PFGE) 

In their early use, through molecular typing, epidemiological surveys use genetic fingerprints for 

traceability studies to better identify sources of contamination and subsequently the production 

sectors most implicated in the risks to humans. PFGE technique permits to differentiate bacterial 

isolates at the strain level. So, it allows, on the one hand, to determine the existing relatedness 

between the strains during an epidemic and, on the other hand, to identify possible clonal lines. 

The principle of this technique consists of separating large DNA fragments (between 50 and 1000 

Kpb), obtained by the use of enzymes with rare cleavage sites in the genome and known for its 

high discriminatory power. PFGE was for an extended period the gold reference method used 

worldwide in epidemiological investigations (Arya et al., 2017). In EU, it has been applied in 

food poisoning investigation to identify the source of infection due to  S. Enteritidis (Laconcha 

et al., 2000) S. Typhimurium (Murphy et al., 2008), S. Agona (Rabsch et al., 2005). Similarly, 

the genetic variability of S. Typhimurium LT2 from archival cultures dating from 1940 was 

studied (Edwards et al., 2001). Extensive clonal relatedness studies within multitude serotypes 

have been carried out, such as MDR S. Infantis (Hindermann et al., 2017), CipR S. Kentucky ST 

198 (Le Hello et al., 2013), MDR S. California and S. Indiana (Wang et al., 2017), and S. 

Heidelberg and S. Minnesota (Campos et al., 2018). 

PFGE networks such as PulseNET, organized by the US Centers for Disease Control and 

Prevention (CDC), have been established worldwide with successful standardized methods 

(Gieraltowski et al., 2016). At national level, this disease tracking network, was formed by the 

epidemiological Surveillance Program (Esumoh) at the MoPH, LARI and the American 
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University of Beirut (AUB). This joint effort is responsible for surveillance of foodborne diseases 

by strain identification, genotyping and establishing the relatedness between clinical cases and 

their food sources during outbreaks. Fadlallah et al., (2017) demonstrated the clonal relatedness 

between clinical and food origin Salmonella and showed the link of two Salmonella outbreaks 

with their suspected food sources. 

1.6.2. Whole genome sequencing (WGS) 

Since the first whole bacterial genome sequence in 1995, sequencing technologies have rapidly 

developed. WGS either by sequencing the chromosome or mobile genetic elements, provided the 

ultimate discriminatory power (Phillips et al., 2016). It delivers information on pathogen; 

identification, epidemiological typing, and drug susceptibility. The work of Wang et al., (2017) 

characterize the sequence of S. Indiana at the whole-genome level and verify the transferability 

of the mobilized colistin resistance gene mcr-1. This technique was also use by Edirmanasinghe 

et al. (2017) to characterize S. Heidelberg isolated from different sources (human, from human, 

abattoir poultry, and retail poultry). It also allows linking outbreak isolates to attribute sources. 

In Europe, multi-country outbreaks due to the consumption of eggs contaminated by S. Enteritidis 

have been linked to a persistent contamination of laying hen farms in Poland (EFSA BIOHAZ 

Panel., 2019). WGS is being adopted in PulseNet surveillance plans, due to its high rate of 

accuracy and robustness to low-quality assemblies. Making it possible to associate individual 

isolates with specific geographic locations, allowing for more rapid public health interventions 

(Arya et al., 2017). The use of Genome sequences has designed a robust framework for large-

scale phylogenomic and comparative genomic analyses that can elucidate the bacterial evolution. 

1.7. Salmonella control at farm level 

The eradication of ubiquitous Salmonella is almost illusory, given the large number of serotypes 

to be considered and their ubiquity. 

Salmonella can contaminate the food at any stage of the production chain from the primary level 

to the final stage of retail and handling. Therefore, Salmonella surveillance and prevention should 

be in every step through infection control measures at farm level, proper sanitary conditions at 

the slaughterhouse (Good Manufacturing Practices) and appropriate manipulation (Good 

Hygiene Practices) at retail. By reducing the cecal Salmonella carriage in poultry during primary 
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production, fecal shedding will decrease the contamination levels of the carcasses after 

processing, and eggs, thereby reduce human infection (Muyyarikkandy and Amalaradjou, 2017). 

Internationally, at farm level, different strategies were adopted to control Salmonella 

dissemination either by general approaches such as biosecurity enforcement or by targeted 

policies such as vaccination and Salmonella reduction programs. In Lebanon, all farms 

strengthen their biosecurity measures and vaccination programs abiding the MoA 

recommendations and related regulations. Despite these efforts, levels of poultry-related 

Salmonella infection remain significantly high. 

1.7.1.  Serotype-specific control programs 

Many control programs have been adopted to target specific Salmonella serotypes that are 

associated with poultry and/ or human salmonellosis; showing increased virulence such as 

invasiveness or antibiotic-resistance.  

In the USA, National Poultry Improvement Plan (NPIP) established in 1935, eradicated S. 

Gallinarum, S. Pullorum from commercial flocks, whereas S. Enteritidis was targeted in egg -

type breeders since 1989 and in broiler meats since 1994 (Foley et al., 2011).  

 In EU, Commission Regulation (EC) No 2160/2003 (Anonymous, 2003) was implemented in 

2007 to reduce the prevalence of the top 5 serotypes (S. Enteritidis, S. Typhimurium, S. Hadar, 

S. Virchow, S. Infantis) in breeding hens and the most common serotypes causing human illness 

in broiler and egg layers (S. Enteritidis and S. Typhimurium). These strategies were significantly 

successful in decreasing this prevalence. However, other serotypes emerged, and now it is 

reconsidered to replace some targeted serotypes (S. Hadar, S. Virchow) by  new ones such as S. 

Kentucky and S. Heidelberg or to include all serotypes as a target (EFSA BIOHAZ Panel , 2019). 

Indeed, the potential disadvantages in developing a control strategy against one specific serotype 

are always at the expense of developing another food-poisoning one that may contaminate the 

flocks. Another issue is that the most relevant serotypes vary between countries and over time 

(Mead et al., 2010). As mentioned by Foley et al. (2011) successful control of one serotype may 

raise a concern as to what will fill the potential niche left after the elimination of targeted one 

from commercial poultry and egg production and potentially cause diseases in humans. 
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1.7.2. Vaccination program 

Due to public health concerns associated mainly to S. Enteritidis (serogroup D) and S. 

Typhimurium (serogroup B), commercial vaccines are increasing since, with successful results. 

For both of them, inactivated (killed) and attenuated (live) vaccines are available, and their 

particular role is also underlined by the regulation (EC) No 1177/2006 (Methner, 2018) However, 

vaccination increase selection pressure for other emerging serotypes, including serogroup C such 

as S. Kentucky and S. Infantis (Fuche et al., 2016). One of the main drawbacks of vaccines is 

their reduced/ or absence efficacy against antigenically different serotypes. This enhances new 

problems caused by emerging serotypes by providing a vacant niche for other serotypes to 

proliferate (Eeckhaut et al., 2018). 

1.7.3. Antibiotic usage in farms 

The use of antibiotics was a turning point in the animal industry especially poultry. The 

antimicrobial practices in Veterinary Medicine took place in the 1940s when Streptomyces 

aureofaciens introduced as animal fed improved performances and accidently it was discovered 

that it produced chlortetracycline (Alagawany et al., 2018). It comprised disease prevention and 

treatment as well as AGPs and performance enhancers for livestock. These substances, added at 

sub-therapeutic doses in poultry feeds, increase productivity and prevent infectious diseases. The 

use of AGPs, with no need for a veterinary prescription, was approved by the US Food and Drug 

Administration (FDA) in 1951 (Gouvêa et al., 2015) followed by European approval, in the 1970s 

(Sanders and Moulin, 2017).  

In Lebanon, all imported antibiotics are well controlled. However, surveillance and monitoring 

procedures which are set, are not implemented. Besides, there are no defined regulations 

regarding the importation and usage of AGPs (MoA, unpublished data). 

Many antimicrobial classes, essential in human treatment, were used in animal husbandry (agyar, 

2019). AGPs and prophylactics used in poultry were: tetracyclines (chlortetracycline), β-lactams 

(penicillin), macrolide (Tylosin, tilmicosin, erythromycin), lincosamide (lincomycin), 

streptogramins (virginiamycin),  glycolipids (bambermycin), polypeptides (bacitracin), 

ionophores (salinomycin), aminocyclitols (apramycin), amphenicol (florfenicol), 

chloramphenicol, fluoroquinolone (enrofloxacin, sarafloxacin) and cephalosporin (ceftiofur) 
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((Angelakis, 2017; Patel et al., 2018). Table 1 shows the list of antibiotics used in Lebanese 

poultry production. 

Table 1: List of some antibiotics for therapeutic used in Lebanese poultry production (MoA, 

unpublished data)  

Diseases  Target species  
Active 

substances  
Antibiotic  

Pneumo enteritis f non-ruminating 
calves, respiratory infection, fowl 

cholera  

Sheep and goats, chicken 
and turkeys, dogs and cats  

Lincomycin, 
Spectinomycin 

Spectovet  

Respiratory disease, pneumonia, 
early chicken mortality  

Bovines, porcines, 
equines, chicks  

Ceftiofur  Precex  

Mastitis, pneumonia, respiratory 
infections, mycoplasmosis, arthritis  

Cattle, sheep and goats, 
dogs and cats, poultry  

Enrofloxacin Enrotryl 10% 

Pneumonia, bronchitis, diarrhea, 
colibacilloses, urogenital tract 

infection  
All animals  

Sulfadoxin eand 
trimethoprim  

Sulfadoxine 
and 

trimethoprim 
injectin  

 

However, Overusing and misusing of such agents have been noticed. More than half of the 

globally produced antibiotics are used in livestock production with chicken production showing 

the highest level (Van Boeckel et al., 2015). In 2010, the most five countries with largest global 

antimicrobial consumption in food animal production were China (23%), the United States 

(13%), Brazil (9%), India (3%), and Germany (3%). In China, nearly half of the 210, 000 tons of 

antibiotics produced, were used in livestock as therapeutic drugs and feed additive (Zhu et al., 

2017). It has been estimated that by 2030, a total of 105,596 tons of antimicrobials will be 

consumed in food animal production globally (Suresh et al., 2017).  

As a result, concerns on the emergence of AMR and MDR strains started to be voiced, at the end 

of the 1990s, from different parts of the world, and the use of AGPs became a public health 

concern (Suresh et al., 2017). The administration of low but in repeated doses of antimicrobial 

agents (the process in which growth –promoting and prophylactic are used) was the ideal 

condition to promote the emergence and dissemination of AMR in animals (You and Silbergeld, 

2014). Evident links showed the involvement of poultry production as AMR Salmonella reservoir 

and its impacts on public health. 
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Licensing of fluoroquinolones, enrofloxacin and sarafloxacin for animal use, especially in 

poultry, in the 1990s headed to increased rates of decreased susceptibility to ciprofloxacin in S. 

Typhimurium DT104 recovered from animal/food (particularly poultry) and humans (Threlfall, 

2000). The prophylactic use of fluoroquinolones in African and Asian poultry flocks was thought 

to be the main causative of the rapid spread of the CipR Kentucky ST198 strain (Le Hello et al., 

2011). 

The use of Extended-spectrum cephalosporin ESC in broilers has also contributed to the spread 

of ESBL and AmpC-producing Salmonella in the poultry sector. Voluntary withdrawal of 

ceftiofur in Canada and Japanese poultry producers was correlated with a decreasing occurrence 

of ceftiofur-resistant S. Heidelberg and Salmonella sp respectively (Shigemura et al., 2018; Dutil 

et al., 2010). 

Another public health issue is the detection of antibiotic residues in poultry products and the 

emerging environmental pollution by resistant bacteria, antibiotic resistance genes, and 

antibiotics dissemination. These latter components are shed unmetabolized by poultry at a high 

rate (75-90 %) in the ecosystem. The spread of AMR from “Farm to fork” via water, manure, 

food was well reviewed by (Suresh et al., 2017). 

1.8. Antibiotic Resistance, the biggest global threat 

The world is on the edge of a post-antibiotic era where MDR bacteria are a superbug due to an 

antibiotic apocalypse, and dark ages where people will die from a scratch injury (Bettiol and 

Harbarth, 2015; Fukuda, 2015). Invasive Salmonella infections frequently occur in children, the 

elderly, and immunocompromised persons who need treatment with either ESC or ciprofloxacin 

(Diarra and Malouin, 2014). The emerging global antimicrobial resistance (AMR) threat caused 

25,000 annual deaths in Europe, 100,000 in the USA and 80,000 in China (Ferri et al., 2017). In 

the USA, drug-resistant Salmonella triggered 100,000 illness cases with high resistance to 

clinically-relevant antibiotics such as ceftriaxone (36,000 illnesses/year) and ciprofloxacin 

(33,000 illnesses/year). MDR Salmonella (resistance to ≥5 antibiotics) caused 66,000 illnesses 

(CDC, 2013). Besides, AMR led to an increasing health-care estimated to €1.5 billion and $55 

billion yearly in Europe and USA respectively (Ferri et al., 2017). The void of discovering new 
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antimicrobial agents worsen the situation (Bettiol and Harbarth, 2015). Bacterial resistance is 

inevitable, warned Fleming when he discovered penicillin.  

1.8.1. Antibiotic-resistance Mechanisms 

Antibiotics target the lysis of either the bacterial cell wall or membrane or hamper the essential 

processes related to metabolism (protein synthesis) and replication (nucleic acid synthesis). 

Consequently, antibiotics must reach the bacterium cytoplasm, without being destroyed or 

modified, fix on a target and disrupt the bacterial physiology.   

The AMR phenomenon, due to selective pressure halt these antibiotic functions. It could be either 

intrinsic (innate trait) or acquired (Agyare et al., 2019) which is mediated by two fundamental 

mechanisms, biochemical and genetic. 

Biochemical mechanisms include:  

1) Decreasing the intracellular antibiotic concentrations either by membrane permeability 

changes (macrolides or β-lactams antibiotics) or active efflux pump that remove antibiotic from 

the bacterial cell cytoplasm ((Fluoro) quinolones antibiotics). Some efflux pumps have narrow 

substrate specificity (for example, the Tet pumps), but many transport a wide range of structurally 

dissimilar antibiotic substrates and are known as MDR efflux pumps (Coussens et al., 2018). 

2) Enzymatic inactivation either by destruction (β-lactamases) or modification of the antibiotic 

preventing its binding to the target site (aminoglycosides and chloramphenicol). 

3) Alteration of the antibiotic target site (e.g., Penicillin Binding protein) so that it does not bind 

to the bacterial cell. A wide range of antibiotics has been involved in such mechanism including 

beta-lactams, macrolides, tetracyclines, fluoroquinolones, aminoglycosides, sulfonamide, and 

vancomycin (Zeng and Lin, 2013).  

This acquired biochemical resistance is mediated through genetic mechanisms such as mutation 

and horizontal transfer. In response to antibiotic selective pressure, this latter can spread the drug 

resistance between and within species through mobile genetic elements (MGEs) such as 

plasmids; transposons; or integrons. (Nair et al., 2018).  
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Plasmids are extrachromosomal self-replicating DNA fragments easily transmitted from one 

bacterium to another. Defined by their incompatibility (Inc) types (Rozwandowicz et al., 2018), 

they are the principal source of dissemination of drug resistance genes (Kaldhone et al., 2017). 

The ability of IncI1 plasmid to carry and spread ESC resistance genes offers a potential 

explanation for the plasmids’ prevalence among MDR Salmonella (Folster et al., 2016).  

Transposons are known as “jumping genes." It’s as small MGEs usually flanked by repeats or 

insertion sequences that could self-excise and transpose any resistance genes they carry. Insertion 

sequences (IS) are among the simplest transposons, that don’t carry genes other than those 

required for transposition inactivation affecting virulence, resistance, and metabolism. 

(Vandecraen et al., 2017). More than 4500 IS belonging to 29 families have been identified to 

date.   

Integrons are a DNA fragment that carries one gene or gene cassettes and may be integrated by 

site-specific recombination into chromosomal or plasmid DNA of the organism. Class I integrons 

are the common type recognized among the MDR Salmonella which often contain gene cassettes 

(Gharieb et al., 2015). The Salmonella Genomic Island, SGI1 antibiotic resistance gene cluster, 

which is a complex class 1 integron (In104), confers the typical MDR phenotype of epidemic S. 

Typhimurium DT104 (ACSSUT). SGI1 has been described in S. Typhimurium DT120 and other 

Serotypes (S. Emek, S. Infantis, S. Kentucky, S. Kiambu, S. Kingston, S. Meleagridis, S. Newport, 

and S. Paratyphi B, S. Agona, and S. Albany) (Doublet et al., 2008; Beutlich et al., 2011).  

In addition, antibiotic resistance increased Salmonella virulence and fitness due to the co-

localization in the MGEs of the same genomic islands of virulence and antibiotic resistance genes 

(Qiao et al., 2018). 

1.8.2. Key antibiotic classes, resistance mechanisms with related genes 

There are three main classes of antibiotics namely β-lactams, aminoglycosides, fluoroquinolones 

which are regularly used to treat salmonellosis in both human and veterinary medicine (Wang, 

2017; Doi et al., 2017). 
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1.8.2.1.  β-lactams:  

 It contains different subclasses; penicillins, cephalosporins, carbapenems and monobactams 

with the most essential being β-lactam-β-lactamase inhibitor combinations, third and fourth 

generation cephalosporin, and carbapenems.  

The common mechanism of resistance is the secretion of β –lactamases hydrolyzing the 

antibiotic. A various range of β-lactamases (active against first-generation β-lactams) was 

followed by ESBL-producing Salmonella mainly from poultry origin (Saliu et al., 2017). This 

latter enzyme provides high resistance against ESCs (cefotaxime, ceftriaxone, ceftazidime, or 

cefepime) and monobactams (aztreonam). Among the ESBLs genes, bla TEM, bla SHV, and 

particularly bla CTX-M located on IncI1 and IncFIB plasmids were the most frequently observed 

in poultry and poultry products (Saliu et al., 2017). The explosive dissemination of CTX-Ms 

worldwide has been stated as the “CTX-M pandemic” (Canton, 2012). 

In parallel, plasmidic AmpC β -lactamases, conferring resistance to penicillins, third-generation 

cephalosporins, cephamycins, and monobactams have also emerged worldwide. These enzymes 

are encoded by blaCMY genes and blaDHA genes and frequently carried on IncA/C and IncI1 

plasmids. The blaCMY-IncI1 plasmids were common among poultry-derived Salmonella 

serotypes (Folster et al., 2016). 

Different MGEs were involved in the mobilization and acquisition of blaCTX-M genes, including 

insertion sequences ISEcp1 and ISCR1 controlling bla high -level expression (Ma et al., 2018).  

The ISEcp1 is also responsible for the spread of blaCMY-2 by mobilizing the adjacent resistance 

genes originated from the Citrobacter freundii chromosome (Gharout-Sait et al., 2015).  

Carbapenemase-producing Salmonella closely followed these high resistances. Enzymes 

responsible for resistance include IMP (imipenemase), VIM (Verona integron encoded Metallo 

β-lactamase), K. pneumoniae carbapenemase (KPC), OXA (oxacillinase) including OXA-48-like 

enzymes. The carbapenemase gene showed to be located on plasmids or transposons, thereby 

enabling their dissemination in the ecosystem (Mairi et al., 2018). 

1.8.2.2. Aminoglycosides:  

Aminoglycosides bind to the 16S rRNA within the 30S ribosomal subunit, and therefore inhibit 

bacterial protein synthesis. This class includes gentamicin, streptomycin, kanamycin, 



Chapter I  

28 

 

tobramycin, amikacin, spectinomycin, and apramycin. Resistance may occur by a multitude of 

mechanisms. The first mode follows antibiotic modification due to aminoglycoside-modifying 

enzymes such as aminoglycoside acetyltransferases (encoded by aacC and aacA genes conferring 

resistance to gentamycin), adenyltransferases (encoded by  aadA1, aadA2, aadA5, aadA6, aadA7, 

aadA12, aadA21, aadA22, aadA23, aadA24, aadA26, and aadA27, resistance to streptomycin 

and spectinomycin ) and phosphotransferases (strA and  strB genes streptomycin) (Michael and 

Schwarz, 2016); Secondly by increasing efflux; another way of resistance is by decreasing 

permeability. Modification of the 30S ribosomal subunit could also contribute to resistance 

preventing aminoglycosides binding (Cameron et al., 2018), and finally by posttranscriptional 

modification of the 16S rRNA encoded by plasmid-mediated 16S rRNA methylase genes (rmt 

genes) (Doi et al., 2016). 

1.8.2.3. Quinolones and fluoroquinolones: 

 This class includes nalidixic acid, ciprofloxacin, norfloxacin, enrofloxacin, and sarafloxacin. 

The resistance is mainly caused by mutations in the quinolone targets, quinolone resistance 

determining regions (QRDRs), gyrA, gyrB, parC, and parE genes, which encoded DNA gyrase 

and topoisomerase IV.  Plasmid resistance, plasmid-mediated quinolone resistance (PMQR) also 

occurs mainly in the Mediterranean countries (Yanat et al., 2017), but at less extent, including 

qnr genes, enzymatic inactivation by a variant of an aminoglycoside acetyltransferase gene aac 

(6’)-IB-cr (cr: ciprofloxacin resistant phenotype) (Yanat et al., 2017), and efflux pump encoded 

by qepA, oqxAB genes (Wang et al., 2017).  

It is well known that AMR is a great challenge; however, MDR shows a more severe danger 

where treatment options became harshly limited and are life-threatening. The resistant strains to 

third-generation cephalosporins and quinolones are of particular concern since they are 

considered first choice treatment of salmonellosis. Poultry seems to be a significant vehicle of 

MDR Salmonella (Andino and Hanning, 2015). Distinct MDR patterns have been identified 

(Table 2). pAmpC resistant gene has been strongly associated with quinolones, and other 

lactamase genes plasmids are usually found to co- carries ESBLs, aminoglycoside and/or 

quinolone resistant genes (Wang et al., 2017) and may also transport heavy metals resistance 

genes (Saliu et al., 2017). 
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Table 2: Drug-resistant Salmonella enterica subsp enterica strains isolated from poultry; 

antibiotic resistance phenotypic pattern and their respective resistance genes  

Reference Country QRDR point mutation Resistance genes 

Antibiotic 

resistance 

phenotypic 

pattern 

Serotypes 

    GyrA parC       

Ma et al., 2018 China Ser83Y   Qnrb 
ACSSUT 

profile+ Caz-
Ctx-Ofx-Na 

S. Enteritidis 

Wang et al, 2017 China     
blaCTX-M-90, rmtC, 

qepA, oqxAB, 
aac(6’)-Ib-cr 

Ctx-Ak-Cip S. California 

Wang et al, 2017 China     

armA, aadA5, aac(6′)-
Ib-cr, aac(3)-IVa, 
aph(4)-Ia, arr-3, 

blaTEM-1B, blaOXA-
1, blaCTX-M-65, 

catB3, dfrA17, fosA, 
floR, strB, strA, sul1, 

sul2, sul2, tet(A), 
oqxA, oqxB, mcr-1, 
aph(3′)-IIa, mph(A) 

  S. Indiana 

Wang et al., 2017 China     

blaCTX-M-65, armA, 
qnrB, qepA, oqxAB, Ctx-Ak-Cip S. Indiana 

aac(6’)-Ib-cr 

Fitch et al., 2015 Brazil 
    

bla CTX-M-2, 
blaTEM 

Amp-Cro S. Heidelberg 

    
blaCTX-M-14, 

blaSHV 
Amp- Cro S. Minnesota 

Campos et al, 2018 

EU/ imported 
chicken meat 

(gizzards) 
from Brazil 

    blaCMY-2,sul2, tet(A) 

Amp-Amc- 
Caz- Ctx- Fox- 

Cip-Pef-Na-
Smx-Te 

S. Heidelberg 

      
blaCMY-2, aphA1, 
qnrB5, sul2, tet(A)  

Amp-Amc- 
Caz-Ctx-Fox-
Kan- Cip- Pef-
Na- Smx-Te 

S. Minnesota 

Hoszowski et al., 
2016 

Poland     qnrS1/S3 Amp- cip S. Mbandaka 

Poland     blaCMY-2 Amp-CTx-Caz S. Mbandaka 

Noda et al, 2015 

Japan     
blaCTX-M-15& 

blaTEM-1 
 Cpdx-Ctx-Caz-

Fep 
S. Manhattan 

Japan     blaCMY-2 
Cpdx-Ctx-Caz-

Cfx 
S. Infantis 

Japan     blaTEM52 Cpdx-Ctx S. Infantis 

Tate et al., 2017 USA D87Y   

aph(4)-Ia, aph(3')-Ic, 
aac(3)-IVa, blaCTX-

M-65, floR, sul1, tetA, 
dfrA14 

Amp-C-Te-Cro- 
Caz-Na-Atm-

Ctx 
S. Infantis 

Franco et al., 2015 Italy     

pESI-like 
megaplasmid carried 

the ESBL gene 
blaCTX-M-1, tet(A), 

Ctx-Te- Smx- 
Tmp- cip 

S. Infantis 
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sul1, dfrA1 and 
dfrA14 

Abdel-Maksoud et 
al., 2015 

Egypt     sul1, blaTEM-1 
Sul-Na-Te- 

Amp- S-Cn- Cip 
S. Kentucky 

Egypt     
sul1, sul2, blaTEM-1, 

blaSHV 

Sul-Na-Te –
Amp- S,-Ctx- 

Atm 
S. Kentucky 

Ramadan et al., 2018 

Egypt 
Ser83Phe, 
Asp87Gly 

Thr57Ser, Ser80Ile 
blaTEM-57, aadA1, 
aadA2, cmlA1, sul3, 

tetA/ 

Cip- Amp-C- 
Lvx-Na-Sox-

Te-S 

S. Kentucky 
ST198 

Egypt 
Ser83Phe, 
Asp87Gly 

Thr57Ser, Ser80Ile 

blaTEM-57, aadA1, 
aadA2, cmlA1, sul3, 

tetA, dfrA, sul2, floR, 
aph(30 )-Ia 

Cip- Amp-C- 
Lvx-Na-Sox-

Te-S-Sxt 

S. Kentucky 
ST198 

Shah et al., 2018 USA 
(Ser83Phe, 
Asp87Gly) 

Ser80Ile, 
Thr57Ser,Thr255Ser) 

blaTEM1-B, cmlA1, 
tet(A), sul1, sul3, 
dfrA12, aadA1, 

aadA2, aph(3=)-la, 
and mph(A) 

Amp-Amc-C-
Te-Sxt-S-Ka-

Na-Cip  

S. Kentucky 
ST198 

Harb et al, 2018 

Iraq/ frozen 
chicken 

imported from 
Iran 

    

aadA2, tet (G), sul1, 
blaCARB-2, floR, 

dfrA14, erm (42), aph 
(3′)-Ia 

Te-Na-Sxt-S  S. Kentucky 

Iraq/ frozen 
chicken 

imported from 
Iran 

    
aadA7, tet (A),strA, 
strB, aac(3)-Id,sul1, 

blaTEM-1B 

Te-Na-Sxt-Cip-
Ath-Amc-Amp 

S. Typhimurium 

Iraq/ frozen 
chicken 

imported from 
India 

    
aadA2, tet (G), sul1, 

blaCARB-2, floR 
Te-Na-Cn-S-Sxt S. Typhimurium 

Gharieb et al., 2015 Egypt     aac (3)-Id, aadA7 
C -Sxt-Te-Ery-
Cip-As-Na-Cn-

Amc 
S. Typhimurium 

 

   
ACSSUT: Ampicillin-Chloramphenicol-Streptomycin-Sulfamide-Tetracycline, Amp: Ampicillin, Amc: 
amoxicillin-clavulanic acid, As: Ampicillin-sublactam, Cfx: cefoxitin, Cro: ceftriaxone, Caz: ceftazidime, 
Ctx:cefotaxime, Fep: cefepim, Cpdx:  cefpodoxime , Eft: ceftiofur,  Atm: aztreonam, Cn: Gentamicin,  S: 
streptomycin,  Ak: amikacin,  Erythromycin, Na: nalidixic acid, Cip: ciprofloxacin, Lvx: levofloxacin, Pef: 
pefloxacin,  Ofx: ofloxacin, Te: tetracycline, Sul: sulfonamide, Smx: sulfamethoxazole, Sox: sulfisoxazole, Tmp: 
trimethoprim, Sxt: trimethoprim/sulfamethoxazole , C:chloramphenicol, Ath: Azitromycin
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1.8.3. Global strategies against AMR 

Policies and strategies were set at a national, regional and international level to tackle AMR 

problem.  

One solution was the gradual withdraw of several antibiotics as AGPs and prophylactics. In the 

USA, these two latter are still allowed where some antibiotic classes were completely banned such 

as aminocyclitols (apramycin, spectinomycin), amphenicols (florfenicol), and chloramphenicol. In 

2005, the fluoroquinolones, enrofloxacin, and sarafloxacin were proscribed, followed, in 2017 by 

the extra-label usage of medically important antibiotics such as ceftiofur (Patel et al., 2018). Same 

in Brazil, many classes were phased out. Chloramphenicol and nitrofurans;   amphenicols, 

tetracyclines, beta-lactams (penicillins and cephalosporins), quinolones, and systemic 

sulfonamides; spiramycin and erythromycin were banned in 2003, 2009 and 2012 respectively 

(Gouvêa et al., 2015). 

The EU took drastic measures by a complete ban of AGPs in 2006. Recommendations are followed 

in 2011 and 2012, to limit the use, in the veterinary field, of critical third- and fourth-generation 

antibiotics intended for human therapy and to reduce antimicrobials veterinary drugs usage to 50% 

by 2018 respectively (Ferri et al., 2017). 

In addition, a general awareness campaign against the antimicrobial misuse and AMR has been 

launched by international organizations, WHO, FAO and Organisation Internationale des 

epizooties (OIE) (Ferri et al., 2017); in these efforts, Lebanon is an active member in all these joint 

Committees represented by MoA, MoPH, and LARI. 

A back draw of these strategies was a significant increase in the production cost and morbidity 

rate. As a consequence, a high number of veterinary therapeutic prescriptions was well observed 

(Suresh et al., 2017) forcing livestock producers to find alternatives such as organic acids with 

antimicrobial activities; herbs; bacteriophages: spices and other plant extracts; immune-

stimulation through cationic peptides and cytokines; prebiotics; fermented feed (Ranjitkar et al., 

2016) and probiotics (direct- fed microbial) (Diarra and Malouin, 2014). 
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2. Promising natural alternative: probiotics 

Due to their beneficial characteristics and natural composition, probiotics may be a great 

alternative to antibiotics in animals including poultry. 

2.1. Origin 

The etymology ‘‘probiotics’’ derived from two Greek words pro and biotos meaning ‘‘for 

life’’(Ozen and Dinleyici, 2015). 

FAO & WHO, (2002) defined “probiotics as live microorganisms which when administered in 

adequate amounts confer a health benefit on the host.” In animal use, The US National Food 

Ingredient Association well-defined probiotics (direct-fed microbial) as “a source of live naturally 

occurring microorganisms and this includes bacteria, fungi, and yeast.” Others gave a new 

definition for probiotics “as live microbial feed additives which beneficially affect the host animal 

via enhancing the balance in the gut and consequently improving feed efficiency, nutrient 

absorption, growth rate, and economic aspects of poultry”(Abd El-Hack et al., 2017). 

Throughout history, probiotic foods have been consumed long before the discovery of microbes, 

either as natural components of food or as fermented foods. The first discovery in this field was 

when Metchnikoff (Nobel Prize laureate), in 1905, found that pure cultures of Lactobacillus 

bulgaricus are responsible for milk fermentation and able to eliminate pathogenic toxin-producing 

bacteria from the colon. Another success story was in 1906 when Henry Tissier isolated 

Bifidobacterium from a human child and could displace harmful microflora in the gut. The first 

use of probiotics in animals was recorded in the 1940s when the use of Streptomyces aureofaciens 

probiotics in feed resulted in significant weight gain (Angelakis, 2017).  

2.2. Types of probiotics 

There are many sources of probiotics such as bacteria (Bacillus cereus, LAB such as Lactobacillus, 

Bifidobacterium, and Streptococcus), yeast (Saccharomyces cerevisiae, Saccharomyces boulardii, 

and Candida), and fungi (Aspergillus) (Alagawany et al., 2018). These can be isolated from 

humans (e.g., gut and breast milk) and animals (e.g., gut) as well as fermented products but the 

majority is of intestinal origin. Other non-conventional sources of probiotics are used, such as L. 

plantarum and Leuconostoc mesenteroides which can be isolated from fruits and vegetables. In 
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chickens, yeasts (Saccharomyces boulardii), and bacteria (Lactobacillus sp., Enterococcus sp., 

Pediococcus sp., Bacillus sp.) are frequently used (Angelakis, 2017). Recently, the focus has been 

on using lactic acid bacteria as the probiotic of choice  because of their natural adaptability to the 

intestinal environment (Wang and Gu, 2010). 

2.3. Lactic acid bacteria (LAB) as probiotic: focus on Lactobacillus 

At the end of the last century, the term "lactic acid bacteria" gradually emerged (Kandler, 1983). 

Members of this group are Gram-positive bacteria, non-motile, anaerobic or facultative aerobic 

cocci or rods, having non-sporulating character. They can ferment carbohydrates (glucose, 

fructose, sucrose, and lactose) generating lactic acid as one of the primary fermentation products; 

hence their acid tolerance (Quinto et al., 2014). Their cultivation requires environments rich in 

sugars, amino acids, fatty acids, salts, and vitamins and low oxygen. Their growth temperature is 

very variable (20oC-45oC) given their ubiquity; mesophilic lactic bacteria have an optimum 

temperature of growth between 20oC and 30oC and thermophilic have an optimum temperature 

between 30oC and 45oC.  

2.3.1. Classification of LAB 

LAB group belongs to the phylum Firmicutes, class Bacilli, and order Lactobacillale (Quinto et 

al., 2014). Six families were described; Aerococcaceae, Carnobacteriaceae, Enterococcaceae, 

Lactobacillaceae, Leuconostocaceae, and Streptococcaceae and include more than 20 genera. 

Various classification schemes have been recognized. The first classification of Orla-Jensen 

(1919) was based on the following criteria: cellular morphology, growth temperature and mode of 

glucose fermentation (Heineman, 2010). Kandler (1983) classified the LAB as obligate 

homofermentative, facultative heterofermentative, and obligate heterofermentative (Figure 3).  

Obligate homofermentative metabolism of hexoses via the Emden–Meyerhoff pathway; this 

group uses the classical pathway of glycolysis to convert one molecule of glucose into two lactate, 

under optimal growth conditions. The genera belonging to this group are Streptococcus, 

Lactococcus, Pediococcus, and the majority species of Lactobacillus such as L. salivarius, L. 

bulgaricus, L. casei, L. lactis, L. acidophilus. 
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 Obligate heterofermentative metabolism of hexoses and pentoses via the phosphoketolase 

pathway.  Lactic acid and ethanol or acetate are the end products, respectively. These are in 

particular Leuconostoc, Weissella, Oenococcus and some species of the genus Lactobacillus such 

as L. fermentum and L. brevis. 

Facultative heterofermentative metabolism the capacity to adopt one of the two ways according 

to the environmental conditions. L. plantarum is part of it. 

The current adopted phenotype-based nomenclature does not notice the pathway for pentose 

conversion to lactate as the sole end product (Gänzle, 2015). On the other hand, molecular tools 

like 16S rRNA genes sequences and core genome phylogeny showed that this classification does 

not reveal the metabolic features of lactobacilli and is inconsistent with the phylogenetic structure 

of the genus (Zheng et al., 2015). 

 

 

Figure 3: Overview of carbohydrate fermentation lactic acid bacteria (Gänzle, 2015). 

(a) Homofermentative metabolism of hexoses via the Emden–Meyerhoff pathway.  

(b) Heterofermentative metabolism of hexoses via the phosphoketolase pathway.  

(c) Homofermentative metabolism of pentoses via the pentose phosphate pathway.  
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(d) Heterofermentative metabolism of pentoses via the phosphoketolase pathway 

2.4. Lactobacillus classification 

The large size and high diversity of this genus, close to 200 species, are one of the reasons for its 

uncertain taxonomy. Lactobacillus is an exception among lactic acid bacteria, as it comprises 

species that employ homolactic metabolism as well as heterolactic metabolism.   

Recently, advanced molecular analysis, based on 16S rRNA and robust core genome phylogeny, 

permit to classify this genus into two major metabolic groups; homofermentative and 

heterofermentative lactobacilli, which are divided into 24 separate phylogenetic clusters (Zheng et 

al., 2015). The ecological fitness of heterofermentative lactobacilli is governed by the favored 

utilization of disaccharides, the capacity use of pentoses and hexoses, and preferential utilization 

of fructose, phenolic acids, and aldehydes as electron acceptors. 

The known term Lactobacillus sensu lato includes now pediococci as an integral part of the 

homofermentative lactobacilli (Zheng et al., 2015) whereas Lactobacillus Genus Complex consists 

of the heterofermentative lactobacilli and the related genera Weissella, Leuconostoc, Oenococcus 

and Fructobacillus covering Lactobacillaceae and Leuconostococcaceae (Duar et al., 2017). 

2.4.1. Lactobacillus Niche-Specific Adaptation: The Intestinal Environment 

Lactobacillus species are isolated from nutrient-rich habitats related to food, feed, plants, animals 

and humans. The first niche of the Lactobacillus genus is strongly suggested to be a free-living 

ancestor (e.g., L. buchneri found in Grass/silage) in soil and plants and, subsequently, host adapted 

to vertebrate (e.g., L. salivarius and L. reuteri) and insect (e.g., L. apis and L. kunkeei found in 

Bees and Flowers, grapes, bees ). Some species are defined as “nomadic” (e.g., L. plantarum, L. 

casei, L. paracasei, and L. rhamnosus), and that could be found in different habitats; meat, fish, 

vegetables and raw or fermented dairy products as well as gut ecosystems (Duar et al., 2017). 

According to the authors, the preferable habitats of the vertebrate host- adapted L. salivarius are a 

human oral cavity, digestive tract, breast milk and vagina as well as feces of pigs, raccoons, 

chickens, and hamsters. Other species such L. reuteri prefer proximal digestive tract of human and 

animals (Duar et al., 2017). 
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In response to the evolution process and niche adaptation, the genome size of lactobacilli was 

reduced which match with the need to nutrient-rich environments. The shift from soil and plants 

to the animal gut has three ranges of genomic adaptation; resistance to host barriers such as 

tolerance to acid and bile acids; adhesion to intestinal cells; and fermentation of some substrates 

in the gut (Quinto et al., 2014). Additionally, these species could grow at an optimum temperature 

of 37◦C and higher, body temperatures of most mammals and birds (Duar et al., 2017). 

This host adaptation is considered to be symbiotic, and lactobacilli and host are reciprocally 

affected. It seems that fitness level is completely associated and relevant for the development of 

probiotics aimed to outcompete pathogens. It is related to higher metabolic activity in the host 

niche, which could lead to increased production of metabolic compounds that define probiotic 

activity (Duar et al., 2017). 

2.5. Gut microbiota, probiotics of poultry origin 

At birth the digestive tract of poultry is sterile, but after 6 to 12 hours the cecum will be quickly 

colonized by the environmental microflora such as Enterobacteriaceae, Enterococcus and 

Lactobacillus (Albazaz and Byukunal Bal, 2014). The poultry microbiota, very similar to that of 

mammals, contains a very diverse microbial population (Oakley et al., 2014) with a significant 

proportion not cultivable; 52 microbial phyla have been recognized, described as  “uncultivated 

majority”(Shang et al., 2018). In chicken, 29 cultivable genera were identified, each genus is 

represented by 3 to 4 species, and each species by 3 to 4 different metabolic types, which would 

make more than 200 different types (Gabriel et al., 2005).  

Bacterial communities change drastically between the different anatomical segments of the 

digestive tract mainly represented by Firmicutes, especially Lactobacillaceae (Lactobacillus) at all 

ages and in all sections of the gut except the cecum where a count decrease in the adult broiler. 

From the crop to the ileum, the microbial flora consists mainly of facultative anaerobic gram-

positive bacteria and at the level of the caeca predominate strict anaerobes. In the crop, mostly 

lactobacilli are attached to the epithelium, forming almost a thin layer, as well as streptococci, 

coliforms, and yeasts (Gabriel et al., 2005). Lactobacillus is also predominant in the proventriculus 

and gizzard where the microbial density is relatively low (108 / g) due to low pH. The small 

intestine contains a large number of bacterial species (108-109 / g), mainly Lactobacillus, 
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Enterococcus, and Clostridium.  In the duodenum, the presence of many enzymes, the high oxygen 

pressure, and the presence of bile salts cause the bacterial population to fall (Oakley et al., 2014). 

Finally, the ceca, the terminal part of the gastrointestinal tract offer a nutrient-rich habitat for the 

millions of microflora (1011 CFU/g). It contains the most diverse microbiota of the gastrointestinal 

system with the dominant Firmicutes, Bacteroidetes, and Proteobacteria. The development of 

bacteria is favored by the low frequency of renewal. It is the leading fermentation site (Oakley et 

al., 2014; Yeoman et al., 2012).  

The age also has a significant influence on the diversity of the microflora. The gastro-intestinal 

tract (GIT) of chicken at three days of age contained mainly L. delbrueckii, from 7 to 21 days of 

age, L. acidophilus, and at 28 until 49 days of age, the GIT includes L. crispatus (Shang et al., 

2018). However, a population of Lactobacillus is present in birds of two days of age, and it remains 

without drastic changes until market age. The main species include L. acidophilus, L. salivarius, 

and L. fermentum. Ranjitkar et al. (2016) found that a “mature” microbiota occurred from days 15 

to 22 where L. salivarius (17 to 36 %) and clostridia (11 to 18 %) are the most predominant. Shang 

et al. (2018) proposed L. reuteri, L. acidophilus, L. crispatus, and L. salivarius the four dominant 

Lactobacillus species present throughout the chicken digestive tract. 

The composition of the feed influences also the microbiota. Mash feed decreases the number of 

Enterococcus and coliforms but rises Lactobacillus and C. perfringens in the broiler ileum. When 

broilers are fed with corn, low percent of clostridia, enterococci, and lactobacilli have been 

observed, whereas with wheat higher percentage of bifidobacteria were obtained. The addition of 

antibiotics to feed such as salinomycin inhibited L. salivarius in the ileum of two-week-old 

chickens (Albazaz and Byukunal Bal, 2014). 

2.6. Anti- Salmonella activities 

In large-scale rearing facilities, chicks are highly susceptible to Salmonella infection, even at low 

exposure doses, due to the stress and their gradual acquisition of a complete intestinal microflora 

from their environment. In poultry farming, defined bacterial species (one or mixture of two or 

more species) or mixed non-defined cultures were used to reduce gastrointestinal colonization by 

pathogens such as Salmonella (Alagawany et al., 2018). 
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The first use of non-defined strains of probiotics was carried out by Rantala and Nurmi, (1973). In 

their experiments, the authors observed that day-old chicks administered orally with the intestinal 

contents of adult birds might have gained a protective effect against S. Infantis infection. The 

defined products as L. salivarius CTC2197 appear to prevent S. Enteritidis colonization in chickens 

(Pascual et al., 1999). This phenomenon described as “colonization resistance” or “competitive 

exclusion” (Yadav et al., 2017) with the highly effective measure to protect newly hatched chicks 

(Kabir, 2009).  It is a strain-dependent trait, mainly includes (Pan and Yu, 2014)(Figure 4): 

Direct inhibition of Salmonella by:   

1.    Competition to adhesion to the intestinal binding site  

2.    Competition of use of nutrients in the gastrointestinal tract   

3.    Secretion of inhibitory substances against Salmonella; bacteriocin/ bacteriocin-like; hydrogen 

peroxide; and organic acids.  

Indirect inhibition by: 

4.    Strengthening the function of the intestinal barrier  

5.    Modulating the immune response 

Other potential probiotic benefits reside in enhancing growth and productive performance, eggs 

quality, digestion, and absorption of nutrients (Alagawany et al., 2018). 
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Figure 4: Different mode of action of probiotics against Salmonella infection in poultry (Sherman 

et al., 2009). P: pathogen, PB: probiotic, Slp: surface layer protein, G: Goblet cells, NF-KB: nuclear 

factor kappa, IFNᵧ: interferon ᵧ, MAPK: mitogen-activated protein kinases, TC: T lymphocyte, 

DC: dendritic cells, PC: Paneth cell  

2.6.1. Adherence 

Probiotics, by a phenomenon called "barrier effect," embedded in the GIT to form a dense and 

complex microbial layer, and effectively blocks the attachment and subsequent colonization of 

Salmonella (Gabriel, 2005). Thus, adherence of probiotics to the intestinal epithelial cells is a 

crucial factor for colonization that can result in competitive exclusion of pathogens and the 

modulation of host response (Sengupta et al., 2013).  

Cell adhesion is a complex process done either specifically via adhesins or nonspecifically 

controlled by physicochemical reactions of the cell wall including electrostatic and Van der Waals 

interactions as well as hydrophobic one (García-Cayuela et al., 2014). Surface proteins and (lipo) 

teichoic acids that cover the peptidoglycan,  charge negatively the bacterial surface in 
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physiological conditions and therefore confer high hydrophobicity character (Babot et al., 2014). 

This feature is thought to play an essential role in firm adherence to epithelial cells (Mohanty et 

al., 2019). Several groups of lactobacilli adhesins have been identified; mucus-binding proteins; 

sortase-dependent proteins; S-layer proteins; non-protein adhesins ((Lipo) teichoic acid and 

Exopolysaccharide (EPS)). S-layer proteins form the outermost interacting surface in lactobacilli. 

Chen et al. (2007) confirmed the role of S-layer proteins in adhesion of L. crispatus ZJ001 to HeLa 

cells and their removal reduced auto-aggregation and adhesion. By auto/ and co-aggregation, 

probiotics could adhere to epithelial cells and form a barrier respectively and therefore inhibit the 

foodborne pathogens colonization (Kos et al., 2003). The authors demonstrated the role of S-Layer 

in auto-aggregation and adhesion of L. acidophilus M92.  A multitude of interrelated surface 

factors (Fatty acids, surface proteins, LPS, EPS) may have effects on adherence, co-aggregation, 

and cell to cell interactions (Campana et al., 2017). 

The competition for adhesion to epithelial cells has been often demonstrated. Singh et al.(2017) 

showed the capacity of L. reuteri strains to adhere to Caco-2 cells, inhibit and displace the adhesion 

of Escherichia coli ATCC25922, S. Typhi NCDC113, Listeria monocytogenes ATCC53135, and 

Enterococcus faecalis NCDC115. Mohanty et al. (2019) demonstrated a significant reduction in 

the adherence of Salmonella to the HCT-116 cells when incubated with the L. plantarum DM 69 

strain. 

2.6.2. Competition use of nutrients 

Similarly, probiotics intervene through the competitive use of nutrients (Pan and Yu, 2013). This 

capacity is a non-negligible factor that determines the composition of the microbiota. Thus, an 

increase in the number of lactobacilli would reduce the substrates available for pathogenic 

microorganisms leading to these latter inhibition. Abhisingha et al. (2018) suggested that the 

inhibition of S. Enteritidis after 10h of co-culture with L. johnsonii was due to competition for 

limiting nutrients. 

2.6.3. Secretion of active metabolites against Salmonella 

To gain a competitive advantage, lactobacilli modify their environment by producing 

antimicrobials to make it less suitable for their competitor. These inhibitory compounds are diverse 

and include organic acids (e.g., lactic acid and acetic acid), oxygen catabolites (e.g., hydrogen 



Chapter I  

41 

 

peroxide), and proteinaceous compounds (e.g., bacteriocins) (Ayeni et al., 2018) . Among these 

activities, the production of organic acids mainly lactic acid acting by its chemical structure and 

by decreasing the pH, is the main inhibitor metabolite of LAB. The high antibacterial activity of 

L. salivarius C86 and L. amylovorus C94 against Salmonella in a study done by Adetoye et al. 

(2018) is related to the high production of lactic acid. L. fermentum CS12-1 accumulated hydrogen 

peroxide in culture broth that inhibits the growth of enterotoxigenic Escherichia coli (Kang et al., 

2005). Kizerwetter-Świda and Binek, (2016) showed that all poultry- derived Lactobacillus were 

able to produce hydrogen peroxide leading to S. Enteritidis inhibition. 

Bacteriocins are ribosomally synthesized antimicrobial peptides, produced by Gram-positive and 

Gram-negative bacteria. They are active mainly against related species and Gram-positive bacteria 

(Listeria monocytogenes), but few studies showed their effectiveness against Gram- negative 

bacteria such as Salmonella. Plantaricin LD1, a bacteriocin produced by L. plantarum LD1, inhibit 

the growth of E.coli and S. Typhi (Gupta and Tiwari, 2014). 

2.6.4. Maintenance of Epithelial Barrier Function. 

The gut barrier includes the mucus layers, epithelium, and sub-epithelial immune tissues. The 

essential function of the epithelium is nutrient absorption while providing a physical barrier to the 

passage of pro-inflammatory molecules, such as pathogens. This selective permeability could be 

achieved by the transcellular pathway via specific transporters or channels and by paracellular 

pathway via intercellular spaces between the adjacent epithelial cells. To create a continuous 

barrier and regulate paracellular permeability, these spaces are wrapped by Tight Junction 

complexes (Chelakkot et al., 2018). Lactobacilli might maintain the epithelial barrier function by 

increasing mucus production, modulation of cytoskeletal and tight junction protein 

phosphorylation enhancing tight junction function (Sengupta et al., 2013). Yeng et al, (2018) 

demonstrated that Lactobacillus attenuated the barrier disruption of intestinal epithelial cells 

caused by Salmonella LPS. Thus, Lactobacillus could maintain the tight junction integrity and 

appearance. 

2.6.5. Immunomodulation.  

Lactobacilli can display immunomodulatory responses of the host by interaction with the GIT 

mucosa. The bacterial surface contains conserved structures known as microbe-associated 
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2.7.1. Safety criteria 

To be Generally Recognized as Safe (GRAS), safety evaluations should be performed on a strain-

by-strain basis (Saint-Cyr et al., 2016). 

2.7.1.1. Probiotic identification 

The first step of safety assessment includes proper identification of the strain (Gueimonde et al., 

2013). Phenotypical characterization by API system is frequently used. However, this 

conventional method is not reliable especially for lactobacilli population due to its significant and 

similar biochemical identifiers.  The PCR methodology (mostly on 16S ribosomal RNA) followed 

by sequencing is frequently adopted for efficient identification (Saint-Cyr et al., 2016). 

2.7.1.2. Antimicrobial resistance 

As defined by the European Food Safety Authority, requirements for safety assessment of 

probiotics, such organism shall not possess acquired resistance determinants to antibiotics of 

medical importance (EfSA, 2012). LAB has three types of resistance; intrinsic (innate), mutational 

and acquired. This latter, acquired by horizontal gene transfer is of a significant safety concern as 

antibiotic-resistance could be exchanged between commensal flora of GIT and pathogenic bacteria 

(Sharma et al., 2014). Whereas, the transfer risk is minimal for intrinsic, or acquired resistance by 

chromosomal mutation. Lactobacilli are known to have an inherent resistance to aminoglycosides, 

sulfonamides, and vancomycin as well as to bacitracin, cefoxitin, ciprofloxacin, fusidic acid. 

Chromosomal mutations have also been gained in lactobacilli. A single mutation in the 23S rRNA 

gene has been described conferring macrolide resistance in a strain of L. rhamnosus (Gueimonde 

et al., 2013). 

This type of resistance is beneficial when need to restore the gut microbiota after antibiotic 

treatment. Moreover, knowledge of the antibiotic resistance phenotypes is of great importance, 

and intrinsic resistance might be relevant for the treatment of Lactobacillus-related bacteremia 

(Gueimonde et al., 2013). Both phenotypic and genotypic characterization should be carried out 

as phenotypically resistant strain could be genotypically “susceptible,” and susceptible phenotype 

could also transport silent genes (Sharma et al., 2014).  
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Lactobacillus sp. are usually susceptible to antibiotics that inhibit protein synthesis, such as 

chloramphenicol and erythromycin and to an antimicrobial that inhibit cell wall synthesis such as 

penicillin and ampicillin (Dec et al., 2017). Due to the use of Macrolide–lincosamide– 

streptogramin (MLS) antibiotics (tylosin, tilmicosin, lincomycin, and virginiamycin) as growth 

promoters and/or as prophylactic agents in poultry rearing, gene transfer under antibiotic selective 

pressure facilitates the spread of MLS resistance in commensal bacteria (Gueimonde et al., 2013). 

2.7.2. In vitro assays 

The ability to survive and adhere to the intestinal cells are the most critical factors that contribute 

to the survival of probiotic bacteria and thus help them to induce positive health effects on their 

host. For this reason, adhesive properties have been proposed by many authors as one of the criteria 

for the selection of new strains for probiotic use (Yadav et al., 2017). In addition, cell envelope is 

the first target of physicochemical and environmental stress. Lactobacilli encounter several 

environmental stress factors during their transit through the GIT including low pH, bile salts. By 

mimicking the GIT conditions, the resistance of the probiotic to pH acidic and bile salts are 

evaluated (Babot et al., 2014).   

Several in vitro conventional selection parameters were used to evaluate the surface probiotic 

properties such as cell surface hydrophobicity, auto-aggregation, co-aggregation, as well as 

adhesion capacity to epithelial cells. All these features are strain- specific trait; therefore different 

results have been obtained (Ramos et al., 2013).    

Further in vitro characterizations are done to evaluate anti-Salmonella activities by co-culture 

assay. This method could be done by agar diffusion (Schillinger and Lucke, 1989) or by liquid co-

culture. The probiotic culture supernatant is also assessed for potential bacteriocin secretion. L. 

amylovorus C94 and L. salivarius C86 exhibit anti-Salmonella activities with total inhibition after 

18 hours of co-incubation in liquid medium (Adetoye et al., 2018). Szala et al. (2012) observed 

complete inactivation of S. Heidelberg by L. plantarum and L. brevis after 48 h of co-culture.  

Another screening test is to assess the ability of the probiotic strain to compete or exclude 

Salmonella from the adhesion to intestinal epithelial cells. Several human cell lines have been used 

to evaluate the potential Lactobacillus probiotic for poultry with the human colorectal 

adenocarcinoma Caco-2 cell line the most common. It has been used to identify the essential genes 
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in cellular S. Enteritidis invasion (Shah, 2012). The chicken LMH, a primary hepatocellular 

carcinoma cell line is also widely use. By using these cell lines, epithelial cell adhesion was 

assessed for L. crispatus TDCC 75, L. crispatus TDCC 76, and L. gallinarum TDCC 77 (Spivey 

et al., 2014). These cell lines are also used to evaluate the immunomodulation activity of probiotic 

strains, by assaying cytokine production. 

2.7.3. In vivo experiments 

The potential probiotic strains selected in vitro assays were further evaluated in vivo experiments 

on chickens for highlighting their persistence ability in GIT, their impact on foodborne pathogen 

colonization and/or their beneficial effects on growth performances in the host. The in vivo 

combined administration of L. salivarius 59 and Enterococcus faecium PXN33 caused reduction 

in the colonization of S. Enteritidis S1400 in poultry (Carter et al., 2017). Oral administration of 

Lactobacillus-based probiotic culture significantly reduced S. Enteritidis recovered from cecal 

tonsil of neonatal chick (Higgins et al., 2008). A single dose of L. salivarius allowed the prevention 

of S. Enteritidis infection in young broilers (Waewdee et al., 2012). 
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Abstract 

Since data on Salmonella in the Lebanese poultry industry is scarce, this study was conducted to 

determine the prevalence of Salmonella at different stages of the broiler production chain and layer 

flocks in addition to their antibiotic resistance profile and molecular patterns. Over a period of 3 

years, feces samples were collected by a sock method from local Lebanese farms (broiler breeder 

farms (n= 29), broiler farms (n= 159) and laying hen farms (n= 49)), while poultry meat was 

collected from slaughterhouses (n=134) and retail (n=1907). In parallel, ceca (n=115) and neck 

skins (n=115) were collected from two major slaughter plants. Six hundred and seventy-two 

isolated Salmonella strains were serotyped; from which 514 were analyzed for antimicrobial 

resistance via standard disk diffusion and broth microdilution Method. Pulsed-field gel 

electrophoresis (PFGE) was used to define the molecular patterns of the main serotypes. The 

results highlighted a high prevalence of Salmonella in poultry. Considering all samples together, a 

large diversity of serotypes was identified with predominance among Salmonella Infantis (32.9%), 

Salmonella Enteritidis (28.4%) and Salmonella Kentucky (21.4%). High resistance to nalidixic 

acid was revealed in all Salmonella isolates. The most prominent resistance and multi-resistance 

was exhibited in S. Kentucky and S. Infantis. This latter was resistant to both streptomycin and 

tetracycline at a rate of 88.2% and 99%, respectively. Furthermore, 89.7 % of the strains were 

multi-drug resistant. All S. Kentucky strains were resistant to ciprofloxacin and 62.4% of the 

strains were multidrug resistant Nine strains of S. Kentucky CIPR were also resistant to Extended 

Spectrum Cephalosporin (ESCs). Comparing S. Enteritidis strains from poultry and humans using 

PFGE, the results indicated that one persistent clone of S. Enteritidis (80% of the strains) is 

common between poultry and humans in Lebanon. Similar genomic profiles and antimicrobial 

resistance phenotypes were detected between farms, slaughterhouses and retail suggesting the 

circulation and transmission of identical clones throughout the food chain and layer flocks.  For 

the first time, this study demonstrates the high prevalence of Salmonella in the Lebanese poultry 

chain, the emergence of new serotypes and the absence of potential barriers preventing such 

transmission. To control this public health risk, it is of utmost importance to review the current 

national food safety strategy and to implement effective measures aiming to reduce the prevalence 

throughout the chain and the transmission of this pathogen to humans.   
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Keywords: Salmonella sp., prevalence, serotypes, antimicrobial resistance, Pulse Field Gel 

Electrophoresis. 

1. Introduction 

 

Foodborne Salmonella continues to be a major threat for public health (EFSA/ ECDC, 2017).  It 

is estimated that non-typhoidal Salmonella causes 93.8 million cases of gastroenteritis and 155,000 

annual deaths worldwide (Majowicz et al., 2010). Poultry are the primary source of human 

infection triggered by the consumption of contaminated poultry products, such as meats and eggs 

(CDC, 2015; Foley et al., 2011). Although Salmonella enterica subspecies enterica cover more 

than 2,500 serotypes, only few are isolated from poultry with S. Enteritidis and S. Typhimurium 

being the predominant contaminant implicated in human gastroenteritis (EFSA/ ECDC, 2017; 

Ricke et al., 2018). Other poultry-associated serotypes have emerged, including S. infantis, S. 

Kentucky and S. Heidelberg, with this emergence particularly tormenting since these serotypes are 

frequently resistant to antibiotics (Gieraltowski et al., 2016; Le Hello et al., 2011; Nógrády et al., 

2007).   

In fact, in recent years, an increasing trend of antimicrobial resistance (AMR) was noticed, causing 

25,000 annual deaths in Europe, 100,000 in USA and 80,000 in China (Ferri et al., 2017). 

Multidrug-resistant (MDR) Salmonella strains and extended-spectrum-β-lactamase (ESBL)-

producing serotypes are also increasing and constitute an emerging public health concern (Franco 

et al., 2015; Wasyl & Hoszowski, 2012). Despite being a self-limited infection, the elderly, infants, 

and immunosuppressed might need antimicrobial therapy to treat salmonellosis. Some of these 

drugs such as fluoroquinolones and extended spectrum cephalosporin are critically important for 

human medicine (Medalla et al., 2017), but their effectiveness is questionable and worrisome. This 

serious public health risk is mainly attributed to the inappropriate use (therapeutic, preventive and 

growth promoter) of antimicrobials in the animal sector (Ferri et al., 2017). 

In Lebanon, chicken is present in every kitchen with a consumption of 30 Kg/person/year. The 

poultry sector has experienced rigorous growth and is dominated by 10 large-scale slaughterhouses 

and poultry farms; four of them control more than half of the Lebanese market. Despite this 

overgrowth of the poultry industry and the risk that Salmonella of poultry origin cause on human 
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health, little or no information is available in Lebanon about this pathogen and its dissemination 

along the chain.  

The objective of this study was to determine Salmonella prevalence within a farm to fork approach, 

starting from broiler breeder farms to slaughterhouses and the retail (supermarkets and restaurants) 

and layer flocks. Serotypes circulation, antibiotic resistance and their genotypic relatedness were 

studied. Moreover, this work will serve as a database for a national strategy, surveillance programs 

and intervention measures, set by local authorities (Ministry of Agriculture) for prevention and 

control of salmonellosis in human and Salmonella dissemination in the poultry industry.  

2. Materials and Methods  

2.1. Sample collection 

Broiler breeder farms, commercial broiler farms, layer farms, slaughterhouses, and retail chicken 

meats (supermarkets and restaurants) were investigated in this study. 

2.1.1. Farm sample collection 

For one year (October 2014 / October 2015), a cross sectional study was performed in 29 broiler 

breeder farms, 159 broiler production farms and 49 egg laying hen farms. In total, 237 farms 

randomly chosen from all Lebanese districts were enrolled, with only one flock studied at each 

farm during the rearing period. Fecal samples were collected using boot swabs within the poultry 

house. To perform sampling, pair of sterile elastic cotton socks were worn over the boots and fecal 

samples were collected by walking through the entire poultry house. Embedded feces on the cotton 

socks were put aseptically into sterilized containers and transported within 2 hours to the Lebanese 

Agricultural Research Institute (LARI) in an ice cooler container for Salmonella detection analysis. 

2.1.2. Processing plant sample collection 

Over one-year period (June 2015/June 2016), two major poultry processing plants (Slaughter plant 

A and Slaughter plant B), listed among the top four broiler production plants, covering more than 

the half of the Lebanese chicken production, were included in this study. Both slaughterhouses 

were fully automated applying Good Hygiene Practices (GHP) and Good Manufacturing Practices 

(GMP) systems. Both companies are either integrated or contracting with rearing private farms 

providing them with one- day- age chicks (“Ross 308” and “Hubbard classic” species for 
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processing plant A and B, respectively) and a diet formula.  All breeder birds were vaccinated 

against S. Typhimurium and S. Enteritidis. The Slaughter plant A is considered the largest 

slaughterhouse at a national level with a capacity of almost 22,500,000 broilers slaughtered per 

year. The evisceration was carried out automatically, Peracetic Acid (PAA) was used as 

antimicrobial in all the processing steps and chilling was achieved by dry air. On the other hand, 

slaughterhouse B is considered a small-scale poultry processing plant with a capacity of 3,750,000 

broilers slaughtered per year. Contrary to slaughterhouse A, the first step of chilling in 

slaughterhouse B was performed by immersion system with the addition of chlorine (0.3ppm for 

20 min) followed by air chilling for 30 minutes.  

Thirty-eight and six farms were randomly chosen from Slaughter plant A and B, respectively. The 

number of the farms was representatively taken according to the size of the enterprise. At least one 

sample was taken from each farm during sampling period (autumn, winter and spring seasons).  

During processing, one sample of neck skin of post-chilled carcass and 5 to 10 caeca samples 

during evisceration (pooled in one sample) were taken randomly from each slaughtered flock. In 

total, 230 samples were collected, with 202 (101 neck skin and 101 caeca) and 28 (14 neck skin 

and 14 caeca) from slaughter plant A and B, respectively. Samples were coded A or B with the 

number of sampling from slaughter plants A and B, respectively. A farm was considered to be 

Salmonella-positive if at least one sample was positive whether in caeca or in neck skins. 

2.1.3. Poultry meat sample collection 

For 3 years, from November 2014 until November 2016, 128 samples of whole chicken carcasses 

and cuts, and 6 samples of liver were chosen randomly from different slaughterhouses covering 

all Lebanese regions. In parallel, 1907 samples were collected from Lebanese retail shops 

(supermarkets and restaurants) including 1156 samples of raw chicken parts (133 liver and 1023 

whole chicken carcasses and cuts) and 751 samples of marinated chicken meat.   

2.1.4. Avian and Human Salmonella isolates collection 

Avian Salmonella strains from previous outbreaks in Lebanon and imported raw cuts (16 and 30 

isolates, respectively) were included in this study.  

For comparison purposes, five strains of clinical Salmonella Enteritidis were picked out from the 

most predominant pulsotype JEGX01.0001 (Fadlallah et al., 2017) collected from a large 
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repository of Salmonella strains in the PulseNet laboratory at the American University of Beirut 

(AUB). 

2.2. Salmonella isolation and identification  

Salmonella spp. was isolated and identified according to the ISO method NF EN ISO 6579 (2002). 

Briefly, 25g of sample was homogenized in 225 ml of Buffered Peptone Water (BPW) (Scharlau, 

Spain). After incubation for 18 h at 37oC, 1 ml and 0.1 ml of the pre-enrichment suspension were 

added to 10 ml of Mueller Kauffman Tetrationate broth (Scharlau, Spain) and 10 mL of Rappaport 

Vassiliadis Soy broth (Scharlau, Spain), and incubated at 37oC and 41.5oC, respectively. After 24 

h of incubation, 10 µl of each broth was streaked onto Xylose Lysine Desoxycholate (XLD) agar 

and Salmonella-Shigella agar (SS) plates (Scharlau, Spain) and incubated at 37oC for 24 h to 48 h. 

Typical colonies were further confirmed by API® 20E (Biomerieux, France). Confirmed strains 

were further serotyped by slide agglutination using commercial O and H antisera (Remel, England) 

in accordance with the Kauffman and White le Minor scheme (2007). 

2.3. Antimicrobial susceptibility testing 

Antimicrobial susceptibility testing (AST) was carried out on the three predominant Salmonella 

serotypes in accordance with the Clinical and Laboratory Standards Institute (CLSI, 2008; 2017). 

The Kirby-Bauer disc diffusion method was firstly performed, for a panel of 26 antimicrobials 

(Oxoid, Basingstoke, England) of veterinary and human health importance. The tested antibiotics 

were: ampicillin (Amp-10 µg), amoxicillin-clavulanic acid (Amc-30 µg), piperacillin-tazobactam 

(Tzp-110 µg), cephalothin (Kf-30 µg), cefuroxime (Cxm-30 µg), cefoxitin (Fox-30 µg), 

cefotaxime (Ctx-30 µg), ceftriaxone (Cro-30 µg), ceftazidime (Caz-30 µg), ceftiofur (Eft-30 µg), 

cefepime(Fep-30 µg), imipenem (Ipm-10 µg), aztreonam (Atm-30 µg), gentamycin (Cn-10 µg), 

tobramycin ( Tob-10 µg), streptomycin (S-10 µg), amikacin(Ak-30 µg), netilmicin (Net-30 µg), 

nalidixic acid (Na-30 µg), ciprofloxacin (Cip-5 µg), norfloxacin (Nor-10 µg), enrofloxacin (Enr-5 

µg), trimethoprim (W-5 µg), trimethoprim-sulfamethoxazole (Sxt-1.25/23.75 µg),  tetracycline 

(Te-30 µg), chloramphenicol (C-30 µg). Antimicrobial MICs for resistant strains were determined 

using broth microdilution for the following antimicrobials and breakpoint values: Kf (≥32 µg/ml), 

Cxm (≥32 µg/ml), Fox(≥32 µg/ml), Ctx (≥4 µg/ml), Cro (≥4 µg/ml), Caz (≥16 µg/ml), Eft (≥8 

µg/ml ), Cn (≥16 µg/ml), Na (≥32 µg/ml), Cip (≥1 µg/ml), Nor (≥16 µg/ml), Enr (≥2 µg/ml). 
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Escherichia coli ATCC® 25922™ was used as a quality control strain. Antimicrobial resistance 

to ≥3 classes was considered multi-drug resistance (MDR). 

2.4. Pulse Field Gel Electrophoresis- PFGE 

A pulsed-field gel electrophoresis (PFGE) analysis of isolates of S. Kentucky (n=97),   S. Infantis 

(n=64), and S. Enteritidis (n=53) was performed using an XbaI restriction enzyme according to the 

protocol described by Kérouanton et al (2007). 

Similarities of PFGE profiles were determined with Bionumerics 7.6 software (Applied Maths, 

Kortrijk, Belgium) using the Dice Coefficient and dendrograms were generated graphically by 

using unweighted pair group method with arithmetic mean (UPGMA). 

2.5. Statistical Analysis 

The differences of Salmonella spp. prevalence between the slaughterhouses A and B, and among 

samples were evaluated by the Chi-Square test using the software R (R x 64 version 3.4.3 (2017-

11-30). p-values ≤ 0.05 were considered statistically significant.  

3. Results 

3.1. Prevalence of Salmonella throughout the broiler food chain and laying hen 

flocks 

A total of 237 farms including 29 broiler breeders, 159 broiler farms and 49 laying hens were 

analyzed for Salmonella prevalence. 71 feces samples were identified as positive among the 237 

tested farms (30%). Prevalence rates for Salmonella were 31 %, 31.4 % and 24.5 % in the breeder 

farms, broiler farms and laying hen farms, respectively (Table 3). 

Forty eight out of 134 raw chicken parts collected from different slaughterhouses were positive for 

Salmonella spp. leading to a prevalence of 35.8 %. In addition, 427 samples out of 1907 retail 

chicken samples were confirmed positive yielding a Salmonella rate of contamination of 22.4 % 

(Table 3). 

Table 3: Sample type and prevalence of Salmonella sp at different points of poultry production 

chain 
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The global prevalence of Salmonella spp. estimated from caeca sampling in the two 

slaughterhouses was 81.8 % (36/44) indicating the incidence at farm level (Salmonella spp. was 

isolated at least once during seasonal sampling) and 34.8 % at sample level (80/230) having         

47.8 % of positive caeca (55/115) and 21.7 % of positive neck skin (25/115) (Table 2). The 

prevalence at farm level was very high with 81.6 % (31/38) and 83.3 % (5/6) estimated from caeca 

samples from slaughterhouses A and B, respectively, and no significant difference (p>0.05) was 

observed between them. Among the 202 samples collected from slaughterhouse A, 65 were 

positive for Salmonella (32.2 %) with 47.5 % caeca contamination (48/101) and 16.8 % neck skin 

contamination (17/101). At slaughterhouse B, 15 samples among 28 were Salmonella- positive 

(53.6 %), 7 of 14 caeca (50 %) were contaminated comparing to 8 of 14 (57.1 %) neck skin 

samples. Caeca prevalence was quite similar in both Slaughterhouses A and B (p>0.05) on the 

contrary to neck skin where contamination in slaughterhouse B (p<0.05) was higher than 

slaughterhouse A. Moreover, the seasonal effect was not significant (p>0.05) for both 

slaughterhouses, the prevalence in winter was 41.7 %, in autumn 35.7 % and in summer 28.4 % 

(Table 4). 

Table 4: Occurrence of Salmonella sp in the 2 slaughter plants A and B at different seasons  

 

Source type Sample type Number of samples 
Number of contaminated 

samples/ (%) 

Egg laying hens farm Feces 49 12 (24.5 %) 

Broiler breeders farm Feces 29 9 (31 %) 

Broiler farm Feces 159 50 (31.4 %) 

Total farms  237 71 (30 %) 

Slaughter house Raw chicken parts 134 48 (35.8 %) 

Retail (restaurant and 

supermarket) 

Raw chicken parts 1907 427 (22.4 %) 
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* indicates a significant difference of Salmonella prevalence in neck skin between slaughterhouses A and B. 
** indicates no significant differences of Salmonella prevalence between the two slaughterhouses at farm level 

*** indicates no significant differences of Salmonella prevalence in caeca between the two slaughterhouses 
****   indicates no significant differences of Salmonella prevalence between the seasons in the two slaughterhouses 
 

3.2. Distribution of Salmonella serotypes  

A total of 672 confirmed Salmonella isolates were serotyped. Twenty-three different serotypes 

were obtained with S. Infantis (32.9 %), S. Enteritidis (28.4 %) and S. Kentucky (21.4 %) being 

the most predominant ones (Table 5). S. Kentucky was found in the broiler production chain from 

breeders to production farms going through the slaughterhouses until the retail and in laying hen 

farms. S. Enteritidis was isolated from all stages of the poultry production chain except from the 2 

investigated slaughterhouses A and B. Furthermore, S. Infantis was found from the broiler 

production farms until retail but not in the broiler breeders and laying hen farms. S. Typhimurium 

was recovered only at retail level with a low prevalence of 2 %.  

At the farm level, S. Enteritidis (66.7 %, 44.4 %, and 38 %), S. Kentucky (16.7 %, 33.3 %, and 22 

%) and S. Blockely (16.7 %, 22.2 %, and 6 %) were found in the laying hens farms, in the breeder 

farms and in the broiler farms, respectively.  In addition to these three serotypes, S. Infantis (22 

%), S. Emek (8 %) and S. Seftenberg (4 %) were isolated from the broiler farms.

 

 
Samples type Summer Autumn Winter Total samples Total farms 

Slaughter  

plant A 

Caeca  13/38(34.2%) 16/30 (53.3%) 19/33 (57.6%) 48/101 (47.5%) *** 

 
 
31/38 (81.6%) ** 

Neck skin 6/38 (15.8%) 5/30 (16.7%) 6/33(18.2%) 17/101 (16.8%) * 

Total samples 19/76 (25%) 21/60 (35%) 25/66 (37.9%) 65/202 (32.2%) 

Slaughter 

plant B 

Caeca  3/6(50%) 1/5 (20%) 3/3 (100%) 7/14 (50%) *** 

 
 
5/6 (83.3%) ** 

Neck skin 3/6(50%) 3/5 (60%) 2/3 (66.7%) 8/14 (57.1%) * 

 Total samples 6/12 (50%) 4/10 (40%) 5/6 (83.3%) 15/28 (53.6%) 

Total 
Slaughter 
Plants 

Caeca 16/44 (36.4%) 17/35 (48.6%) 22/36 (61.1%) 55/115 (47.8%) 

 
36/44 (81.8%) 

Neck skin 9/44 (20.5%) 8/35 (22.9%) 8/36 (22.2%) 25/115 (21.7%) 

Total samples 25/88 (28.4%)**** 25/70 (35.7%) **** 30/72 (41.7%) **** 80/230 (34.8%) 
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Table 5: Salmonella serotypes diversity isolated along the chicken production chain  

Serotype 
Total 

number 

Egg hens 

Layer 

farms 

Broiler 

breeder 

farms 

Broiler 

farms 

Slaughter 

plant A 

Slaughter 

plant B 

Slaughterhouse 

(meat) 
Retail 

Suspected 

food 

(Intoxication) 

Imported 

S. Infantis 221 (32.9%)   11 (22%) 19 (29.2%) 4 (26.7%) 9 (18.8%) 176 (41.2%) 1 (6.3%) 1 (3.3%) 

S. Enteritidis 191 (28.4%) 8 (66.7%) 4 (44.4%) 19 (38%)   32 (66.7%) 112 (26.2%) 15 (93.8%) 1 (3.3%) 

S. kentucky 144 (21.4%) 2 (16.7%) 3 (33.3%) 11 (22%) 34 (52.3%)  5 (10.4%) 89 (20.8%)  
 

S. Heidelberg 31 (4.6%)       6 (1.4%)  25 (83.3%) 

S. Newport 15 (2.2%)    2 (3.1%)  1 (2.1%) 12 (2.8%)  
 

S.Blockley 11 (1.6%) 2 (16.7%) 2 (22.2%) 3 (6%) 1 (1.5%)   3 (0.7%)  
 

S.Typhimurium 9 (1.3%)       9 (2.1%)  
 

S. Hadar 9 (1.3%)     7 (46.7%) 1 (2.1%) 1 (0.2%)  
 

S.Emek 7 (1%)   4 (8%)   
 3 (0.7%)  

 

S St paul 4 (0.6%)      
 2 (0.5%)  2 (6.7%) 

S. Munster 3 (0.4%)      
 3 (0.7%)  

 

S.Aarhus 3 (0.4%)     2 (13.3%)  1 (0.2%)  
 

S. Branderup 2 (0.3%)      
 2 (0.5%)  

 

S.Virginia 2 (0.3%)      
 1 (0.2%)  1 (3.3%) 

S. Istanboul 2 (0.3%)     2 (13.3%)  
 

 
 

S. Senftenberg 2 (0.3%)   2 (4%)  
  

 
  

S. Glostrup 1 (0.1%)   
 

 
  1 (0.2%)   

S. Mbandaka 1 (0.1%)   
 

 
  1 (0.2%)   

S. Anatum 1 (0.1%)   
 

 
  1 (0.2%)   

S. Montevideo 1 (0.1%)   
 

 
  1 (0.2%)   

S.Agona 1 (0.1%)   
 

 
  1 (0.2%)   

S.Rissen 1 (0.1%)   
 

 
  1 (0.2%)   

S. Lomita 1 (0.1%)   
 

 
  1 (0.2%)   

NT 9 (1.3%)    9 (13.8%)      
Total 672 12 9 50 65 15 48 427 16 30 
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The Salmonella serotypes differed between the two slaughter plants A and B surveyed. At 

slaughterhouse A, from the 65 Salmonella isolates (48 from caeca and 17 from neck skin), four 

serotypes were identified and 9 Salmonella strains untypable. S. Kentucky (52.3 %) and S. Infantis 

(29.2 %) were predominant and repeatedly isolated from caeca and neck skin through the seasons 

sampling followed by S. Newport (3 %) and the only S. Blockely (1.5 %) which was recovered 

from a caeca sample. Within slaughterhouse B, four serotypes were identified from the 15 

Salmonella isolates (8 from neck skin and 7 from caeca). S. Hadar (46.7 %) was the predominant 

one, followed by S.Infantis (26.7 %), S. Istanbul (13.3 %) and S. Aarhus (13.3 %), with the latter 

was only isolated from neck skin.  

Five Salmonella serotypes were identified from the 48 Salmonella isolates from the chicken meat 

at the slaughterhouse level. The most frequently isolated was S. Enteritidis (66.7 %), S. Infantis 

(18.8 %), and S. Kentucky (10.4 %) followed by S. Hadar (2.1 %) and S. Newport (2.1 %). A very 

high diversity of serotypes was observed at retail level where 21 Salmonella serotypes were 

recovered. S. Infantis (41.2 %), S. Enteritidis (26.2 %) and S. Kentucky (28.8 %) were the most 

predominant ones. Rarely isolated Salmonella were S. Newport (2.8 %), S. Typhimurium (2.1 %), 

S. Heidelberg (1.4 %), S. Blockley (0.7 %), S. Emek (0.7 %), S. Munster (0.7 %) and others (3 %).  

From the 16 avian Salmonella strains isolated from previous outbreaks, 15 were S. Enteritidis (93.8 

%) and one S. Infantis (6.3 %). Five Salmonella serotypes were identified from the 30 Salmonella 

strains of imported chicken cuts with S. Heidelberg (83.3 %) the most predominant (Table 5). 

3.3. Antimicrobial resistance phenotypes 

Five hundred and fourteen Salmonella strains belonging to the 3 most predominant serotypes 

throughout the whole broiler food chain and laying hen flocks, S. Infantis (n= 204), S. Enteritidis 

(n= 177) and S. Kentucky (n=133) were subjected to antimicrobial susceptibility testing. Twenty-

six antimicrobials were tested. Great differences in resistance were observed within these serotypes 

and a multitude of antimicrobial resistance patterns were detected where 1 up to 6 antimicrobial 

classes were involved. High resistance against nalidixic acid was commonly observed: S. 

Enteritidis (98.9 %), S. Intantis (99.5 %) and S. Kentucky (100 %). With the exception of this latter 

antibiotic and nine isolates found to be multi-drug resistant detected only at the retail level, S. 

Enteritidis showed the lowest level of antimicrobial resistance and almost all the other strains were 
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susceptible to the majority of antimicrobials tested along the broiler food chain and layer flocks 

(Table 4 and 5). Only two were pan susceptible and few showed  resistance to ampicillin (7.9 %), 

amoxicillin-clavulanic acid (1 %), streptomycin (5.6 %), trimethoprim (3.9 %), trimethoprim-

sulfamethoxazole (2.3 %), tetracycline and chloramphenicol (1.7 % each), ciprofloxacin, 

norfloxacin and enrofloxacin (1 % each) (Figure 6). On the other hand, S. Infantis isolates were 

characterized by their high resistance rates to tetracycline (99 %) and streptomycin (88.2 %) 

followed by chloramphenicol (9.3 %), ampicillin (9.3 %), trimethoprim (2.4 %) and trimethoprim-

sulfamethoxazole (1 %) (Figure 6). The majority of S. Infantis (89.7 %) were multi-drug resistant 

with 14 different antimicrobial profiles having the “S-Na-Te” pattern (71.6 %) as the most 

predominant one circulating in all over the broiler food chain (Table 6 and 7).   

In parallel, all the S. Kentucky isolates were resistant to quinolones and fluoroquinolones with 

very high ciprofloxacin MIC levels observed (6.25->32 µg/ml). Very high resistance was found to 

ampicillin (71.4 %), amoxicillin–clavulanic acid (56.4 %), tetracycline (58.7 %), streptomycin 

(54.9 %) and gentamycin (53.4 %).  Low resistance was observed against chloramphenicol (7.5 

%), cefalothin (7.5 %), cefuroxime (6.8 %), cefoxitin (6.8 %) and trimethoprim (0.7 %). These 

resistances were shown to persist in all stages of the broiler production chain and layer flocks. 

Resistance against third generation cephalosporins (cefotaxime, ceftriaxone, ceftazidime and 

ceftiofur) was observed in 9 strains representing 6.8 % of the total S. Kentucky isolates and were 

isolated from slaughterhouse A (n=2) and retail (n=7). A very large diversity of antimicrobial 

resistance profile (n=36) was observed among S. Kentucky with 27 (62.4 % of the strains) 

considered as a multi-drug resistant patterns disseminated along the food chain. The most prevalent 

were “Amp-Amc-Cn-S-Na-Cip-Nor-Te-Enr” (14.3 %), “S-Na-Cip-Nor-Enr” (9.8 %), “Na-Cip-

Nor-Enr (9 %), “Amp-Amc-Na-Cip-Nor-Enr” (8.3 %) and “Amp-Amc-Cn- Na-Cip-Nor-Te-Enr 

(8.3 %) (Figure 6, Table 6 and Table 7). 
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Table 6: Antimicrobial resistance patterns of S. Enteritidis, S. Infantis and S. Kentucky isolates  

Serotypes Antimicrobial resistance patterns 
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Salmonella 
Enteritidis 

Pan susceptible         1 1 2 1.1% 
Na 8 4 19   28 99 156 88.1% 
Na-W           1 1 0.6% 
S-Na 1   1       2 1.1% 
Amp-Na         1 4 5 2.8% 
S-Na-Te         1   1 0.6% 
Amp-Amc-Na           1 1 0.6% 
Amp-S-Na-C           1 1 0.6% 
Amp-S-Na-W           2 2 1.1% 
Amp-Amc-S-Na-W           1 1 0.6% 
Amp-S-Na-W-Sxt           1 1 0.6% 
Cn-S-Na-Cip-Nor-Enr         1   1 0.6% 
Amp-S-Na-W-Sxt-C           1 1 0.6% 
Amp-Na-W-Sxt-Te-C           1 1 0.6% 
Amp-Na-Cip-Nor-Te-Enr           1 1 0.6% 

Salmonella 

Infantis 

Na           2 2 1.0% 
Te           1 1 0.5% 
Na-Te       1 1 16 18 8.8% 
S-Na-C       1     1 0.5% 
Na-Te-C           2 2 1.0% 
S-Na-Te     9 16 6 115 146 71.6% 
S-Na-Te-C           10 10 4.9% 
S-Na-W-Te       2     2 1.0% 
Amp-Na-Te-C           1 1 0.5% 
Amp-S-Na-Te     1 2 2 9 14 6.9% 
Na-Nor-W-Te       1     1 0.5% 
Amp-S-Na-Te-C           4 4 2.0% 
S-Na-W-Sxt-Te           1 1 0.5% 
Amp-S-Na-W-Sxt-Te-C           1 1 0.5% 

Salmonella 
Kentucky 

Na-Cip-Nor-Enr     2 2 2 6 12 9.0% 
S-Na-Cip-Nor-Enr       1 1 11 13 9.8% 
Cn-Na-Cip-Nor-Enr     1 2   1 4 3.0% 
Na-Cip-Nor-Te-Enr       1   1 2 1.5% 
Amp-Na-Cip-Nor-Enr           2 2 1.5% 
S-Na-Cip-Nor-C-Enr           1 1 0.8% 
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The code of antibiotics are: ampicillin (Amp), amoxicillin-clavulanic acid (Amc), piperacillin-tazobactam 
(Tzp), cefalothin (Kf), cefuroxime (Cxm), cefoxitin (Fox), cefotaxime (Ctx), ceftriaxone (Cro), ceftazidime 
(Caz), ceftiofur (Eft), gentamycin (Cn), streptomycin (S), nalidixic acid (Na), ciprofloxacin (Cip), 
norfloxacin (Nor), trimethoprim (W), aztreonam (Atm), tetracycline (Te), chloramphenicol (C), 
enrofloxacin (Enr).

Cn-S-Na-Cip-Nor-Enr         1 2 3 2.3% 
Amp-Amc-S-Na-Cip-Nor-Enr           1 1 0.8% 
Cn-Na-Cip-Nor-Te-Enr           1 1 0.8% 
Cn-S-Na-Cip-Nor-Te-Enr       1     1 0.8% 
Amp-S-Na-Cip-Nor-Enr           1 1 0.8% 
Amp-Na-Cip-Nor-Te-Enr           1 1 0.8% 
Amp-Amc-Na-Cip-Nor-Enr     2 3   6 11 8.3% 
Amp-S-Na-Cip-Nor-Te-Enr           7 7 5.3% 
Amp-Cn-Na-Cip-Nor-Te-Enr   1       2 3 2.3% 
Amp-Amc-Cn-Na-Cip-Nor-Enr           1 1 0.8% 
Amp-Amc-Kf-Na-Cip-Nor-Enr     1       1 0.8% 
Amp-Amc-Na-Cip-Nor-Te-Enr           3 3 2.3% 
Amp-Cn-S-Na-Cip-Nor-Te-Enr       1   6 7 5.3% 
Amp-Amc-Cn-S-Na-Cip-Nor-Enr       1   1 2 1.5% 
Amp-Amc-S-Na-Cip-Nor-Te-Enr           3 3 2.3% 
Amp-Amc-Cn-Na-Cip-Nor-Te-Enr 1   1 3   6 11 8.3% 
Amp-Amc-Kf-Na-Cip-Nor-Te-Enr       1     1 0.8% 
Amp-Amc-Cn-Na-Cip-Nor-Te-C-Enr           1 1 0.8% 
Amp-Amc-Cn-S-Na-Cip-Nor-Te-Enr       11 1 7 19 14.3% 
Amp-Amc-Cn-Na-Cip-Nor-Atm-Te-Enr       1     1 0.8% 
Amp-Amc-Cn-S-Na-Cip-Nor-Te-C-Enr       1   6 7 5.3% 
Amp-Amc-Cn-S-Na-Cip-Nor-W-Te-Enr       1     1 0.8% 
Amp-Amc-Tzp-Cn-Na-Cip-Nor-Te-Enr       1     1 0.8% 
Amp-Amc-Cn-S-Na-Cip-Nor-Te-Enr           2 2 1.5% 
Amp-Amc-Kf-Cxm-Fox-Ctx-Cro-Caz-Eft-Na-Cip-
Nor-Enr 

          2 2 1.5% 

Amp-Amc-Kf-Cxm-Fox-Ctx-Cro-Caz-Eft-Na-Cip-
Nor-C-Enr 

          1 1 0.8% 

Amp-Amc-Cxm-Fox-Cro-Caz-Eft-Cn-S-Na-Cip-Nor-
Atm-Te-Enr 

          1 1 0.8% 

Amp-Amc-Kf-Cxm-Fox-Ctx-Cro-Caz-Eft-Cn-S-Na-
Cip-Nor-Te-Enr 

          1 1 0.8% 

Amp-Amc-Kf-Cxm-Fox-Ctx-Cro-Caz-Eft-Cn-Na-
Cip-Nor-Atm-Te-Enr 

      1     1 0.8% 

Amp-Amc-Kf-Cxm-Fox-Ctx-Cro-Caz-Eft-Cn-S-Na-
Cip-Nor-Atm-Te-Enr 

      1   2 3 2.3% 
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Table 7: Antimicrobial resistance, MDR and ESC occurrence of the main serotypes isolated in this study  

 

   Number of antimicrobial classes/ (%)    

          

    Multi drug Resistance   

Serovars 0 1 2 3 4 5 6 Total MDR ESCs 

Salmonella Enteritidis(n= 177) 2 (1.1%) 156 (88.1%) 10 (5.6%) 2 (1.1%) 5 (2.8%) 2 (1.1%) 0 (0%) 9 (5.1%) 0 (0%) 

Salmonella Infantis (n=204) 0 (0%) 3 (1.5%) 18 (8.8%) 150 (73.5%) 28 (13.7%) 4 (2%) 1 (0.5%) 183 (89.7%) 0 (0%) 

Salmonella Kentucky (n=133) 0 (0%) 12 (9%) 38 (28.6%) 14 (10.5%) 60 (45.1%) 9 (6.8%) 0 (0%) 87 (62.4%) 9 (6.8%) 

Total (n= 514) 2 (0.4%) 171 (33.3%) 66 (12.8%) 166 (32.3%) 93 (18.1%) 15 (2.9%) 1 (0.2%) 279 (53.5%) 9 (1.8%) 
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Figure 6: Percentage of antimicrobial resistance of S. Enteritidis (A), S. Infantis (B) and S. 
Kentucky (C) from farms, slaughterhouses and retail. The code of antibiotics are: ampicillin 
(Amp), amoxicillin-clavulanic acid (Amc), piperacillin-tazobactam (Tzp), cefalothin (Kf), 
cefuroxime (Cxm), cefoxitin (Fox), cefotaxime (Ctx), ceftriaxone (Cro), ceftazidime (Caz), 
ceftiofur (Eft), cefepime (Fep), imipenem (Imp), gentamycin (Cn), tobramycin (Tob), 
streptomycin (S), amikacin(Ak), netilmycin (Net), nalidixic acid (Na), ciprofloxacin (Cip), 
norfloxacin (Nor), trimethoprim (W), trimethoprim-sulfamethoxazole (Sxt), aztreonam (Atm), 
tetracycline (Te), chloramphenicol (C), enrofloxacin (Enr).  
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3.4. Pulse-Field- Gel Electrophorese (PFGE) 

Among the 97 isolates of S. Kentucky, 10 different pulsotypes stand out, with a diversity index of 

0.767. Genotyping with one restriction enzyme showed 5 different clusters with a degree of 

similarities ≥ 95.7 % between all S. Kentucky isolates. The main cluster includes 35 S. Kentucky 

isolates and covered the broiler food chain, from broiler breeder farm (n=1), broiler farm (n=1), 

slaughterhouse A (skin neck=3, caeca= 13) to retail (n=17) (Figure 7). 

With a diversity index of 0.966, S. Infantis showed a great diversity among the isolates and 

established a contamination at all steps of the broiler production and not only at the slaughterhouse. 

Among the 64 isolates, 36 pulsotypes were distinguished. Interestingly, associate isolates with 

100% of similarity originated from farm, slaughterhouse, supermarket and restaurant (Figure 8). 

Seven pulsotypes were demonstrated for S. Enteritidis with a 0.369 diversity index. A relationship 

between several isolates from farm to fork is also present for this serotype. One dominant profile 

(grouping 80 % of the strains) contains sporadic human and poultry isolates from different sources: 

broiler breeder farm, layer farm, broiler farm, slaughterhouses, retail, and food suspected of 

intoxication (Figure 9). 
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Figure 7: Macrorestriction patterns of S. Kentucky using the Dice coefficient, and the 
dendrograms were generated graphically by using unweighted pair group method with arithmetic 
mean (UPGMA). The codes A, B and K designate the Salmonella isolates from slaughterhouse A, 
slaughterhouse B and retail respectively. The letters C or Q are related to caeca or neck skin 
respectively. 
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Figure 8: Macrorestriction patterns of S. Infantis using the Dice coefficient, and the dendrograms 
were generated graphically by using unweighted pair group method with arithmetic mean 
(UPGMA). The code A, B and I designate the Salmonella isolates from slaughterhouse A, 
slaughterhouse B and retail. The letters C or Q are related to caeca or neck skin respectively. 
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Figure 9: Macrorestriction patterns of S. Enteritidis using the Dice coefficient, and the 

dendrograms were generated graphically by using unweighted pair group method with arithmetic 

mean (UPGMA). The code P designate the Salmonella isolates. 
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4. Discussion 

The global prevalence of Salmonella in the farms is 30 %. Infected breeder farms (31 %) and layers 

(24.5 %) are of great concern since contamination can be disseminated to commercial broiler 

flocks and eggs, respectively, via vertical or horizontal transmission. This result as well as the 

prevalence in broilers (31.4%) is similar to previous studies done in developing countries such as 

Bangladesh, Algeria and Constantine (Barua et al., 2012; Djeffal et al., 2017; Elgroud et al., 2009). 

However, it is exceedingly higher than reports from the EU where, in the context of mandatory 

National Control Programs, the reported flock prevalences were of 1.47 %, 2.6 % and 3.71 % in 

breeding flocks, broilers and laying hens, respectively (EFSA/ ECDC, 2017). This high occurrence 

could be attributed to the absence of Salmonella reduction plan at the farm level in Lebanon.  

The high global prevalence of 47.8 % of Salmonella isolated from caeca suggesting that the major 

source of contamination is mainly at the farm level (fully integrated) rather than at slaughterhouse 

is in agreement with other studies (Zhu et al., 2017).  Most of the farms did not implement good 

farming practices since 81.3 % of the farms are Salmonella positive. The lower prevalence of 

Salmonella observed on neck skins from Slaughterhouse A (16.83 %) comparing to slaughterhouse 

B (57 %) highlighted the differences in their practices: indeed, the first one, in line with the high 

number of slaughtered poultry, performed air chilling with Peracetic Acid (PAA) (Slaughterhouse 

A) while the second performed chilling by immersion with chlorine (0.3ppm) (Slaughterhouse B). 

In fact, carcass chilling is considered a critical step to avoid the cross-contamination of pathogens. 

Commercial immersion chilling is widely used in the United States but has been often criticized 

because of the potential cross-contamination risk (Sukted et al., 2017). Furthermore, and despite 

that chlorine is widely used in the USA as an effective antimicrobial, the presence of high organic 

materials during the processing often reduces its antimicrobial efficacy, while organic 

concentration above 5 % can cause complete inactivation (Paul et al., 2017). Another 

antimicrobials such as PAA, used in Slaughterhouse A, were often chosen and have proved to be 

more effective in chillers (Blevins et al., 2017).  

Salmonella prevalence in poultry meat in slaughterhouses and retail was 35.8 % and 22.4 %, 

respectively. The retail contamination is lower than other regions in Asia as reported in Japan (54.1 

%) (Shigemura et al., 2018) and in Korea (42 %) (CHOI et al., 2015).  This rate is quite steady in 
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Lebanon when compared to a previous study carried out by our institute with 41.6 % of 

contamination in chicken carcass in slaughterhouses (EL Hage, 2013 unpublished results). 

Twenty-three Salmonella serotypes were identified along the chain. The main diversity, higher at 

the retail level, 21 serotypes compared to only three at the farm level, indicated a higher risk of 

cross-contamination and other contaminating sources that should be investigated further. The three 

main serotypes were S. Infantis (32.9%), S. Enteritidis (28.4%), and S. Kentucky (21.4%) which 

is in accordance with the poultry-associated Salmonella serotypes distribution worldwide. S. 

Enteritidis and S. Infantis were still among the most prevalent serotypes in laying hens and broilers 

and broiler meat, respectively, in Europe (EFSA/ECDC, 2016). S. Kentucky ranks among the 12 

most prevalent poultry-associated Salmonella serotypes worldwide (Shah et al., 2017).  In fact, 

many studies mentioned a shift in Salmonella serotypes in poultry production, which is related to 

the control measures against specific serotypes (Antunes et al., 2016; Rabsch et al., 2000).  

The type of broiler species, the management system adopted, rearing at farm level and its 

geographical location might explain the obviously different Salmonella serotypes diversity in the 

two slaughterhouses, where only S. Infantis is detected as a common serotype.  It seems that 

horizontal contamination of this serotype has occurred from the broiler farm level until retail level. 

Although being classified as the fourth serotype causing human salmonellosis in the EU and 

predominating in local poultry production, it could not be associated to foodborne outbreak in 

Lebanon (MOPH/ Pulse Net report, 2015).  

The high prevalence of S. Enteritidis, especially at breeders and layers farms is very concerning. 

This serotype, leading cause of human salmonellosis in Lebanon (MOPH/ Pulse Net report, 2015) 

and in the world ( EFSA/ECDC, 2016; Foley et al., 2011), is known to be vertically transmitted 

and therefore leads to the contamination of broiler flocks and eggs (Cox et al., 2000). In the EU, 

outbreaks due to S. Enteritidis in eggs have caused the highest number of outbreak cases in 2016. 

Moreover, when performing PFGE analysis on S. Enteritidis isolates, in addition to farms, retail, 

and human isolates shared the same pulsotype at a rate of 80 %. This same pulsotype has been 

circulating in Lebanon since 2010 and was linked to three outbreaks (Saleh et al., 2011) and 

isolated in clinical and food samples in 2017 (Fadlallah et al., 2017). Previous studies have 

demonstrated that this serotype is highly clonal (Campioni et al., 2012; Fardsanei et al., 2017). The 

presence of S. Enteritidis was confirmed along the broiler production chain and layer flocks; 
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however, it was not detected in both slaughterhouses A and B. This might be due to the vaccination 

programs against S. Enteritidis and S. Typhimurium at the broiler breeder level, which is known 

to be effective in controlling Salmonella.  

One of our major findings is the high prevalence of S. Kentucky circulating all over the poultry 

production chain, and it has been the most predominant in the biggest slaughterhouse in the country 

(52.3%). In fact, this serotype is highly present in poultry worldwide (Shah et al., 2017) but not 

commonly associated with human illness in Lebanon (MOPH/ Pulse Net report, 2015) and in USA 

(CDC, 2017) and only 1% of human salmonellosis in EU (EFSA/ECDC, 2016). Its capacity to 

grow in moderate acidic environment provides it an advantage over other serotypes to proliferate 

in chicken caecum (Foley et al., 2013).  The route to broiler flocks contamination remains unclear. 

Mostly horizontally transmitted, Papadopoulou et al. (2009)  indicated that protein concentrates in 

animal feed are source of contamination by S. Kentucky. 

Most isolates from imported chicken were S. Heidelberg, which has also been detected in retail at 

1% suggesting that the source of contamination of this serotype was derived from Brazilian 

chicken meat products.  This was the case in the EU where contaminated chicken cuts, notified by 

the Rapid Alert System for Food and Feed were imported from Brazil (RASFF, 2017). 

The improper use, overuse or misuse of antimicrobials in agriculture have contributed to the 

dissemination of drug- resistant non-typhoidal Salmonella that may be transmitted to humans via 

the food chain (Aarestrup, 2015). This Salmonella resistance represents a serious global threat to 

public health (CDC, 2013). In Lebanon, fluoroquinolones (enrofloxacin), third-generation 

cephalosporins (ceftiofur) and trimethoprim are widely used in the therapy of poultry production. 

In this investigation, an extremely high rate of nalidixic acid resistance and highly worrisome 

MDR among the isolates were obtained. S. Enteritidis showed the lowest resistance, which is in 

accordance with international findings (Michael and Schwarz, 2016). Since the introduction of the 

(fluoro)quinolone class in poultry production, nalidixic acid resistance of Salmonella has been 

often reported worldwide ( Fei et al., 2017; Gouvêa et al., 2015). This is of great concern since this 

resistance may be an indicator of reduced susceptibility to other quinolones of clinically great 

importance such as ciprofloxacin (Choi et al., 2005). Our results showed that antimicrobial 

resistance  has increased in all Salmonella serotypes tested at the end of the production chain, 

especially at retail level, suggesting that these serotypes gained resistance not only from bad 
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practices at the farm, but also from resistance genes in the environment (Ferri et al., 2017) and 

therefore the dissemination of more AMR to consumers.  

Despite the recent emergence of antimicrobial resistance among S. Infantis in Europe 

(EFSA/ECDC, 2015), it is still reported as pan-susceptible in USA poultry (Shah et al., 2017). Our 

results showed a remarkable total resistance to NA (99.5 %), tetracycline (99 %) and streptomycin 

(88.2 %), and to a lesser extent, trimethoprim (2.4 %) and trimethoprim-sulfamethoxazole (1 %). 

High incidence of MDR S. Infantis (89.7 %) having the “S-Na-Te” pattern (71.6 %) was the most 

predominant one circulating throughout the broiler food chain. Two of 14 antimicrobial profiles 

displayed a pattern “S-Na-W-Te” and “S-Na-W-Sxt-Te.” Our results might be related to similar 

clonal spread of S. Infantis in broiler and humans detected in Hungary (Nógrády et al., 2007). The 

typically emerging pattern “Na-S-Sul-Te” became widely disseminated in European countries 

(Nógrády, 2012). Aviv et al. (2014) declared a unique megaplasmid (pESI) (plasmid emerging S. 

Infantis) conferring high antimicrobial resistance, virulence and stress tolerance. Later on, 

Extended Spectrum Cephalosporin (ESC) Resistance has been announced in Italy (Franco et al., 

2015), in Switzerland (Hindermann et al., 2017) and USA (Tate et al., 2017). None of our isolates 

were ESBL producers. High genetic relatedness (87.8 %) has been found among these isolates in 

accordance to other studies (Franco et al., 2015, Vinueza-Burgos et al., 2016) suggesting that this 

strain is clonal. PFGE analysis with high rate of individual subtypes, especially at the retail level, 

suggests frequent possibilities of cross-contamination. In addition, similar PFGE patterns have 

been detected across isolates from different sources where slaughterhouse A was mainly 

implicated, suggesting that this slaughterhouse may be the source of Salmonella Infantis 

contamination. 

All S. Kentucky strains were highly ciprofloxacin-resistant (MIC level: 6.25->32µg/ml) and 

showed large, diverse antimicrobial resistance profiles. Our S. Kentucky strains in both MDR, 

mainly “Amp-Amc-Cn-S-Na-Cip-Nor-Te-Enr” (14.3 %), and AMR (Amp, Amc, Te, S, Cn) are 

very similar to the emerging ST198-X1 strain and coherent with the rapid and extensive global 

epidemic Ciprofloxacin resistant ability of this subtype described by Le Hello et al. (2011). The 

source of this contamination is very variable, Le Hello et al. (2011) strengthened on poultry as the 

main niche in Africa (Ethiopia, Nigeria Morocco,) and Europe (Poland, Germany and France) 

other on reptiles (Zajac et al., 2013)  and the environment (Le Hello et al., 2013). This multiple 
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class resistance might be attributed to the acquisition of an integrative mobilizable element 

“Salmonella genomic island 1” (SGI-1) that confer resistance to different classes of antimicrobials, 

amoxicillin, gentamycin and sulfonamide (Doublet et al., 2008)  followed by cumulative mutations 

in the gyrA and parC genes leading to  resistance to nalidixic acid and then to ciprofloxacin in 

2002. It is also shown that nine different strains of S. Kentucky are ESCs comparable to those 

detected in the Mediterranean basin (Le Hello et al., 2013).  Two of them (A 66C-B108C) were 

isolated from slaughterhouse A and seven (K12, K24, K31, K32, K38, K43, K48) from retail, 

indicating that this slaughterhouse is the causative dissemination of ESCs S. Kentucky. In addition, 

according to PFGE analysis, these strains are highly related, proposing that this strain is also clonal. 

Strains from farms (layers or /and broiler breeders or/ and broilers), slaughterhouse A and retail 

were grouped within one pulsotype suggesting that S. Kentucky is circulating throughout the 

broiler food chain and layer flocks.  It should be noted that slaughterhouse A has its farms, and 

therefore its role in the dissemination of S. Kentucky is important.  

5. Conclusion 

This work highlighted Salmonella prevalence in the Lebanese poultry production and the 

relatedness between different stages of the food chain, through a "Farm to fork" approach. The 

great incidence of Salmonella compared to developed countries is very alarming in the Lebanese 

poultry industry, urging the establishment of an effective prevention and control program along 

the food chain.  

S. Enteritidis is highly predominant with human illnesses attributed to only one poultry-associated 

clone that has been persistent since 2010 in Lebanon. Moreover, this is the first time that S. 

Kentucky and S. Infantis are reported to be spread in Lebanon. These two strains are exceedingly 

Multi-Drug resistant to the key antibiotic classes circulating all over the Lebanese poultry chain 

and therefore could be a potential threat to consumers. The miss and / over use of uncontrolled 

drugs in Lebanese animal production is the leading origin of emergent MDR bacteria, but also the 

circulation of resistant strains from other countries via human travels and good trades. AMR is a 

global public health problem that requires national, regional and international sustainable 

solutions. To develop countermeasures that will have lasting effects, new ideas complementary to 

traditional approaches are needed. Thus, the discovery of new antimicrobial agents from natural 

origins, along with their biocontrol, present alternative approaches. 
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Abstract 

Despite the low incidence of salmonellosis due to Salmonella enterica, subsp. enterica serovar 

Kentucky in humans, this serovar has been associated with a worldwide spread of a particular 

epidemic clone, Ciprofloxacin-resistant (CipR) S. Kentucky ST198, being mostly recovered from 

poultry farms and products. Here we report, for the first time in Lebanon, a case of detection and 

dissemination of the emerging highly drug-resistant S. Kentucky ST198. A number of eight strains 

of S. Kentucky isolated from broilers were genetically characterized by whole genome sequencing 

(WGS). Phylogenetic analysis revealed a close relatedness between the isolates. They all harbored 

mutations in chromosomal-quinolone resistance genes gyrA and parC with double substitutions in 

GyrA (S83F and D87N) and a single substitution in ParC (S80I). Resistance genes against third 

generation β-lactams, blaTEM-1B and plasmid-encoded cephamycinase blaCMY-2 were common, six 

out of eight isolates were shown to carry both of them. Aminoglycosides (aadA7 and aac (3)-Id), 

tetracyclines (tet (A)) and sulfonamides (sul1) resistance genes were detected in five strains among 

which four were positive for the presence of Salmonella Genomic Island 1 variant SGI1–K. The 

insertion sequence ISEcp1 was detected in six strains downstream of the blaCMY-2 gene. All studied 

isolates harbored a variety of Salmonella Pathogenicity Islands (SPIs) as well as regulatory and 

virulence genes. In this study, all evidence points to one or several factors implicated in the 

multidrug resistance (MDR) and virulence of S. Kentucky ST198 in Lebanon. These findings are 

alarming and shed new light on S. Kentucky ST198 as a potential public health threat that should 

be an integral part of surveillance programs in the chain of Lebanese poultry production.  

Keywords: Whole Genome Sequencing, CipR S. Kentucky ST198, ESBLs, cephamycinase, 

virulence genes, poultry 

 

1. Introduction 

Uncommon in human salmonellosis, Salmonella enterica subsp. enterica serovar Kentucky is 

however widespread in poultry meat (CDC, 2017),(Shah et al., 2017). An emerging highly CipR 

S. Kentucky ST198 subtype was well described by (Le Hello et al., 2011), causing human 

infections linked to travelers returning from Middle-East, Southeast Asia or Africa (Le Hello et 

al., 2013b; Mulvey et al., 2013). 
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Since the 1990s, CipR S. Kentucky ST198 has accumulated numerous chromosomal resistance 

determinants with the integration of the mobilizable “Salmonella genomic island 1” (SGI1). This 

latter was described in the MDR S. Typhimurium DT 104 (Boyd et al., 2001),  as responsible for 

the global spread of MDR Salmonella, mainly to amoxicillin, gentamicin, and sulfonamides 

(Doublet et al., 2008). Single mutation of topoisomerase-encoding gyrA chromosomal gene, 

followed by double mutations in gyrA and parC genes, have led to high-level resistance to 

nalidixic acid and later generations of fluoroquinolones, such as ciprofloxacin.  

Firstly recorded in Egypt from 2002 to 2005, CipR  S. Kentucky has promptly spread throughout 

Africa, the Middle East, Europe, and North America causing a global establishment of a 

challenging bacterial clone (Haley et al., 2016; Le Hello et al., 2013a; Ramadan et al., 2018). Le 

Hello et al. (Le Hello et al., 2013a) identified this strain from different sources (environment, 

humans, animals, and food) and different locations, particularly from several new countries in the 

Indian sub-continent and Southeast Asia.  

Mediterranean isolates belonging to this emerging serovar, have become producers of various 

carbapenemases (blaVIM-2; blaOXA-48), cephamycinase (blaCMY-2), Extended Spectrum β-

Lactamases (ESBL) (blaCTX-M-1; blaCTX-M-15; blaCTX-M-25) and a mix of carbapenemases and ESBL 

(blaOXA-48 and blaVEB-8) which pose an imminent threat to public health (Le Hello et al., 2013b; 

Seiffert et al., 2014). Cephamycinase CMY-2 is the most prevalent pAmpC β-lactamase distributed 

among IncI1 and IncA/C plasmids (Fricke et al., 2009). The ISEcp1 insertion sequence also plays 

an important role in the spread of ESBL and blaCMY-2 by mobilizing the adjacent resistance genes 

originated from the Citrobacter freundii chromosome by ISEcp1-mediated transposition (Verdet 

et al., 2009).  

Some studies have shown that MDR Salmonella and ESBLs-producing isolates became more 

pathogenic by co-carrying several virulence genes (Khoo et al., 2015; Li et al., 2017). These genes 

are located on plasmids, prophages, SPIs, and fimbrial clusters (Li et al., 2017) Some virulence 

genes were identified to confer pathogenicity more than others. Yang et al. (2015) reported that 

sodC1, which encodes a periplasmic Cu-Zn superoxide dismutase for the survival of Salmonella 

in the macrophage, was detected only in highly pathogenic strains. S. Kentucky is thought to be 

unharmful to humans due to the lack of virulence genes such as grvA, sseI, sopE, and sodC1 

(Cheng et al., 2014) or sopD2, pipB2, sspH2, and srfH (Dhanani et al., 2015). 
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The relevant concern to S. Kentucky is its accelerated dissemination in chicken, referred to a better 

acid response than other serotypes (Joerger et al., 2009). Others attributed the differential 

regulation of core Salmonella genes via the stationary-phase sigma factor RpoS, to the metabolic 

adaptation in the chicken caecum (Cheng et al., 2014).   

In Lebanon, S. Kentucky was among the most predominant serovars in the broiler production chain 

(Broiler breeder farms, broiler farms, slaughterhouses, and retail) and layer flocks. The global 

prevalence of this serovar was 21.4% among the total identified ones (unpublished results), 

although it was not related to human intoxication (MOPH/ Pulse Net report/ Study case report in 

Lebanon, 2015). It has been shown that all isolated strains were ciprofloxacin resistant, 65.4 % 

were multidrug resistant, and 6.8 % were also Extended Spectrum Cephalosporin (ESCs) resistant. 

The aim of this study was, therefore, to determine whether these CipR and ESC resistant S. 

Kentucky strains belong to the expanding ST198-SGI1. In line with this, deep genomic 

characterization of these isolates was performed. 

2. Materials and methods  

2.1. Collection of Salmonella Kentucky strains  

Eight ciprofloxacin and ESCs resistant S. Kentucky strains were previously recovered as follows: 

seven strains from retail chicken cuts (17-70328 (K12), 17-70460 (K24), 17-70462 (K31), 17-

70464 (K32), 17-70468(K38), 17-70469 (K43) and 17-70472 (K48)) and one strain from 

commercial slaughterhouse caeca broiler (17-70474 (A66C)) (unpublished results).  

2.2. Antimicrobial sensitivity test 

Antimicrobial susceptibility testing (AST) was carried out referring to the Clinical and Laboratory 

Standards Institute (CLSI, 2008; CLSI, 2017). The Kirby-Bauer disc diffusion method was firstly 

performed, for a panel of 26 antimicrobials (Oxoid, Basingstoke, England) of veterinary and 

human health importance. The tested antibiotics were: ampicillin (Amp-10 µg), amoxicillin-

clavulanic acid (Amc-30 µg), piperacillin-tazobactam (Tzp-110 µg), cephalothin (Kf-30 µg), 

cefuroxime (Cxm-30 µg), cefoxitin (Fox-30 µg), cefotaxime (Ctx-30 µg), ceftriaxone (Cro-30 µg), 

ceftazidime (Caz-30 µg), ceftiofur (Eft-30 µg), cefepime (Fep-30 µg), imipenem (Ipm-10 µg), 

aztreonam (Atm-30 µg), gentamycin (Cn-10 µg), tobramycin ( Tob-10 µg), streptomycin (S-10 

µg), amikacin(Ak-30 µg), netilmicin (Net-30 µg), nalidixic acid (Na-30 µg), ciprofloxacin (Cip-5 
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µg), norfloxacin (Nor-10 µg), enrofloxacin (Enr-5 µg), trimethoprim (W-5 µg), trimethoprim-

sulfamethoxazole (Sxt-1.25/23.75 µg),  tetracycline (Te-30 µg), chloramphenicol (C-30 µg). 

Antimicrobial Minimum Inhibitory Concentrations (MICs) for resistant strains were determined 

using broth microdilution for the following antimicrobials and breakpoint values: Kf (≥32 µg/ml), 

Cxm (≥32 µg/ml), Fox(≥32 µg/ml), Ctx (≥4 µg/ml), Cro (≥4 µg/ml), Caz (≥16 µg/ml), Eft (≥8 

µg/ml ), Cn (≥16 µg/ml), Na (≥32 µg/ml), Cip (≥1 µg/ml), Nor (≥16 µg/ml), Enr (≥2 µg/ml). 

Escherichia coli ATCC® 25922™ was used as a quality control strain. Antimicrobial resistance 

to ≥3 classes was considered MDR. 

2.3. Genome analyses 

Isolates were characterized by Whole Genome Sequencing. Genomic DNA was extracted using 

QIAamp DNA Mini Kit (Qiagen, Valencia, CA) and quantified with a Qubit 3.0 Fluorometer (Life 

Technologies, Carlsbad, CA).  Libraries for sequencing were prepared using Nextera XT DNA 

Library Preparation Kit (Illumina, San Diego, CA). High-throughput sequencing was performed 

on Illumina MiSeq with 2 × 250 paired-end reads. Raw sequence data were submitted to the 

European Nucleotide Archive (http://www.ebi.ac.uk/ena) under accession number PRJEB27597. 

Raw reads were assembled in contigs using Assembler 1.2 

(https://cge.cbs.dtu.dk/services/Assembler/) (Larsen et al., 2012) or SPAdes 3.9 

(https://cge.cbs.dtu.dk/services/SPAdes/) (Nurk et al., 2013). All samples were then subjected to 

in-silico serotyping using SeqSero 1.2 (https://cge.cbs.dtu.dk/services/SeqSero/all.php) (Zhang et 

al., 2015) starting from assembled data to confirm in-vitro serotyping. When concordance was not 

verified, analysis was repeated starting from raw reads. To verify the presence of acquired 

antimicrobial resistance genes, assembled genomes were analyzed using ResFinder2.1 

(https://cge.cbs.dtu.dk/services/ResFinder/, Selected threshold for %ID = 90%; Selected minimum 

length = 60 %), while ResFinder3.0 (https://cge.cbs.dtu.dk/services/ResFinder-3.0/) (Zankari et 

al., 2012) was used to detect known chromosomal point mutations that can confer antimicrobial 

resistances. MLST (Multi-Locus Sequence Type), plasmids and plasmid typing were performed 

using MLST 1.8 (https://cge.cbs.dtu.dk/services/MLST/) (Larsen et al., 2012), Plasmid Finder 1.3 

(https://cge.cbs.dtu.dk/services/PlasmidFinder/, Selected threshold for %ID = 85%), and pMLST 

1.4 (https://cge.cbs.dtu.dk/services/pMLST/) (Carattoli et al., 2014), respectively. MyDbFinder 

(https://cge.cbs.dtu.dk/services/MyDbFinder/) was used to investigate the presence of SGI1-K 

http://www.ebi.ac.uk/ena
https://cge.cbs.dtu.dk/services/Assembler/
https://cge.cbs.dtu.dk/services/SPAdes/
https://cge.cbs.dtu.dk/services/SeqSero/all.php
https://cge.cbs.dtu.dk/services/ResFinder-3.0/
https://cge.cbs.dtu.dk/services/pMLST/
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(Salmonella genomic island 1 variant K, GenBank accession number: AY463797.8) (Levings et 

al., 2005), which is frequently integrated into S. Kentucky genome. The reference used to find 

ISEcp1 was the deposited sequence of S. Typhimurium strain 110516 [KX377449.1:780-1276]. 

2.4. Phylogenomics 

Assembled genomes and a reference genome (S. Kentucky CVM29188, (Fricke et al., 2009)) were 

used to build a SNP-based phylogenetic tree using CSIPhylogeny 1.4 

(https://cge.cbs.dtu.dk/services/CSIPhylogeny/) (Kaas et al., 2014) with default parameters for 

SNP filtering and SNP pruning. 

3. Results 

3.1. Multi-Locus Sequence typing (MLST) and detection of plasmids and replicon type 

(pMLST) 

All isolates submitted to WGS belonged to the Sequence Type (ST) ST198, except one isolate 17-

70472 (K48) for which it was not possible to assign a MLST sequence-type. This is most likely 

due to a bad assembly comparing to other samples since the sample 17-70472 (K48) showed a 

high number of contigs (3495 contigs) and a bad N50 value (Table 8).  

All plasmids recovered from all isolates belonged to replicon type IncI1 and ColRNAI. Using 

pMLST based on WGS data, two IncI1 type plasmid were ST12, and two other plasmids were 

identified as belonging to ST2 and ST65. Four others were non-typable, but two of them closely 

match ST12 and ST23 (Table 8).    
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Table 8: Results of Genomic Assembly, SeqSero, MLST, PlasmidFinder and pMLST and Accession Number of the eight Lebanese S. 

Kentucky isolates 

 

a = N50 statistic defines assembly quality. Given a set of contigs ordered from the shortest to the longer, N50 is defined as the shortest sequence length among contigs which cover 

at least half of genome size  

a = plasmid sequence type (pMLST) is defined only for schemed plasmids (i.e., IncI1): plasmid replicon and identified alleles in square brackets are given

ID IZSVe (Ref. 

Lebanon) 
Source 

Genome 

size (bp) 

Number of  

contigs 
N50 a Serotype MLST Plasmids pMLST a 

accession 

Number 

17-70328 (K12) 
chicken cuts/retail 

4922807 93 534536 S. Kentucky ST198 
IncI1, 

ColRNAI 
IncI1[ST65] 

ERR2681948 

17-70460 (K24) 
chicken cuts/retail 

5002563 251 238030 S. Kentucky ST198 
IncI1, 

ColRNAI 
IncI1[ST12] ERR2681949 

17-70462 (K31) 
chicken cuts/retail 

4967065 105 534536 S. Kentucky ST198 
IncI1, 

ColRNAI 
IncI1[ST12] ERR2681950 

17-70464 (K32) 
chicken cuts/retail 

4916713 80 450673 S. Kentucky ST198 
IncI1, 

ColRNAI 
IncI1[unknown, closest match ST23] ERR2681951 

17-70468 (K38) 
chicken cuts/retail 

4980697 458 26113 S. Kentucky ST198 
IncI1, 

ColRNAI 
IncI1[unknown, closest match ST12] ERR2681952 

17-70469 (K43) 
chicken cuts/retail 

4896047 93 293715 S. Kentucky ST198 
IncI1, 

ColRNAI 
IncI1[unknown] ERR2681953 

17-70472 (K48) chicken cuts/retail 4417617 3495 1670 S. Kentucky unknown IncI1 IncI1[unknown] ERR2681954 

17-70474 (A66C) chicken caeca/ slaughterhouse 
4942747 149 120678 S. Kentucky ST198 

IncI1, 

ColRNAI 
IncI1[ST2] 

ERR2681955 
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3.2. Phenotypic and Genotypic antimicrobial resistance and presence of SGI1-K 

Antimicrobial sensitivity testing showed high ciprofloxacin MIC levels (12.5->32 µg/ml). Six out 

of eight strains were multidrug resistant. Phenotypic antimicrobial resistance patterns are reported 

in Table 9.  

WGS analysis confirmed the presence of antimicrobial resistance genes that conferred the 

phenotypic resistance. Indeed, there was a correlation between the resistance phenotype and the 

corresponding gene encoding it. Quinolone resistance-determining regions (QRDRs) of the target 

genes gyrA, gyrB, parC, and parE showed that all strains harbored double amino acid substitutions 

in GyrA, serine to phenylalanine at codon 83 (S83F) and aspartic acid to asparagine at codon 87 

(D87N), and single substitution in ParC, serine to isoleucine at codon 80 (S80I).  These mutations 

are responsible for high resistance levels to ciprofloxacin (Table 9). All isolates displaying ESCs 

resistant phenotype were found to carry resistance genes to third generation β-lactam, blaTEM-1B 

(Class A) and plasmid-encoded cephamycinase blaCMY-2 (Class C) with 6 out of 8 isolates carrying 

both of them. Resistance genes to aminoglycosides (aadA7 and aac (3)-Id), tetracyclines (tet (A)) 

and sulfonamides (sul1) were detected in 5 out of 8 strains. Except for sample 17-70460, isolates 

harboring resistance genes aadA7 and aac(3)-Id, tet(A) and sul1 are also positive for the presence 

of SGI1-K variant. Only one sample, 17-70462, also presents floR gene which confers cross-

resistance to chloramphenicol and florfenicol (Table 9).
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Table 9: Phenotypic and Genotypic antimicrobial resistance results of the eight Lebanese CipR S. Kentucky isolates using ResFinder 

2.1, ResFinder 3.0 and MyDbFinder. 

 

ID IZSVe (Ref. 

Lebanon) AMR Pattern AMR genotype 

QRDR point 

mutations SGI1-K 

  
  

gyrA parC   

17-70328 (K12) Amp-Amc-Kf-Cxm-Fox-Ctx-Cro-Caz-Eft-Na-Cip-Nor-Enr blaCMY-2, blaTEM1B  S83F, D87N S80I absence 

17-70460 (K24) Amp-Amc-Kf-Cxm-Fox-Ctx-Cro-Caz-Eft-Cn-S-Na-Cip-Nor-Atm-te-Enr aadA7,aac(3)-Id,blaCMY-2, blaTEM1B,sul1, tet(A) S83F, D87N S80I absence 

17-70462 (K31) Amp-Amc-Kf-Cxm-Fox-Ctx-Cro-Caz-Eft-Na-Cip-Nor-C-Enr blaCMY-2, blaTEM1B, floR S83F, D87N S80I absence 

17-70464 (K32) Amp-Amc-Cxm-Fox-Cro-Caz-Eft-Cn-S-Na-cip-Nor-Atm-Te-Enr aadA7,aac(3)-Id,blaCMY-2, blaTEM1B,sul1, tet(A) S83F, D87N S80I presence 

17-70468 (K38) Amp-Amc-Kf-Cxm-Fox-Ctx-Cro-Caz-Eft-Cn-S-Na-Cip-Nor-te-Enr aadA7,aac(3)-Id, blaTEM1B,sul1, tet(A) S83F, D87N S80I presence 

17-70469 (K43) Amp-Amc-Kf-Cxm-Fox-Ctx-Cro-Caz-Eft-Cn-S-Na-Cip-Nor-Atm-te-Enr aadA7,aac(3)-Id,blaCMY-2, blaTEM1B,sul1, tet(A) S83F, D87N S80I presence 

17-70472 (K48) Amp-Amc-Kf-Cxm-Fox-Ctx-Cro-Caz-Eft-Na-Cip-Nor-Enr blaCMY-2 S83F, D87N S80I absence 

17-70474 (A66C) Amp-Amc-Tzp-Kf-Cxm-Fox-Ctx- Cro-Caz-Eft-Cn-S-Na-cip-Nor-Atm-Te-Enr aadA7,aac(3)-Id,blaCMY-2, blaTEM1B,sul1, tet(A) S83F, D87N S80I presence 
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3.3. Detection of Insertion Sequence ISECP1 

Nucleotide sequence analysis of the eight S. Kentucky strains revealed the presence of ISEcp1 in 

six strains, at approximately 600 bp downstream of the blaCMY-2 gene, excepting strains (17-

70468(K38) and 17-70472 (K48)) (Table 10). 

3.4. Salmonella Pathogenicity Islands and Virulence genes analysis 

A screening of SPIs, virulence genes, rpoS-regulated core genes, as well as other genes related to 

pathogenicity and survival in these S. Kentucky strains was performed (Figure 10). 

As presented in Figure 10, SPI-5, SPI-13, SPI-14 were not detected in all studied strains. C63PI 

was identified in all strains except in 17-70472(K48). SPI-1 is absent from four S. Kentucky strains 

(17-70328 (K12), 17-70468 (K38), 17-70472 (K48), 17-70474(A66C)). SPI-2 is only present in 3 

strains (17-70328 (K12, 17-70462 (K31), 17-70469 (K43)). SPI-3 is present in 6 strains and is 

absent from both 17-70468 (K38) and 17-70472 (K48). SPI-4 was detected in S. Kentucky strains 

17-70328 (K12), 17-70462 (K31), 17-70464 (K32), and in 17-70474 (A66C).  

The fimbrial genes fimA (type 1 fimbriae), lpfD (long polar fimbriae), csgAB (thin aggregative 

fimbriae), steB, tcfA, and stjB as well as the non fimbrial gene SiiE were identified in all sequenced 

S. Kentucky strains, except for strain 17-70472 (K48) in which lpfD, stjB, and siiE are absent.  

Moreover, all isolates carry sitC, and six strains harbored iroN. sipA and avrA are present in all 

genomes, and sopE2 is absent from 17-70468 (K38) and 17-70472 (K48) strains. All isolates of 

serovar Kentucky lacked SPI-2 associated gene sspH2 while ssek2 was identified in 6 isolates but 

was missing in the all sopE2-lacking strains. Pathogenicity island two effector sseC was detected 

in all strains. The pipA gene was identified in all isolates except in 17-70472 (K48) that lacks the 

pipD. This latter is also absent from the 17 -70468 (K38) strain. Putative transcriptional regulator 

MarT-encoding gene was detected in all strains.  

Concerning the rpoS regulated genes, all but 17-70472 (K48) strain, contain the narZYV operon 

that lacks the nazW gene. However, this latter is present alone in the strain 17-70472(K48). The 

prpBCDE operon implicated in propionate catabolism was identified in all strains except in the 

17-70472(K48) strain where prpD was missing. The galactose transporter operon mglABC was 
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Table 10: Results related to the presence/absence of ISEcp1 in the genomes of the Lebanese CipR S. Kentucky strains and the co-

localized antimicrobial resistance genes in the same contig.  

 

ID_IZSVe (Ref Lebanon)  insertion sequence ISEcp1 Resistance genes in the same contig 

17-70328 (K12) NODE_1; Position: 771647..772143 blaCMY-2: NODE_1; Position: 772260..773405 

17-70460 (K24)   None 

17-70462 (K31) NODE_14; Position: 71183..71679 blaCMY-2: NODE_14; Position: 71796..72941 

17-70464 (K32) NODE_74; Position: 20105..20476 blaCMY-2: NODE_74; Position: 20593..21738 

17-70468(K38)  NODE_315; Position: 579..1075 None 

17-70469 (K43) NODE_70; Position: 4743..5118 blaCMY-2: NODE_70; Position: 5235..6380 

17-70472 (K48) NODE_1431; Position: 400..895 None 

17-70474 (A66C) NODE_54; Position: 9143..9518 blaCMY-2: NODE_54; Position: 9635..10780 

 

Legend:

presence (100% Identity; 497/497 Query/HSP length)

presence (100% Identity; 376/497 Query/HSP length)

presence (100% Identity; 372/497 Query/HSP length)

presence (98,79% Identity; 497/497 Query/HSP length)

absence
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Figure 10: Virulence determinants of the eight Lebanese S. Kentucky isolates, based on the protein sequences of Salmonella sp. 

database 
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detected in all strains except in 17-70472 (K48). All sequenced isolates harbored the curli-

encoding genes csgA and csgB, involved in the attachment of Salmonella to the mucosa. 

  

3.5. Phylogenetic Single Nucleotide Polymorphism (SNP) analysis 

Assembled genomes were used to build a phylogenetic tree with S. Kentucky CVM29188 selected 

as reference genome. As shown in Figure 11, where only shared SNP in the genomes – a close 

phylogenetic relatedness between all strains was observed with the only exception of sample 17-

70472 (K48). Once again, this is most probably due to the bad assembly achieved for this particular 

sample. SNP difference among isolates varies between 12 and 7491 nucleotides. 

 

 

Figure 11: SNP-based Phylogenetic tree of the eight Lebanese Cip R S. Kentucky isolates with S. 

Kentucky CVM29188 as reference genome 
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4. Discussion 

In this study, for the first time in Lebanon, MLST analysis performed on eight S. Kentucky isolates 

from poultry showed that seven isolates were belonged to the international emerging ST198-CipR 

Kentucky clone, out of them six were identified as MDR. All isolates harbored the already 

described mutations in gyrA and parC genes, linked to high-level fluoroquinolone resistance (Le 

Hello et al., 2013b). According to the authors, double substitutions in GyrA (Ser83 and Asp87) 

and a single ParC substitution (Ser80) are frequently identified in ciprofloxacin-resistant isolates. 

Different mutations in codon Asp87 are possible depending on the geographical origin of isolates, 

among them the Asp87Arg (D87N) that is commonly found in strains collected from South-East 

Asia, North Africa and the Middle East.  Interestingly, two mutations in gyrA (Ser83Phe and 

Asp87Gly) and three mutations in parC (Ser80Ile, Thr57Ser, and Thr255Ser) were recently 

described in a CipR  S. Kentucky ST198 isolated from a human patient in Washington state (Shah, 

DH., Paul, NC., Guard, 2018).  

The blaTEM-1B (conferring resistance to third generation β-lactams) or blaCMY-2 (encoding a 

cephamycinase) genes were detected in all isolates, among them six were interestingly shown to 

carry both. The CipR S. Kentucky ST198 isolates from the Mediterranean area have acquired β-

lactamases (CTX-M, CMY-2, VIM-2, OXA- 48 and OXA- 204) encoding-genes conferring 

resistance to ESCs and carbapenems (Collard et al., 2007; Ktari et al., 2015). ESBLs and 

cephalosporinases are repeatedly encoded by 90-200 kb plasmids from the IncI1, IncL/M or 

IncA/C incompatibility groups (Le Hello et al., 2013b). Liakopolous et al.( 2016) showed that the 

emergence of ESC resistant Salmonella in the Netherlands was due to the presence of blaCMY gene 

on IncI1 plasmids. Similarly, the IncI1 plasmid replicon was found in all isolates investigated. 

Moreover, plasmid sequences were diverse within these isolates; among them, two were identified 

as the IncI1/ ST12 plasmid. This latter has been disseminated worldwide, being related to the 

spread of blaCMY–type pAmpC genes among Enterobacteriaceae (Hansen et al., 2016).  

The MICs of cefotaxime, ceftiofur, and ceftazidime are known to be low in the natural habitats of 

bacteria. ISEcp1 are often integrated by transposition at the 5’ ends of β-lactamase genes and may 

provide both 35 and 10 promoter sequences, located within the IS proximal to its right IR (IRR), 

for expression (Vandecraen et al., 2017).  This event significantly enhances the blaCMY-2 gene 

expression, thereby enabling an increase in these MICs of 2 to 8-fold (Fang et al., 2018). In our 
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study, all detected ISEcp1 insertions were located upstream the blaCMY-2 gene except for 17-70468 

(K38) and 17-70472 (K48) strains, where the resistance gene was most probably not situated in 

the same contig. Moreover, most of the samples (5 out of 8) carried resistance genes to 

aminoglycosides (aadA7 and aac(3)-Id), tetracyclines (tet(A)), and sulfonamides (sul1). S. 

Kentucky isolates commonly harbored an SGI, i.e., the SGI1-K, initially detected in S. Kentucky 

strains isolated in Australia (Levings et al., 2005),(Levings et al., 2007). It comprises an MDR 

region including aac(3)-Id, aadA7, tet(A), and sul1 resistance genes as well as a mercury resistance 

module and other antimicrobial resistance genes. All but 17-70460 (K24) strains, containing 

resistance genes aadA7 and aac(3)-Id, tet(A) and sul1 were also positive for the presence of SGI1-

K.  

Gene transfer under antibiotic selective pressure facilitates the spread of drug resistance (Ferri et 

al., 2017). This could explain the dissemination of the highly MDR ST198-CipR Kentucky clone 

following the excessive therapeutic use of fluoroquinolones (enrofloxacin), third-generation 

cephalosporins (ceftiofur), and trimethoprim in the Lebanese poultry industry. These findings are 

in accordance with other reports in Africa and some parts in Asia (Ktari et al., 2015). In agreement 

with all these, it is noteworthy to mention that S. Kentucky is well known for its genomic plasticity 

leading to genetic rearrangements by horizontal acquisition of plasmids or genomic islands which 

account for antibiotic resistance pattern diversity (Wasyl et al., 2015). Indeed, 36 different 

resistance profiles were detected among 133 CipR S. Kentucky isolated along the Lebanese broiler 

production chain and layer flocks (unpublished data). Moreover, other non-negligible contributors 

could trigger this MDR such as the free trade and travel as well as the usage of contaminated feeds 

of aquaculture origin in poultry farms (Le Hello et al., 2011). 

The virulotyping results revealed a little gene variability among seven S. Kentucky strains. The 

number of SPIs varied from one to five islands per isolate with C63P1 being the most predominant. 

The 17-70462 strain harbored the five SPIs detected. This SPIs variability among strains was also 

reported by (Roer L, Hendriksen RS, Leekitcharoenphon P, Lukjancenko O, Kaas RS, Hasman H, 

2016). 

Adherence to the cell surface is one of the first route to infection through fimbriae and other 

adherence- associated non-fimbrial proteins. Fimbria also plays an important role in biofilm 

formation, adhesion, and colonization (Lasaro et al., 2009). The SPI4-encoded T1SS and the non-
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fimbrial giant adhesin SiiE were shown to initiate contact of Salmonella with host cells (Peters et 

al., 2017). Indeed, deletion of siiE gene resulted in a substantial decrease of the adhesion ability of 

Salmonella (Gerlach et al., 2007). All strains investigated in this study harbored the common 

Salmonella adhesion genes. 

Salmonella encodes two virulence-associated T3SSs, namely T3SS-1 and T3SS-2 which are 

located on two Salmonella pathogenicity islands SPI1 and SPI2, respectively. The SPI-1 protein 

effectors SipA, SopD, SopB, SopA, and SopE2 mediate Salmonella invasion and colonization of 

epithelial cells (Raffatellu et al., 2005), while SPI-2 is implicated in Salmonella intracellular 

replication and dissemination (Figueira and Holden, 2012). Many T3SS-translocated effectors are 

encoded by genes located outside these pathogenicity islands. The sipA and sopE2 genes located 

on SPI-1 and outside of it, respectively, play a significant role in Salmonella invasion of epithelial 

cells (Zhang et al., 2018). Here, these genes were detected in all strains. T3SS-1 avrA gene 

involved in apoptosis suppression of infected macrophages according to Lamas et al. (2018) was 

identified in all strains, thereby confirming the findings of Tasmin et al., (2017). The functionality 

of T3SS-2 helps to distinguish virulent from non-virulent Salmonella strains. The absence of the 

sspH2 gene from S. Kentucky, encoding the SPI2-restricted translocated protein, was 

systematically reported in many studies (Dhanani et al., 2015; Tasmin et al., 2017). However, this 

gene was shown to be highly conserved among Salmonella serovars (Ramos-Morales, 2012). The 

reduced virulence of S. Kentucky was therefore partially attributed to the absence of sspH2 gene 

as described by (Dhanani et al., 2015).  

SPI-5 encodes at least five genes, pipD, sigD/sopB, sigE/pipC, pipB, and pipA, all of which 

contribute to enteropathogenesis of Salmonella. The deletion of pipA, pipB, and pipD genes 

resulted in a reduction of inflammatory responses and fluid secretion rate in infected hosts (Wood 

et al., 1998). Both pipA and pipD genes were identified in all of the eight studied strains, thereby 

corroborating results of Beutlich et al. (2011). 

All studied isolates carried the putative iron transport gene sitC, but six of them harbored the 

salmochelin associated protein-encoding iroN gene. These findings are in accordance with other 

results carried out by (Dhanani et al., 2015). The authors found out that among different serotypes 

of Salmonella studied, only S. Kentucky harbored both the iroN and the sitABCD genes. The 

putative iron transport system SitABCD and IroN were considered to be essential factors in the 
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virulence mechanisms of Salmonella and their presence in S. Kentucky isolates deserves attention. 

They linked this finding to the emerging pathogenic S. Kentucky isolates associated with human 

infection worldwide. The work of Borges et al. (2017) showed that the virulent S. Enteritidis ST4 

strain, which is associated with salmonellosis outbreaks, harbors the IroN gene.  

Another explanation to S. Kentucky’s emergence, as a predominant colonizer of the chicken 

caecum, might be the high expression levels of RpoS-regulated genes when compared to S. 

Typhimurium (Cheng et al., 2014). Indeed, this study highlighted the role of genes involved in 

galactose catabolism and curli production in colonization of S. Kentucky in the caeca. These RpoS-

regulated genes have been detected in all studied strains. 

5. Conclusion 

This report addresses the first complete approach done in Lebanon that confirms the emergence of 

the highly drug-resistant, CipR Salmonella enterica serovar Kentucky ST198. Although 

infrequently associated with illness in human, S. Kentucky remains the most common non-clinical, 

non-human serovar reported worldwide. 

The present study showed a co-possessed multidrug resistance and some virulence determinants 

that could be involved in the pathogenicity of S. Kentucky, which are likely to cause foodborne 

outbreaks and an imminent threat to public health. These ESBLs and cephamycinase-producing 

strains are the first evidence in Lebanon, thereby highlighting their high dissemination in the 

Mediterranean basin.  

Our findings that S. Kentucky ST198 isolates harbor an arsenal of virulence factors suggest that 

these could be deployed to promote host-cell infection. In this regard, further functional and 

transcriptional studies should be carried out to elucidate the contribution of these virulence genes 

to the pathogenicity of S. Kentucky isolates and/or to predict the extension of their virulence 

potential. 

Further efforts are needed from health, food, and agricultural authorities to control the emergence 

of this epidemic ST198-CipR Kentucky clone. Thus, its inclusion as a target strain in any national 

reduction plan of Salmonella in poultry is worth fully to be implemented.  
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Abstract 

Salmonella continues to be a major threat for public health, especially from poultry origin. In 

recent years, an increasing trend of antimicrobial resistance (AMR) in Salmonella sp. was noticed 

due to the misuse of antibiotics. To overcome this emerging problem, probiotics, particularly 

within the genus Lactobacillus, could be proposed. Due to the benefits of the indigenous 

microbiota, Lactobacillus from poultry origin were isolated from hens and broilers ileum and 

cecum, and their probiotic potential was further studied. Four Lactobacillus species have been 

identified as:  L. reuteri (n= 22, 44 %), L. salivarius (n=20, 40 %), L. fermentum (n= 2, 4 %) and 

L. crispatus (n=1, 2 %) and two Enterococcus fecalis (n=2, 4 %). Eight Lactobacillus; L. 

salivarius (n=4), L.reuteri (n=2), L.crispatus (n=1) and Lactobacillus sp.(n=1) isolates were 

chosen on the basis of their cell surface hydrophobicity and auto/co-aggregation ability for 

further adhesion assays using Caco-2 cells line. Their attachment varied from 0.53 to 10.78 %. 

L. salivarius A30/i26 and 16/c6 and L.reuteri 1/c24 showing the highest adhesion capacity were 

assessed for their ability to compete and exclude Salmonella adhesion to the caco-2 cells line. L. 

salivarius 16/c6 exclude greatly the three Salmonella serotypes (S. Enteritidis, S. Infantis and S. 

Kentucky ST 198) from adhesion and that at significant levels. Results of the liquid co-culture 

assays showed a complete Salmonella growth inhibition after 24h. As a result, L. salivarius 16 / 

c6, an indigenous strain isolated from poultry, could constitute a preventive probiotic added 

directly to the diet as an antimicrobial agent against Salmonella sp. 

 

Keywords: Salmonella sp., poultry, probiotic, Lactobacillus salivarius, inhibition, adhesion  
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1. Introduction 

Non- typhoidal Salmonella is the leading cause of foodborne gastroenteritis (EFSA/ ECDC 

2017). Poultry products are primarily consumed worldwide and are commonly known to be 

reservoirs for a variety of microorganisms. Salmonella is the most encountered pathogen in 

poultry products and the most prominent in harboring avian gastrointestinal tracts (GIT) (Tan et 

al., 2014). In developing countries, high prevalences were recorded, ranging from 13% to 39% 

in South America, 35% in Africa and 35% to 50% in Asia (Antunes et al., 2016). In Lebanon, 

according to our recent study, the percentage of contamination of poultry meat at the retail level 

(supermarket and restaurant) was 22% (unpublished data).  

Several control strategies have been adopted to reduce or eliminate this pathogen at the farm 

level. It is known that the use of Antibiotic Growth Promoters (AGPs) and other prophylactic 

treatments improve the animal health and productivity rate in livestock farming  (Pan and Yu, 

2014). However, the massive use of antibiotics as feed additive have led to the emergence and 

spread of antimicrobial resistant (AMR) pathogens and epidemic multi-drug resistant (MDR) 

clones or genes in poultry reservoirs (Ferri et al., 2017).  Recently, resistance to critical 

antibiotics, namely fluoroquinolones and Extended-Spectrum B-Lactamases (ESBLs) have 

spread worldwide and reach humans through the food chain (Franco et al., 2015). As a result and 

since 2006, AGPs in animal industry have been completely banned in EU (Regulation (EC) No 

1831/2003, 2003) and reduced in many countries, including the United States. 

Another plan was the implementation of Salmonella control programs in poultry farms in many 

countries, including USA (National Poultry Improvement Plan (NPIP) eradication in eggs (1989) 

and meats (1994)) and EU (Commission Regulation (EC) No 2160/2003). Targeted Salmonella 

sp. have been successfully reduced, but unfortunately, it cleared the way to more resistant less 

common serotypes and new clones as S. Heidelberg and S. Kentucky (Foley et al., 2011). 

A promising alternative strategy against pathogens is the use of lactic acid bacteria (LAB) as 

probiotics. Probiotics are “non-pathogenic live microorganisms when ingested in adequate 

quantity exert health benefit on their host” (FAO & WHO, 2002).  The use of probiotics as broiler 

growth promoters, direct-fed microbial (Spivey et al., 2014, Saint-Cyr et al., 2017) improve the 

animal health and might reduce the emergence of AMR (Ouwehand et al., 2016). Lactobacilli 
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and Bifidobacteria were the most studied probiotic strains against gastrointestinal microbial 

pathogens (Muñoz-Quezada et al., 2013), especially against Salmonella infection in broiler tract 

(Feng et al., 2016; Rantala and Nurmi, 1973). Two fundamental mechanisms of inhibition of 

pathogenic organisms were detected either by direct cell competitive exclusion or by production 

of inhibitory compounds, namely lactic and acetic acid, hydrogen peroxide, bacteriocin or 

bacteriocin-like inhibitors, fat and amino acid metabolites (Ayeni et al., 2018). 

Intestinal adhesion and colonization are the first steps in Salmonella infection in poultry. As a 

consequence, the adhesion property is an essential prerequisite as well as one of the main criteria 

for selecting potential probiotic strains (FAO & WHO, 2002). The probiotic ability prevents the 

selected  strains from direct elimination by peristalsis and inhibits the colonization of enteric 

pathogens in chicken by competitive exclusion (Yadav et al., 2017). Means to evaluate adherence 

capacity of LAB to poultry epithelia may include in vitro analysis such as cell aggregation, cell 

wall hydrophobicity, adhesion to human colorectal adenocarcinoma cells line (Caco-2) and 

chicken hepatocellular carcinoma cells line (LMH) (Spivey et al., 2014). Since bacterial 

populations of GIT are particular for different animals, therefore poultry-specific probiotics 

could be more effective than non-specific microbial agents (Vineetha et al., 2016).                 

This study aims to develop an effective probiotic derived from broilers and hens’ gastrointestinal 

tract (GIT). In this regard, in vitro experiments were achieved to reveal the probiotic activity of 

native poultry-derived Lactobacillus strains against the most relevant and drug-resistant 

Salmonella sp. (S. Enteritidis, S. Infantis and S. Kentucky ST198) in Lebanese poultry farms. 

Screening of Lactobacillus strains for anti-Salmonella activity, safety and surface probiotic 

properties will also be assessed. Finally, potential Lactobacillus probiotics will be selected for 

further in vitro characterization such as adhesion and co-culture kinetics. Their adhesion and 

abilities to exclude, and compete with Salmonella serotypes for epithelial tissue using Caco-2 

cells line as an experimental model were evaluated as well as their capacity to inhibit the 

pathogen growth in a co-culture broth. 
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2. Materials and methods  

2.1. Isolation and phenotypic characterization of Lactobacillus sp.  

Lactobacillus sp. were isolated from the digestive tract (ileum and cecum) of 16 antibiotic-free 

healthy broilers chosen according to the type of age (Four levels), breed (Four species) and diet 

(four levels) (Table 11) and ten antibiotic-treated commercial broilers. Samples were coded from 

1 to 16 (antibiotic-free broiler) and A (antibiotic-treated commercial broilers) with the 
origin of sampling as “i” (ileum) and “c” (cecum).10 g of ileum and cecum content of each 

broiler were homogenized in 90 ml of Buffered peptone water. The homogenate was diluted to 

10-7 fold and 0.1 ml were plated onto de Man, Rogosa and Sharpe (MRS agar) (Sigma).  Plates 

were incubated anaerobically for 3 to 4 days at 37°C. In total, 212 strains randomly selected, 

were first characterized by Gram staining, motility and the detection of catalase activity. Gram-

positive, negative catalase bacilli were presumptively considered as Lactobacillus for further 

identification. Isolates were preserved in MRS broth with 20% glycerol at −70°C until use. Later, 

strains were sub-cultured at least two times before the assays. 

2.2. Salmonella isolates 

Antagonistic activity and co-aggregation ability of Lactobacillus strains were tested on three 

native avian Salmonella, isolated from our previous study. S. Enteritidis was the most 

predominant avian pulsotype causing human illness, whereas and in addition to their high 

prevalences in Lebanese poultry production, S. Kentucky ST198 and S. infantis were chosen for 

their multidrug-resistance pattern. Strains were inoculated into 15 ml Tryptic Soy Broth (TSB) 

(Sigma) and incubated at 37°C for 18 h for further studies. 
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Table 11: Type of age, breed, and diet of the broilers and hens deprived of antibiotics and 

additives coded from 1to16 and antibiotic- treated commercial broilers coded as A. 

 

2.3.  Assessment of Lactobacillus antagonism 

The anti-Salmonella activity of 212 presumptive Lactobacillus was preliminarily screened using 

the Spot on the lawn and agar well diffusion methods (Schillinger and Lucke, 1989) with minor 

modifications. Briefly, 10µL of the overnight Lactobacillus cultures were spotted onto the 

surface of MRS agar plates and incubated anaerobically for 18 h at 37˚C. In parallel, an overnight 

Experiment 

number 

Age Breed Diet 

1 Broiler, 35 days Cobb High starch diet: Corn  60%, Soya  20%, wheat 20% 

2 Broiler, 35 days Cobb High protein diet: Soya 40 %, corn 40 %, wheat 20% 

3 Broiler, 35 days Cobb High gluten diet: Wheat 60%, soya 20%, corn 20% 

4 Broiler, 35 days Ross High starch diet: Corn  60%, Soya  20%, wheat 20% 

5 Broiler, 35 days Ross High protein diet: Soya 40 %, corn 40 %, wheat 20% 

6 Broiler, 35 days Ross High gluten diet: Wheat 60%, soya 20%, corn 20% 

7 Broiler, 1 day old Cobb High starch diet: Corn  60%, Soya  20%, wheat 20% 

8 Broiler, 1 day old Cobb High protein diet: Soya 40 %, corn 40 %, wheat 20% 

9 Broiler, one day old Cobb High gluten diet: Wheat 60%, soya 20%, corn 20% 

10 Broiler, one day old Ross High starch diet: Corn  60%, Soya  20%, wheat 20% 

11 Broiler, one day old Ross High protein diet: Soya 40 %, corn 40 %, wheat 20% 

12 Broiler, one day old Ross High gluten diet: Wheat 60%, soya 20%, corn 20% 

13 Layer,69 weeks old Isa Brown  Normal feed: Corn 40%, soya 32%, wheat 20% 

14 Layer, 69 weeks old Isa White  Normal feed: Corn 40%, soya 32%, wheat 20% 

15 Layer, 27 weeks old Isa Brown  Normal feed: Corn 40%, soya 32%, wheat 20% 

16 Layer, 27 weeks old Isa White  Normal feed: Corn 40%, soya 32%, wheat 20% 

A Broiler, 35 weeks old Ross Normal feed:Corn 40%, soya 32%, wheat 20% 
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culture of each chosen Salmonella isolates was inoculated at 105 CFU/ml in 7ml of TSB soft agar 

(0.7% agar) and then poured onto previously cultured plates with Lactobacillus. After 

solidification, the plates were additionally incubated for 18h at 37˚C under anaerobic conditions. 

The inhibition zone around the Lactobacillus spot was recorded. 

To identify the inhibitory substances secreted in the cell-free culture supernatants, agar well 

diffusion assay was used. Lactobacillus isolates presenting antagonism were grown overnight at 

37 °C in 15 ml MRS broth. The cell-free supernatant (CFS) was obtained by centrifugation (4000 

×g, 20 min, 4 °C), filtered with 0.22 μm-pore-size Hi-MED syringe filters and then adjusted to 

pH 6.5 by 1 N NaOH. Salmonella isolates were added at 106 CFU/ml to 20 ml TSB supplemented 

with 0.75% agar-agar (semi-solid) and then poured onto an empty Petri-dish. After complete 

solidification, 6 mm wells were punched, and 50 µL of the CFS were added to each well. The 

plates were left to settle at 8˚C for 24 hours to allow the diffusion of the secreted antimicrobial 

substances, then incubated at 37˚C for 24h. The absence or presence of any inhibitory zone was 

recorded after 24 h of incubation at 37 °C. The two assays were done in triplicate.  

2.4. Selection of strains depending on their phenotypic aggregation 

Lactobacilli strains (n=50) were chosen according to their high anti-Salmonella activity in spot-

on- the- lawn test.  A preliminary visual aggregation screening  was done according to Del Re et 

al. (2000) with minor modifications. Briefly, all lactobacilli were grown in MRS broth at 37 °C 

under anaerobic conditions for 18 hours. Three categories were identified: 1) Strains with 

aggregation phenotype (Agg+) with visible aggregates even after vigorous vortex, 2) Strains with 

constant turbidity without precipitate (Agg-) and 3) Strains with mixed phenotype forming a 

precipitate and a clear or little turbid supernatant (Agg+/Agg-)  

2.5.  Species Identification and phylogenetic relations 

The 50 selected isolates were identified by API50CHL (Biomérieux) and 16S rRNA gene 

sequence analysis. DNA extraction was achieved with a Qiamp DNA mini Kit. Amplification of 

16S rRNA gene was performed in Veriti device (Applied Biosystem, USA) and included: 

denaturation at 95 °C for 15 min, 30 cycles of denaturation at 94 °C for 1 min, annealing at 52 

°C for 1 min, extension at 72 °C for 2 min followed by another extension at 72 °C for 7 min. 

Reaction mixtures (50 μl) were prepared as follows: reaction buffer 10x (5 μl), 10mM dNTPs 
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mix (1 μ1), 0.5 mM of  primer (27F (5′-GTGCTGCAGAGAGTTTGATCCTGGCTCAG-3′) and 

1492R (5′-CACGGATCCTACGGGTACCTTGTTACGACTT-3′), bacterial DNA (5 μl), and 

2.5 U of HotStarTaq DNA polymerase (Qiagen, Germany). Amplicons separation was completed 

by electrophoresis at 100 V on 1% (w/v) agarose, stained with Ethidium Bromide in 1 × TBE 

buffer and purified by using GenElute TM PCR Clean-Up Kit (Sigma-Aldrich) according to the 

manufacturer’s instructions. DNA sequencing was carried out on SeqStudio Genetic Analyzer 

(Applied Biosystem, USA). Editing was performed with Bioedit (version 7.2.5, 2013) and 16S 

rDNA sequences were compared with other sequences using NCBI BLAST 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). A phylogenetic tree was assembled by using the 

neighboring methods (Saitou and Nei, 1987) with the tree builder function of MEGA7 (Kumar 

et al., 2016). L.reuteri KX688655.1, L. salivarius MG737855.1, L. fermentum KC113207.1, L. 

cripatus MH392998.1, and Enterococcus fecalis MK584170.1 were selected as reference 

sequences. 

2.6. Antibiotic susceptibility testing  

Antibiotic resistance of the different Lactobacillus isolates was assessed by broth microdilution 

procedure following the Clinical and Laboratory Standards Institute (CLSI, 2012) in Mueller 

Hinton broth supplemented with 10% MRS broth. The following antimicrobials (Oxoid, 

England) were used: ampicillin (Amp), gentamicin (Cn), kanamycin (K), streptomycin (S), 

erythromycin (Ery) and chloramphenicol (C). The cut-off values for the assessment of 

Lactobacillus sp. as feed additives were   determined according to the European Food Safety 

Authority guidance (EfSA, 2012)  

2.7. Cell surface properties 

2.7.1. Auto-aggregation and co-aggregation Assay 

Auto-aggregation and co-aggregation capacities of the selected lactobacilli strains, chosen 

according to their auto-aggregation visual features, were further assessed (Collado et al., 2007) 

with minor modifications. Overnight Lactobacillus culture (108 CFU/ml) was centrifuged (4000 

×g, 20 min, 4 °C). The pellet was washed with phosphate-buffered saline (PBS) pH 7.1 and re-

suspended in the same buffer. Then, the cell culture (4 ml) was placed in glass bijoux bottles and 
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incubated at room temperature for 24 h. The absorbance values (OD600) were measured at 

different times (t0, t4, and t24).  

The auto- aggregation percentage was calculated using the formula: 1 − (At/A0) × 100 where At 

represents the absorbance at different times (4 and 24 h) and A0 absorbance at time =0 (t0). The 

aggregation ability was classified (Del Re et al., 2000) with minor modification: Isolates with 

aggregation values ≥ 65 % were classified as highly auto-aggregative, and ≤10 % were classified 

as non-auto- aggregative. 

For the co-aggregation assay, mixed cultures of equal volumes (2ml) of each Lactobacillus and 

each of the three Salmonella strains, as well as monocultures (4ml), were prepared and incubated 

at room temperature without agitation. Absorbance values (OD600) were measured at 24h. 

The percentage of co-aggregation was calculated as follow (Handley et al., 1987):                       (1− 

Amix/ (ASal+ ALac)/2) × 100, where ASal and ALac represent the absorbance of monocultures, 

Salmonella and Lactobacillus respectively, and Amix represents the absorbance of the mixed 

culture at 24h. Values below 20% are indicative of weak co-aggregation capability (Solieri et al., 

2014) 

2.7.2. Hydrophobicity assay 

The microbial adhesion to hydrocarbons (MATH) test was evaluated as defined by Rosenberg et 

al., (1980) with slight changes. Lactobacillus cultures were centrifuged, the pellet was washed 

with PBS buffer pH= 7.1 and re-suspended in the same buffer to adjust the concentration at108 

CFU/ml. An equal volume of 2 ml of cell culture and xylene (apolar solvent) were mixed and 

vigorously vortexed for 5 min before measuring the absorbance at 600 nm (A0). After incubation 

at Room Temperature for 1 h, the aqueous phase was cautiously removed, and its absorbance at 

600nm (A1) was measured.  

The cell surface hydrophobicity (H) was calculated as follows: H % = (1- A1/A0) × 100. Isolates 

with (H) values greater than 70% were classified as highly hydrophobic, between 50–70% were 

classified as moderate, and Hydrophobicity lower than 50% were classified as low 

hydrophobicity (Buahom et al., 2018). 
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2.8. Tolerance to simulated gastrointestinal conditions  

The gastrointestinal tolerance of the eight Lactobacillus strains, chosen according to their 

hydrophobicity and auto/ co-aggregation capacity, was assessed (Babot et al., 2014) with minor 

modifications. Overnight Lactobacillus cultures in MRS broth were centrifuged (4000 x g, 4oC, 

20 min) and adjusted to approximately 108 CFU/ml in PBS buffer. A volume of 1.75 ml was 

inoculated in 2.25 ml of a simulated gastric juice (125 mM NaCl, 7 mM KCl, 45 mM NaHCO3, 

3 g/l pepsine pH 2.0); After incubation at 41.5o C (poultry corporal temperature) for 1h (mean 

retention time in proventriculus and gizzard), the suspension was centrifuged and washed twice 

with PBS buffer. The pellet was then re-suspended in 3 ml of simulated intestinal juice (NaCl 22 

mM, KCl 3.2 mM, NaHCO3 7.6 mM, pancreatin 0.1% w/v, bile salts 0.15% or 0.3% w/v , pH = 

8.00) and  incubated at 41.5 °C during 2 h (mean retention time in the small intestine). The 

concentrations of bile salts were selected to simulate 0.1 to 1% bile concentration range of the 

poultry gastrointestinal tract (GIT), with approximately 0.25% in the ileum and 0.1 % in the 

cecum (Spivey et al., 2014). After serial dilutions, 0.1 ml of the suspensions were plated onto 

MRS agar and incubated anaerobically for three days at 37oC.  

The ability of isolates to tolerate the GIT conditions was as follows:  % survival = (log10 N1/log10 

N0) × 100   Where log10 N0 is the number of bacterial cells in PBS, and log10 N1 is viable cells 

after the simile-gastrointestinal assay.  

2.9. Cell Culture 

2.9.1. Preparation of cell culture 

The human colorectal adenocarcinoma Caco-2 cell line was used to perform adhesion assays. 

Cells were grown in a 75 cm2 flask containing Dulbecco's Modified Eagle's Medium (DMEM) 

(1x DMEM, 1M-1Glutamax, Gibco) supplemented with 10% (v/v) heat-inactivated fetal bovine 

serum (FBS) (Eurobio), 1x Non Essential Amino Acids (NEAA), 100 U/ml penicillin and 10 

mg/ml streptomycin (Sigma-Aldrich). Cells were incubated at 37 °C in a humidified atmosphere 

containing 5% CO2 until 80% confluence. Prior to the adhesion assay, 5 × 104 cells were seeded 

in 24-well tissue culture plates and incubated at the same conditions as above for 16 days (fully 
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differentiation). At the end of the incubation time, cell lines monolayers were washed twice with 

Dubelcco's PBS to remove antibiotics before adding bacterial suspension. 

2.9.2. Adhesion to Caco-2 cells 

Overnight cultures of the Lactobacillus strains (16/c6, 16/c2, 16/i10, 16/c4, 14/i8, 12/c8, 1/c24, 

A30/i26) and Salmonella serotypes were centrifuged, washed twice in Dubelcco's PBS (Eurobio) 

and re-suspended in an antibiotic-free DMEM medium at a concentration of 108 CFU/ml. Then, 

1 ml of bacterial culture was added to each cell well and incubated during 1 h at 37 °C in a 

humidified atmosphere containing 5 % CO2. After incubation period, supernatant were removed 

and cell well were gently washed three times with Dulbecco's PBS buffer to eliminate non-

adherent bacteria. Finally, Caco-2 cell line monolayers were trypsinized with 0.25 % trypsin-

EDTA solution (Eurobio) and adherent bacteria were enumerated by plating serial dilutions onto 

MRS agar medium for Lactobacillus and TSA agar medium for Salmonella. 

Adhesion ability was calculated as (N1/N0) x 100 where N1 and N0 represent the total bacteria 

adhered (CFU) and total bacteria added (CFU) respectively. Two independent experiments were 

conducted with triplicate for each condition. 

2.9.3. Inhibition of Salmonella adhesion to Caco-2 cell 

Two different protocols were followed to evaluate the ability of the selected Lactobacilli strains 

to inhibit Salmonella adhesion to Caco-2 cells. L. salivarius (16/c6 and A30/i26) and L. reuteri 

(1/c24) strains were chosen according to their adhesion properties. 

The competition adhesion assay was performed by seeding Caco-2 cells monolayers with a mix 

culture of each of the selected Lactobacillus (10 8 CFU/ml) with each of Salmonella strain (10 7 

CFU/ml) in complete DMEM. Salmonella monocultures were used as controls. After an 

incubation period of 2 h at 37°C in a humidified atmosphere containing 5% CO2, supernatant 

with the non-adherent bacteria were removed, and then Caco-2 cells were trypsinized. The 

adherent bacterial cells were serially diluted and plated on TSA agar medium and MRS agar 

medium to enumerate Salmonella and Lactobacillus respectively.  

The ability of Salmonella strains to adhere to Caco-2 cells in the absence (NSal) and the presence 

(NMix) of the Lactobacillus was calculated as follows:  
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Anti-adhesion ability   % = 1− (NMix/NSal) % (Son et al., 2017) 

For exclusion assays, Caco-2 cells monolayers were pre-exposed to Lactobacillus strain (10 8 

CFU/ml) for 1 h (Singh et al., 2017).  Then, Caco-2 cells monolayers were gently washed three 

times with Dulbecco's PBS and Salmonella strains (107 CFU/ml) were added and incubated for 

two hours. At the end of incubation time, supernatant with the non-adherent bacteria were 

removed, and then Caco-2 cells were trypsinized. The adherent bacterial cells were serially 

diluted and plated on TSA agar medium and MRS agar medium to enumerate Salmonella and 

Lactobacillus respectively. Two independent experiments for each strain were conducted with 

triplicate for each condition. 

2.10.  Co-culture Kinetic study  

Two series of experiments were carried out to evaluate the effect of L. salivarius 16 / c6 on the 

growth of Salmonella strains under co-culture conditions. 

In the first co-culture experiment, the 18 h old Lactobacillus strain (107 CFU/ml) and each culture 

of the three strains of Salmonella (approximately 10 5 CFU/ml ) were co-inoculated  into  100ml 

Laptg medium ( Peptone 15g/L-tryptone 10g/L- yeast extract 10g/L-glucose 10g/L- tween 80 

0.1%) (All media were purchased from Sigma-Aldrich) at pH 6.9 and incubated in  a shaker –

incubator  at 100rpm, at  37oC for 24 h. Pure cultures of each of the strains serve as controls. 

Before enumeration, the culture was left for 10 min without shaking to evaluate the auto / co-

aggregation capacity of L. salivarius. Then 0.1ml were taken from the supernatant and plated out 

at different time (0h, 4h, 8t h, and 24 h) on selective media ((XLD agar for Salmonella and MRS 

agar for Lactobacillus) for counting. The pH of the culture medium was also measured. Three 

independent replicates were performed for each assay. 

In the second experiment, the bacterial cultures were prepared as described above. Before 

enumeration, the culture was vigorously vortexed; then 0.1ml were taken and plated out at 

different time (0h, 4h, 8t h, and 24 h) on selective media ((XLD agar for Salmonella and MRS 

agar for Lactobacillus) for counting . 
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2.11. Statistical Analysis  

The results for hydrophobicity, auto-aggregation and Salmonella inhibition by competition/ 

exclusion as well as liquid co-culture assay are given as the mean ± Standard Deviation (SD) of 

three independent experiments. The results for adhesion are expressed as the mean ± SD of two 

experiments each done in triplicate. Statistical analysis were performed using XLSTAT 2014 

software. Lactobacillus surface properties (n=3) for fifty strains were assessed by the Principal 

Component Analysis (PCA). The index of Pearson was used to evaluate the correlation between 

the six assays, hydrophobicity, auto-aggregation and co-aggregation between the Lactobacillus 

strains and S. Enteritidis, S. Infantis and S. Kentucky. Differences among the results of adhesion 

and inhibition by competitive/ exclusion was performed by one-way ANOVA. P-values ≤ 0.05 

were considered statistically significant. 

3. Results 

3.1. Screening of Lactobacillus sp. from poultry origin and anti-Salmonella activity   

A total of 212 isolates which showed to be bacillus, gram-positive with no catalase activity were 

collected from broiler ceca and ileum samples. A number of 157 Lactobacillus sp. were isolated 

and identified from chickens that were subjected to 16 different trails where the chickens weren’t 

treated with antibiotics. In addition, 55 Lactobacillus isolates were selected from chickens that 

were previously treated with antibiotics. The strains were preliminarily tested for inhibitory 

activity against S. Enteritidis, S. Kentucky ST198 and S. Infantis by agar spot test and well 

diffusion. All Lactobacillus isolates were found to produce inhibition zones against the three 

strains of Salmonella based on the agar spot test (spot-on-the-lawn). The radii of their inhibition 

zones ranged from 1.2 to 4.4 cm (data not shown). However, the CFSs of all Lactobacillus 

isolates, neutralized to pH 6.8 did not display any antimicrobial effect against Salmonella strains.  

3.2. Visual aggregation screening 

Fifty Lactobacillus isolates were chosen for visual screening. Three auto-aggregation phenotypes 

were well-defined as follows (Annex I): Category 1- (Agg+) strains (n=7, 14 %) aggregated 

rapidly displaying a clear supernatant and visible aggregates even after vigorous vortex. Group 

2- Non-auto-aggregating (Agg-) strains (n=7, 14 %) showed a turbid supernatant. Group 3- 
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Mixed (Agg+/Agg-) strains (n= 36, 72 %) revealed both a precipitate and turbidity/or clear 

supernatant. 

3.3. Phenotypic and genotypic identification of Lactobacillus isolates with Phylogenetic 

relatedness.  

The biochemical results of the fifty Lactobacillus strains by API 50CHL are shown in Annex I. 

Eight Lactobacillus species were identified as follow: L. fermentum (n = 22, 44 %), L. salivarius 

(n = 13, 26 %), Leuconostoc lactis (n = 9, 18 %), L. brevis (n = 2, 4 %), L. acidophilus (n = 1, 2 

%), Lactococcus raffinolactis ou L. crispatus (n = 1, 2 %), L. plantarum (n = 1, 2 %), and L. 

delbrueckii sp delbrueckii ((n = 1, 2 %). According to the Api 50CHL, L. fermentum and L. 

salivarius were the most common species among the isolates. The 16S rRNA gene sequence 

results showed four Lactobacillus species, L. reuteri (n= 22, 44 %), L. salivarius (n=20, 40 %), 

L. fermentum (n= 2, 4 %) and L. crispatus (n=1, 2 %) and two Enterococcus faecalis (n=2, 4%) 

(Figure 12). The three remaining Lactobacillus isolates (16/i10, 14/i15, A30/c2) were non-

typable. The most common species were L.reuteri and L.salivarius. The phylogenetic tree 

demonstrated a close relatedness among the same species.  
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Figure 12: Evolutionary relationships Tree of Lactobacillus sp by the Neighbor-Joining method. 

The percentage of replicate trees in which the associated species clustered together in the 

bootstrap test (1000 replicates) are shown next to the branches  (Felsenstein, 1985). L.reuteri 

KX688655.1, L. salivarius MG737855.1, L. fermentum KC113207.1, L. cripatus MH392998.1, 

and Enterococcus fecalis MK584170.1 were selected as reference sequences. 
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3.4. Antimicrobial resistance  

The resistance of lactobacilli isolates to the six antibiotics tested by the micro-dilution procedure 

for the determination of MIC was determined (Figure 13). A very high AMR was observed 

among the isolates independently of the farms (antibiotics free or with antibiotic) with a total 

resistance against ampicillin (100 %), high resistance to chloramphenicol (96 %), kanamycin (88 

%), streptomycin (76 %) and gentamicin (64 %). Resistance to erythromycin was shown to be 

higher in antibiotic-treated farms than in antibiotic-free farms with a percentage of resistance of 

75% and 20% respectively. None of the strains was pan-susceptible. 

 

 

Figure 13: Antimicrobial resistance of the indigenous Lactobacillus sp isolated from antibiotic-

free (Black columns) and antibiotic-treated broilers (Grey columns).  White columns correspond 

to the total percentage of resistance.  Ampicillin (Amp), chloramphenicol (C), erythromycin 

(Ery), kanamycin (K), gentamycin (Cn) and streptomycin (S). 
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3.5. Surface properties assays 

The most fifty anti-Salmonella strains (according to spot-on-the-lawn test) were selected and 

tested for their surface properties. A visual screening primarily evaluated the auto-aggregation 

ability of fifty Lactobacillus strains after 18 h of incubation, followed by spectrophotometric 

analysis at 4h and 24h (Figure 14). The visual screening was confirmed by auto-aggregation 

assay at 4h. Category 1 (Agg+) demonstrated high auto-aggregation percentage (≥ 65 %) whereas 

the category 2 (Agg-) showed a deficient percentage (≤10 %). All Lactobacillus belonging to 

category 3 (Agg+/Agg-) exhibited a range between 10 and 65 % of auto-aggregation except three 

strains. One of them revealed high auto-aggregation ability (>65 %) and two others were non-

aggregative (≤10 %). Almost all Lactobacillus (n= 45, 90 %) possessed this feature at 24h.  

The co-aggregation properties of Lactobacillus strains with the three Salmonella serotypes tested 

differed considerably among the strains ranging from 0 % to 94.6 % (Annex: I). A percentage of 

54 %, 60 % and 64 % of Lactobacillus strains co-aggregated (percentage of co-aggregation >20 

%) with S. Kentucky ST198, S. Enteritidis and S. Infantis respectively.  

The hydrophobic property of the Lactobacillus strains was assessed by xylene extraction (Annex: 

I, Figure 14).  The results revealed that 62% of the isolates showed high affinity for xylene (H>70 

%) and 34 % were non-hydrophobic (H< 50 %).   
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Figure 14: Isolates distribution in defined ranges of percentage of hydrophobicity, auto-

aggregation and co-aggregation with the three Salmonella sp (S. Enteritidis (S.E.), S. Kentucky 

ST198 (S.K.) and S. Infantis (S.I.)) 
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3.6. Hydrophobicity and auto/co-aggregation correlation  

The results obtained from the surface Lactobacillus assays were subjected to Principal Component 

Analysis (PCA) (Figure 15). The first PC1 and the second PC2 principal components explain 48 

% and 27.5 % of the total variance respectively. L. salivarius A30/i26 showed to be highly 

hydrophobic (98.84 % ± 1.34), possess an aggregation phenotype (Agg+) and ability to aggregate 

rapidly at 4h (76.15 % ± 3.93). According to the PCA analysis, the most co-aggregative strains 

were L. crispatus 16/c2, L. salivarius16/c4, 16/c6 and 14/i8, and L. reuteri 12/c8. In addition to 

these properties, L. salivarius 16/c6 showed to be non- auto-aggregative at 4h but revealed this 

feature at 24 h (9.89 % ± 3.63 and 95.91 % ± 2.58 respectively).  L. salivarius 16/c4 possess an 

aggregation phenotype (Agg+) and rapidly auto-aggregate at 4h (76.23 % ± 3.38). Lactobacillus 

sp.16/i10 and L. reuteri 1/c24 were highly hydrophobic (98.36 % ± 3.63 and 91.81 % ± 7.78 

respectively) but showed no and moderate auto-aggregation capacity respectively at 4h of assay 

(6.16 % ± 5.53 and 13.76 % ± 1.87 respectively) (Table 12). 

 No significant correlation between hydrophobicity, auto-aggregation, and co-aggregation has 

been detected among the fifty tested strains (Table 13). On the contrary, the co-aggregation results 

between the three Salmonella serotypes and Lactobacillus isolates were significantly correlated, 

since the correlation coefficient value could reach 0.890. 
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Figure 15: Principal Component Analysis (PCA) of surface proprieties as hydrophobicity and 

auto/co-aggregation) for the 50 Lactobacillus isolates. Isolates underscored were the selected 

strains  
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Table 12: Identity, surface properties and antimicrobial resistance pattern of the eight selected Lactobacillus sp 

 

Values of auto-aggregation and hydrophobicity are means of triplicate assays with their standard deviations 

Table 13: Correlation of Pearson coefficients between hydrophobicity, auto-aggregation, and co-aggregation of the 50 Lactobacillus 
isolates. The Principal Component Analysis (PCA) was done using. The index of Pearson was used to evaluate the correlation between 
the six assays, hydrophobicity, auto-aggregation and co-aggregation between the Lactobacillus strains and S. Enteritidis, S. Infantis and 
S. Kentucky. 

Isolates Visual aggregation Auto-aggregation 4h (%) Auto-aggregation 24h (%)  Hydrophobicity (%) Antimicrobial resitance pattern

S.  Enteritidis S . Infantis S . Kentucky 

L.crispatus  16/c2 Agg+/Agg- 14.46  ±  2.78 58.67  ±  7.62 89.36 75.06 69.66 84.58  ±  1.92 Amp
L. salivarius  16/c6 Agg- 9.89  ±  3.63 95.91  ±  2.58 71.07 69.55 94.55 90.26  ±  3.91 Amp-C-K-S
L. salivarius  16/i4 Agg+ 76.23  ±  3.38 92.95  ±  10.5 82.49 80.45 79.94 82.25  ±  5.84 Amp-C-K-Cn-S

Lactobacillus  sp.16/i10 Agg+/Agg- 6.16  ±  5.53 79.46  ±  1.18 45.60 34.32 63.51 98.36  ±  0.75 Amp
L. salivarius  14/i8 Agg+/Agg- 23.14  ±  5.29 73.47  ±  3.67 62.30 70.35 47.54 81.63  ±  1.2 Amp

L.reuteri  12/c8 Agg+/Agg- 33.93  ±  6.44 71.86  ±  1.89 83.47 73.87 80.00 52.66  ±  2.98 Amp-C-Ery-K-Cn-S
L.reuteri 1/c24 Agg+/Agg- 13.76  ±  1.87 91.81  ±  7.78 50.43 62.47 58.93 97.53  ±  0.96 Amp-C-K-S

L.salivarius A30/i26 Agg+ 76.15  ±  3.93 99.63  ±  0.26 49.54 25.71 60.00 98.84  ±  1.34 Amp-K-Cn-S

% Co-aggregation with

Variables Hydrophobicity (%) Auto-aggregation 4h (%) Auto-aggregation 24h (%) Co-aggregation with S. Infantis (%) Co-aggregation with S. Enteritidis (%) Co-aggregation with S. Kentucky (%)

Hydrophobicity (%) 1

Autoaggregation 4h (%) 0.302 1

Autoaggregation24h (%) 0.277 0.525 1

Co-aggregation with S. Infantis (%) -0.033 -0.125 -0.180 1

Co-aggregation with S. Enteritidis(%) 0.098 -0.015 -0.187 0.873 1

Co-aggregation with S. Kentucky (%) 0.104 -0.051 -0.219 0.831 0.890 1
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3.7. Gastrointestinal tolerance assay 

The eight chosen Lactobacillus sp. were further evaluated for their capacity to survive in the 

simulated GIT of chicken (Figure 16). All strains were able to tolerate the acidity and 0.1 % (w/v) 

bile salts. However, at 0.3 % bile salts, two strains of L. salivarius 16/i4 and A33/i26 count 

declined considerably from 8 Log10 CFU /mL in control to 0 and 3 Log10 CFU /mL respectively 

leading to a low percentage of survival of 0 % and 37 % respectively. 

 

Figure 16: Effect of the simile-gastrointestinal conditions on Lactobacillus viability. Black and 

grey columns correspond to lactobacilli subjected to 0.15 % or 0.3 % bile salts respectively. 

 

3.8. Adhesion Assay 

The ability of the selected Lactobacillus and the three Salmonella strains to adhere to Caco-2 cell 

line was also studied (Figure17). Attachment of Lactobacillus isolates varied from 0.53 to 10.78 

%. L. salivarius A30/i26, 16/c6 and 16/i4, L. reuteri 1/c24 were the highest adhesive strains with 

an adhesion ability of 10.78 % ± 4.2, 6.5 % ± 1.82, 5 % ± 0.99 and 6.43 % ± 2.26 respectively 

with no significant differences. The remaining strains Lactobacillus sp 16/i10, L. salivarius 14/i8, 
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L. reuteri 12/c8 and L. crispatus 16/c2 showed no significant differences with a low adhesion 

capacity of 3.61 % ± 1.14, 2.35 % ± 0.86, 1.99 % ± 0.66 and 0.53 % ± 0.21 respectively. 

S. Infantis, S. Enteritidis and S. Kentucky ST198 attached to Caco-2 cells at a percentage of 8.81 

% ± 0.87, 7.81 % ± 1.41 and 6.77 % ± 0.89 respectively. No significant difference was found 

between serotypes (Figure 17). 

 

 

 

 

 

 

 

 

 

 

Figure 17: Adhesion of the eight native poultry-derived Lactobacillus strains and the three 

Salmonella strains (S. Kentucky ST 198 (S.K.), S. Infantis (S.I.) and S. Enteritidis (S.E.)) to caco-

2 cells line. The means and standard deviations of two independent experiments are shown, each 

with three replicates. The differences between strains adhesion were evaluated separately for 

Lactobacillus strains and Salmonella serotypes. L. salivarius 16/c6, 16/i4 and A30/i26, and L. 

reuteri 1/c24 revealed no significant differences (*) in their adhesion capacity which is dissimilar 

from the four remaining tested strains (**). The differences in the adhesion of S. Enteritidis, S. 

Infantis and S. Kentucky ST198 were also not significant among the three serotypes (†). 
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3.9. Competition/ Exclusion Assay  

Three Lactobacillus strains showing the most adhesion capacity, L. salivarius A30/i26 and 16/c6 

and L.reuteri 1/c24 were assessed for their ability to compete with the pathogen for the adhesion 

site on the Caco-2 cell line (Figure 18). The three Lactobacillus isolates displayed no significant 

effect on the adhesion of the pathogens to Caco-2 cells.  

In exclusion assay, the adhesion site occupied by the probiotic bacteria becomes inaccessible to 

the pathogen. L. salivarius 16/c6 can highly exclude the pathogens than L.salivarius A30/i26 and 

L. reuteri 1/c24. The anti-adhesion percentages of S. Enteritidis, S. Infantis and S. Kentucky ST198 

to Caco-2 cells were 70.30 % ± 6.22, 86.57 % ± 9.22, and 79.54 % ± 9.26 respectively with no 

significant difference between them. 

L.salivarius A30/i26 and L. reuteri 1/c24 indicated low exclusion of the three serotypes from 

adhesion to caco-2 cells with S. Kentucky being significantly the least inhibited. 
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were observed from the initial first hours. However, CFUs from the co-cultures without agitation 

became significantly lower than those from co-cultures with agitation and from the control cultures 

at 8h. Indeed, the Salmonella count of co-cultures increased from 5 log10 to 6 log10 CFU /ml in 

the first 4h then the number of Salmonella sharply decreased to 2 log 10 and 1log 10 CFU/ml in 

the co-cultures of S. Infantis, S. Enteritidis, and  S. Kentucky respectively (Figure 19). There was 

a drastic reduction in value to no viable Salmonella cell count between 8 h and 24 h of analysis. 

At the end of the experiments, undetectable level (˂10 CFU/ml) was obtained. In the line, L. 

salivarius count decrease from 7 log10 to 6 log 10 at 8h then reduced to almost 4 log10 at 24h in 

monoculture (16/c6) and co-cultures (LAB/S.E., LAB/S.K, and LAB/S.I.). 

 In the second experiments, as shown in Figure 20, the Salmonella counts of co-cultures 

(S.E./LAB, S.K./LAB, and S.I./LAB) slightly increased from 5 log10 to 6 log10 CFU/ml in 4 h 

and remained constant until 8 h then decreased to an undetectable level (˂10 CFU/ml) at 24h. 

However, the Salmonella number in the pure culture (S.E., S.K., and S.I.) increased from 

approximately 5 log10 to 8 log10 CFU/ml at 8h and remain constant at the end of the experiments. 

The Lactobacillus count was not affected by the pathogens. There was no difference in the 

Lactobacillus count in the LAB-Salmonella mix (LAB/S.E., LAB/S.K, and LAB/S.I.)as compared 

with the Lactobacillus monoculture controls (16/c6). 

Monitoring the pH of the mono- and co-cultures revealed that the pH gradually decreased from 

approximately 6.97 to approximately 3.9 at 24h.  
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fed with corn-soy diet without antibiotics and additives, 70% of the ileum population belong to 

Lactobacillus sp. The use of antibiotics in broilers induced changes in the composition of the 

intestinal bacterial community, namely L. salivarius (Albazaz and Buyukunal Bal, 2016). In this 

regard, different experiments were conducted to cover microbiota variability in Lactobacillus 

strains.  

In most cases, phenotypic strain identification by API 50 CHL was found inconsistent with the 

16S rRNA sequencing method in accordance with other studies (Kao, Liu, and Shyu, 2007; 

Sakaridis et al., 2014). Lactobacilli population is large and have similar biochemical identifiers 

which caused a lack in distinguishing them by API 50 CHL test; yet, isolates that were identified 

as L. salivarius were also found to belong to the same species by sequencing. On the contrary, all 

Leuconostoc lactis were identified as L. salivarius by sequencing. Moreover, L. fermentum 

revealed to be L. reuteri by sequencing except two strains A33/i13 and 14/c13 that matching results 

were observed in the two methods in accordance with Sakaridis et al., (2014).  Most of the 

intestinal strains recognized as  L. fermentum are now classified as L. reuteri (Yadav et al., 2017), 

which is regarded as the most prevalent Lactobacillus species in the intestinal tract in poultry 

(Wang et al., 2014). Even though the studied Lactobacillus isolates were obtained from different 

experiments, low diversity was observed among species. Permanent strains (L. acidophilus, L. 

salivarius, and L. fermentum) were found in all birds of two days until the market age. The study 

of Babot et al. (2014) showed that the most common Lactobacillus species were L. crispatus, L. 

reuteri and, L. salivarius per our findings. 

As defined by the European Food Safety Authority, requirements for safety assessment of 

probiotics, such organism shall not possess acquired resistance determinants to antibiotics of 

medical importance (EFSA, 2012). Antibiotic-resistant is acquired by horizontal gene transfer 

between commensal flora of gastrointestinal and antibiotic-resistant pathogenic bacteria. In the 

present study, the fifty Lactobacilli strains tested for antibiotic susceptibility showed to be resistant 

to at least one antibiotic. High AMR was detected against all used antibiotics (ampicillin, 

chloramphenicol, kanamycin, streptomycin, and gentamicin) with less extend to erythromycin 

which was shown to be higher in farms treated with antibiotics. Lactobacilli have intrinsic 

resistance to aminoglycosides due to the absence of cytochrome-mediated electron transport, 

which mediates drug uptake (Charteris et al., 2016). In this line, aminoglycosides resistance strains 
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do not represent a significant safety concern, considering that intrinsic resistance presents a 

minimal potential for horizontal transfer (Fraqueza, 2015). 

On the contrary, these strains are usually susceptible to antibiotics that inhibit protein synthesis, 

such as chloramphenicol and erythromycin and to an antimicrobial that inhibit cell wall synthesis 

such as penicillin and β-lactamase inhibitors. The high incidence rate of ampicillin resistance 

(100%) recorded in this study is higher than that observed by other researchers (Dec et al., 2017). 

Due to the use of Macrolide–lincosamide– streptogramin (MLS) antibiotics (tylosin, tilmicosin, 

lincomycin, and virginiamycin) as growth promoters and/or as prophylactic agents in poultry 

rearing, gene transfer under antibiotic selective pressure facilitates the spread of MLS resistance 

in commensal bacteria. This various antibio-resistances have been observed from different sources 

(Sharma et al., 2014). 

In vitro tests have been used to assess the probiotic potential of lactobacilli. The production of 

hydrogen peroxide, organic acids by decreasing the pH and bacteriocin are a useful mode of action 

of Lactobacillus to inhibit Salmonella growth. However, in the present study, hydrogen peroxide 

production was unlikely to be the cause of the Salmonella inhibition in the agar diffusion test 

because all lactobacilli were grown under anaerobic conditions (Schillinger and Lucke, 1989). 

Furthermore, the well-diffusion antagonism method did not show any inhibition excluding the 

possibility of bacteriocins or bacteriocin-like being the reason for the Salmonella inhibition. The 

production of organic acids by decreasing the pH was likely being the cause of such effect 

(Adetoye et al., 2018). Although the bacteriocin or bacteriocin-like activity produced by LAB is 

commonly more effective against Gram-positive bacteria such as Listeria monocytogenes (Ramos 

et al., 2013), however, the inhibition of Salmonella (Gram-negative) has also been reported (Gupta 

and Tiwari, 2014). 

The adhesion behavior of bacteria is a complex multistep process; it includes non-specific and 

specific ligand-receptor mechanisms (García-Cayuela et al., 2014). The non- specific adhesion is 

controlled by physicochemical reactions of the cell wall including electrostatic and Van der Waals 

interactions as well as hydrophobic properties. These latter are the most reliable long-range non-

covalent interactions (Lewis acid-base) due to the surface proteins and (lipo) teichoic acids that 

cover the peptidoglycan and that by conferring a net negative bacterial surface charge in 

physiological conditions (Babot et al., 2014). According to the authors, this feature is strain- 
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specific and vary depending on the medium, age and surface structures of bacteria. Indeed, 

considerable variability of hydrophobicity capacity has been observed with 62 % of the isolates 

showing high hydrophobicity (70%). 

Auto-aggregation and co-aggregation of a probiotic strain are necessary for adhering to the 

intestinal tract and inhibiting the foodborne pathogens colonization by forming a defensive barrier 

(Kos et al., 2003). Moreover, the LAB co-aggregating ability might regulate pathogens 

microenvironment and stimulate the excretion of antimicrobial substances (Potočnjak et al., 2017). 

Lactobacillus sp. also favors many aggregation- promoting factors (APFs) involved in auto-

aggregation and/or adhesion in a strain-specific manner (Nishiyama et al., 2016). Furthermore, 

Exopolysaccharides (EPS) are believed to play an essential role in cell aggregation, biofilm 

formation and adhesion. Polak-Berecka et al., (2014) concluded that L. rhamnosus adherence/ or 

co-aggregation ability was strongly related to specific interactions based on surface proteins and 

specific fatty acids, whereas polysaccharides (hydrophilic nature) hinder adhesion and aggregation 

by masking protein receptors. 

Aggregation values increased over time typically at 20h of incubation in a strain-dependent way 

(Collado et al., 2007). Indeed, all our strains possessed this feature at 24h of the auto-aggregation 

assay. All isolates with (Agg+) phenotype were identified as L.salivarius in agreement with Ait 

Seddik et al. (2017) who demonstrated the highly auto-aggregation ability of this strain.  

According to Solieri et al. (2014), co-aggregation values below 20% are indicative of weak co-

aggregation capability. Our isolates differed in the co-aggregation ability (0 to 94.6 %) with 

indicating once again the strain-specific characteristics.  

Another probiotic protective mechanism involves competition for adhesion sites (Singh et al., 

2017). L. salivarius (16/c6, 16/i4, 14/i8, A30/i26), L. reuteri (1/c24), L. crispatus (16/c2), L. 

fermentum (12/c8) and 16/i10 were chosen according to their cell hydrophobicity and auto/co-

aggregation abilities. The adherence capacity differed significantly between the Lactobacillus 

strains which is consistent with other studies showing that this ability was species and strain-

dependent (Campana, Van Hemert and Baffone, 2017). The highest adhesion was shown by four 

strains of Lactobacillus; L. salivarius A30/i26 and 16/i4 being highly auto- aggregative and 

hydrophobic and L salivarius 16/c6 and L. reuteri 1/c24 showing a great co-aggregation and 

hydrophobicity abilities. L.crispatus 16/c2, L. reuteri 12/c8, L. salivarius 14/i8 revealed the lowest 
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adhesion percentage despite their high co-aggregation capacity. Interestingly, Lactobacillus 

sp.16/i10, a high hydrophobic strain, exhibited also a low adhesion percentage.  

The studied parameters (hydrophobicity, aggregation and co-aggregation, adhesion) illustrated no 

interrelation.  However, some mentioned that hydrophobic nature is related to the attachment to 

the epithelial cells (Handley et al., 1987, Salotti de Souza, 2018), but denied by others (Ramos et 

al., 2013). García-Cayuela et al., (2014) revealed a correlation between auto-aggregation and co-

aggregation in contradiction to our results. Del Re et al. (2000) proposed that auto-aggregation 

and hydrophobicity are independent characters, but both of them are necessary for adhesion. 

Multitude interrelated surface factors (Fatty acids, surface proteins, LPS, EPS) may have 

unpredictable effects on adherence, co-aggregation, and cell to cell interactions (Campana et al., 

2017).    

Survival in the GIT is a critical probiotic property. Bile tolerance is strain specific related to the 

hydrolase activity (Zommiti et al., 2017). By mimicking the GIT conditions, all the eight 

Lactobacillus strains were capable of growing at 0.1 % (w/v) of bile salt, but two L. salivarius 

A30/i26 and 16/i4 were affected by 0.3%. This concentration is considered as critical for resistant 

probiotic screening (Ramos et al., 2013). The bile salt hydrolyzes genes, bsh-1 and bsh-2, were 

found to be responsible for acid and bile tolerance in L. salivarius UCC118 (Adetoye et al., 2018). 

In favor of our findings, significant decreasing cell count in most of L. salivarius isolates has been 

observed when incubated with a high concentration of bile salts (0.5%) whereas most of L. reuteri 

isolates showed high tolerance (Abhisingha et al., 2018).  

 L. salivarius A30/i26 and 16/c6 and L. reuteri 1/c24 have been chosen for their high adhesion and 

were further evaluated for their abilities to compete/exclude the three Salmonella serotypes from 

epithelial adhesion using Caco2 as an experimental model. The inhibition of the pathogen adhesion 

by the three probiotic strains indicated a high variability in a strain-dependent property. L. 

salivarius 16/c6 significantly inhibited the adhesion of the three Salmonella serotypes to Caco-2 

cell monolayers exclusively by exclusion assay  in accordance with the study done by Campana, 

Van Hemert and Baffone, (2017). The authors suggested that L. salivarius W24 could prevalently 

inhibit the adhesion of pathogens to caco-2 cells exclusively by exclusion. Jankowska et al., (2008) 

showed that L. paracasei reduces Salmonella adhesion to caco-2 cells by 4 and 7-fold in 

competition and exclusion experiments respectively. However, the inhibition of  the attachment of 
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Salmonella to caco-2 cells by exclusion as well as by competition was frequently reported ( Jessie 

Lau and Chye,  2018; Singh et al., 2017) 

The inhibition of the three Salmonella serotypes by L. salivarius 16/c6 was similarly demonstrated 

by liquid co-culture assay and that by two different significant ways. When the co-cultures were 

tested without agitation, the kinetic growth results of Lactobacillus and the pathogens confirmed 

what has been previously distinguished by auto-aggregation and co-aggregation assay and showed 

the ability of these features over time. Indeed, the co-cultures and L. salivarius monoculture 

revealed a clear supernatant after 8h of incubation. Efficient aggregation and proper settling of 

flocs are essential in the management of effluent in the activated sludge process (Malik et al., 

2003). In this regard, this feature in our strain might be promising in the purification and 

decontamination of wastewater of the slaughterhouse mainly polluted by pathogens and organic 

materials. 

When L. salivarius 16/c6 and the three Salmonella serotypes were subjected to the same co-culture 

assay but with agitation, the reduction of Salmonella counts in mix cultures co-occurred with the 

decrease in pH in accordance with other studies (Abhisingha et al., 2018) until complete growth 

inhibition of the three Salmonella serotypes after 24 hours of co-incubation. Szala, Paluszak and 

Motyl, (2012) observed complete inactivation of Salmonella Heidelberg by L. plantarum and L. 

brevis after 48 h of co-culture whereas other study showed that L. plantarum was not active in co-

culture with E.coli (Ayeni et al., 2018). Salmonella could adapt to extreme acidic environments 

(pH= 3); some strains have acid-adaptation systems that enable them to survive at pH < 2 (Tan et 

al., 2014). Other non-negligible antimicrobial factors are involved in Salmonella inhibition, like 

competition for nutrients (Abhisingha et al., 2018) and the contact-dependent inhibition (CDI) 

mechanism (Bian et al., 2016). This latter, where contact cell to cell is needed could be explained 

by the exchange of information between bacteria such as conjugation, secretion systems, contact-

dependent inhibition, allolysis, and nanotubes. In fact, in our study, the low count has been 

observed at 4 h between Salmonella monocultures and mixed cultures.  

5. Conclusion 

The native poultry-derived L. salivarius16/c6 is a candidate to be a potent probiotic. Its use in 

dietary supplement reinforces the intestinal microbiota of newly hatched chicken due to its 
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viability, persistence in poultry intestinal tract and ability to block the adhesion sites against 

Salmonella sp. 

Adhesion of Lactobacillus strains to epithelial cells should also be investigated using the chicken 

LMH cell line to evaluate its probiotic potential in poultry. 

The study of these parameters is a preliminary tentative to discover native probiotic strains; 

however further in vivo experiments are necessary to confirm our hypothesis. 

 

References 

Abhisingha, M., Dumnil, J., Pitaksutheepong, C., 2018. Selection of Potential Probiotic 

Lactobacillus with Inhibitory Activity Against Salmonella and Fecal Coliform Bacteria. 

Probiotics Antimicrob. Proteins 10, 218–227. https://doi.org/10.1007/s12602-017-9304-8 

Adetoye, A., Pinloche, E., Adeniyi, B.A., Ayeni, F.A., 2018. Characterization and anti-Salmonella 

activities of lactic acid bacteria isolated from cattle faeces. BMC Microbiol. 18, 1–11. 

https://doi.org/10.1186/s12866-018-1248-y 

Ait Seddik, H., Bendali, F., Cudennec, B., Drider, D., 2017. Anti-pathogenic and probiotic 

attributes of Lactobacillus salivarius and Lactobacillus plantarum strains isolated from feces 

of Algerian infants and adults. Res. Microbiol. 168, 244–254. 

https://doi.org/10.1016/j.resmic.2016.12.003 

ALBAZAZ, R.I., BÜYÜKÜNAL BAL, E.B., 2016. Microflora of Digestive Tract in Poultry. 

Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilim. Derg. 

https://doi.org/10.18016/ksujns.40137 

Antunes, P., Mourão, J., Campos, J., Peixe, L., 2016. Salmonellosis: The role of poultry meat. 

Clin. Microbiol. Infect. 22, 110–121. https://doi.org/10.1016/j.cmi.2015.12.004 

Ayeni, A.O., Ruppitsch, W., Ayeni, F.A., 2018. Characterization of Bacteria in Nigerian Yogurt 

as Promising Alternative to Antibiotics in Gastrointestinal Infections. J. Diet. Suppl. 0211, 

1–11. https://doi.org/10.1080/19390211.2018.1440684 

Babot, J.D., Argañaraz-Martínez, E., Saavedra, L., Apella, M.C., Perez Chaia, A., 2014. Selection 



Chapter IV  
 

163 

 

of indigenous lactic acid bacteria to reinforce the intestinal microbiota of newly hatched 

chicken - relevance of in vitro and ex vivo methods for strains characterization. Res. Vet. Sci. 

97, 8–17. https://doi.org/10.1016/j.rvsc.2014.06.001 

Bian, X., Evivie, S.E., Muhammad, Z., Luo, G.W., Liang, H.Z., Wang, N.N., Huo, G.C., 2016. In 

vitro assessment of the antimicrobial potentials of Lactobacillus helveticus strains isolated 

from traditional cheese in Sinkiang China against food-borne pathogens. Food Funct. 7, 789–

797. https://doi.org/10.1039/c5fo01041a 

Buahom, J., Siripornadulsil, S., Siripornadulsil, W., 2018. Feeding with Single Strains Versus 

Mixed Cultures of Lactic Acid Bacteria and Bacillus subtilis KKU213 Affects the Bacterial 

Community and Growth Performance of Broiler Chickens. Arab. J. Sci. Eng. 43, 3417–3427. 

https://doi.org/10.1007/s13369-017-3045-6 

Campana, R., Van Hemert, S., Baffone, W., 2017. Strain-specific probiotic properties of lactic 

acid bacteria and their interference with human intestinal pathogens invasion. Gut Pathog. 9, 

1–12. https://doi.org/10.1186/s13099-017-0162-4 

Charteris, W.P., Kelly, P.M., Morelli, L., Collins, J.K., 2016. Gradient Diffusion Antibiotic 

Susceptibility Testing of Potentially Probiotic Lactobacilli. J. Food Prot. 

https://doi.org/10.4315/0362-028x-64.12.2007 

Chen, X., Xu, J., Shuai, J., Chen, J., Zhang, Z., Fang, W., 2007. The S-layer proteins of 

Lactobacillus crispatus strain ZJ001 is responsible for competitive exclusion against 

Escherichia coli O157:H7 and Salmonella Typhimurium. Int. J. Food Microbiol. 115, 307–

312. https://doi.org/10.1016/j.ijfoodmicro.2006.11.007 

CLSI, 2012. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow 

Aerobically ; Approved Standard — Ninth Edition. CLSI document M07-A9., Clinical and 

Laboratory Standars Institute. https://doi.org/10.4103/0976-237X.91790 

Collado, M.C., Surono, I., Meriluoto, J., Salminen, S., 2007. Indigenous dadih lactic acid bacteria: 

Cell-surface properties and interactions with pathogens. J. Food Sci. 72, 89–93. 

https://doi.org/10.1111/j.1750-3841.2007.00294.x 

Dec, M., Urban-Chmiel, R., Stȩpień-Pyśniak, D., Wernicki, A., 2017. Assessment of antibiotic 



Chapter IV  
 

164 

 

susceptibility in Lactobacillus isolates from chickens. Gut Pathog. 9, 1–16. 

https://doi.org/10.1186/s13099-017-0203-z 

Del Re, B., Sgorbati, B., Miglioli, M., Palenzona, D., 2000. Adhesion, autoaggregation and 

hydrophobicity of 13 strains of Bifidobacterium longum. Lett. Appl. Microbiol. 31, 438–442. 

https://doi.org/10.1046/j.1365-2672.2000.00845.x 

EfSA, 2012. EFSA Panel on Additives and Products or Substances used in Animal Feed 

(FEEDAP); Scientific Opinion on Guidance on the assessment of bacterial susceptibility to 

antimicrobials of human and veterinary importance. EFSA J. 10, 1–10. 

https://doi.org/10.2903/j.efsa.2012.2740 

European Food Safety Authority/ European Centre for Disease Prevention and Control, 2017. The 

European Union summary report on trends and sources of zoonoses, zoonotic agents and 

food-borne outbreaks in 2016. EFSA J. https://doi.org/10.2903/j.efsa.2017.5077 

FAO & WHO, 2002. Guidelines for the evaluation of probiotics in food. Food Agric. Organ. / 

World Heal. Organ. https://doi.org/10.1111/j.1469-0691.2012.03873 

Felsenstein, J., 1985. Confidence Limits on Phylogenies: an Approach Using the Bootstrap; 

Confidence Limits on Phylogenies: an Approach Using the Bootstrap. Evolution (N. Y). 39, 

783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x 

Feng, J., Wang, L., Zhou, L., Yang, X., Zhao, X., 2016. Using in vitro immunomodulatory 

properties of lactic acid bacteria for selection of probiotics against Salmonella infection in 

broiler chicks. PLoS One. https://doi.org/10.1371/journal.pone.0147630 

Ferri, M., Ranucci, E., Romagnoli, P., Giaccone, V., 2017. Antimicrobial resistance: A global 

emerging threat to public health systems. Crit. Rev. Food Sci. Nutr. 57, 2857–2876. 

https://doi.org/10.1080/10408398.2015.1077192 

Foley, S.L., Nayak, R., Hanning, I.B., Johnson, T.J., Han, J., Ricke, S.C., 2011. Population 

dynamics of Salmonella enterica serotypes in commercial egg and poultry production. Appl. 

Environ. Microbiol. 77, 4273–4279. https://doi.org/10.1128/AEM.00598-11 

Franco, A., Leekitcharoenphon, P., Feltrin, F., Alba, P., Cordaro, G., Iurescia, M., Tolli, R., 

D’Incau, M., Staffolani, M., Di Giannatale, E., Hendriksen, R.S., Battisti, A., 2015. 



Chapter IV  
 

165 

 

Emergence of a Clonal Lineage of Multidrug-Resistant ESBL-Producing Salmonella Infantis 

Transmitted from Broilers and Broiler Meat to Humans in Italy between 2011 and 2014. PLoS 

One 10, 1–15. https://doi.org/10.1371/journal.pone.0144802 

Fraqueza, M.J., 2015. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented 

sausages. Int. J. Food Microbiol. 212, 76–88. 

https://doi.org/10.1016/j.ijfoodmicro.2015.04.035 

García-Cayuela, T., Korany, A.M., Bustos, I., P. Gómez de Cadiñanos, L., Requena, T., Peláez, 

C., Martínez-Cuesta, M.C., 2014. Adhesion abilities of dairy Lactobacillus plantarum strains 

showing an aggregation phenotype. Food Res. Int. 57, 44–50. 

https://doi.org/10.1016/j.foodres.2014.01.010 

Gupta, A., Tiwari, S.K., 2014. Plantaricin LD1: A bacteriocin produced by food isolate of 

Lactobacillus plantarum LD1. Appl. Biochem. Biotechnol. 172, 3354–3362. 

https://doi.org/10.1007/s12010-014-0775-8 

Handley, P.S., Harty, D.W., Wyatt, J.E., Brown, C.R., Doran, J.P., Gibbs, A.C., 1987. A 

comparison of the adhesion, coaggregation and cell-surface hydrophobicity properties of 

fibrillar and fimbriate strains of Streptococcus salivarius. J Gen Microbiol. 

Jankowska, A., Laubitz, D., Antushevich, H., Zabielski, R., Grzesiuk, E., 2008. Competition of 

Lactobacillus paracasei with Salmonella enterica for adhesion to Caco-2 cells. J. Biomed. 

Biotechnol. 2008. https://doi.org/10.1155/2008/357964 

Jessie Lau, L.Y., Chye, F.Y., 2018. Antagonistic effects of Lactobacillus plantarum 0612 on the 

adhesion of selected foodborne enteropathogens in various colonic environments. Food 

Control 91, 237–247. https://doi.org/10.1016/j.foodcont.2018.04.001 

Kao, Y.T., Liu, Y.S., Shyu, Y.T., 2007. Identification of Lactobacillus spp. in probiotic products 

by real-time PCR and melting curve analysis. Food Res. Int. 40, 71–79. 

https://doi.org/10.1016/j.foodres.2006.07.018 

Kos, B., Šušković, J., Vuković, S., Šimpraga, M., Frece, J., Matošić, S., 2003. Adhesion and 

aggregation ability of probiotic strain Lactobacillus acidophilus M92. J. Appl. Microbiol. 94, 

981–987. https://doi.org/10.1046/j.1365-2672.2003.01915.x 



Chapter IV  
 

166 

 

Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: Molecular Evolutionary Genetics Analysis 

Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 33, 1870–1874. 

https://doi.org/10.1093/molbev/msw054 

Malik, A., Sakamoto, M., Hanazaki, S., Osawa, M., Suzuki, T., Tochigi, M., Kakii, K., 2003. 

Coaggregation among Nonflocculating Bacteria Isolated from Activated Sludge. Appl. 

Environ. Microbiol. 69, 6056–6063. https://doi.org/10.1128/aem.69.10.6056-6063.2003 

Muñoz-Quezada, S., Gomez-Llorente, C., Plaza-Diaz, J., Chenoll, E., Ramón, D., Matencio, E., 

Bermudez-Brito, M., Genovés, S., Romero, F., Gil, A., José Bernal, M., 2013. Competitive 

inhibition of three novel bacteria isolated from faeces of breast milk-fed infants against 

selected enteropathogens. Br. J. Nutr. 109, S63–S69. 

https://doi.org/10.1017/s0007114512005600 

Nishiyama, K., Sugiyama, M., Mukai, T., 2016. Adhesion Properties of Lactic Acid Bacteria on 

Intestinal Mucin. Microorganisms 4, 34. https://doi.org/10.3390/microorganisms4030034 

Ouwehand, A.C., Forssten, S., Hibberd, A.A., Lyra, A., Stahl, B., 2016. Probiotic approach to 

prevent antibiotic resistance. Ann. Med. 48, 246–255. 

https://doi.org/10.3109/07853890.2016.1161232 

Pan, D., Yu, Z., 2014. Intestinal microbiome of poultry and its interaction with host and diet. Gut 

Microbes 5. https://doi.org/10.4161/gmic.26945 

Polak-Berecka, M., Waśko, A., Paduch, R., Skrzypek, T., Sroka-Bartnicka, A., 2014. The effect 

of cell surface components on adhesion ability of Lactobacillus rhamnosus. Antonie van 

Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 106, 751–762. https://doi.org/10.1007/s10482-

014-0245-x 

Potočnjak, M., Pušić, P., Frece, J., Abram, M., Janković, T., Gobin, I., 2017. Three New 

Lactobacillus plantarum Strains in the Probiotic Toolbox against Gut Pathogen Salmonella 

enterica Serotype Typhimurium. Food Technol. Biotechnol. 55, 48–54. 

https://doi.org/10.17113/ftb.55.01.17.4693 

Ramos, C.L., Thorsen, L., Schwan, R.F., Jespersen, L., 2013. Strain-specific probiotics properties 

of Lactobacillus fermentum, Lactobacillus plantarum and Lactobacillus brevis isolates from 



Chapter IV  
 

167 

 

Brazilian food products. Food Microbiol. 36, 22–29. 

https://doi.org/10.1016/j.fm.2013.03.010 

Rantala, M., Nurmi, E., 1973. Prevention of the growth of Salmonella Infantis in chicks by the 

flora of the alimentary tract of chickens. Br. Poult. Sci. 14, 627–630. 

https://doi.org/10.1080/00071667308416073 

Regulation (EC) No 1831/2003, 2003. Regulation (EC) No 1831/2003 of the European parliament 

and of the council of 22 September 2003 on additives for use in animal nutrition. Off. J. Eur. 

Communities. 

Rosenberg, M., Gutnick, D., Rosenberg, E., 1980. Adherence of bacteria to hydrocarbons: A 

simple method for measuring cell-surface hydrophobicity. FEMS Microbiol. Lett. 9, 29–33. 

https://doi.org/10.1111/j.1574-6968.1980.tb05599.x 

Saint-Cyr, M.J., Haddad, N., Taminiau, B., Poezevara, T., Quesne, S., Amelot, M., Daube, G., 

Chemaly, M., Dousset, X., Guyard-Nicodème, M., 2017. Use of the potential probiotic strain 

Lactobacillus salivarius SMXD51 to control Campylobacter jejuni in broilers. Int. J. Food 

Microbiol. 247, 9–17. https://doi.org/10.1016/j.ijfoodmicro.2016.07.003 

Saitou, N.N.M., Nei, M., 1987. The Neighbor-joining Method: A New Method for Reconstructing 

Phylogenetic Trees’. Mol. Biol. Evol. 4, 406–25. 

Sakaridis, I., Ganopoulos, I., Soultos, N., Madesis, P., Tsaftaris, A., Argiriou, A., 2014. 

Identification of lactic acid bacteria isolated from poultry carcasses by high-resolution 

melting (HRM) analysis. Eur. Food Res. Technol. 238, 691–697. 

https://doi.org/10.1007/s00217-013-2134-3 

Schillinger, U., Lucke, F.K., 1989. Antimicrobial activity of Lactobacillus sake isolated from 

meat. Appl. Environ. Microbiol. 55, 1901–1906. 

Sharma, P., Tomar, S.K., Goswami, P., Sangwan, V., Singh, R., 2014. Antibiotic resistance among 

commercially available probiotics. Food Res. Int. 

https://doi.org/10.1016/j.foodres.2014.01.025 

Singh, T.P., Kaur, G., Kapila, S., Malik, R.K., 2017. Antagonistic activity of Lactobacillus reuteri 

strains on the adhesion characteristics of selected pathogens. Front. Microbiol. 8. 



Chapter IV  
 

168 

 

https://doi.org/10.3389/fmicb.2017.00486 

Solieri, L., Bianchi, A., Mottolese, G., Lemmetti, F., Giudici, P., 2014. Tailoring the probiotic 

potential of non-starter Lactobacillus strains from ripened Parmigiano Reggiano cheese by in 

vitro screening and principal component analysis. Food Microbiol. 38, 240–249. 

https://doi.org/10.1016/j.fm.2013.10.003 

Son, S.H., Jeon, H.L., Yang, S.J., Lee, N.K., Paik, H.D., 2017. In vitro characterization of 

Lactobacillus brevis KU15006, an isolate from kimchi, reveals anti-adhesion activity against 

foodborne pathogens and antidiabetic properties. Microb. Pathog. 112, 135–141. 

https://doi.org/10.1016/j.micpath.2017.09.053 

Spivey, M.A., Dunn-Horrocks, S.L., Duong, T., 2014. Epithelial cell adhesion and gastrointestinal 

colonization of Lactobacillus in poultry. Poult. Sci. https://doi.org/10.3382/ps.2014-04076 

Szala, B., Paluszak, Z., Motyl, I., 2012. Antagonistic effect of lactic acid bacteria on Salmonella 

Senftenberg in mixed cultures. Polish J. Environ. Stud. 21, 1399–1403. 

Tan, S.M., Lee, S.M., Dykes, G.A., 2014. Buffering effect of chicken skin and meat protects 

Salmonella enterica strains against hydrochloric acid but not organic acid treatment. Food 

Control 42, 329–334. https://doi.org/10.1016/j.foodcont.2014.02.031 

Vineetha, P.G., Tomar, S., Saxena, V.K., Susan, C., Sandeep, S., Adil, K., Mukesh, K., 2016. 

Screening of Lactobacillus isolates from gastrointestinal tract of guinea fowl for probiotic 

qualities using in vitro tests to select species-specific probiotic candidates. Br. Poult. Sci. 57, 

474–482. https://doi.org/10.1080/00071668.2016.1180667 

Wang, L., Yang, M., Yang, Y., Hu, Y., Fang, M., Chen, Y., 2014. Characterization of the most 

abundant Lactobacillus species in chicken gastrointestinal tract and potential use as probiotics 

for genetic engineering. Acta Biochim. Biophys. Sin. (Shanghai). 46, 612–619. 

https://doi.org/10.1093/abbs/gmu037 

Yadav, A.K., Tyagi, A., Kumar, A., Panwar, S., Grover, S., Saklani, A.C., Hemalatha, R., Batish, 

V.K., 2017. Adhesion of lactobacilli and their anti-infectivity potential. Crit. Rev. Food Sci. 

Nutr. https://doi.org/10.1080/10408398.2014.918533 

Zommiti, M., Connil, N., Hamida, J. Ben, Ferchichi, M., 2017. Probiotic Characteristics of 



Chapter IV  
 

169 

 

Lactobacillus curvatus DN317, a Strain Isolated from Chicken Ceca. Probiotics Antimicrob. 

Proteins 9, 415–424. https://doi.org/10.1007/s12602-017-9301-y 

 

 

 

 



 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion and Perspectives



 Conclusion and Perspectives  

172 

 

The issue of salmonellosis is a major problem worldwide including Lebanon. According to MoPH, 

Salmonella is considered the main contributor in sporadic food poisoning and outbreaks related to 

chicken. Strategies and plans against Salmonella infection are hampered due to the lack of 

sufficient data on Salmonella prevalence, circulation serotypes and their antibiotic resistance 

patterns from farm to fork chain. These information are the basis for any local normative decree 

(Lebanese standards and MoA directions) or common regional within the Arab League “Arab Food 

Safety Initiative For Trade Facilitation” (SAFE)) for the prevention and control of salmonellosis 

in human and Salmonella dissemination in the poultry industry. This is the first integrated approach 

in Lebanon trying to answer decision makers concerns on Salmonella control. This project 

discovers the possibility of the use of native Lactobacillus as probiotic against this pathogen.  

Not only a high rate of Salmonella incidence was detected, but also a multitude of MDR strains 

and clones against critical antibiotics were observed along the food chain. S. Enteritidis is highly 

predominant with human illnesses attributed to only one poultry-associated clone that has been 

persistent since 2010 in Lebanon. Moreover, this is the first time that AMR and MDR S. Kentucky 

and S. Infantis are reported. This study confirms the spread of the notorious highly drug-resistant, 

CipR S. Kentucky ST198 in both a major slaughterhouse and retail market. These strains were 

ESBLs and cephamycinase-producers emphasizing their high spreading in the Mediterranean 

basin. A native poultry-derived Lactobacillus with a high potential probiotic characteristic against 

Salmonella was isolated, identified and characterized. 

These data are sufficient enough to establish a Salmonella risk assessment and hence eight years 

control strategies and plans. The collection of these Salmonella strains in this study will enrich our 

established Salmonella repository since the sixties of the last century. These conserved strains 

constitute a national reference on Salmonella basis for further analysis like complete genotyping. 

More studies may include but not limited to strain serotypes, subtypes, virulence and antimicrobial 

resistance profile and evolution trend. A WGS of S. Infantis will show a clear vision of relatedness 

of this strain to the Hungarian clone B circulating in Europe. Comparative work with other national 

Gene Bank might be also valuable globally. 

 

This valued information might serve international strategies carried out by international 

organizations such as WHO, FAO and OIE. 
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This work opens the way for a global approach for combating Salmonella dissemination. A ‘One 

Health’ approach might include integrated surveillance (collaboration between human health, food 

safety and animal health) and containment plans (farms, retail and consumers) to reduce or 

minimize Salmonella transmission. Continuous surveillance and monitoring to detect the 

emergence of any serotype or new clone resistant Salmonella along the poultry food chain is 

critical to establish an effective control campaign on national, regional and global level especially 

in the era of world Trade organization legislations. 

Knowledge of the diversity of circulating strains and their resistance patterns can guide the 

development of poultry stakeholder’s awareness programs on how to prevent this pathogen. 

It is very crucial to adopt Lebanese legislative decrees on antibiotics use and handling in poultry 

to reduce and minimize the selection of resistant Salmonella (from the top of the poultry production 

pyramid and within flocks). Especially those critically important for human treatment like 

fluoroquinolone and ESC. On the other hand, alternative solution in Salmonella control should be 

more evaluated like the use of live probiotic in poultry feeds. 

In fact, this study is a preliminary tentative to discover native probiotic strains; however further 

experiments are necessary to confirm our hypothesis like: 

- Adhesion of Lactobacillus strains to epithelial cells using the chicken LMH cell line to 

evaluate its probiotic potential in poultry. 

- In vivo experimentation on broiler and layer hens fed on the native proposed probiotic 

matrix and compared to control group. 
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ANNEXE 1 

 

16S rRNA gene 

sequencing 

APi 50 cHL 

identification 

Visuel 

aggregation 

Auto-

aggregation 

4h % 

Auto-

aggregation 

24h % 

Hydro-

phobicity  % 

co-aggregation 

with S. 

infantis% 

co-aggregation 

with S. 

Enteritidis% 

co-aggregation 

with S. 

Kentucky% 

L.  crispatus 16/c2 L. acidophilus Agg+/Agg- 16.06  ±  0.18 54.79  ±  5.05 85.42  ±  1.78 75.06 89.36 69.66 

L. salivarius 16/c6 L. salivarius Agg- 8.47  ±  3.76 94.42  ±  0.13 91.91  ±  3.78 69.55 71.07 94.55 

L. reuteri 16/c7 L. fermentum1 Agg+/Agg- 16.34  ±  2.64 92.12  ±  4.01 90.49  ±  0.47 45.84 60.16 65.23 

L. reuteri 16/c8 L. fermentum1 Agg- 7.77  ±  0.76 67.98  ±  3.74 15.52  ±  2.25 47.93 51.03 51.97 

L. salivarius 16/i4 
Leuconostoc 
lactis 

Agg+ 76.93  ±  4.47 
89.81  ±  
12.72 

79.13  ±  3.19 80.45 82.49 79.94 

Enterococcus 
faecalis16/i9 

L. plantarum2 Agg- 7.38  ±  3.24 89.22  ±  1.5 24.62  ±  0.98 75.43 53.11 42.56 

16/i10 (Not -typed) 
Lactococcus 
raffinolactis ou L. 
crispatus 

Agg+/Agg- 9.24  ±  2.09 80.01  ±  1 97.99  ±  0.57 34.32 45.60 63.51 

L.  Salivarius 15/c10R L. salivarius Agg+/Agg- 18.8  ±  3.27 0.0 96.58  ±  4.27 0.00 0.00 0.00 
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L. reuteri 15/c10 L. brevis2 Agg+/Agg- 25.35  ±  2.53 84.95  ±  2.51 44.63  ±  4.26 18.11 9.40 11.18 

L. salivarius 14/c12 
Leuconostoc 
lactis 

Agg+/Agg- -3.64  ±  6.41 52.37  ±  6.35 72.71  ±  0.48 0.00 21.06 0.00 

L. fermentum 14/c13 L. fermentum1 Agg- 24.26  ±  3.27 61.93  ±  0.17 82.57  ±  2.21 59.15 52.64 63.27 

L. salivarius 14/i8 L. salivarius Agg+/Agg- 20.59  ±  4.15 75.4  ±  2.14 81.3  ±  1.49 70.35 62.30 47.54 

 14/i15 (Not-typed) L. salivarius Agg+/Agg- 40.64  ±  6.1 96.75  ±  0.08 0  ±  0 26.50 18.26 2.04 

L. salivarius 13/c7 L. salivarius Agg+/Agg- 18.64  ±  7.78 88.29  ±  4.98 0  ±  0 55.61 55.73 41.42 

L. salivarius 13/c13 L. fermentum1 Agg+/Agg- 26.72  ±  4.84 95.28  ±  4.22 18.63  ±  3.81 40.36 39.95 44.14 

L. salivarius 12/c4-1 
Leuconostoc 
lactis 

Agg+/Agg- 24.92  ±  1.96 94.97  ±  2.74 82.87  ±  0.73 49.58 30.50 17.32 

L. salivarius 12/c6 
Leuconostoc 
lactis  

Agg+/Agg- 27.92  ±  2.91 68.65  ±  2.3 96.75  ±  1.23 47.52 62.42 63.29 

L. reuteri 12/ c8 L fermentum1 Agg+/Agg- 36.77  ±  5.86 72.43  ±  2.28 51.01  ±  1.22 73.87 83.47 80.00 

L. reuteri 12/c12 L. fermentum1 Agg+/Agg- 9.03  ±  0.35 38.93  ±  4.19 1.8  ±  2.55 13.07 6.02 19.13 
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L. salivarius 12/c18 L.  salivarius Agg+/Agg- 24.19  ±  1.92 91.21  ±  0.47 82.49  ±  3.18 23.63 23.03 17.04 

L. reuteri 11/i4 L. fermentum1 Agg+/Agg- 17.35  ±  4.76 86.64  ±  2.07 21.31  ±  2.99 2.55 7.53 16.24 

L. reuteri 11/ i6 L. fermentum1  Agg+/Agg- 26.73  ±  2.44 73.79  ±  0.87 24.5  ±  3.67 63.37 60.31 63.22 

Enterococcus faecalis 
11/c1 

L. delbrueckii ssp 
delbrueckii 

Agg- 2.97  ±  1.83 84.62  ±  1.36 0  ±  0 66.71 57.06 53.26 

L.  reuteri 10/c4 L. fermentum2 Agg- 7.17  ±  6.64 
82.25  ±  
14.37 

78.42  ±  2.28 9.35 14.94 8.21 

L. salivarius 10/c8 L. salivarius Agg+/Agg- 53.47  ±  1.72 96.12  ±  1.22 2.02  ±  2.86 8.37 0.00 15.75 

L. reuteri 10/i8 L. fermentum1 Agg+/Agg- 21.23  ±  6.66 82.85  ±  5.87 0  ±  0 16.10 11.60 14.25 

L. reuteri 9/i44 L. fermentum1 Agg+/Agg- 47.48  ±  2.15 95.23  ±  3.9 0.03  ±  0.04 12.99 1.64 6.35 

L. reuteri 7/c7 L. fermentum1 Agg+/Agg- 21.06  ±  2.97 95.56  ±  1.69 96.66  ±  1.38 5.62 5.76 9.44 

L. reuteri 6/i10 L. fermentum1 Agg+/Agg- 83.61  ±  3.24 98.96  ±  0.45 90.9  ±  0 0.00 0.00 0.00 
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L. reuteri 4/i14 L. brevis Agg+/Agg- 
64.22  ±  
12.07 

98.92  ±  0.86 50.19  ±  0.03 40.78 49.50 44.47 

L. reuteri 3/i15 L. fermentum1  Agg+/Agg- 65.49  ±  4.59 95.59  ±  2.97 76.72  ±  9.77 53.38 67.75 76.55 

L. reuteri 2/i33 L. fermentum1 Agg+/Agg- 32.95  ±  4.17 99.12  ±  0.46 79.54  ±  5.41 28.16 28.17 29.46 

L. reuteri 2/c2 L. fermentum1 Agg+/Agg- 49.28  ±  2.9 99.03  ±  0.37 97.71  ±  1.11 33.50 25.46 31.22 

L. reuteri 1/c24 L. fermentum1 Agg+/Agg- 13.74  ±  2.65 98.02  ±  0.6 89.57  ±  9.52 62.47 50.43 58.93 

A30/c2 
Leuconostoc 
lactis  

Agg+/Agg- 41.89  ±  0 99.07  ±  0.27 94.75  ±  0 25.26 32.91 37.23 

L. salivarius A30/i26 
Leuconostoc 
lactis  

Agg+ 76.07  ±  5.56 99.48  ±  0.08 98.42  ±  1.6 25.71 49.54 60.00 

L. fermentum A33/i13 L. fermentum1 Agg- 2.33  ±  3.3 61.38  ±  9.77 0  ±  0 46.47 24.77 38.37 

L. reuteri A35/c6 L. fermentum1 Agg+/Agg- 32.25  ±  5.22 98.75  ±  0.25 79.85  ±  2.51 20.00 19.10 15.38 

L. salivarius A39/c4 L. salivarius Agg+ 70.13  ±  1.52 98.04  ±  0.34 70.86  ±  5.13 12.17 0.00 0.00 

L.  salivarius A48/i11 L. salivarius Agg+/Agg- 21.88  ±  2.95 99.24  ±  0.16 96.8  ±  1.55 0.00 0.00 0.00 
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L.  reuteri A41/c1 L. fermentum1 Agg+/Agg- 18.86  ±  1.53 99.01  ±  0.84 90.52  ±  4.35 0.00 13.01 14.52 

L. salivarius A41/c6 L. salivarius Agg+ 66.4  ±  15.24 99.2  ±  0.31 73.37  ±  8.5 1.98 0.00 0.00 

L. salivarius A41/c8 L. salivarius Agg+/Agg- 38.7  ±  2.95 98.93  ±  0.46 46.85  ±  13.54 0.00 3.25 3.76 

L. salivarius A42/c14 
Leuconostoc 
lactis  

Agg+/Agg- 24.02  ±  2.18 99.36  ±  0.34 76.17  ±  2.38 29.64 1.08 0.00 

L. salivarius A42/c15 
Leuconostoc 
lactis 

Agg+/Agg- 23.13  ±  4.09 99.21  ±  0.07 49.32  ±  1.44 34.92 74.58 24.28 

L.  reuteri A42/i7 L. fermentum 1 Agg+/Agg- 21.5  ±  4.07 97.43  ±  0.52 90.24  ±  0.69 42.47 10.65 18.16 

L. salivarius A 53/i3 L. salivarius Agg+ 66.4  ±  13.07 99.26  ±  0.13 99.7  ±  0.1 47.15 54.43 42.20 

L. reuteri A54/c1 L. fermentum 1 Agg+/Agg- 47.89  ±  1.99 99.22  ±  0.15 86.9  ±  6.62 2.33 0.00 18.12 
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Supplementary Data: S1  

 SPI-2  SPI-3  C63PI SPI-1 SPI-14  SPI-14  

 S. Typhimurium 
LT2 

S. Choleraesuis 
SC-B67 

S. Typhimurium 
SL1344 

S. Choleraesuis 
SC-B67 

S. Gallinarum 
SGC-8 

S. Gallinarum 
SGA-8 

17-70328 (K12)             

17-70460 (K24)             

17-70462 (K31)             

17-70464 (K32)             

17-70468 (K38)             

17-70469 (K43)             

17-70472 (K48)             

17-70474 (A66C)             
       

 SPI-5  SPI-13  SPI-13  SPI-13 SPI-4    

 S. Typhimurium 
LT2 

S. Gallinarum 
SGD-3 

S. Gallinarum 
SGG-1 

S. Gallinarum 
SGA-10 

S. Thypi CT18  

17-70328 (K12)            

17-70460 (K24)            

17-70462 (K31)            

17-70464 (K32)            

17-70468 (K38)            

17-70469 (K43)            

17-70472 (K48)            

17-70474 (A66C)            

       

  ID length    

   100% 100%    

   <100% 100%    

   <100% <100%    
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Supplementary Data: S2  

 

   Sample 

   17/7032
8 (K12) 

17/7046
0 (K24) 

17/7046
2 (K31) 

17/7046
4 (K32) 

17/7046
8 (K38) 

17/7046
9 (43) 

17/7047
2 (K48) 

17/7047
4 

(A66C) 

DNA 
translation 

number  
Gene name 

rev/    
unre

v 
                

gar73237 
Respiratory nitrate reductase 2 
alpha chain narZ 
NGUA18_01113 

unre
v 

vs vs vs vs vc vs   vs 

gar73236 
Respiratory nitrate reductase 2 
beta chain narY 
NGUA18_01112 

unre
v 

vs vs vs vs vs vs gri vs 

aax65484 
Nitrate reductase 2, gamma 
subunit narV SCH_1578 

unre
v 

gr gr gr gr gri gri   gri 

kto49248 

Nitrate reductase subunit alpha 
narZ A7S24_23185 
A7S72_00240 CBI64_02880 
IN36_11310 IN69_03795 
IN77_19665 IN95_16340 

unre
v 

vc vc vc vc vc vc   vc 

pap00907 Propionate--CoA ligase 
unre

v 
vs vs vs vs vs vs   vs 

gar74426 2-methylcitrate dehydratase 
unre

v 
vs vs vs vs vc vs   vs 

gar74425 Citrate synthase 
unre

v 
vs vs vs vs vs vs vc vs 

gar74424 

2-methylisocitrate lyase (2-
MIC) (MICL) (EC 4.1.3.30) 
((2R,3S)-2-methylisocitrate 
lyase) 

unre
v 

vs vs vs vs vs vs vs vs 

esg61438 
Beta-methylgalactoside 
transporter inner membrane 
component 

unre
v 

vc vc vc vc vc vc   vc 
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gar72600 
Galactose/methyl galactoside 
import ATP-binding protein 
MglA (EC 3.6.3.17) 

unre
v 

vs vs vs vs vs vs   vs 

gar72599 
D-galactose-binding 
periplasmic protein 

unre
v 

vs vs vs vs vs vs   vs 

aal09832 
Serine/threonine-protein 
phosphatase 2 (EC 3.1.3.16) 

rev vc vc vc vc vc vc gri vc 

cfw71692 
Nucleation component of 
curlin monomers 

unre
v 

vc vc vc vc vc vc vc vc 

gar73668 
Curlin (Major curlin subunit 
CsgA) 

unre
v 

vs vs vs vs vs vs vs vc 

gar73235 
Putative nitrate reductase 
molybdenum cofactor 
assembly chaperone NarW 

unre
v 

            vs   

cnt79762 
Propionate--CoA ligase (EC 
6.2.1.1) (EC 6.2.1.17) 

unre
v 

            gri   

phi63044 Propionate--CoA ligase 
unre

v 
                

phi63043 2-methylcitrate dehydratase 
unre

v 
                

aav78238 Citrate synthase 
unre

v 
                

phi63041 

2-methylisocitrate lyase (2-
MIC) (MICL) (EC 4.1.3.30) 
((2R,3S)-2-methylisocitrate 
lyase) 

unre
v 

                

aal21094 

D-galactose-binding 
periplasmic protein (GBP) (D-
galactose/ D-glucose-binding 
protein) (GGBP) 

rev                 

phi63439 
Galactose/methyl galactoside 
import ATP-binding protein 
MglA (EC 3.6.3.17) 

unre
v 

                

phi63438 
Beta-methylgalactoside 
transporter permease 

unre
v 

                

aav77238 
Respiratory nitrate reductase 2 
beta chain 

unre
v 
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phi60655 Nitrate reductase 
unre

v 
                

phi56380 Nitrate reductase 
unre

v 
                

aal20074 
Major curlin subunit (Fimbrin 
SEF17) 

rev                 

acn46709 
Nucleation component of 
curlin monomers 

unre
v 

                

pap02408 Effector protein YopJ 
unre

v 
vs vs vs vs vs vs vc vs 

gar75962 Cell invasion protein SipA 
unre

v 
vs vs vs vs vs vs   vs 

akg95516 Invasion A (Fragment) sipA 
unre

v 
vs vs vs vs vs vs   vs 

gar72945 
Guanine nucleotide exchange 
factor sopE2  

unre
v 

vs vs vs vs   vs   vs 

aal23387 
Putative fimbrial usher protein 
stjB STM4572 

unre
v 

vc vc vc vc vc vc   vc 

aad41067 
Membrane protein (Permease) 
(SitC) 

unre
v 

vc vc vc vc vc vc vc vc 

agq74824 
Type-1 fimbrial protein subunit 
A fimA CFSAN002050_25170 

unre
v 

vc vc vc vc vc vc vc vc 

aih08902 LpfD (Fragment) 
unre

v 
vc vc vc vc vc vc   vc 

ajq18275 
Pathogenicity island 2 effector 
protein SseC (Translocation 
machinery component) 

unre
v 

vc vc vc vc vc vc vc vc 

aav78334 
Putative fimbrial protein tcfA 
SPA2455 

unre
v 

vc vc vc vc vc vc vc vc 

avd49329 
Type III secretion system 
effector SteB 

unre
v 

vc vc vc vc vc vc vc vc 

ege33635 
Dipeptidase (EC 3.4.-.-) pipD 
SG9_1005 

unre
v 

vc vc vc vc vc vc   vc 

avd46272 
Type III secretion system 
effector protease PipA 

unre
v 

vc vc vc vc vc vc vc vc 

adx19548 
Putative transcriptional 
regulator MarT 

unre
v 

vc vc vc vc vc vc vc vc 
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aty38589 iroN 
unre

v 
vc vc vc vc   vc   vc 

cbw18209 
Type III secretion system 
effector protein sseK2 
SL1344_2113 

unre
v 

vc vc vc vc   vc   vc 

abl63534 FimA (Fragment) 
unre

v 
vc vc vc vc vc vc   vc 

aax66796 
Outer membrane usher protein 
steB SCH_2890 

unre
v 

vc vc vc vc vc vc   vc 

ajq16843 
Giant non-fimbrial adhesion 
protein (Ig-like domain repeat 
protein) siiE CD793_02290 

unre
v 

gri gri gri gri gri gri   gri 

aal20547 
Secreted effector protein SteB 
(Salmonella translocated 
effector B) 

rev                 

ege36237 Protein lpfD 
unre

v 
                

aao70134 
Putative fimbrial protein 
(TsaA) tsaA tcfA t2550 

unre
v 

                

acy87732 
Dipeptidase (EC 3.4.-.-) pipD 
STM14_1240 

unre
v 

                

aav77681 
Uncharacterized protein pipA 
SPA1763 

unre
v 

                

ajq16893 
Giant non-fimbrial adhesion 
protein siiE 

unre
v 

                

aty38582 iroN 
unre

v 
                

aax65758 
Guanine nucleotide exchange 
factor sopE2 SCH_1852 

unre
v 

                

aaf00615 

E3 ubiquitin-protein ligase 
SspH2 (EC 2.3.2.27) (RING-
type E3 ubiquitin transferase 
SspH2) (Salmonella secreted 
protein H2) (Secreted effector 
protein sspH2) 

rev                 

aax66702 
Iron transporter: fur regulated 
sitC SCH_2796 

unre
v 

                



  

185 

 

asz36104 
Effector protein YopJ avrA 
CK947_05725 

unre
v 

                

ajq18182 
Translocation machinery 
component sseC 

unre
v 

                

aal58882 
Cell invasion protein SipA 
(Effector protein SipA) 

rev                 

caa57991 
Cell invasion protein SipA 
(Effector protein SipA) 

rev             vc   

cnt80311 
Outer membrane usher protein 
steB ERS008207_01012 

unre
v 

            vc   

cnu41015 
Dipeptidase (EC 3.4.-.-) pipD 
ERS008198_02707 

unre
v 

            gri   

 

 

 ID length   

  100% 100% vs= dark green 

  <100% 100% vc = light green 

  <100% <100% gri= grey  

empty boxes mean no gene found  
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