
 
 

 

 

 

THE EVOLVING BRAND-CONSUMER RELATIONSHIP – THE IMPACT 

OF BUSINESS CYCLES, DIGITAL PLATFORMS, AND  

NEW ADVERTISING TECHNOLOGIES 
 

 

 

Inauguraldissertation 

zur 

Erlangung des Doktorgrades 

der  

Wirtschafts- und Sozialwissenschaftlichen Fakultät 

der 

Universität zu Köln 

 

 

 

2019 

 

 

 

vorgelegt von 

Julian Raphael Klaus Wichmann, M.Sc. 

aus 

Ostercappeln 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Referent: Prof. Dr. Werner Reinartz 

Korreferent:  Prof. Dr. Hernán Bruno 

Tag der Promotion : 12.02.2020 
 



I 
 

ACKNOWLEDGEMENTS 
 

I wrote this dissertation in my time as research assistant and PhD student at the Chair for 

Retailing and Customer Management at the University of Cologne. I am deeply grateful to the 

chair holder and my supervisor Prof. Werner J. Reinartz who was – and continuous to be – a 

great mentor providing me with valuable insights and outstanding opportunities.  

I would also like to thank co-examiner Prof. Hernán Bruno for his careful review of this 

dissertation as well as Prof. Christian Schwens for chairing my dissertation defense.  

My gratitude also goes to my (former) colleagues / co-authors / friends Thomas Scholdra, 

Manuel Berkmann, Mark Elsner, Maren Becker, Nico Wiegand, Monika Imschloß, Vanessa 

Junc, Annette Ptok, and Patrizia Goltz for the insightful conversations, collegiality, and support 

over the years. 

Additionally, I would like to thank Lisa Pelzer and Katharina Hilbk for their contribution in the 

data collection for studies one and three in this dissertation's third essay as well as the student 

assistants who worked at the chair over the years.  

The endeavor of writing a dissertation does not only demand academic skills but also challenges 

mind and spirit. Therefore, I am grateful to my loving parents and siblings as well as for my 

great friends that have been accompanying me since my undergraduate studies, high school, 

and even elementary school days – our inspiring balcony discussions, mountain bike tours, and 

trips abroad allowed me to recharge, have a laugh, and keep my sanity. 

Finally, I want to thank the woman by my side that patiently and with great dedication supported 

me day after day. Thank you for always having my back throughout this journey, for your 

sacrifices, your love, and your encouragement. You have been the best companion I could have 

hoped for and I am looking forward to the path that lies ahead of us. 

  



II 
 

CONTENTS 
 

 

LIST OF FIGURES ....................................................................................................................... VI	

LIST OF TABLES ....................................................................................................................... VII	

 

SYNOPSIS  ................................................................................................................................ 1	

2.1	 Essay I: Shifts Beneath the Surface: How Micro- and Macroeconomic Conditions 
Affect FMCG Shopping Strategies .............................................................................. 8	

2.2	 Essay II: Transcending the Boundaries of Relationship Marketing: How Digital 
Platforms Create Value and Shape Consumers’ Lifeworld and Habitus ................... 10	

2.3	 Essay III: Skippable and Non-Skippable Ads – The Yin and Yang of Online Video 
Advertising ................................................................................................................. 12	

REFERENCES SYNOPSIS ............................................................................................................. 15	

 

ESSAY I: SHIFTS BENEATH THE SURFACE: HOW MICRO- AND 

MACROECONOMIC CONDITIONS AFFECT FMCG SHOPPING STRATEGIES ....... 20	

ABSTRACT  .............................................................................................................................. 20	

2.1	 Related Literature ....................................................................................................... 24	

2.2	 Conceptual Framework .............................................................................................. 27	

3.1	 Research Context ........................................................................................................ 31	

3.2	 Data Preparation ......................................................................................................... 32	

3.3	 Variable Operationalization ....................................................................................... 34	

4.1	 Initial State Model ...................................................................................................... 37	

4.2	 Transition Model ........................................................................................................ 38	

4.3	 Response Model ......................................................................................................... 39	



III 
 

5.1	 Model Estimation and Selectin ................................................................................... 40	

5.2	 Identified Shopping Strategies Based on Household Shopping Preferences ............. 41	

5.3	 Household Strategy Switching Due to Changing Micro- and Macroeconomic 
Conditions .................................................................................................................. 45	

5.4	 Sensitivity of Shopping Strategies to Changes in Micro- and Macroeconomic 
Conditions .................................................................................................................. 51	

6.1	 Shopping Strategies Based on Households’ Shopping Preferences ........................... 54	

6.2	 Switching Strategies in Response to Changing Conditions ....................................... 55	

6.3	 Sensitivity of Shopping Strategies to Changes in Conditions .................................... 58	

7.1	 Managerial Implications ............................................................................................. 59	

7.2	 Limitations and Directions for Research .................................................................... 62	

REFERENCES ESSAY I ................................................................................................................ 64	

APPENDIX ESSAY I .................................................................................................................... 68	

 

ESSAY II: TRANSCENDING THE BOUNDARIES OF RELATIONSHIP MARKETING: 

HOW DIGITAL PLATFORMS CREATE VALUE AND SHAPE CONSUMERS’ 

LIFEWORLD AND HABITUS ............................................................................................... 81	

ABSTRACT  .............................................................................................................................. 81	

3.1	 Transactional Value Creation ..................................................................................... 93	

3.2	 Relational Value Creation .......................................................................................... 96	

6.1	 Gamification ............................................................................................................. 110	

6.2	 Nudging .................................................................................................................... 111	



IV 
 

6.3	 Behavioral Engineering ............................................................................................ 113	

6.4	 Openness and Control .............................................................................................. 113	

7.1	 Implications for Platform Brands ............................................................................. 116	

7.2	 Implications for Consumers, Regulatory Entities, and Society ................................ 119	

REFERENCES ESSAY II ............................................................................................................. 122	

 

ESSAY III: SKIPPABLE AND NON-SKIPPABLE ADS – THE YIN AND YANG OF 

ONLINE VIDEO ADVERTISING ....................................................................................... 131	

ABSTRACT  ............................................................................................................................ 131	

4.1	 Entertainment and Attitude towards the Ad ............................................................. 140	

4.2	 Intrusiveness and Control ......................................................................................... 142	

4.3	 Optimizing Skippable Ads ....................................................................................... 144	

6.1	 Design ....................................................................................................................... 148	

6.2	 Data .......................................................................................................................... 149	

6.3	 Measures ................................................................................................................... 149	

6.4	 Results ...................................................................................................................... 150	

6.5	 Discussion ................................................................................................................ 154	

7.1	 Design ....................................................................................................................... 155	

7.2	 Data .......................................................................................................................... 156	

7.3	 Measures ................................................................................................................... 156	

7.4	 Results ...................................................................................................................... 157	

7.5	 Discussion ................................................................................................................ 164	



V 
 

8.1	 Design ....................................................................................................................... 165	

8.2	 Data .......................................................................................................................... 166	

8.3	 Measures ................................................................................................................... 166	

8.4	 Results ...................................................................................................................... 166	

8.5	 Discussion ................................................................................................................ 168	

REFERENCES ESSAY III ........................................................................................................... 171	

APPENDIX ESSAY III ................................................................................................................ 178	

	

 

 
 
  



VI 
 

LIST OF FIGURES 

SYNOPSIS 

Figure 1: Illustration of the Past Decades’ Economic and Technological Disruptions ............. 2	
Figure 2: Classification of the Dissertation Projects .................................................................. 7	
 
 
ESSAY I: SHIFTS BENEATH THE SURFACE: HOW MICRO- AND MACROECONOMIC 
CONDITIONS AFFECT FMCG SHOPPING STRATEGIES 

Figure 1: Conceptual Framework ............................................................................................. 28	
Figure 2: Shopping Strategy Comparison ................................................................................ 44	
Figure 3: Effects of Micro- and Macroeconomic Conditions on Shopping Strategy 

Probabilities ...................................................................................................................... 52	
 
 
ESSAY II: TRANSCENDING THE BOUNDARIES OF RELATIONSHIP MARKETING: HOW DIGITAL 
PLATFORMS CREATE VALUE AND SHAPE CONSUMERS' LIFEWORLD AND HABITUS 

Figure 1: Concepts of Transactional and Relational Value Creation ....................................... 91	
Figure 2: Higher- and Lower-Level Goal Structure ............................................................... 102	
Figure 3: Ongoing Interactions on Relational Digital Platforms ........................................... 105	
Figure 4: How Platforms Enter Consumers’ Lifeworld and Habitus ..................................... 107	
Figure 5: Platform Design Mechanisms ................................................................................. 109	
 
 
ESSAY III: VOLUNTARY AND FORCED EXPOSURE - THE YING AND YANG OF ONLINE VIDEO 
ADVERTISEMENT 

Figure 1: Conceptual Framework ........................................................................................... 143	
Figure 2: Manipulation of Skippability .................................................................................. 146	
Figure 3: Differences in Ad Perception among Ad Formats and Viewer Types ................... 153	
Figure 4: The Opposing Effects of Skippability on Consumers’ Ad Perception ................... 158	
Figure 5: Interaction Effects of Skippability and Brand Visibility ........................................ 161	
Figure 6: Consumers’ Ad and Brand Perceptions by Ad Format .......................................... 167	
Figure A1: Manipulation of Brand Visibility in the Creative ................................................ 178	
 
 
 
  



VII 
 

LIST OF TABLES 

SYNOPSIS  

Table 1: Overview of Dissertation Projects ............................................................................... 4	
 
 
ESSAY I: SHIFTS BENEATH THE SURFACE: HOW MICRO- AND MACROECONOMIC 
CONDITIONS AFFECT FMCG SHOPPING STRATEGIES 

Table 1: Literature Overview and Contribution ....................................................................... 27	
Table 2: Variable Operationalization ....................................................................................... 34	
Tabel 3: Descriptice Statistics and Correlation Matrix ............................................................ 36	
Table 4: Model Fit Statistics .................................................................................................... 41	
Table 5: Shopping Strategy Profils .......................................................................................... 43	
Table 6: Transition matrix across Shopping Strategies ............................................................ 46	
Table 7: Micro- and Macroeconomic Conditions and Impact on Strategy Changes ............... 47	
Table 8: Shopping Strategy Transitions Due to Income Loss and Marketplace Consequences

 .......................................................................................................................................... 48	
Table 9: Shopping Strategy Transitions Due to Expansions and Marketplace Consequences 49	
Table 10: Shopping Strategy Transitions Due to Contractions and Marketplace Consequences

 .......................................................................................................................................... 50	
Table A1: Comparison of Raw and Cleaned ConsumerScan Sample ..................................... 68	
Table A2: Comparison of Filtered and Remaining Household Sample (Shopping Preference)

 .......................................................................................................................................... 69	
Table A3: Comparison of Filtered and Remaining Household Sample (Demographics) ........ 70	
Table C1: Initial Shopping Strategy Assignment ..................................................................... 76	
Table C2: State-Dependent Effects on Discounter Share ........................................................ 77	
Table C3: State-Dependent Effects on Private Label Share (Discounter) ............................... 78	
Table C4: State-Dependent Effects on Private Label Share (Supermarket) ............................ 79	
Table C5: State-Dependent Effects on Promotion Share ......................................................... 80	
 
 
ESSAY II: TRANSCENDING THE BOUNDARIES OF RELATIONSHIP MARKETING: HOW DIGITAL 
PLATFORMS CREATE VALUE AND SHAPE CONSUMERS' LIFEWORLD AND HABITUS 

Table 1: Overview of Platform Concepts ................................................................................. 87	
Table 2: Platform Prototypes, Value Components, and Strategic Implications ..................... 100	
 
 
ESSAY III: VOLUNTARY AND FORCED EXPOSURE - THE YING AND YANG OF ONLINE VIDEO 
ADVERTISEMENT 

Table 1: Study Overview ........................................................................................................ 147	
Table 2: The Effects of Skipping on Ad Perception .............................................................. 159	
Table 3: Effects of Skippability and Brand Visibility on Ad and Brand Perceptions ............ 163	
Table A1: Overview of Full SEM Results from Study 1 and 2 ............................................. 179	
 
 
 



1 
 

SYNOPSIS 

 Introduction  

The past two decades were marked by profound disruptions of consumers’ daily lives and 

brands’ established practices that have originated from two fundamental sources: intense 

economic turmoil and unprecedented technological progress. The unusually pronounced 

business cycle featured two major periods of severe recessions—the bursting of the dot-com 

bubble in the early 2000s and the global financial crisis followed by the European debt crisis 

from 2008 onwards— but also impressive expansions, with the current one experiencing a ten-

year streak (NBER 2019). During the same time frame, tremendous technological progress has 

shaped virtually all areas of life and business. The extent of this development is easily 

demonstrated by comparing today’s most valuable companies by market capitalization to those 

from ten or twenty years ago: In the year 2008, the top ten of the most valuable companies was 

dominated by petrol companies (Exxon Mobile and PetroChina), mobile carriers (e.g. AT&T) 

and consumer goods manufacturers (e.g. Procter & Gamble). By contrast, seven of today’s top 

ten are technology firms, specifically Microsoft, Apple, Amazon.com, Alphabet Inc., 

Facebook, Alibaba Group, and Tencent (Financial Times 2019). Figure 1 illustrates these two 

major forces that have shaped the past two decades by means of worldwide GDP growth and 

the ten most valuable companies from 1998 to 2018. These disruptive times cause an evolution 

of the relationship between consumers and brands, creating opportunities to elevate existing 

connections and to build new ties but also putting established relationships to the test by 

introducing new competitors and changing consumer preferences. 

Although business cycles are reoccurring events, they challenge companies and 

consumers each time (Dekimpe and Deleersnyder 2017). In recessions, many consumers have 

no other choice than to tighten their belt and reduce spending for example by postponing 

purchases (Dutt and Padmanabhan 2011) or switching brands and outlets (Ma et al. 2011). Even 
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consumers that are not affected on a financial level often adjust their shopping habits, because 

their tastes, values, and willingness to purchase change as a reaction to macroeconomic 

conditions (Flatters and Willmott 2009; Kamakura and Du 2012; Katona 1979). Thus, 

consumers may abandon long-established relationships with brands in favor of cheaper 

alternatives. Prior research shows, that this may have lasting effects as consumers potentially 

stick with the alternatives even long after the recession is over (Lamey 2014; Lamey et al. 

2007).  

Figure 1: Illustration of the Past Decades’ Economic and Technological Disruptions 

 
Top: Annual worldwide GDP growth in % (Worldbank 2019).  
Bottom: Top ten most valuable companies based on market capitalization (Financial Times 2019).  

Two highly influential technological developments in this time frame from a marketing 

perspective have been digital platforms and digital advertising, dominating the academic 

discourse and constituting a crucial pillar for many of today’s most successful companies: Each 

of the seven technology firms mentioned above has a business model that is based to a 

significant degree on digital platforms, online advertising, or both.  
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Digital platforms are orchestrators of connections between consumers, third parties, and 

devices (Boudreau 2017) that have disrupted numerous industries, such as AirBnb in the case 

of hoteling or Uber in ride hailing, by tapping into the consumer as a resource (Eckhardt et al. 

2019; Parker, Van Alstyne, and Choudary 2016). Thus, the role of the consumer has changed 

drastically in the platform economy (Parker, Van Alstyne, and Choudary 2016), becoming a 

co-creator not only in her own value-creation process but also that of other consumers by 

providing platforms with data, reviews, ratings, content, and the like (Etgar 2008; Prahalad and 

Ramaswamy 2004; Trusov, Bucklin and Pauwels 2009). Additionally, the various parties and 

devices that are brought together on a platform create value and engage consumers beyond a 

purchase (Ramaswamy and Ozcan 2016, 2018). Take, for example, Under Armour’s Connected 

Fitness platform: Consumers can track and optimize their workouts, share experiences with 

peers, and take part in challenges. Hence, the brand-consumer relationship becomes 

considerably more profound with a variety of different interactions and touchpoints throughout 

a day. Also, the traditional roles of consumers and brands evolve with consumers transitioning 

from value receivers to value providers and brands progressing from value providers to 

orchestrators of various value sources (Boudreau 2017; Kumar and Reinartz 2016).  

Technological progress has also led to ever more sophisticated advertising technologies 

with various methods of targeting allowing brands to personalize their advertising and reduce 

wastage (e.g. Bleier and Eisenbeiss 2015; Goldfarb and Tucker 2011; Urban et al. 2013). 

Additionally, digital advertising has allowed small, financially more constrained brands to enter 

the advertising market because online, any size for an ad campaign can be accommodated 

irrespective of the advertising budget 1(Anderson 2006; Bergemann and Bonatti 2011). By 

contrast, traditional media channels have a fixed audience, defined by a magazine’s number of 

 
 
1 In fact, I ran an ad on Facebook in order to recruite subjects for one of my experimental studies in 
this dissertation with a total ad budget of €15, yielding 3,420 impressions and 64 clicks.  
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readers or a TV channel’s viewers, so that broadcasting a single 30-second TV ad can easily 

require five-digit budgets (Poggi 2018). Hence, digital advertising shapes the brand-consumer 

relationship by allowing virtually any company to craft targeted, personalized ads using highly 

engaging formats such as video ads (Anderson 2006; Bergemann and Bonatti 2011; Van Laer 

et al. 2014).  

In three essays, my co-authors and I analyze how these two forces—the business cycle and the 

technological progress—affect the relationships between brands and consumers. I present an 

overview of the three essays and their submission-status in Table 1 and briefly describe each 

essay in the following before giving a more detailed summary in the next chapter.  

Table 1: Overview of Dissertation Projects 

Essay  Title Author(s) Status 
I Shifts Beneath the Surface: How Micro-  

and Macroeconomic Conditions Affect 
FMCG Shopping Strategies 

Thomas P. Scholdra*, 
Julian R. K. Wichmann*, 
Maik Eisenbeiß, and 
Werner J. Reinartz 

Under review  
(2nd round):  
Journal of 
Marketing 

II Transcending the Boundaries of  
Relationship Marketing: How Digital 
Platforms Create Value and Shape 
Consumers’ Lifeworld and Habitus 

Julian R. K. Wichmann, 
Nico Wiegand, and 
Werner J. Reinartz 

Under review  
(1st round):  
Journal of 
Marketing 

III Skippable and Non-Skippable Ads— 
The Yin and Yang of Online Video 
Advertising 

Julian R. K. Wichmann Prepared for: 
Journal of 
Marketing  

*The first two authors contributed equally to this work.   
As (shared) first author in all three essays, I contributed significantly to the ideation, literature review, 
conceptualization, statistical analysis, and write-up of each essay. 

The first essay, titled “Shifts Beneath the Surface: How Micro- and Macroeconomic 

Conditions Affect FMCG Shopping Strategies”, in shared first authorship with Thomas 

Scholdra, and co-authored by Maik Eisenbeiß, and Werner Reinartz, empirically investigates 

how consumers’ established relationships with brands and stores evolve over the business cycle. 

We use a household-panel data set from GfK Germany featuring daily FMCG purchases, which 

we enrich with publicly available macroeconomic data and brands’ advertising spending from 

the Nielsen Company. Using a hidden Markov model specification, we allow for heterogeneity 
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among consumers in terms of how they shop and react to changing conditions. We identify 

seven distinct shopping strategies that reveal consumers’ preferences for brands (private-label 

versus national brand), stores (discounter versus supermarket), and price tiers (regular price 

versus price promotion). Our focal covariates, household income and changes in the business 

cycle, reflect microeconomic and macroeconomic conditions, respectively. Their coefficients 

reveal how consumers switch their shopping strategy as a result of changes in these conditions. 

Thus, we are able to pinpoint idiosyncratic coping strategies and their effect on consumer’ 

brand-relationships. For example, we find that when conditions worsen, consumers with a 

preference for national brands are reluctant to abandon their established relationship and, 

instead, adopt strategies that allow them to continue purchasing brands but at a reduced price 

by capitalizing on price promotions or increasingly purchasing brands in discounters.  

In the second essay, titled “Transcending the Boundaries of Relationship Marketing: How 

Digital Platforms Create Value and Shape Consumers’ Lifeworld and Habitus”, co-authored 

by Nico Wiegand and Werner Reinartz, we conceptually analyze how brands can use digital 

platforms to create superior consumer value that functions as a gateway into consumers’ 

lifeworld and habitus. Specifically, we derive two dimensions of value that digital platforms 

are able to create for consumers, transactional value and relational value. For each, we define 

four value components and show how relational value components, in particular, are a powerful 

gateway for brands to intensify and extend their relationship with consumers across touchpoints 

and activities. Using new technologies and a platform architecture, brands can engage 

consumers in value-creating interactions on an ongoing basis, thereby, becoming part of their 

lifeworld and habitus. We argue that brands are thus in a position to exploit various “soft” and 

“hard” levers to shape consumers’ behaviors and attitudes, for example in the form of 

gamification or behavioral engineering. Given this unprecedented influence that brands can 
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exercise on consumers, we conclude with implications for marketers as well as governing 

institutions and consumers.  

The third essay is single-authored and titled “Skippable and Non-Skippable Ads – The Yin 

and Yang of Online Video Advertising”. In this experimental study, I analyze how consumers 

perceive skippable ads and how brands can use them most effectively. The results show that 

brands can deploy skippable alongside non-sippable ads to increase consumers’ brand attitudes 

and, thus, sustain and intensify their consumer-relationships. Although the technology is almost 

ten years old (Pashkevich et al. 2012), research on the topic is scarce and uncertainty exists 

among advertisers whether to use skippable ads at all and how to use them most effectively. 

After all, advertisers are risking to miss out on ad exposures due to consumers’ pronounced 

skipping behavior: 65-70% of ads are skipped, mostly even before the ten-second mark 

(Arantes, Figueiredo, and Almeida 2016; MAGNA 2017). Therefore, I shed light on this topic 

by means of three laboratory studies to derive how users perceive the ad format and how 

skipping an ad, thus disrupting the ad viewing experience, influences consumers’ ad and brand 

perceptions. Additionally, I analyze the moderating effects of ads’ narrative versus commercial 

focus as well as of combining skippable and non-skippable ad formats in subsequent ad 

exposures. Results reveal that consumers appreciate the increased level of control in skippable 

ads but the disruption that skipping causes to their ad viewing experience, even though self-

imposed, depreciates their ad and brand perceptions. I demonstrate how brands can counteract 

this effect by providing a high commercial focus in skippable ads and also profit from 

complementing skippable ad exposures with initial forced full exposures.  

The findings developed in this dissertation contribute to the academic discourse by 

rigorously analyzing how these developments influence consumers’ purchase behaviors, 

attitudes towards brands, and the quality of their relationship. In doing so, this dissertation 

addresses two of the MSI research priorities 2018-2020 on cultivating the customer asset: “the 
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customer-technology interface” and “macro trends influencing customer decision making” 

(Marketing Science Institute 2018). While the MSI and the academic literature to date is still 

talking about “customers”, I primarily use the term “consumers” given the broad impact of the 

macroeconomic and technological evolutions that my co-authors and I research in the three 

essays. Additionally, as we specifically argue for in the second essay, brands are increasingly 

using technologies to build relationships, not just with their customers, but instead consumers 

in general, offering them substantial value irrespective of whether an actual purchase ever takes 

place.  

For marketers, the essays present actionable implications that demonstrate how brands 

can weather these tumultuous times and use them to their advantage to build new relationships 

and intensify existing ones. A thematic overview of the three essays in relation to the 

dissertation topic is presented in Figure 2.   

Figure 2: Classification of the Dissertation Projects 
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 Summary of Dissertation Projects 

2.1 Essay I: Shifts Beneath the Surface: How Micro- and Macroeconomic Conditions 

Affect FMCG Shopping Strategies 

Business cycles are a constant companion in consumers’ daily lives: A US consumer born 

in 1980 has experienced five recession to this day (NBER 2019). Often they are inconspicuous 

but in times of pronounced recessions or expansions, they very saliently influence how and 

what we purchase (Dekimpe and Deleersnyder 2017; Ma et al. 2011). The most recent 

recession, the global financial crisis of 2008 was one of the most severe since the Great 

Depression (NBER 2019) and led to a reduction in annual spending by $4,000 for the average 

US household (The Economist 2011).  

These savings are realized through different means: Consumers may postpone purchases 

(Deleersnyder et al. 2004; Dutt and Padmanabhan 2011) switch to cheaper brands and outlets 

(Dubé, Hitsch, and Rossi 2018; Lamey 2014; Lamey et al. 2007, 2012), and become more 

receptive to promotions (Cha, Chintagunta, and Dhar 2015; Ma et al. 2011). Hence, research 

shows that macroeconomic conditions such as recessions have considerable consequences for 

consumers’ shopping behavior that challenge established brand-consumer relationships.  

Especially in the FMCG context, consumers cannot simply postpone their purchases until 

conditions have improved and, therefore, are forced to switch to cheaper brands or to outlets 

that do not feature their preferred brands in order to cope with a more constrained budget. Once 

consumers have adopted and habituated new shopping behaviors, winning them back poses a 

challenge for brands (Dekimpe and Deleersnyder 2017; Lamey 2014; Lamey et al. 2007). Thus, 

business cycles can put a lasting strain on brand-consumer relationships. 

While prior literature shows how the business cycle influences shopping behavior on an 

aggregate level (Dubé, Hitsch, and Rossi 2018; Lamey 2014; Lamey et al. 2007, 2012), 

literature on consumers’ idiosyncratic adjustments is scarce. Hence, little is known about the 
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different strategies that consumers employ to cope with changing conditions. For example, they 

may switch to cheaper brands, cheaper outlets, products on promotion, or any combination of 

these. Additionally, consumers' regular shopping behavior influences which strategy is suited 

to realize savings. For example, a consumer that usually shops premium brands in supermarkets 

has more options to reduce spending than a consumer usually purchasing private labels in 

discounters.  

Given this gap in the literature, this essay uncovers the variety of consumers’ reaction to 

the business cycle and its influence on their relationship with brands. We identify the different 

strategies that individual consumers and households apply to adjust their FMCG shopping to 

changes in macroeconomic conditions in the form of the business cycle and microeconomic 

conditions represented by household income. We employ a hidden Markov model (HMM) on 

a unique data set containing GfK Germany ConsumerScan panel data covering household-level 

daily purchases over a ten year period from 2004 to 2014, which we further enrich with 

macroeconomic data from the German Federal Statistical Office as well as brand-level 

advertising data from the Nielsen Company.  

We identify seven distinct shopping strategies that consumers apply and uncover different 

switching patterns that are the result of changing micro- and macroeconomic conditions. For 

example, we find that even during adverse conditions, consumers value national brands and 

instead of switching to private labels tend to adjust by increasingly purchasing national brands 

on promotion or in discounters. Additionally, we find asymmetry in that all consumers tend to 

increasingly purchase national brands in supermarkets when their conditions improve, while 

the flip side of purchasing private labels in discounters during adverse conditions is less 

pronounced as some households remain reluctant to adopt this strategy.   

Our contributions are threefold. First, we identify holistic shopping strategies by 

simultaneously observing which brands, in which stores, and in which price tier consumers 
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purchase. Second, we reveal how consumers switch between these holistic shopping strategies 

due to micro- and macroeconomic changes. Third, we show that individual households not only 

experience the severity of economic changes differently, they also adjust to changing conditions 

in different ways. 

For the brand-consumer relationship, we reveal that while recessions are a real stress test 

for established relationships, consumers are still reluctant to give up their preferred brands. 

Brands should invest countercyclically in marketing activities such as price promotions 

(Deleersnyder et al. 2009; Lamey et al. 2007, 2012) and adopt new outlets such as discounters 

in order to sustain their consumer-relationships.  

2.2 Essay II: Transcending the Boundaries of Relationship Marketing: How Digital 

Platforms Create Value and Shape Consumers’ Lifeworld and Habitus 

The technological advances of the past years have led to an ever-closer integration of 

smart, connected devices into consumers’ daily lives. Almost every aspect of their day-to-day 

activities – from their workout to their commute, nutritional intake, sleeping patterns, and vital 

signs – can be recorded, tracked, and transmitted. Thus, these devices are an interface to the 

consumer, and brands are competing for dominance over it (Reinartz, Wigand, and Imschloss 

2019). Digital platforms are a potent tool that allows brands to access and leverage this 

interface. Whereas traditionally digital platforms were exchange-focused such as matchmaking 

platforms (Wu, Zhang, and Padmanabhan 2018), marketplaces (Rysman 2009), and lateral 

exchange markets (Perren and Kozinets 2018), today’s platforms are highly relationship-

focused. They orchestrate a variety of activities, parties, and devices (Boudreau 2017) that 

together create superior value for consumers by perpetually engaging consumers in value-

creating interactions (Ramaswamy and Ozcan 2018).  
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In this essay, we analyze and conceptualize this novel type of value creation and show 

how it allows brands to form ongoing relationships with consumers, blending and ultimately 

shaping their lifeworld and habitus.  

We first define and differentiate the various platform terminologies that are used in 

academia and business. We classify these various platform types along two dimensions – 

transactional and relational value creation – and derive four distinct value components for each 

dimension. We show that each of these components has been considerably elevated through 

technological advances such as automated recommender systems (Lee, Kim and Rhee 2001) 

and content curation mechanisms (Lazer 2015), self-quantification (Kelly 2016; Wolf 2010), 

and user-generated content (Kohler et al 2011; Trusov, Bucklin and Pauwels 2009).  

While most platforms in the market still have a strong transactional focus, we argue that 

platforms that create relational value—which we call relational digital platforms or RDPs—

present novel opportunities for brands because their value creation addresses consumers’ 

higher-level goals (Belk 1988; Pieters, Baumgartner, and Allen 1995). For example, a platform 

like Under Armour’s Connected Fitness helps consumers to achieve abstract, high-level goals 

such as living a fit and healthy life by creating value along all four relational value components 

that we identify: customization value, self-actualization value, social value, and hedonic value. 

So while transactional platforms only lead to individual interactions that relate to the specific 

purchase or exchange occasion (Ramaswamy and Ozcan 2018), RDPs are used by consumers 

on an ongoing basis along their pursuit of these higher-level goals long before, after, and even 

independent of an actual purchase. As a consequence, the brand-consumer relationship becomes 

more profound than ever before as each value-creating interaction makes the brand increasingly 

indispensable to consumers (Hoffman and Novak 2018).  

Drawing from sociology, we show that this development allows brands to use RDPs and 

their value creation as a gateway into consumers’ lifeworld and habitus, entering their “total 
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sphere of experiences […] in the pursuit of the pragmatic objectives of living” (Schutz 1970, p. 

320). Once in this position, an RDP can even shape consumers’ lifeworld and habitus as it sits 

at the nexus of the interactions and orchestrates the information that is transmitted to the 

consumer. We show that this “colonization” of consumers’ lifeworlds (Habermas 1987) 

becomes even more powerful through various “soft” and “hard” levers that brands can employ 

on the platform in terms of gamification, nudging, behavioral engineering, and governance 

structures.  

We conclude this essay by raising awareness for possible adverse outcomes for brands, 

consumers, and society such as discrimination and manipulation, and present appropriate 

management and policy recommendations. We especially advocate that brands should not 

realize everything that is technically possible but build a team of marketers, psychologists, 

sociologists, and behavioral scientists that assesses whether platform features are ethically and 

socially acceptable and ensures that RDPs build mutually beneficial relationships between 

brands and consumers.  

2.3 Essay III: Skippable and Non-Skippable Ads – The Yin and Yang of Online Video 

Advertising 

Traditional linear TV is a mass medium that quite literally broadcasts identical content 

and ads to millions of viewers. This severely limits the possibilities for brands to individualize 

consumers’ ad experiences. However, as video content consumption is increasingly moving 

towards internet-connected devices, for example in the form of smart, connected TVs, online 

streaming services, and video platforms, new advertising technologies evolve that break up past 

rigidities and open up new opportunities for brands. 

One of these technologies comes in the form of skippable ads, a new advertising format 

introduced by YouTube in 2010 (Pashkevich et al. 2012) and since then being widely adopted 

with 80% of marketing managers reporting they use skippable ads to some degree (IAB Europe 
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2018). Skippable ads allow consumers to skip the ad by clicking a button but only after they 

have watched it for a minimum required amount of time, usually five seconds (Campbell et al. 

2017). Thus, they differ substantially from traditional video ads because the advertising brand 

exposes consumers to at least a fraction of the ad while also explicitly granting the option to 

avoid the ad. Skipping an ad, therefore, represent a unique form of advertising avoidance 

because it neither eliminates the ad in its entirety as usually the case with zapping or using ad-

blocking software (Campbell et al. 2017; Dukes, Liu, and Shuai 2019) nor distorts it as is the 

case with zipping (i.e. fast-forwarding through prerecorded content; Stout and Burda 1989).  

To date, research on this ad format is scarce and has primarily analyzed the antecedents 

of skipping (e.g. Belanche, Flavián, and Pérez-Rueda 2017a, 2017b; Campbell et al. 2017; Jeon 

et al. 2019). However, no research to date has examined in detail how consumers perceive 

brands and their ads when they are exposed to a skippable vis-à-vis regular, non-skippable ad 

and how the act of skipping influences their ad and brand perceptions. In this essay, I address 

this gap and identify how and why skippable ads can improve but also mitigate consumers’ ad 

and brand perceptions. Additionally, I present opportunities for brands to optimize the 

effectiveness of skippable ads and, thus, to intensify their relationships with consumers through 

higher brand awareness and more favorable brand attitude.  

Using three experimental studies that replicate typical online video viewing experiences, 

I show that skippable ads are able to reduce consumer irritation by elevating perceived control 

and decreasing perceived intrusiveness. At the same time, however, they also reduce 

consumers’ enjoyment of the ad creative as a consequence of the large degree of habitually 

driven skipping. Supported by transportation theory (Green and Brock 2000; Van Laer et al. 

2014), the results suggest that skipping undermines the persuasive power of ads with a narrative 

focus (Escalas 2004a, 2004b) and leads to irritation because it disrupts consumers’ ad 

experience. Additionally, I find that the increased level of perceived control in skippable ads 
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can also cause irritation by increasing cognitive load. My results demonstrate that brands need 

to employ distinct strategies for skippable versus non-skippable ads because consumers show 

better ad and brand perceptions for skippable ads that use a brand-focused creative whereas 

non-skippable ads perform better with a narrative focus. Finally, it becomes evident that 

skippable and non-skippable ads should not be regarded as substitutes as currently is the case 

across academia and business (e.g. Pashkevich et al. 2012; Campbell et al. 2017; Dukes, Liu, 

and Shuai 2019). Instead, I find that they complement each other’s strengths and weaknesses, 

and, accordingly, brands should use skippable alongside non-skippable ads to evoke optimal 

brand perceptions.  
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ESSAY I:  SHIFTS BENEATH THE SURFACE: HOW MICRO- AND 

MACROECONOMIC CONDITIONS AFFECT FMCG SHOPPING 

STRATEGIES  

Authors: Thomas P. Scholdra1, Julian R. K. Wichmann1, Maik Eisenbeiß, Werner J. Reinartz 

 
ABSTRACT  

Economic conditions, at individual micro- or national macroeconomic levels, substantially 

influence households’ various shopping preferences. However, these shifts in households’ 

preferences mainly have been analyzed in isolation and with an aggregate perspective. In this 

study, the authors combine comprehensive household-level transaction data with household-

level income information and national economic indicators to identifying holistic shopping 

strategies, based on households’ preferences for brand types, store formats, and price tiers. 

Establishing and characterizing seven distinct shopping strategies based on a hidden Markov 

model specification, they shed new light on how households switch among shopping strategies 

to cope with changing micro- and macroeconomic conditions. Notably, the influences of 

macroeconomic expansions and contractions are not mirror images, nor are households’ 

switching patterns universal, such that substantial and varied shifts arise in the customer bases 

of supermarkets, discounters, and brand manufacturers. For these market actors, it is critical to 

realize whether households adjust their shopping strategies, and if so, which strategies they are 

abandoning and which ones they are adopting. 

 

Keywords: business cycle, shopping strategies, income shocks, FMCG market 
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 Introduction  

Households make nearly daily purchases, yet the conditions under which they make 

purchases change constantly. These changing conditions might take place on a personal, 

microeconomic level, such as if the main breadwinner receives a pay raise, the size of the 

household changes, or a household member loses a job; they also might reflect the 

macroeconomic business cycle with its reoccurring expansions and contractions, as recently 

highlighted by the Great Recession or the European debt crisis. These changing micro- and 

macroeconomic conditions substantially affect household spending and, in turn, companies’ 

profits. The Economist (2011) estimated that the Great Recession led to an 8%, or $4,000, 

decrease in real annual spending among U.S. households, which amounts to $500 billion in 

foregone revenues. While households tend to postpone purchases of durable goods to times of 

economic prosperity (Deleersnyder et al. 2004; Dutt and Padmanabhan 2011), for fast moving 

consumer goods (FMCGs) deferring purchases often is not viable. Consequently, households 

must find ways to economize on the prices they pay (Dekimpe and Deleersnyder 2017).  

Prior research identifies three shopping preferences that households adjust when faced 

with conditions that require them to reduce spending: They adjust their brand type preference 

by switching from national brands (NBs) to cheaper brands or private labels (PLs) (Cha et al. 

2015; Dubé, Hitsch, and Rossi 2018; Lamey et al. 2007; Ma et al. 2011), their store format 

preference by switching from supermarkets to less expensive discounters (Cha et al. 2015; 

Lamey 2014; Ma et al. 2011), and their price tier preference by switching from regular to 

promotional prices (Cha et al. 2015; Ma et al. 2011). In detailing how households react to 

changing macro- and microeconomic conditions at large, this literature stream has “taken a 

fairly aggregate view” (Dekimpe and Deleersnyder 2017, p. 7) on households and their 

adjustments. For example, Dubé, Hitsch, and Rossi (2018) find that households increase PL 



22 
 

purchases during recessions, but we do not know whether all households do so or if differences 

exist across households in terms of which shopping preferences they adjust.  

For regular FMCG shopping, each household may exhibit a different combination of 

shopping preferences for brand types, store formats, and price tiers: Perhaps the Middlebrow 

family primarily shops for NBs on promotion in supermarkets, but Mr. Doe prefers PLs in 

supermarkets, even as Mr. and Mrs. Everyman purchase NBs primarily from discounters. These 

distinct combinations of shopping preferences constitute what we define as shopping strategies. 

To implement these widely varying shopping strategies, households also undertake vastly 

different adjustments to realize savings when macro- or microeconomic conditions change. The 

Middlebrow family thus might retain its store format preference for supermarkets but adjust its 

brand type preference and purchase more PLs. Mr. Doe cannot make a similar adjustment; he 

already purchases mostly PLs in supermarkets. Instead, he might adjust his store format 

preference and increasingly shop in discounters. These idiosyncratic adjustments constitute 

switches from one shopping strategy into another. Yet even households with the same initial 

shopping strategy could realize savings through different means. For example, a household that 

uses the same initial shopping strategy as the Middlebrow family might react to deteriorating 

conditions by adjusting its store format instead of its brand type preferences.  

For manufacturers and retailers, this vast variety of possible adjustments means that when 

macro- and microeconomic conditions change, the resulting complex transformations of their 

customer bases are difficult to detect. A supermarket patronized by both the Middlebrow family 

(switches to purchasing more PLs) and Mr. Doe (switches to discounters) might experience 

little change in its PL market share on aggregate, even though the composition of its customer 

base has changed substantially. Taking the firm’s perspective, it is therefore not only critical to 

know whether households adjust their shopping strategy but also which previous strategy they 

are coming from and which they are switching to. Ignoring such contingencies and changes to 
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the customer base may result in an ineffective marketing mix and loss of market share in the 

long run. 

To identify these various shifts that take place beneath the surface, as caused by changing 

macro- and microeconomic conditions, we pursue three foundational research objectives: 

1) Identify and characterize distinct shopping strategies based on households’ brand 

type, store format, and price tier preferences.  

2) Investigate how households switch among shopping strategies, i.e. which strategies 

they are abandoning and which ones they are adopting, as a result of changing micro- 

and macroeconomic conditions.  

3) Determine the sensitivity of each shopping strategy to changes in micro- and 

macroeconomic conditions. 

For these purposes, we employ a hidden Markov model (HMM) to model households’ 

shopping preferences over time and thereby derive hidden states. Each hidden state reflects a 

distinct combination of shopping preferences that constitutes a shopping strategy. We base the 

analysis on a unique, comprehensive data set tailored to our research context. Using the GfK 

Germany ConsumerScan panel, we observe detailed information on each household’s daily 

FMCG transactions. With its market-wide coverage, this data set provides details about various 

marketing mix elements, such as price, promotional activities, and assortment. Annual surveys 

of the households in the panel indicate demographics and each household’s microeconomic 

conditions. We also gather macroeconomic data from the German Federal Statistical Office. 

Finally, we enrich our data set with advertising data from the Nielsen Company to control for 

advertising activities by all manufacturers and retailers in our sample.  

The results reveal seven shopping strategies, each reflecting distinct shopping 

preferences. Households switch among shopping strategies in response to changes in micro- or 

macroeconomic conditions. Depending on a household’s prior shopping strategy, it adopts 



24 
 

certain adjustments, though households with the same initial shopping strategy also may pursue 

different adjustments with contrary effects on shopping preferences; these specific effects 

would remain hidden beneath the surface in an aggregate analysis. For example, reduced 

household income leads some households to adopt a shopping strategy in which they spend 

more at supermarkets, while others spend more at discounters. Notably, households make 

adjustments during adverse macroeconomic conditions even if they suffer no income losses. 

On a more practical level, households exhibit strong preferences for NBs even when 

microeconomic conditions worsen and adjust by purchasing more NBs from discounters or on 

promotion. Furthermore, purchasing NBs in supermarkets represents a ceiling strategy across 

households that they adopt when microeconomic conditions improve. However, we do not 

observe a mirror effect of PL purchases in discounters when conditions worsen; some 

households remain reluctant to purchase PLs from discounters even in poor conditions.  

In the next section, we review relevant literature, which informs the conceptual 

framework that underlies our empirical analysis. After specifying our data bases and model 

formulations, we describe and discuss our results in the order of our research objectives. We 

conclude with managerial implications for the FMCG retailing landscape and directions for 

future research. 

 Conceptual Background 

2.1 Related Literature 

Our study ties into business cycle research in marketing that shows that PL market shares 

(Lamey et al. 2007) and discounter market shares (Lamey 2014) increase during recessions, 

and some of this effect carries over into subsequent expansion periods. Complementing results 

based on aggregate data, Dubé, Hitsch, and Rossi (2018) use household-level data and confirm 

prior findings (Lamey et al. 2007) by showing that households’ income reduction during the 

Great Recession relates positively to their PL share of wallet (SOW), though with substantially 
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smaller short- and long-term effects. Ma and colleagues (2011) use gasoline prices to 

operationalize changing macroeconomic conditions and consider multiple shopping 

preferences, in terms of brand, store format, and price tier switching. They also include 

households’ shopping frequency and purchase volume. Cha et al. (2015) identify adjustments 

that households employed to reduce their spending during the Great Recession, such as 

switching to cheaper store formats, cheaper brands, and products on price promotion. Moreover, 

a related research stream seeks to create typologies of households’ adjustments to changes in 

macroeconomic conditions (Hampson and McGoldrick 2013; Quelch and Jocz 2009; Shama 

1981). As we summarize in Table 1, we seek to contribute to this line of research on several 

fronts. 

First, we identify distinct shopping strategies, derived from multiple shopping 

preferences. Most studies cite isolated shopping preferences, such as for brand type (Dubé, 

Hitsch, and Rossi 2018; Lamey et al. 2007) or store format (Lamey 2014). Even in studies that 

analyze multiple shopping preferences, their interdependencies remain unaccounted for (Cha et 

al. 2015; Ma et al. 2011), such that simultaneous considerations of multiple shopping 

preferences are lacking. Yet each household may purchase FMCGs using different 

combinations of shopping preferences and adjust different shopping preferences when 

conditions change. Therefore, it is important to observe multiple shopping preferences to 

identify if and how households adjust. In addition, individual shopping preferences likely are 

interdependent (Dekimpe and Deleersnyder 2017; Dekimpe et al. 2011; Lamey 2014; Ma et al. 

2011); for example, discounters usually carry substantially more PLs than other store formats, 

so a household’s preference for discounters almost inevitably leads to increased PL SOW too 

(Dekimpe and Deleersnyder 2017; Dekimpe et al. 2011; Lamey 2014). Failing to account for 

these interdependencies would overestimate the effect of changing conditions on, say, PL 

consumption, because part of it should be attributed to increased shopping at discounters. 
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Therefore, we analyze multiple shopping preferences simultaneously while also controlling for 

their interdependencies and thus offer a novel way to draw a holistic picture of each household’s 

shopping strategies and adjustments when faced with changing conditions. 

Second, we identify different adjustments due to changing conditions, to build on prior 

studies that analyze households’ reactions with a bird’s-eye perspective (Dekimpe and 

Deleersnyder 2017). Each household may adjust different shopping preferences to realize 

savings, depending on its initial shopping strategy, and even households with similar initial 

shopping strategies may react differently. Unobservable, household-specific factors (e.g., brand 

and store loyalty, quality consciousness) influence how households react to a shift in conditions. 

For example, if the quality of food products is important to a particular household, it might not 

change its shopping behavior as much as households with less pronounced quality 

consciousness motives. Households with strong brand loyalty likely prefer to switch store 

formats; households with low brand loyalty might keep purchasing in the same store but switch 

to PLs. We uncover this variety in households’ reactions to changing micro- and 

macroeconomic conditions, answering calls for research by multiple authors (Cha et al. 2015; 

Dekimpe and Deleersnyder 2017; Ma et al. 2011) and advancing insights into differences across 

households, which previously have been addressed mainly by conceptual (Quelch and Jocz 

2009) or survey-based (Hampson and McGoldrick 2013; Shama 1981) research. Our study 

derives insights from longitudinal, household-level field data while controlling for supply-side 

activities. Our results therefore offer high external validity.  

Third, this study disentangles the effects of changes in microeconomic conditions, 

macroeconomic expansions, and macroeconomic contractions while also accounting for their 

different magnitudes. Studies to date mostly focus on macroeconomic conditions (Lamey 2014; 

Lamey et al. 2007) or use microeconomic conditions as time-invariant control variables (Cha 

et al. 2015; Ma et al. 2011). We instead observe household-specific changes in microeconomic 
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conditions, such that we can analyze how households switch shopping strategies when their 

ability to purchase (Katona 1979) is directly affected, due to changing conditions at a 

macroeconomic level. Dubé, Hitsch, and Rossi (2018) observe the effects of microeconomic 

conditions in terms of income and wealth over time. Their analysis focuses on PLs and controls 

for macroeconomic conditions using dummy variables for recession and post-recession periods; 

we instead explicitly analyze changes in macroeconomic conditions with different magnitudes. 

In addition, we differentiate macroeconomic expansions and contractions, which have 

asymmetric effects on households’ shopping preferences (Dekimpe, Peers, and van Heerde 

2016; Deleersnyder et al. 2004; Lamey et al. 2007). Furthermore, by controlling for 

microeconomic conditions in terms of households’ ability to purchase, adjustments that follow 

shifting macroeconomic conditions constitute changes in households’ willingness to purchase 

(Katona 1979). We further highlight the distinction between a household’s ability and 

willingness to purchase in the following section.  

Table 1: Literature Overview and Contribution 

Authors Multiple shopping 
preferences 

Interdependence of 
shopping preferences 

Heterogeneity in 
adjustments 

External validity 
(longitudinal field data) 

Shama 1981 (ü)  ü  
Lamey et al. 2007    ü 
Quelch and Jocz 
2009 (ü)  ü  

Ma et al. 2011 ü   ü 
Hampson and 
McGoldrick 2013 (ü)  ü  

Lamey 2014    ü 
Cha et al. 2015 ü   ü 
Dubé, Hitsch, and 
Rossi 2018    ü 

This paper ü ü ü ü 
 

2.2 Conceptual Framework 

As depicted in our conceptual framework in Figure 1, micro- and macroeconomic 

conditions constitute our focal independent variables. Katona (1979) first established that 

changes in the overall economy affect individual households. For example, during a recession, 
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wage levels drop and unemployment rises, which result in individual households suffering from 

income reductions. Thus, macroeconomic conditions influence households by directly affecting 

their microeconomic conditions and their ability to spend money. However, they also can affect 

households more indirectly, in terms of their willingness to purchase. A declining economy 

may diminish a household’s confidence in its future microeconomic situation and make it less 

inclined to spend money; a growing economy may increase its confidence and make it more 

willing to spend (Katona 1979). Microeconomic conditions also change independent of 

macroeconomic conditions, but in either case, changing conditions lead households to adjust 

their shopping preferences.  

Figure 1: Conceptual Framework 

 

Adjusting purchase quantities often is not a viable option for FMCGs, so changes to 

macro- and microeconomic conditions and in households’ ability and willingness to purchase 

lead the households to seek to adjust the prices they pay. They can do so in three distinct ways, 

namely, adjusting their store format preferences, brand type preferences, and price tier 

preferences. These preferences have substantial managerial relevance as manufacturers and 

retailers can address them in their marketing mix strategy and as they directly influence their 

bottom lines. Due to their conceptual and managerial relevance, these three shopping 
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preferences have been the focus of substantial prior literature (e.g., Cha et al. 2015; Dubé, 

Hitsch, and Rossi 2018; Lamey et al. 2007; Ma et al. 2011). 

To measure store format preference, we use the household’s discounter SOW, that is, the 

SOW that it devotes to discount store formats. For brand type preference, we use a household’s 

SOW on (1) discounters’ PLs, or discounter PL SOW, and (2) PLs in all other store formats, 

which we refer to as supermarket PL SOW.  By splitting brand type preference into two 

indicators, we gain a more detailed view. For example, households might prefer buying PLs in 

supermarkets, due to their better perceived quality relative to PLs offered by discounters (Dhar 

and Hoch 1997). Alternatively, households might prefer to purchase NBs from discounters to 

take advantage of their everyday low price strategy. Finally, we measure price tier preference 

as a household’s SOW spent on products on temporary price reduction, or price promotion 

SOW.  

Strategic differences mark supermarkets, which usually adopt a high/low pricing strategy 

and carry primarily NBs, versus discounters, which take an everyday low price strategy and 

carry mostly PLs. Accordingly, purchase preferences and their indicators are highly 

interdependent (Dekimpe and Deleersnyder 2017; Dekimpe et al. 2011; Lamey 2014). 

Households shopping at discounters, for example, almost automatically end up purchasing more 

PLs and fewer products on price promotion than those buying from supermarkets. 

Consequently, we model the multiple shopping preferences simultaneously in terms of their 

indicators and explicitly account for their interdependencies. 

We also assume that a household’s unique combination of shopping preferences is the 

result of its underlying, shopping strategy. Different combinations of shopping preferences 

constitute different shopping strategies, which are not directly observable but can be captured 

as hidden states in our HMM formulation. Each hidden state reflects a particular, latent 

shopping strategy, composed of distinct combinations of shopping preferences and the 
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underlying values observed for discounter SOW, discounter PL SOW, supermarket PL SOW, 

and price promotion SOW. Furthermore, unlike most previous HMM applications in marketing 

(e.g., Kumar et al. 2011; Netzer, Lattin, and Srinivasan 2008; Ngobo 2017), we allow 

households to switch among the hidden states without restriction, which is important 

conceptually, because there is no natural order to the shopping strategies that the hidden states 

reflect. For example, a household might save money by purchasing NBs in discounters or PLs 

in supermarkets. Both are distinct shopping strategies, without one naturally following or 

preceding the other. In order to derive a shopping strategy for each household in each period, 

we observe its shopping preference indicators. By observing households over time, we can 

assess how each household adjusts its shopping preferences by switching its shopping strategies 

in response to changes in macro- or microeconomic conditions. We thus detect heterogeneous 

adjustment patterns by households that originate from and switch into different shopping 

strategies.  

So far, we have taken a household perspective. Yet prior research conclusively shows that 

retailers and manufacturers react to macroeconomic conditions too, such as by adapting their 

marketing mix (e.g., Deleersnyder et al. 2009; Lamey et al. 2012; Sudhir, Chintagunta, and 

Kadiyali 2005). We are less concerned with this relationship per se, yet we still need to control 

for adjustments in the marketing mix, due to their substantial influence on households’ shopping 

behavior, in the short and long run. Therefore, we control for these effects by including 

marketing mix variables in the model estimating the hidden states to capture their long-term 

effects and in the model estimating the indicators to capture their short-term effects (e.g., 

Netzer, Lattin, and Srinivasan 2008)  
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 Data  

3.1 Research Context  

The empirical setting is the German grocery retail market. It reached €183.5 billion in 

sales revenues and a growth rate of 3.5% in 2017, signaling the largest jump in its steady growth 

trend since the financial crisis (GfK 2017). Discounters are the dominant store format, 

accounting for 42.7% of the market’s value, ahead of supermarkets, hypermarkets, and 

drugstores. In their attempts to confront the market power of discounters and appeal to more 

shoppers, supermarkets have evolved to primary promoters of PLs in recent years; they now 

account for 37.4% of that market’s value (GfK 2017).  

To reflect the peculiarities of the German grocery retail market, our data set combines 

several sources and information across distinct aggregation levels. The primary data source is 

the ConsumerScan panel, provided by GfK Germany, which includes transaction and survey 

data for panelists at the individual household level. As a major advantage, the ConsumerScan 

panel covers private consumption comprehensively and representatively, including all German 

food retailers, specialty stores, drugstores, and discount stores that typically do not offer data 

for market research purposes through retail panels. This data availability is particularly crucial, 

considering the substantial market share of discount stores in Germany. The panel also contains 

survey data for all panelists, based on self-reported annual information (age, household size, 

income). We obtain weekly data about brand-level advertising spending across multiple 

channels for all major manufacturers and retailers from the Nielsen Company, to control for 

advertising effects. Finally, publically available gross domestic product (GDP) data from the 

Federal Statistical Office indicate the aggregate economic situation. Overall, we thus build a 

unique, encompassing data set that combines behavioral measures with survey-based household 

demographics, aggregated economic measures, and brand-level advertising data.. 
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3.2 Data Preparation  

The initial raw data set from the ConsumerScan panel is composed of household 

characteristics and purchase decisions by 95,403 unique households that made more than 15 

million shopping trips and 55 million purchases between 2006 and 2014. Purchase information 

is available at the stockkeeping unit (SKU) level for 39 product categories from 510 retailers, 

most of which maintain multiple stores. These products range from alcoholic and non-alcoholic 

beverages (e.g., beer, fruit juice) to food (e.g., cereals, pasta, ice cream) to non-food items (e.g., 

deodorants, detergents, toilet paper). For each purchased item, we have access to the unique 

product code, date and place of purchase, price paid, identifiers of the store format and brand 

type, and temporary price reductions, as well as specific product characteristics like the brand 

name, manufacturer name, and pack size. In preparing these data, we undertook several 

cleaning and filtering steps at the purchase record and household levels. In particular, we 

eliminated inconsistent transaction records and households that did not remain in the panel for 

the entire period. Thus, we obtain a panel data structure, rather than a repeated cross-sectional 

structure, as is commonly used in HMM applications in marketing. Because the sample 

composition does not differ by observation period, we can identify individual shopping 

strategies across households, as well as strategy adjustments based on within-household 

variation over time. This procedure is conservative but in line with prior literature (e.g., Dubé, 

Hitsch, and Rossi 2018).  

On the transaction record level, data cleaning involved the following steps:  

1. Remove cases with missing product codes, brand type identifiers, category 

identifiers, or store format identifiers. 

2. Remove all cases with unusually large (more than four times the median price) or 

unusually small (less than one-fourth the median price) prices at the SKU level. 

3. Remove all cases with SKUs purchased fewer than 25 times in the entire period. 
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4. Remove all cases from three product categories (i.e., ketchup, body care, and lemon 

juice/lemon seasoning), due to inconsistent availability throughout the period.  

With this data cleaning, we still preserve 97.4% of all observations and 96.0% of all 

expenditures.  

On the household level, the filtering procedure involved the following selection criteria. 

To exploit the analytical potential of panelists with long purchase histories and extensive survey 

information, each panelist had to have:  

1. At least one transaction per quarter from 2006 to 2014. 

2. Available survey information on key demographics from 2006 to 2014. 

In total, we identified and selected 5,421 unique households that met these requirements. 

We compared the filtered households with the remaining households according to key shopping 

preference indicators and demographic characteristics to avoid structural differences between 

samples. Overall, we find only marginal deviations in their purchase behavior and demographic 

composition. Therefore, we assume households with extensive purchase histories are not 

structurally different in their purchase behavior or demographic characteristics from households 

with shorter or incomplete purchase histories. We also compared our filtered sample with 

official information from the 2006 Microcensus (Destatis 2008). Our sample is slightly older, 

with higher income, fewer single and more two-person households, and fewer children, yet we 

also still find sizable overlap in the distributions of the demographic variables. Similar 

demographic deviations between scanner data samples and census information also appear in 

previous literature (e.g., Dubé, Hitsch, and Rossi 2018). We control for these demographics on 

the individual household level throughout our empirical analysis. Hence, a lack of sample 

representativeness is not an issue. Detailed comparisons of the raw, filtered, and remaining 

household samples are available in Web Appendix A. 
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3.3 Variable Operationalization 

Our model uses four indicator variables, representing shopping-related preferences, to 

uncover latent shopping strategies from observable purchase behavior: a household’s 

discounter SOW, discounter PL SOW, supermarket PL SOW, and price promotion SOW. Each 

indicator variable corresponds to the ratio of the household’s quarterly expenditures (in €) for 

the object of interest (i.e., products in discount store formats, PL products in discount and 

supermarket store formats, and products on temporary price promotion) to the household’s total 

quarterly expenditures (Ailawadi, Pauwels, and Steenkamp 2008).  

Table 2: Variable Operationalization 

Variable Group Variable Operationalization 

Shopping 
Behavior 

Dimensions 

DiscSOW Expenditures (in Euros) in discounters divided by total expenditures per quarter. 
PLDiscSOW Expenditures (in Euros) on PLs in discounters divided by total expenditures per quarter. 
PLSupSOW Expenditures (in Euros) on PLs in supermarkets divided by total expenditures per quarter. 
PromoSOW Expenditures (in Euros) on price promoted products divided by total expenditures per quarter. 

Micro- and 
Macroeconomic 

Conditions 

Expansion Difference between the cyclical GDP component at time t and the prior trough. 
Contraction Difference between the cyclical GDP component at time t and the prior peak. 
Income Monthly net income of the household’s principal income earner in 16 buckets 

(1 = lowest bucket, 16 = highest bucket) 

Demographic 
Controls 

HHSize Number of persons in the household. 
Age Age of the household leading person in 12 buckets. (1 = lowest bucket, 12 = highest bucket) 
Kids Number of children in the household under the age of 14.  

Marketing Mix 
Controls 

PriceDisc Weighted average price of discounters relative to weighted average price across store formats, 
with weights being households’ store format SOWs.  

PricePLDisc Weighted average price of PLs in discounters relative to weighted average price across brand 
types and store formats, with weights being households’ brand type in store format SOWs.  

PricePLSup Weighted average price of PLs in supermarkets relative to weighted average price across brand 
types and store formats, with weights being households’ brand type in store format SOWs.  

AssrtDisc Weighted number of unique SKUs in discounter relative to weighted number of unique SKUs 
across store formats, with weights being households’ store format SOWs. 

AssrtPLDisc Weighted number of unique SKUs of PLs at discounter relative to weighted number of unique 
SKUs across brand type and store formats, with weights being households’ brand type in store 
format SOWs. 

AssrtPLSup Weighted number of unique SKUs of PLs at supermarkets relative to weighted number of 
unique SKUs across brand type and store formats, with weights being households’ brand type 
in store format SOWs. 

PricePromo Weighted number of SKUs sold in price promotion relative to weighted number of SKUs sold 
across price tiers, with weights being household’s price tier SOWs.  

AdvDisc Weighted advertising spending (in Euro) cumulated over discounters relative to weighted 
advertising spending cumulated across store formats, with weights being households’ store 
format SOWs. 

AdvPL Weighted advertising spending (in Euro) cumulated over brands from brand type PL relative to 
weighted advertising spending cumulated across brands from all brand types, with weights 
being households’ brand type SOWs. 

Time Controls 
 
 

Time Continuous time variable 
Quarter Indicator variable for quarters of the year 
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The modeling approach also includes explanatory variables to capture the influences of a 

household’s individual micro- and the overall macroeconomic conditions. Microeconomic 

conditions reflect a household’s individual financial situation, captured by the monthly net 

income of the household’s principal earner, measured in 16 income brackets.  Macroeconomic 

conditions include the overall state of the business cycle, captured by economic expansion and 

economic contraction. That is, we apply the Christiano-Fitzgerald random-walk filter 

(Christiano and Fitzgerald 2003) to log-transformed quarterly GDP data from Germany to 

extract the cyclical component of the series; it constitutes the cyclical deviation from the long-

term trend in the log-transformed GDP series. Economic expansions (contractions) are periods 

with an increase (decrease) in the cyclical component. The magnitude of an expansion 

(contraction) at any point in time then can be defined as the difference between the level of the 

cyclical component at time t and the prior trough (peak) in the cyclical series (Lamey et al. 

2007; Van Heerde et al. 2013). 

We include demographic characteristics as controls, such as the size of the household, 

age of the household head, and number of children in the household. Finally, we construct 

marketing mix controls based on households’ purchase information and manufacturers’ and 

retailers’ advertising spending data similar to Ma and colleagues (2011). These control 

variables include weighted relative price indices, weighted relative assortment size indices, a 

weighted relative price format index, and weighted relative advertising indices. We use relative 

measures for the marketing mix variables to parsimoniously control for cross-effects of 

alternative store formats, brand types, and price tiers, respectively. The household-specific 

weights emphasize changes in the marketing mix that are relevant to a household given its usual 

shopping preferences. Table 2 contains an overview of all variables; Web Appendix B offers 

details regarding the construction of the marketing mix variables. In addition, Table 3 provides 

the correlations for all specified variables. 
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Tabel 3: Descriptice Statistics and Correlation Matrix 

 

 Model 

To achieve our objective to identify specific shopping strategies and uncover switching 

patterns among them, we specify an HMM to classify households into latent states of shopping 

behavior and allow for transitions across these latent states over time, which traditional latent 

class models cannot do. We assume that each latent state represents a specific shopping strategy, 

characterized by the household’s observable discounter SOW, discounter PL SOW, 

supermarket PL SOW, and price promotion SOW. We assign each household to one latent state 

in the beginning of the time series, then note if they adjust their shopping behavior and transition 

into different latent states, driven by their individual micro- and general macroeconomic 

conditions.  

In summary, the proposed HMM consists of three parts: (1) the initial model that 

estimates the probabilities of households being assigned to a certain latent state, (2) the 

 Variable M SD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
1 DiscSOW 41.03 28.55                   
2 PLDiscSOW 27.72 23.46  .85                  
3 PLSupSOW 7.75 9.91 -.35 -.26                 
4 PromoSOW 25.81 21.95 -.17 -.31 -.07                
5 Expansion 2.06  .03  .01 -.01 -.03 -.06               
6 Contraction 1.14  .02  .01  .01 -.01 -.03 -.39              
7 Income 8.64 3.75 -.11 -.07 -.05  .04 -.02 -.01             
8 HHSize 2.32 1.12  .05  .04  .01  .06  .03  .02  .38            
9 Kids  .27  .65  .07  .08  .03  .00  .03  .02  .13  .66           

10 Age 8.61 2.49 -.03 -.02 -.09 -.03 -.07 -.04 -.16 -.44 -.50          
11 PriceDisc  .80  .09  .62  .58 -.12 -.17 -.01 -.03 -.08  .03  .08 -.03         
12 PricePLDisc  .69  .10  .55  .61  .00 -.20  .02 -.01 -.09  .02  .08 -.02  .87        
13 PricePLSup  .66  .09  .53  .58 -.01 -.15 -.05  .00 -.09 -.01  .05  .02  .81  .94       
14 AssrtDisc  .67  .13  .62  .57 -.10 -.16 -.13 -.02 -.08  .06  .09 -.07  .91  .76  .70      
15 AssrtPLDisc  .53  .19  .53  .51  .02 -.18 -.13 -.02 -.08  .07  .11 -.11  .85  .76  .68  .94     
16 AssrtPLSup  .33  .12  .52  .50  .03 -.18 -.02 -.05 -.07  .07  .13 -.13  .84  .76  .70  .88  .96    
17 PricePromo  .58  .09 -.09 -.15  .00  .52 -.15 -.16  .03 -.08 -.07  .13 -.11 -.17 -.03 -.11 -.19 -.16   
18 AdvDisc 1.10  .11 -.29 -.26  .08  .06 -.11  .44  .03 -.02 -.02  .01 -.39 -.34 -.27 -.42 -.38 -.33  .09  
19 AdvPL  .13  .18  .11  .12  .05  .05 -.45 -.24  .03 -.05 -.04  .11  .20  .19  .22  .33  .33  .23  .28 -.41 
Notes: Bold figures indicate significance at p < .001. M = mean; SD = standard deviation. 
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transition model that estimates households’ potential migration across latent states, and (3) a 

response model that specifies their observed shopping behavior. We detail each part next. 

4.1 Initial State Model 

According to the HMM logic, a starting condition must be specified, from which a certain 

household begins its trajectory through latent states over time. We define an initialization period 

at the beginning of our time series and use household sociodemographic information to estimate 

initial state memberships. Sociodemographic variables affect store format choices (Bell and 

Lattin 1998; Rhee and Bell 2002), PL shares (Ailawadi, Pauwels, and Steenkamp 2008), and 

promotional responses (Bell, Chiang, and Padmanabhan 1999). Therefore, we infer the 

likelihood of starting in a certain latent state from household sociodemographic characteristics, 

though we also consider these covariates in the initial state models to correct for observed 

household heterogeneity. As a further control for unobserved household heterogeneity, we 

introduce a random effects factor, in the form of an individual-specific, normally distributed, 

unobserved variable F that captures time-invariant effects in households’ initial state 

probabilities, as well as their transition probabilities across states over time. The probability of 

being in a given state initially can be estimated with a multinomial logit model. Formally, we 

define the probability of household h belonging to each of S latent states of shopping behavior 

at the beginning of the observation time t0 as: 

(1)  Pr(Sht0=st0)=
exp#αst0+λhstoFh+SocioDemht0$

∑ exp(S
s' αst0'+λhsto'Fh+SocioDemht0)

, 

where 

(2)  SocioDemht0=βst0

1,SocioDemIncomeht0+βst0

2,SocioDemHHSizeht0	
+βst0

3,SocioDemAgeht0+βst0

 4,SocioDemKidsht0, 

such that αst0  is the fixed intercept for the initial state st0 ; λhsto  is the random intercept for 

individual household h in the initial state st0 ; Fh is a continuous latent factor that captures 

unobserved household heterogeneity; SocioDemht0
r  includes household-specific 
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sociodemographic variables (r = 1, … , R) for the initialization period t0; and βst0

r  captures the 

effects of the r-th variable on the probability of being in initial state st0. 

4.2 Transition Model 

From this assigned latent state, we assume households potentially adjust their shopping 

behavior in response to variations in their individual micro- and overall macroeconomic 

conditions. These shifts are captured in the model by allowing households to transition between 

latent states at each point in time. We do not impose any particular structure on the number of 

latent states or potential migrations among them; instead, the data determine existing shopping 

strategies and how households transition across them. To account for other potential sources of 

adjusted shopping strategies, we control for supply-side effects with various marketing mix 

variables and household demographics. We again include the random effects factor F to control 

for unobserved household heterogeneity. Thus, our model can distinguish cross-household 

heterogeneity from time dynamics, such that the different households can have different levels 

of stickiness to latent states (Netzer, Ebbes, and Bijmolt 2017). We define the probability of 

household h moving from latent state st-1 to state st as 

(3)  Pr(Sht=st| Sht-1=st-1,  Fh, Econht, Mixht, Demht, Timet) 

 = 
exp#αst-1,st+λhstFh+Econht+Mixht+Demht+δstTimet$

∑ exp(S
s' αst-1,st'+λhst'Fh+Econht+Mixht+Demht+δst'Timet)

, 

with 

(4)  Econht=βst-1,st

1,EconIncomeht+βst-1,st

2,EconExpansiont-1+βst-1,st

3,EconContractiont-1, 

(5)  Mixht=βst-1,st

1,MixPriceDischt-1+βst-1,st

2,MixPricePLDischt-1+βst-1,st

3,MixPricePLSupht-1 
+βst-1,st

4,MixAssrtDischt-1+βst-1,st

5,MixAssrtPLDischt-1+βst-1,st

6,MixAssrtPLSupht-1 
+βst-1,st

7,MixPricePromoht-1+βst-1,st

8,MixAdvDischt-1+βst-1,st

9,MixAdvPLht-1, and 

(6)  Demht=βst-1,st

1,DemHHSizeht+βst-1,st

2,DemAgeht+βst-1,st

3,DemKidsht, 

where αst-1,st  is the fixed intercept for the transition from latent state st-1 to latent state st; 

λhs is the random intercept for individual household h in state st; Fh is a continuous latent factor 
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that captures unobserved household heterogeneity; Econht  includes variables representing 

(household-specific) economic conditions (p = 1, … , P), such that βst-1,st

p, Econ  captures the 

influence of the p-th variable on the transition from state st-1 to st; Mixht-1 includes household-

specific marketing mix controls (m = 1, … , M), with βst-1,st

m, Mix capturing the influence of the m-

th marketing mix control on the transition from state st-1  to st ; Demht  includes controls on 

household demographics (n = 1, … , N), with βst-1,st

n, Dem  capturing the influence of the n-th 

demographic control on the transition from state st-1 to st; and Time+ is a continuous time trend 

variable, such that δstcaptures its effect on the probability of being in state st. 

4.3 Response Model 

The final part of the HMM connects the latent states of shopping behavior to the 

observable outcomes of specific shopping preferences (i.e., discounter SOW, discounter PL 

SOW, supermarket PL SOW, and price promotion SOW) for a given household at a specific 

point in time. Thus, a household’s observable preferences are an outcome of its membership in 

a specific state. Conditional on the latent state, the four preference indicator variables follow a 

multivariate normal distribution with no restrictions on the variance-covariance matrix, to 

account for potential interrelations between these outcomes. 

We control for the possibility that households’ observed shopping behavior is differently 

affected by short-term marketing actions, according to their current latent state membership. 

Concretely, we model the four dependent preference indicator variables as follows: 

(7)  DiscSOWht=αst
Disc+βst

1,DiscPriceDischt+βst

2,DiscAssrtDischt 
+βst

2,DiscAdvDischt+γst
DiscDiscSOWht-1+δDiscQuartert+εt

Disc, 

(8)  PLDiscSOWht=αst
PLDisc+βst

1,PLDiscPricePLDischt+βst

2,PLDiscAssrtPLDischt 
+βst

2,PLDiscAdvPLht+γst
PLDiscPLDiscSOWht-1+δPLDiscQuartert+εt

PLDisc, 

(9)  PLSupSOWht=αst
PLSup+βst

1,PLSupPricePLSupht+βst

2,PLSupAssrtPLSupht 

+βst

2,PLSupAdvPLht+γst
PLSupPLSupSOWht-1+δPLSupQuartert+εt

PLSup, and 
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(10)  PromoSOWht= αst
Promo+βst

1,PromoPricePromoht 
+γst

PromoPromoSOWht-1+δPromoQuartert+εt
Promo, 

 
where αst is the intercept for the respective dependent variable, indicating that shopping 

behavior varies across latent states st . We also include the lagged dependent variables 

( DiscSOWht-1 , PLDiscSOWht-1 , PLSupSOWht-1 , PromoSOWht-1 ), to capture households’ 

inertial shopping behavior in each respective equation (γst
). We allow those coefficients to vary 

across latent states st . Then the marketing mix variables ( PriceDischt , PricePLDischt , 

PricePLSupht, AssrtDischt, AssrtPLDischt, PricePromoht, AdvDischt, AdvPLht) aim to capture 

the respective state-specific supply-side effect βst
. Finally, we include Quartert  to capture 

potential seasonal effects δ in each equation and εt as an error term. 

 Results 

5.1 Model Estimation and Selectin 

We use Latent GOLD 5.1 (Vermunt and Magidson 2016) to estimate the proposed HMM 

model with maximum likelihood; it can establish parameter estimates on the basis of a 

combination of expectation maximization and Newton Raphson iterations. The E-step 

computations use a generalization of the Baum-Welch algorithm (Baum et al. 1970) to 

circumvent excessive computational demands in applications with many time points (Ramos, 

Vermunt, and Dias 2011). To identify maximum likelihood parameter estimates, we consider 

50 random sets of starting values and up to 5000 expectation maximization iterations, followed 

by up to 50 Newton Raphson iterations per model estimation. All our models converged before 

reaching these maximum numbers of iterations. The large number of starting sets and 

expectation maximization iterations at the start considerably increases the probability of finding 

a global solution (Vermunt and Magidson 2016). 
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We use 2006 as the initialization period and data from 2007–2014 for the analysis. For 

computational feasibility, we rely on a random sample of 1000 households from the filtered 

data set for the final model estimations. Except for the time controls, we standardized all 

variables for the estimation process.  

Because we have no prior knowledge about the exact number of latent states, nor do we 

impose restrictions on the state composition according to conceptual assumptions, we estimate 

a set of models with increasing numbers of states (1 to N), then select the model that offers the 

best fit to our data. Following prior research (e.g., Ngobo 2017), we rely on the consistent 

Akaike’s information criterion (Bozdogan 1987) and Bayesian information criterion (Schwarz 

1978); the former criterion offers a particularly strong probability of selecting the true model 

with large sample sizes, such as ours (Rust et al. 1995). Table 4 contains the information 

statistics we used for our model selection; they confirm that the seven-state model fits our data 

better than all other specifications. 

Table 4: Model Fit Statistics 
States LL BIC CAIC Parameters 
1 -475,105.3 950,625.4 950,665.4 40 
2 -469,176.3 939,369.2 939,467.2 98 
3 -464,634.9 931,220.0 931,408.0 188 
4 -460,647.3 924,510.4 924,820.4 310 
5 -457,186.1 919,185.4 919,649.4 464 
6 -455,245.8 917,234.4 917,884.4 650 
7 -453,711.4 916,426.9 917,294.9 868 
8 -452,434.0 916,465.6 917,583.6 1118 
Notes: Numbers in bold indicate the best fitting solution. LL = log-
likelihood, BIC, CAIC. 
 

 

5.2 Identified Shopping Strategies Based on Household Shopping Preferences 

In Table 5, Panel A, we summarize the identified latent states of shopping behavior, which 

indicate households’ distinct shopping strategies. First, we note significant variation in the 

relative occurrence of each shopping strategy: Strategy 4 was adopted by households 52% of 
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the time, but Strategy 6 is present in only 1.1% of the cases. All other strategies show more 

equivalence, ranging from 6.4% of the observed time for Strategy 5 to 12% for Strategy 1. 

Second, some distinctive differences mark the strategies with regard to their underlying 

shopping preferences, as displayed in Figure 2. Compared with the sample averages (DiscSOW 

40.3%, PLDiscSOW 27.7%, PLSupSOW 8.1%, PromoSOW 25.5%), households that pursue 

Strategy 4 show similar shopping preferences across all four indicators (DiscSOW 38.2%, 

PLDiscSOW 25.2%, PLSupSOW 7.6%, PromoSOW 25.2%). It is the most common shopping 

strategy, so we infer that it represents purchase behavior exhibited by the majority of 

households in various conditions. We refer to it as Conventional Shopping. All the other 

shopping strategies indicate particularly pronounced preferences in one way or the other. For 

example, among households that use Strategy 3, the preference indicators are all considerably 

below the population average; they prefer to shop at supermarkets at regular prices and 

particularly favor NBs (PLDiscSOW 15.8%, PLSupSOW 5.5%). Accordingly, we label this 

shopping strategy as Brand Shopping. Households that adopt Strategy 7 exhibit comparable 

preferences in store format and brand type, but they signal a particular interest in promotional 

offers (PromoSOW 51.5%), so that we label this strategy Cherry Picking. Households classified 

by Strategy 2 predominantly purchase in supermarkets but also indicate a strong focus on PL 

brands (DiscSOW 27.6%, PLSupSOW 21%), so we call this strategy Supermarket Shopping. 

With an intensification of this behavior, Strategy 6 pertains to households that exhibit the 

strongest preference for supermarket PL brands (PLSupSOW 39.9%), or the strategy we call 

Supermarket PL Picking. However, we again point out that this strategy occurs only 1.1% of 

the time, so it indicates a rather extreme strategy manifestation. Two other shopping strategies 

have a predominant focus on purchases from discount stores. Strategy 1 is characterized by the 

strongest preferences for the discount store format and PL brands across all identified strategies 

(DiscSOW 72.1%, PLDiscSOW 60.9%). We label it Discounter Shopping. Although 
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households pursuing Strategy 5 mainly purchase in discount store formats too, they aim to pick 

up NBs offered with temporary price reductions, rather than the discounters’ PLs (PLDiscSOW 

24.8%, PromoSOW 33.2%). Accordingly, we call this strategy Discounter Brand Picking; it is 

rather unconventional and may be driven by current retail developments, such that discounters 

are increasingly adding NBs to their assortments (Lourenco and Gijsbrechts 2013).  

Table 5: Shopping Strategy Profils 
 Shopping Strategy 
Panel A 1 2 3 4 5 6 7 Overall 
Distribution (%) 12.0 8.9 10.0 52.0 6.4 1.1 9.5 100.0 
Indicator (%)         
Discounter 72.1 27.6 22.8 38.2 66.5 22.0 26.8 40.3 
PL (Discounter) 60.9 19.1 15.8 25.2 24.8 16.3 16.7 27.1 
PL (Supermarket) 3.9 21.0 5.5 7.6 4.0 39.9 5.8 8.1 
Price Promotion 13.8 22.9 14.7 25.2 33.2 17.4 51.5 25.5 
Panel B         
Price Level  .903 1.012 1.228 1.1 1.014 .923 1.074 1.036 
Volume (€) 122.2 125.5 111.9 175.0 125.8 78.9 150.0 127.04 
Value (€) 115.5 131.4 139.4 199.3 132.7 77.2 165.6 137.32 

Panel C 
        

Price Level dev. (%) 96.28 97.18 106.09 100.31 99.81 93.08 101.27 99.15 
Volume dev. (%) 95.26 93.84 96.62 102.62 97.21 81.75 103.42 95.82 
Value dev. (%) 91.94 91.63 101.89 102.78 97.22 77.19 104.79 95.35 

 Discounter Super- Brand Conven- Discounter Super- Cherry  
Label Shopping market Shopping tional Brand market PL Picking  
  Shopping  Shopping Picking Picking   
 

Table C1 in Web Appendix C provides estimation results for the initial assignment of 

shopping strategies to households on the basis of their sociodemographic characteristics. The 

initial shopping strategies are relevant; they indicate where households start their behavioral 

trajectory. For further insights into the nature of each individual shopping strategy, we use the 

posterior probabilities estimated in the HMM to assign each household to a specific strategy 

over time. For each strategy, we then calculate the average price households pay relative to the 

market price , the average volume purchased expressed in constant Euros , and the average total 

spending when following a particular shopping strategy (Table 5, Panel B). This allows us to 

identify the spending levels associated with applying each of the strategies. With regard to the 
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price level, households tend to spend the most with a Brand Shopping strategy (price level 

1.228) and least with a Discounter Shopping strategy (price level .903). Households that adopt 

a Conventional Shopping strategy spend the most in absolute terms (value €199.3, volume 

€175.0), perhaps reflecting larger household sizes. The Supermarket PL Picking strategy (price 

level .923) is price focused to a similar degree as the Discounter Shopping strategy (price level 

.903). Furthermore, Discounter Brand Picking and Supermarket Shopping are similar in price 

levels (1.014 vs. 1.012), value spent (€132.7 vs. €131.4), and volume purchased (€125.8 vs. 

€125.5). This initial finding supports our intention to model holistic shopping strategies using 

multiple shopping preferences; households can maintain similar spending outcomes based on 

varying store formats, brand types, and price tier combinations. Finally, households employing 

the Cherry Picking strategy not only pay higher prices than the market average (price level 

1.074) but purchase larger quantities too (volume €150.0), leading to rather high overall 

spending (value €165.6). 

Figure 2: Shopping Strategy Comparison 
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5.3 Household Strategy Switching Due to Changing Micro- and Macroeconomic 

Conditions 

Changing conditions affect households’ ability or willingness to purchase, negatively or 

positively, so households may be motivated to switch their current shopping strategies in favor 

of strategies that better suit their present economic conditions. Such adjustments may depend 

directly on economic conditions, both up- and down-market. For market actors like NB 

manufacturers and retailers, knowledge about households’ changing shopping strategies is 

critical for several reasons. First, they need insights about the general disposition or reluctance 

of specific household segments to change their shopping behavior in response to varying 

economic conditions. Then they can better predict the stability of their customer base, profits, 

or market shares. Second, information about switches from and to particular shopping strategies 

would provide insights into the complex transformations of customer bases. Identifying the 

previous shopping strategies of new customers and the subsequent strategies of defecting 

customers could enable firms to implement more effective marketing actions to attract and 

retain these shoppers. From a firm perspective, they need to know whether households adjust 

their shopping strategies, how, and in which direction.   

In our empirical model, these adjustments are indicated by an increase or decrease of the 

transition probability between two particular shopping strategies, conditional on micro- and 

macroeconomic changes, as specified in Equation 3. Table 6 presents the transition matrix that 

depicts how households in general adjust their shopping strategies. The diagonal shows the 

probability that a household will maintain a specific shopping strategy. For example, 70.83% 

of the households retain a Conventional Shopping strategy from one period to another; this 

strategy thus appears rather persistent. Switching to Conventional Shopping also is a preferred 

transition for households following any other shopping strategy. The probabilities for 

maintaining any of the other shopping strategies instead are significantly lower, from 27.2% 
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for Discounter Shopping to 2.69% for Supermarket PL Picking. Furthermore, except for the 

transition to Conventional Shopping, we note substantial variation in the switching patterns 

across shopping strategies.  

Table 5 panel C presents the average deviation in the price households pay, the volume 

they purchase and their total spending when applying the respective strategy relative to when 

they use any of the other strategies. Hence, when households switch to Brand Shopping, they 

tend to pay higher prices (106.09%) but purchase less (96.62). When households switch to 

Supermarket PL Picking, these deviations are most pronounced as households drastically 

reduce how much they pay, how much they purchase and, consequently, how much they spend 

in total. Given the results in the transition matrix, this makes sense, as households are most 

likely to switch into the Supermarket PL Picking strategy coming from the Brand Shopping and 

Cherry Picking strategies, which are both associated with high price and spending levels. 

Table 6: Transition matrix across Shopping Strategies 
 Strategy (t – 1) 
 1 2 3 4 5 6 7 

(in %) Discounter 
Shopping 

Supermarket 
Shopping 

Brand 
Shopping 

Conventional 
Shopping 

Discounter 
Brand 

Picking 

Supermarket 
PL Picking 

Cherry 
Picking 

Strategy (t)        

1 27.2 11.56 11.71 8.11 20.32 13.66 10.09 
2 7.51 10.38 15.18 7.1 7.43 11.39 14.24 
3 10.48 24.03 9.72 4.85 20.67 23.5 15.75 
4 36.22 32.36 36.28 70.83 21.37 24.26 25.67 
5 9.68 5.68 10.85 3.5 7.98 9.65 12.83 
6 1.25 1.15 2.46 0.43 2.43 2.69 2.46 
7 7.66 14.82 13.8 5.17 19.8 14.85 18.96 

 

Table 7 indicates which significant effects lead households to adjust their shopping 

strategies. Among microeconomic conditions, low income increases households’ probability to 

switch from Conventional Shopping to Discounter Shopping (-.198, p < .01), Discounter Brand 

Picking (-.303, p < .01), Supermarket Shopping (-.259, p < .01), or Supermarket PL Picking (-

.391, p < .1), but it decreases the probability to switch to Brand Shopping (.175, p < .1). 
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Similarly, low income drives households to switch from Brand Shopping to Discounter Brand 

Picking (-.843, p < .01), Supermarket PL Picking (-1.363, p < .01), and Cherry Picking (-.667, 

p < .1), but it prevents them from switching from Discounter Shopping (.301, p < .01) to Brand 

Shopping. Finally, it induces households to change from Cherry Picking to Supermarket PL 

Picking (-.458, p < .1).  

Table 7: Micro- and Macroeconomic Conditions and Impact on Strategy Changes 
Strategy in t – 1 Strategy in t Variable Coef. SE Z-value  Wald(0)  DF 

  Income    
 135.342 *** 42 

1 3 Income 0.301 0.112 2.699 ***    
3 5 Income -0.843 0.339 -2.491 **    
3 6 Income -1.363 0.380 -3.584 ***    
3 7 Income -0.667 0.354 -1.886 *    
4 1 Income -0.198 0.074 -2.667 ***    
4 2 Income -0.259 0.056 -4.626 ***    
4 3 Income 0.175 0.106 1.650 *    
4 5 Income -0.303 0.080 -3.793 ***    
4 6 Income -0.391 0.216 -1.805 *    
7 6 Income -0.458 0.237 -1.931 *    
  Expansion    

 80.146 *** 42 
1 5 Expansion 0.253 0.137 1.851 *  

 
 

1 7 Expansion 0.331 0.181 1.827 *  
 

 

2 1 Expansion -0.366 0.171 -2.148 **  
 

 

2 5 Expansion -0.334 0.194 -1.723 *  
 

 

2 6 Expansion -0.807 0.373 -2.163 **    
3 1 Expansion -0.679 0.259 -2.619 ***    
3 4 Expansion -0.489 0.262 -1.868 *    
3 7 Expansion -0.723 0.271 -2.671 ***  

 
 

  Contraction    
 49.106  42 

1 5 Contraction 0.223 0.119 1.877 *  
 

 

4 7 Contraction 0.223 0.109 2.052 **  
 

 

5 7 Contraction 0.357 0.187 1.908 *  
 

 

***p < .01; **p < .05; *p < .1.  
Notes: 1 = Discounter Shopping; 2 = Supermarket Shopping; 3 = Brand Shopping; 4 = Conventional 
Shopping; 5 = Discounter Brand Picking; 6 = Supermarket PL Picking; 7 = Cherry Picking 

. 

These switches have severe and distinct consequences for firms, and Table 8 translates 

the positive and negative transition effects into clear consequences for NB manufacturers, 

supermarkets, and discounters. It shows that low income induces particularly unfavorable 

consequences for NB manufacturers, because households either switch to a shopping strategy 
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with less brand focus or avoid switching to a shopping strategy with a stronger brand focus. For 

supermarkets and discounters, the consequences are more ambivalent; households’ transition 

from Conventional Shopping to Discounter Shopping is positive for discounters and negative 

for supermarkets, but some households with a Conventional Shopping strategy transition to 

Supermarket Shopping, implying reverse consequences for these market players. 

Table 8: Shopping Strategy Transitions Due to Income Loss and Marketplace 
Consequences 

      Consequences for: 
Switches from Focal Strategy Switches to  National 

Brands Super-
markets Discounters 

Conventional Shopping & Discounter 
Shopping ( Brand Shopping  ‒ ‒ + 

Conventional Shopping  
Brand Shopping & 

& 
Discounter 

Brand Picking 
   ‒ ‒ + 

Conventional Shopping & Supermarket 
Shopping 

   ‒ + ‒ 
Conventional Shopping 
Brand Shopping 
Cherry Picking 

& 
& 
& 

Supermarket 
PL Picking 

   ‒ + ‒ 

 
 

Conventional 
Shopping 

& 
& 
& 
& 
( 

Discounter Shopping 
Supermarket Shopping 
Discounter Brand Picking 
Supermarket PL Picking 
Brand Shopping 

 ‒ + / ‒ + / ‒ 

Discounter Shopping 
Conventional Shopping 

( 
( 

Brand 
Shopping 

& 
& 
& 

Discounter Brand Picking 
Supermarket PL Picking 
Cherry Picking 

 ‒ + / ‒ + / ‒ 

Brand Shopping & Cherry Picking & Supermarket PL Picking  ‒ o o 
  Total Effect    ‒ + / ‒ + 

Notes:  & increased probability to switch, (  decreased probability to switch 

 

Economic expansions also have distinct effects on households’ switching behaviors 

(Table 7). They encourage transitions from Discounter Shopping to Discounter Brand Picking 

(.253, p < .1) and Cherry Picking (.331, p < .1). Yet households’ probabilities of switching from 

Supermarket Shopping to Discounter Shopping (-.366, p < .05), Discounter Brand Picking (-

.334, p < .1), or Supermarket PL Picking (-.807, p < .05) decrease. Households appear reluctant 
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to switch from Brand Shopping to Discounter Shopping (-.679, p < .01), Conventional 

Shopping (-.489, p < .1), or Cherry Picking (-.723, p < .1). In this sense, economic expansions 

imply primarily positive consequences for NB manufacturers and supermarkets but negative 

consequences for discounters (Table 9). Households tend to shift their focus from discounter 

PLs toward NBs, sold by either discount stores (Discounter Brand Picking) or supermarkets on 

promotion (Cherry Picking). Therefore, switching strategies during economic expansions 

predominantly indicate upmarket shifts, in both brand type and store format. This situation 

intensifies for discounters, because households are reluctant to switch from brand- or 

supermarket-oriented strategies; they simply do not move downmarket toward discounters or 

PLs during prosperous economic times. Therefore, discounters are negatively affected by the 

defecting customer base and lack of customer gains from households switching strategies. 

Table 9: Shopping Strategy Transitions Due to Expansions and Marketplace 
Consequences  

      Consequences for: 
Switches from Focal Strategy Switches to  National 

Brands Super-
markets Discounters 

Supermarket Shopping 
Brand Shopping ( 

( 
Discounter 
Shopping 

& 
& 

Discounter Brand Picking 
Cherry Picking 

 + + ‒ 
Supermarket Shopping  
Discounter Shopping ( 

& 
Discounter 

Brand Picking 
   + ‒ ‒ 

  Supermarket 
Shopping 

( 
( 
( 

Discounter Shopping 
Discounter Brand Picking 
Supermarket PL Picking 

 + + ‒ 

Supermarket Shopping ( Supermarket 
PL Picking 

   + + / ‒ o 

Brand Shopping ( Conventional 
Shopping    + + ‒ 

  Brand 
Shopping 

( 
( 
( 

Discounter Shopping 
Conventional Shopping 
Cherry Picking 

 + + ‒ 
Discounter Shopping 
Brand Shopping & 

( Cherry Picking    + + ‒ 
  Total Effect    + + / ‒ ‒ 

Notes:  & increased probability to switch, (  decreased probability to switch 
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Finally, economic contractions drive switching too (Table 7). Mainly, households switch 

toward Cherry Picking by abandoning Discounter Brand Picking (.357, p < .1) and 

Conventional Shopping (.223, p < .05). We also find an increased likelihood that households 

switch from Discounter Shopping to Discounter Brand Picking (.223, p < .1). These strategy 

switches during economic contractions have negative consequences for discounters, positive 

ones for supermarkets, and mixed outcomes for NB manufacturers (Table 10). The latter two 

actors primarily benefit from households’ increasing focus on promotional items as they switch 

to Cherry Picking and Discounter Brand Picking strategies. The main downside for NB 

manufacturers is the risk of reduced margins, due to temporary price reductions. The switches 

are more generally unfavorable for discounters though, because households either stop visiting 

their stores or avoid purchasing more profitable PLs within these stores.  

Table 10: Shopping Strategy Transitions Due to Contractions and Marketplace 
Consequences  

      Consequences for: 

Switches from Focal Strategy Switches to National 
Brands Super-

markets Discounters 
  Discounter 

Shopping & Discounter Brand Picking + o o 

Discounter Shopping & Discounter 
Brand Picking & Cherry Picking + + ‒ 

  Conventional 
Shopping & Cherry Picking + + ‒ 

  Brand 
Shopping & Cherry Pickinga ‒ o o 

Discounter Brand Picking 
Conventional Shopping 
Brand Shoppinga 

& 
& 
& 

Cherry 
Picking   + + ‒ 

  Total Effect   + / ‒ + ‒ 

Notes:  & increased probability to switch, (  decreased probability to switch 
                    abased on transition matrix 

 



51 
 

5.4 Sensitivity of Shopping Strategies to Changes in Micro- and Macroeconomic 

Conditions 

The results of our seven-state HMM specification provide valuable insights into the 

existence of distinct shopping strategies and switching behaviors across strategies, in response 

to varied micro- and macroeconomic conditions. To gain an even clearer picture of the 

sensitivity of each shopping strategy to gradually changing micro- and macroeconomic 

conditions, as often occur in reality, we next perform a series of simulations using the estimates 

from the preferred HMM solution. We thus construct four scenarios to reflect a positive 

microeconomic shock, negative microeconomic shock, positive macroeconomic shock, and 

negative macroeconomic shock. For each scenario, we run 40 simulations and induce shocks 

of increasing magnitude by gradually manipulating the sample average of the particular variable 

of interest. Thus, for a positive (negative) microeconomic shock, we gradually increase 

(decrease) mean income in 2.5 percentage point increments; for a positive (negative) 

macroeconomic shock, we gradually increase the mean economic expansion (contraction) in 

.25 percentage point increments.  

Figure 3 provides an overview of the simulation results. For microeconomic shocks, the 

probability changes for any of the shopping strategies are more pronounced for negative shocks, 

i.e., income losses than for positive shocks, i.e., income gains (Figure 3, Panel A). For example, 

a simulated income loss of -50% reduces the probability of pursuing a Conventional Shopping 

strategy by -1.97 percentage points, while an equivalent income gain increases the probability 

of this strategy only by +1.25 percentage points. Thus, households’ general willingness to adjust 

shopping behavior seems greater when they experience monetary losses rather than monetary 

gains. Otherwise, the shopping strategies’ trajectories are largely intuitive and inversely 

symmetrical with regard to positive and negative shocks. Hence, these results support the 

external validity of our model.  
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Figure 3: Effects of Micro- and Macroeconomic Conditions on Shopping Strategy 
Probabilities 
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Furthermore, income losses increase the probabilities of Discounter Shopping, 

Discounter Brand Picking, Supermarket Shopping, and Supermarket PL Picking strategies, but 

income gains decrease the probabilities of these strategies. These trajectories make sense, in 

that all these shopping strategies exhibit rather low price level indices (Table 5). The reverse is 

true for Conventional Shopping and Brand Shopping strategies: Their probabilities decrease 

with income losses, whereas they increase with income gains. These trajectories also align with 

the rather high price level indices of both strategies. In either case though, the probabilities of 

a Cherry Picking strategy do not tend to be affected by microeconomic shocks. 

The picture differs when it comes to macroeconomic shocks. The probability changes for 

any shopping strategies seem more pronounced during negative shock, i.e., economic 

contractions than during positive shock, i.e., economic expansions (Figure 3, Panel B), yet the 

trajectories of some strategies evolve unsymmetrically and counterintuitively, across positive 

and negative shocks. The probability that households pursue the most price sensitive Discounter 

Shopping strategy decreases during both economic expansions and, contrary to intuition, 

contractions, with a similar magnitude. That is, an economic expansion of 5 percentage points 

decreases the probability of a Discounter Shopping strategy by -.62 percentage points, and an 

equivalent economic contraction decreases it by -.77 percentage points. A similar pattern, with 

varying magnitudes across economic expansions and contractions, occurs for the less price 

sensitive Conventional Shopping strategy, such that a 5 percentage point economic contraction 

(expansion) decreases the probability of this strategy by -.63 (-.27) percentage points. Shocks 

in economic contraction and expansion also both increase the probability that households adopt 

a Discounter Brand Picking strategy, by +.34 and +.25 percentage points, respectively. Then 

other shopping strategies are sensitive only to either economic expansions or contractions. For 

example, a 5 percentage point economic contraction shock increases the probability of pursuing 

a Cherry Picking strategy by +1.66 percentage points, but an economic expansion has no effect. 
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The Supermarket Shopping strategy instead is sensitive to economic expansions (+.93 

percentage points) but not economic contractions.  

Changes in households’ income directly affect their ability to purchase. Because our 

simulations of macroeconomic shocks hold households’ income constant, we isolate the more 

subliminal effects on households’ willingness to purchase. In the case of contracting 

macroeconomic conditions, our results reveal these effects to be not directly apparent. We 

present possible explanations for these findings in the following section. 

 Discussion 

We discuss our findings according to the research objectives stated at the outset of this 

article and contribute to existing literature by interpreting the reasons for the various shifts our 

results have uncovered. In addition, we specify some important, differential implications for 

each key player in the FMCG sector—manufacturers, supermarkets, and discounters—to offer 

concrete managerial actionability. 

6.1 Shopping Strategies Based on Households’ Shopping Preferences  

Our results reveal seven shopping strategies with distinct characteristics in terms of store, 

brand type, and price tier preferences. Conventional Shopping dominates, accounting for 52% 

of all observations and featuring balanced discounter SOW, PL SOW, and price promotion 

SOW, but distinct and diverse strategies make up the other half. Two strategies are 

characterized by a large proportion of spending with discounters and differ primarily in terms 

of their discounter PL SOW (Discounter Shopping and Discounter Brand Picking). The other 

four shopping strategies all feature similar discounter SOW but differ in their supermarket PL 

SOW (Supermarket PL Shopping, Supermarket Shopping, and Brand Shopping) or price 

promotion SOW (Cherry Picking).  

This variety highlights the heterogeneity in how households shop, as well as the 

importance of analyzing multiple shopping preferences to gain a holistic sense of households’ 
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shopping strategies. Four shopping strategies are similar in their store format preferences but 

diverge in their brand type and price tier preferences. These differentiations would remain 

hidden with a singular, aggregated perspective on shopping preferences (Dubé, Hitsch, and 

Rossi 2018; Lamey 2014; Lamey et al. 2007). Furthermore, these differences extend to the 

prices that households pay, the volume purchased, and the total spending associated with a 

certain strategy (Table 5, Panels B and C). Households spend most when they adopt a Cherry 

Picking strategy (104.79%). As some evidence has shown (Heilman, Nakamoto, and Rao 2002), 

price promotions seem to seduce households into paying higher prices (101.27%) and purchase 

larger quantities (103.42%) than usual. In contrast, households spend less when they pursue a 

Supermarket Shopping or Supermarket PL Shopping strategy than with the Discounter Brand 

Picking strategy, despite their substantially lower discounter SOW. These results align with 

current trends, in which discounters keep adding more NBs to their assortment (Lourenco and 

Gijsbrechts 2013) while supermarkets extend their PL assortments (Ailawadi, Pauwels, and 

Steenkamp 2008). We find further indicators for this development in the very existence of the 

Discounter Brand Picking and Supermarket PL Picking strategies. In the former case, 

households devote most of their SOW to NBs (71.2%) and pay above–market level prices 

(1.014). In the latter strategy, they instead devote 40% of their SOW to supermarket PLs and 

pay below–market level prices on average (.923). 

6.2 Switching Strategies in Response to Changing Conditions 

The results from the transition model reveal that micro- and macroeconomic conditions 

indeed influence households’ shopping strategies and, in turn, their shopping preferences. In 

addition, the estimated transition coefficients reveal how households react and uncover 

significant variation across households in their responses to changing conditions. These 

findings, based on a detailed modeling approach and longitudinal field data, have important 

diagnostic and normative value.  
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Notably, households adjust differently depending on the shopping strategy they use 

initially. When they suffer reduced income, for example, households previously engaged in 

Brand Shopping switch to a Cherry Picking strategy, increase their price tier preference, and 

accordingly purchase more products on promotion. Households already engaged in a Cherry 

Picking strategy cannot increase their purchases of products on promotion further, so instead, 

they turn to the Supermarket PL Picking strategy to cope with diminished income. Yet 

households originating from the same shopping strategy also might adjust to changing 

conditions by switching to different shopping strategies. For example, an income loss leads 

some households to adjust their price tier preference and switch from Brand Shopping to Cherry 

Picking, but others adjust their brand type preference and move to Supermarket PL Picking, 

while still others adjust their store format preference to adopt a Discounter Brand Picking 

strategy.  

In terms of changes in microeconomic conditions, we find that all transitions caused by a 

loss in income entail movements from more expensive strategies, in terms of the price level and 

total wallet, to less expensive strategies. No clear tendency emerges in terms of whether 

households stick to a specific store format or brand type though. Instead, the various adjustment 

patterns across households boil down to four fundamental mechanisms that households apply 

to adjust to income losses: stick to the brand type but switch to a different store format (switch 

to Discounter Brand Picking), stick with the store format but switch the brand type (switch to 

Supermarket Shopping or Supermarket PL Picking), stick with the store format and brand type 

but switch to seeking promotions (switch to Cherry Picking), or switch both, brand type and 

store format (switch to Discounter Shopping).  

During contracting macroeconomic conditions, intriguingly, households switch to 

shopping strategies that are moderately more expensive. We present three possible explanations 

for this finding. First, a household that does not suffer an income loss during a countrywide 
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contraction might feel more confident, relative to peers, so it experiences increased confidence 

and willingness to spend, or even a feeling of “invincibility.” Hampson and McGoldrick (2013) 

similarly identify a class of households unaffected by financial crises that become even more 

careless in their spending. In terms of PL purchases, several studies caution that contractions 

do not necessarily increase PL consumption when controlling for household income (Dubé, 

Hitsch, and Rossi 2018; Kaswengi and Diallo 2015). Second, in stressful macroeconomic 

environments, households may compensate by making purchases of more expensive products, 

as predicted by coping literature (e.g., Burroughs and Rindfleisch 1997; Duhachek 2005; 

O’Guinn and Faber 1998). This effect could arise in response to income losses too, but in that 

case, households’ more restrictive budgets may deter them from such compensatory shopping 

behavior. Similarly, the concept of frugal fatigue suggests that households grow tired of self-

restricting behavior during contractions and therefore pursue compensatory purchases (Braak, 

Geyskens, and Dekimpe 2014; Dekimpe and Deleersnyder 2017). Both these explanations align 

with our finding that households switch to shopping strategies that are marginally more 

expensive. For example, during contractions, households switch from Discounter Shopping to 

Discounter Brand Picking; they still seem to be reluctant to consider the expensive Brand 

Shopping strategy. Households thus opt for “compromise strategies” such as Discounter Brand 

Picking or Cherry Picking. Third, given the tense overall environment that occurs during 

contractions, households may become more deal prone and, therefore, switch to the Discounter 

Brand Picking and Cherry Picking strategies, which feature the largest price promotion SOWs. 

As a result, they unintentionally may end up engaged in shopping strategies that are more 

expensive and lead them to overspend. This is even true for the switches from Brand Shopping 

to Cherry Picking that we observe. Although households tend to pay higher prices in the Brand 

Shopping strategy, they purchase larger volumes in the Cherry Picking strategy and eventually 

spend more in total.  
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During expansive macroeconomic conditions, households instead embrace the positive 

climate and adopt shopping strategies associated with moderately higher spending; while the 

probability of transitions into strategies that are less expensive decreases. We again note the 

wide variety of adjustments across households. Yet in contrast with the effect of changes in 

microeconomic conditions, the strategies that households switch into when macroeconomic 

conditions improve are only marginally more expensive, and those into which they are less 

likely to switch are only marginally less expensive. Thus, a positive economic climate indeed 

encourages households to increase their spending levels, but they are notably more reserved 

than they appear to be in response to microeconomic income increases. 

6.3 Sensitivity of Shopping Strategies to Changes in Conditions 

Our simulation results reveal the sensitivity of shopping strategies to changes in micro- 

and macroeconomic conditions of differing magnitudes. In aggregate, changes in 

microeconomic conditions and the associated deteriorating ability to purchase lead to more 

pronounced switches than changes in macroeconomic conditions affecting households’ 

willingness to purchase. Furthermore, households react more strongly to deteriorating 

microeconomic conditions than to improving ones, in line with previous studies of durables 

(Deleersnyder et al. 2004) and PLs (Lamey et al. 2007). 

Brand Shopping and Conventional Shopping strategies are both positively associated with 

microeconomic conditions. Whereas Brand Shopping acts as a ceiling strategy that even 

Conventional Shopping households eventually resort to given substantial income gains, no 

equivalent floor strategy appears in the case of income losses. We might predict the Discounter 

Shopping strategy would take this floor role, because it is the cheapest strategy, but instead, 

households seem reluctant to adopt it even after extreme income losses. Apparently, many 

households rather save elsewhere or use their savings than shop exclusively in discounters and 

purchasing their PLs.  
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In macroeconomic expansions, the positive overall climate leads households to abandon 

the Discounter Shopping strategy. Instead, the Supermarket Shopping strategy in particular 

becomes more likely. As the transition coefficients reveal, households become less likely to 

switch to cheaper shopping strategies. With particularly strong expansions, Conventional 

Shopping grows less likely to be adopted; households instead tend to stay with a Brand 

Shopping strategy. Given that we control for households’ income, we can conclude that 

households are affected by the overall positive climate created by an expansion. Weak 

expansions make households more likely to switch to moderately more expensive shopping 

strategies and less likely to switch to moderately less expensive strategies; strong expansions 

and their positive effects on households’ confidence lead to increasing adoptions of Brand 

Shopping, the most expensive shopping strategy. 

Finally, during macroeconomic contractions, we observe an increase in Cherry Picking 

and Discounter Brand Picking, which feature the largest price promotion SOWs. Their growth 

is consistent according to the different magnitudes of macroeconomic contractions. This result 

points to the increased deal proneness of households during adverse macroeconomic conditions, 

as a consequence of the tense overall environment. 

 Implication 

7.1 Managerial Implications 

Our results reveal the existence of various shopping strategies and highlight how 

households switch strategies due to changing micro- and macroeconomic conditions. While 

manufacturers and retailers have little control over these events, knowing the associated 

reactions of their customer base allows them to optimize their marketing mix preemptively. In 

addition, managers can tailor their marketing mix to geographical regions, depending on how 

strongly affected each region is. Dubé, Hitsch, and Rossi (2018) show for example that 

unemployment rates after the Great Recession varied considerably among U.S. regions.  
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Implications for national brand manufacturers. Even as NBs lose market share as a whole 

when households experience income reductions, purchases of NBs from discounters and on 

price promotion increase. Thus, we propose two possible NB strategies when households suffer 

income reductions. First, manufacturers could increase their price promotion activities, catering 

to households that switch from Brand Shopping to Cherry Picking. This switch even tends to 

increase households’ spending; they purchase greater volumes and end up spending more in 

total with this strategy. Second, managers could increase listings in discount store formats to 

cater to households that switch to a Discounter Brand Picking strategy.  

Because households partly decrease their discounter SOW if they instead switch to 

Supermarket Shopping or Supermarket PL Picking strategies, NB managers also might increase 

their in-store promotional activities in these scenarios. Households transitioning away from 

Brand Shopping and Cherry Picking strategies may be accustomed to purchasing NBs. 

Changing shopping strategies to save money also depletes shoppers’ cognitive resources and 

self-control (Stilley, Inman, and Wakefield 2010; Vohs and Faber 2007), which might be 

particularly challenging for households switching from a Brand Shopping strategy that does not 

involve any cost saving tactics. Shopping with a goal to save money may deplete these 

households’ cognitive resources more, leaving them more susceptible to in-store promotions 

(Gijsbrechts, Campo, and Vroegrijk 2018).  

When conditions improve for households, whether on a micro- or macroeconomic level, 

they tend to adopt strategies with higher NB SOW. Therefore, NB managers should reallocate 

their budgets, according to favorable versus adverse conditions. Countercyclical marketing 

investments also have been suggested in prior literature (e.g., Lamey et al. 2007, 2012). 

Implications for supermarkets. Supermarkets may lose market share to discounters, but 

they also enjoy an increase in PL purchases when households experience income reductions. 

Strengthening their PLs would give supermarket managers leverage over NB managers when 
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negotiating prices, promotional activities, and advertising allowances. These managers also 

might want to increase their advertising spending during adverse conditions, with the dual 

purpose of strengthening their store image and their PLs. Line extensions to their PLs also could 

help supermarkets cater to the households considering a switch to Supermarket Shopping or 

Supermarket PL Picking, which households switch to when they move away from the 

Conventional Shopping strategies. Although these two strategies entail low discounter SOW, 

they also provide the lowest spending levels; they combine a low price premium paid and low 

volume purchased. In these situations, supermarkets might increase and encourage in-store 

promotions to boost spending levels or adopt traditional discounter strategies, such as offering 

larger package sizes.  

Considering that both supermarkets and NBs lose customers to discounters when 

households’ microeconomic conditions worsen, they might collaborate more closely, for 

example in terms of advertising allowances, feature promotions, price reductions, and price 

promotions with the goal to win back customers for both parties. Lourenco, Gijsbrechts, and 

Paap (2015) refer to “Lighthouse” product categories, whose pricing signals the store’s price 

image to consumers, even though they account for only a small part of households’ spending. 

By strategically reducing prices in these product categories, managers can communicate a lower 

price image and potentially reduce transitions to strategies with larger discounter SOW, such 

as from Conventional Shopping to Discounter Shopping or Discounter Brand Picking.  

Implications for discounters. Discounters stand to gain from adverse microeconomic 

conditions, because households switch to the Discounter Brand Picking and Discounter 

Shopping strategies. Working with NBs, discounters can extend their NB portfolio to increase 

switches to the Discounter Brand Picking strategy. This implication is in line with findings in 

prior literature (Deleersnyder et al. 2007; Deleersnyder 2012). The Discounter Brand Picking 

strategy also features the second largest price promotion SOW, so NBs and discounters might 
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work together to offer more price promotions. However, discounters also should allocate some 

spending to periods associated with economic expansions, to keep households from switching 

back to supermarkets. 

7.2 Limitations and Directions for Research 

We seek to uncover heterogeneity in shopping strategies due to different combinations of 

store format, brand type, and price tier preferences. In doing so, we have focused on the most 

managerially relevant shopping preferences in FMCG settings but neglected other dimensions 

of FMCG shopping behavior that might be worth studying, such as the number of shopping 

trips, preferences for price tiers, or preferences for vice and virtue goods. Insights along these 

lines could help reveal the degree to which different types of households engage in approach or 

avoidance strategies during stressful periods (Duhachek and Oakley 2007).  

In our model specification, we use SOWs to estimate parsimoniously how households 

allocate their budgets across different store formats, brand types, and price tiers. The post-hoc 

descriptive statistics give some indication of whether households actually realize savings when 

switching shopping strategies. Notably, switches to the Cherry Picking strategy carry the 

potential to increase spending levels instead of reducing them. However, our model does not 

explicitly consider if and to what extent households change their spending levels when micro- 

or macroeconomic conditions change. Further research could deepen these insights by using 

absolute expenditures as dependent variables and uncovering household heterogeneity in 

realized savings.  

Counterintuitively, we find that households engage in moderately more expensive 

shopping strategies during contractions, when we keep income constant. We offer some 

possible explanations; continued research should test these suppositions. For example, how do 

consumers behave during adverse macroeconomic conditions that do not affect them directly? 

Are they exposed to environmental stress, such that they suffer lower confidence; does a feeling 
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of invincibility set in; or do they capitalize on their relatively better standing by engaging in 

more conspicuous consumption? 

Furthermore, we take a disaggregate view on households but aggregate product 

categories. Studying how households adjust their shopping behavior in different product 

categories, such as utilitarian versus hedonic goods, may provide further insights. In doing so, 

researchers might identify product categories that are particularly susceptible or resistant to 

changes in consumers’ shopping strategies.  
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APPENDIX ESSAY I 

Appendix A: Data Preparation 

Table A1: Comparison of Raw and Cleaned ConsumerScan Sample 

Year Sample Households Trips Observations Expenditures (€) 

2006 Raw 27,238 1,516,399 5,308,146 12,277,215 

Cleaned 27,221 1,495,333 5,121,013 11,694,059 

2007 Raw 25,293 1,526,362 5,261,490 12,494,743 

Cleaned 25,284 1,508,387 5,106,354 11,996,645 

2008 Raw 24,651 1,512,122 5,185,341 12,877,456 

Cleaned 24,639 1,494,801 5,038,442 12,400,021 

2009 Raw 24,646 1,474,450 5,051,000 12,556,951 

Cleaned 24,632 1,457,770 4,909,630 12,096,259 

2010 Raw 33,572 1,928,991 6,928,282 16,774,079 

Cleaned 33,554 1,913,414 6,768,848 16,111,015 

2011 Raw 34,563 1,909,825 6,876,423 17,013,584 

Cleaned 34,552 1,894,666 6,721,440 16,365,427 

2012 Raw 37,738 1,932,679 6,893,542 17,413,688 

Cleaned 37,728 1,917,517 6,737,337 16,755,645 

2013 Raw 36,559 1,951,850 6,979,813 17,490,674 

Cleaned 36,545 1,936,481 6,819,678 16,789,897 

2014 Raw 36,689 1,890,289 6,672,558 17,011,370 

Cleaned 36,662 1,873,185 6,498,078 16,233,154 

Across years Raw 95,403 15,642,967 55,156,595 135,909,759 

Cleaned 95,310 15,491,554 53,720,820 130,442,122 
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Table A2: Comparison of Filtered and Remaining Household Sample (Shopping 
Preference)  

Year Sample Households Disc. share PL share (Disc.) PL share (Sup.) Promo share 

2006 Filtered 5421 39.1 28.4 6.4 18.1 
Remaining 21800 41.9 30.7 7.1 13.8 

2007 Filtered 5421 39.4 27.6 6.6 20.6 
Remaining 19863 42.0 29.8 7.5 16.2 

2008 Filtered 5421 41.1 28.5 7.2 22.0 
Remaining 19218 43.2 30.3 8.2 17.8 

2009 Filtered 5421 41.5 28.1 7.3 24.2 
Remaining 19211 43.3 29.3 8.3 20.6 

2010 Filtered 5421 41.5 27.5 7.6 25.8 
  Remaining 28133 43.1 28.6 8.5 22.4 

2011 Filtered 5421 41.1 27.3 7.9 27.1 
Remaining 29131 42.8 28.5 9.1 23.4 

2012 Filtered 5421 41.4 27.6 8.3 28.2 
Remaining 32307 43.7 29.1 9.6 23.9 

2013 Filtered 5421 41.4 27.6 8.4 29.6 
Remaining 31124 44.0 29.4 9.9 24.8 

2014 Filtered 5421 40.9 27.6 8.7 28.9 
Remaining 31241 43.3 29.1 10.3 24.6 

Across years Filtered 5421 40.8 27.8 7.6 24.9 
Remaining 89889 43.1 29.3 8.9 21.5 

Notes: Disc = Discounter, Sup = Supermarket, PL=Private Label, Promo = Promotion.  
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Table A3: Comparison of Filtered and Remaining Household Sample (Demographics) 

Source 
Sample 

ConsumerScan ConsumerScan Destatis 
Filtered Remaining Microcensus 

Year 2006 2006 2006 
N 5,421 8,380 39,766,000 

 
   

Age group % 
 < 25 years 0.7 2.9 5.00 
25 - 34 years 10.3 19.7 14.3 
35 - 44 years 23.5 23.5 21.1 
45 - 54 years 23.9 17.8 18.0 
55 - 64 years 21.9 14.5 14.3 
65+ years 19.7 21.6 27.2 

 
   

Income group (monthly, net) % 
< 500 € 0.7 0.9 2.6 
500 - 1499 € 23.6 24.4 35.4 
1500 - 1999 € 19.2 19.2 16.4 
2000 - 3249* € 42.5 41.2 23.9 
3250+** € 13.9 14.3 15.1 
Other*** - - 6.7 

 
   

Household size % 
1 person 21.9 22.3 38.8 
2 persons 39.2 38.4 33.6 
3 persons 18.2 18.4 13.5 
4 persons 15.3 15.1 10.3 
5+ persons 5.4 5.9 3.7 

 
   

Number of children % 
No children 78.6 72.9 68.8 
1 child 11.3 14.1 16.6 
2 children 8.1 10.1 11.4 
3 children 1.8 2.4 2.9 
4 children 0.2 0.4 0.6 
5+ children 0.0 0.1 0.2 
* Microcensus income group: 2000 - 3200 € 
** Microcensus income group: 3250+ € 
*** Households with at least one person being self-employed farmer, or information not 
available 
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Appendix B: Marketing Mix Variables 

We define 2006 as the initialization period t0. 

Relative price index store format: The relative price index of store format j for household 

h at time t is calculated as: 

Rel.Pricejht=
Pricejht

∑ Pricejht ssjht0
J
j=1

, 

where Pricejht is the price of store format j for household h at time t relative to the average price 

of all formats (∑ Pricejht
J
j=1 ), weighted by household’s h share of total spending in store format 

j (ssjht0) from the initialization period t0. Note that j = 1 is the discount store format and j = 2 is 

the supermarket format. Then Pricejht is calculated as: 

Pricejht=∑
Pricejct

Pricect0
 cshct0

C
c=1 , 

where Pricejct is the median price of category c in store format j at time t, Pricect0 is the sample 

median price of category c in the initialization period t0, and cshct0 is the share of total spending 

by household h in the initialization period t0 in category c. 

To reduce nomenclature clutter and reflect the fact that we need to include only the 

relative price index of j = 1 (discount store format) in our model, we name the corresponding 

variable PriceDischt throughout the paper. 

Relative price index brand type: The relative price index of brand type k for household h 

at time t is calculated as: 

Rel.Pricekht=
Pricekht

∑ Pricekht bskht0
K
k=1

, 

where Pricekht is the price of brand type k for household h at time t relative to the average price 

of all brand types (∑ Pricekht
K
k=1 ), weighted by household’s h share of total spending for brand 
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type k (bskht0) from the initialization period t0. Note that brand type k is defined conditional on 

store format j, and therefore, k = 1 is private label at discount store format, k = 2 is national 

brand at discount store format, k = 3 is private label at supermarket format, and k = 4 is national 

brand at supermarket format. Then Pricekht is calculated as: 

Pricehkt=∑
Pricekct
Pricect0

 cshct0
C
c=1 , 

where Pricekct is the median price of category c for brand type k at time t, and Pricect0 and cshct0 

are as defined previously. 

To reduce nomenclature clutter and reflect the fact that we need to include only the 

relative price index of k = 1 (private label at discount store format) and k = 3 (private label at 

supermarket format) in our model, we name the corresponding variables PricePLDischt and 

PricePLSupht throughout the paper. 

Relative assortment size index store format: The relative assortment size index of store 

format j for household h at time t is calculated as: 

Rel.AssrtSizejht=
AssrtSizejht

∑ AssrtSizejht ssjht0
J
j=1

, 

where AssrtSizejht is the assortment size of store format j for household h at time t relative to 

the weighted average assortment size of all store formats (∑ AssrtSizejht ssjht0
J
j=1 ), with weights 

ssjht0  as defined previously. Note that j = 1 is the discount store format and j = 2 is the 

supermarket format. Then AssrtSizejht is calculated as: 

AssrtSizejht=∑ AssrtSizejct cshcto
C
c=1 , 

where AssrtSizejct is the number of unique SKUs in category c of store format j at time t, and 

cshct0 is as defined previously. 
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To reduce nomenclature clutter and reflect the fact that we need to include only the 

relative assortment size index of j = 1 (discount store format) in our model, we name the 

corresponding variable AssrtDischt throughout the paper. 

Relative assortment size index brand type: The relative assortment size index of brand 

type k for household h at time t is calculated as: 

Rel.AssrtSizekht=
AssrtSizekht

∑ AssrtSizekht bskht0
K
k=1

, 

where AssrtSizekht is the assortment size of brand type k for household h at time t relative to 

the weighted average assortment size of all brand types (∑ AssrtSizekht bskht0
K
k=1 ), with weights 

bskht0 and brand type k as defined previously. Note that brand type k is defined conditional on 

store format j, and therefore, k = 1 is private label at discount store format, k = 2 is national 

brand at discount store format, k = 3 is private label at supermarket format, and k = 4 is national 

brand at supermarket format. Then AssrtSizekht is calculated as: 

AssrtSizekht=∑ AssrtSizekct cshct0
C
c=1 , 

where AssrtSizekct is the number of unique SKUs of brand type k in category c j at time t, and 

cshct0 is as defined previously. 

To reduce nomenclature clutter and reflect the fact that we need to include only the 

relative assortment size index of k = 1 (private label at discount store format) and k = 3 (private 

label at supermarket format) in our model, we name the corresponding variables AssrtPLDischt 

and AssrtPLSupht throughout the paper. 

Relative price tier index: The relative index of price tier l for household h at time t is 

calculated as: 

Rel.PriceTierlht=
PriceTierlht

∑ PriceTierlht tslht0
L
l=1
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where PriceTierlht is the number of unique SKUs for household h offered in price tier l at time 

t relative to the weighted average number of unique SKUs offered across all price tiers 

(∑ PriceTierlhttslht0
L
l=1 ), weighted by household’s h share of total spending on products offered 

in price tier l (ts/0+1) from the initialization period t0. Note that l = 1 is the promotional price 

tier (i.e., temporary price reduction, coupon, free-pack, product add-on) and l = 2 is the regular 

price tier. Then PriceTierlht is calculated as: 

PriceTierlht=∑ PriceTierlct cshct0
C
c=1 , 

where PriceTierlct is the number of unique SKUs being offered in price tier l in category c at 

time t, and cs03+1 is as defined previously. 

To reduce nomenclature clutter and reflect the fact that we need to include only the 

relative price tier index of l = 1 (promotional price tier) in our model, we name the 

corresponding variable PricePromoht throughout the paper. 

Relative advertising index store format: The relative advertising index of store format j 

for household h at time t is calculated as: 

Rel.Advjht=
Advjt

∑ Advjht ssjht0
J
j=1

, 

where Advjht is the advertising spending, cumulative over store format j at time t relative to the 

average advertising spending across all store formats (∑ Advjt
J
j=1 ), weighted by household’s h 

share of total spending in store format j (ssjht0) from the initialization period t0. Note that j = 1 

is discount store format and j = 2 is supermarket format. 

To reduce nomenclature clutter and reflect the fact that we need to include only the 

relative advertising index of j = 1 discount store format) in our model, we name the 

corresponding variable AdvDischt throughout the paper. 
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Relative advertising index brand type: The relative price index of brand type k for 

household h at time t is calculated as: 

Rel.Advkht=
Advkt

∑ Advkht bskht0
K
k=1

, 

where Advkht is the advertising spending, cumulative over brand type k at time t relative to the 

average advertising spending across brand types (∑ Advkt
K
k=1 ), weighted by household’s h share 

of total spending on brand type k (bs50+1) from the initialization period t0. Note that k = 1 is 

private label and k = 2 is national brand. 

To reduce nomenclature clutter and reflect the fact that we need to include only the 

relative advertising index of k = 1 private label) in our model, we name the corresponding 

variable AdvPLht throughout the paper. 
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Appendix C: Model Results 

Table C1: Initial Shopping Strategy Assignment 

Initial Strategy Variable Coef. SE Z-value  Wald(0)  DF 
1 Intercept 0.268 0.179 1.494  486.054 *** 6 
2 Intercept 0.190 0.175 1.085     
3 Intercept 0.300 0.279 1.074     
4 Intercept 2.375 0.127 18.759 ***    
5 Intercept -0.462 0.230 -2.007 **    
6 Intercept -2.247 0.524 -4.289 ***    
7 Intercept -0.423 0.275 -1.536     
1 Income -0.023 0.149 -0.152  8.909  6 
2 Income -0.011 0.165 -0.064     
3 Income 0.052 0.179 0.290     
4 Income 0.165 0.105 1.571     
5 Income -0.517 0.211 -2.447 **    
6 Income 0.155 0.351 0.442     
7 Income 0.179 0.185 0.966     
1 HHSize 0.084 0.238 0.355  12.985 ** 6 
2 HHSize 0.155 0.252 0.614     
3 HHSize 0.035 0.273 0.127     
4 HHSize 0.609 0.177 3.443 ***    
5 HHSize 0.046 0.301 0.153     
6 HHSize -1.252 0.738 -1.697 *    
7 HHSize 0.323 0.281 1.148     
1 Kids 0.071 0.240 0.296  6.470  6 
2 Kids -0.172 0.262 -0.656     
3 Kids -0.845 0.517 -1.634     
4 Kids -0.126 0.180 -0.697     
5 Kids -0.283 0.380 -0.745     
6 Kids 1.220 0.653 1.868 *    
7 Kids 0.135 0.282 0.479     
1 Age -0.037 0.142 -0.262  7.708  6 
2 Age -0.091 0.154 -0.593     
3 Age -0.360 0.169 -2.132 **    
4 Age 0.169 0.106 1.599     
5 Age -0.019 0.157 -0.120     
6 Age 0.130 0.314 0.415     
7 Age 0.208 0.190 1.094     
1 Factor 0.759 0.154 4.930 *** 54.215 *** 6 
2 Factor 0.065 0.183 0.354     
3 Factor 0.142 0.193 0.735     
4 Factor 0.106 0.119 0.887     
5 Factor 0.023 0.205 0.113     
6 Factor 0.377 0.380 0.994     
7 Factor -1.472 0.234 -6.284 ***    

***p < .01; **p < .05; *p < .1. 
Notes: Coef. = coefficient, SE = standard error, DF = degrees of freedom. 
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Table C2: State-Dependent Effects on Discounter Share 

Dependent variable (DV) = Discounter share (DiscSOW)   
Strat. Variable Coef. SE Z  Wald(0)  DF Wald(=)  DF 

 Intercept 39.178 0.155 253.000 *** 64009.098 *** 1    

 State 1 24.096 0.305 78.893 *** 14958.757 *** 6    
 State 2 -7.988 0.329 -24.274 ***       

 State 3 -12.967 0.330 -39.268 ***       
 State 4 0.714 0.170 4.198 ***       

 State 5 22.666 0.312 72.566 ***       
 State 6 -15.938 0.638 -24.970 ***       

 State 7 -10.582 0.324 -32.673 ***       
1 PriceDisc 1.088 0.481 2.263 ** 210.255 *** 7 10.929 * 6 

2 PriceDisc 1.998 0.415 4.809 ***       
3 PriceDisc 2.601 0.406 6.408 ***       
4 PriceDisc 1.667 0.184 9.059 ***       
5 PriceDisc 2.317 0.682 3.395 ***       
6 PriceDisc 3.345 0.848 3.943 ***       
7 PriceDisc 2.055 0.453 4.538 ***       
1 AssrtDisc 2.311 0.468 4.938 *** 46.608 *** 7 32.375 *** 6 

2 AssrtDisc 0.368 0.445 0.826        
3 AssrtDisc 0.064 0.415 0.155        
4 AssrtDisc 0.226 0.193 1.171        
5 AssrtDisc 0.015 0.677 0.022        
6 AssrtDisc -1.409 0.912 -1.546        
7 AssrtDisc 1.961 0.477 4.113 ***       
1 AdvDisc -0.117 0.226 -0.516  8.217  7 5.702  6 
2 AdvDisc -0.034 0.159 -0.216        
3 AdvDisc -0.043 0.155 -0.276        
4 AdvDisc -0.142 0.069 -2.052 **       
5 AdvDisc -0.584 0.325 -1.795 *       
6 AdvDisc 0.366 0.418 0.875        
7 AdvDisc 0.097 0.161 0.603        
1 DV (lag) 11.145 0.233 47.867 *** 46456.436 *** 7 4899.195 *** 6 

2 DV (lag) 16.688 0.342 48.787 ***       
3 DV (lag) 11.662 0.311 37.552 ***       
4 DV (lag) 23.812 0.125 189.890 ***       
5 DV (lag) 16.211 0.350 46.260 ***       
6 DV (lag) 9.748 0.607 16.063 ***       
7 DV (lag) 11.115 0.307 36.245 ***       

 Quarter 1 0.382 0.122 3.138 *** 51.263 *** 3    
 Quarter 2 0.450 0.121 3.732 ***       

 Quarter 3 -0.049 0.119 -0.412        
 Quarter 4 -0.783 0.119 -6.577 ***       

***p < .01; **p < .05; *p < .1. 
Notes: Coef. = coefficient, SE = standard error, DF = degrees of freedom. 
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Table C3: State-Dependent Effects on Private Label Share (Discounter) 

Dependent variable (DV) = PL share in discounter (PLDiscSOW)   
Strat. Variable Coef. SE Z  Wald(0)  DF Wald(=)  DF 

 Intercept 25.285 0.123 206.259 *** 42542.772 *** 1    

 State 1 26.622 0.258 103.183 *** 11716.906 *** 6    
 State 2 -4.042 0.256 -15.769 ***       

 State 3 -6.623 0.256 -25.862 ***       
 State 4 1.235 0.135 9.175 ***       

 State 5 -1.597 0.239 -6.688 ***       
 State 6 -8.502 0.524 -16.227 ***       

 State 7 -7.094 0.244 -29.125 ***       
1 PricePLDisc 2.326 0.221 10.508 *** 503.559 *** 7 35.350 *** 6 

2 PricePLDisc 1.554 0.263 5.917 ***       
3 PricePLDisc 2.584 0.266 9.717 ***       
4 PricePLDisc 1.393 0.115 12.077 ***       
5 PricePLDisc 2.237 0.319 7.018 ***       
6 PricePLDisc 3.013 0.599 5.032 ***       
7 PricePLDisc 1.330 0.274 4.860 ***       
1 AssrtPLDisc 0.344 0.224 1.535  55.734 *** 7 39.786 *** 6 

2 AssrtPLDisc 0.469 0.269 1.742 *       
3 AssrtPLDisc 0.278 0.265 1.049        
4 AssrtPLDisc 0.210 0.110 1.911 *       
5 AssrtPLDisc -0.464 0.275 -1.691 *       
6 AssrtPLDisc -1.154 0.578 -1.997 **       
7 AssrtPLDisc 1.681 0.278 6.043 ***       
1 AdvPL 0.340 0.108 3.151 *** 15.863 ** 7 10.290  6 
2 AdvPL 0.203 0.146 1.394        
3 AdvPL 0.148 0.155 0.956        
4 AdvPL 0.073 0.061 1.189        
5 AdvPL -0.120 0.199 -0.604        
6 AdvPL -0.037 0.348 -0.108        
7 AdvPL -0.172 0.152 -1.132        
1 DV (lagged) 11.201 0.179 62.451 *** 43244.400 *** 7 3812.236 *** 6 

2 DV (lagged) 13.651 0.283 48.186 ***       
3 DV (lagged) 9.028 0.246 36.642 ***       
4 DV (lagged) 18.861 0.109 173.103 ***       
5 DV (lagged) 12.163 0.249 48.932 ***       
6 DV (lagged) 8.348 0.570 14.635 ***       
7 DV (lagged) 8.478 0.252 33.636 ***       

 Quarter 1 0.648 0.097 6.695 *** 130.487 *** 3    
 Quarter 2 0.350 0.097 3.590 ***       

 Quarter 3 0.037 0.096 0.381        
 Quarter 4 -0.783 0.119 -6.577 ***       

***p < .01; **p < .05; *p < .1. 

Notes: Coef. = coefficient, SE = standard error, DF = degrees of freedom. 
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Table C4: State-Dependent Effects on Private Label Share (Supermarket) 

Dependent variable (DV) = PL share in supermarkets (PLSupSOW)   
Strat. Variable Coef. SE Z  Wald(0)  DF Wald(=)  DF 

 Intercept 11.699 0.077 151.922 *** 23080.312 *** 1    
 State 1 -7.186 0.115 -62.660 *** 9282.809 *** 6    
 State 2 6.785 0.120 56.531 ***       
 State 3 -6.087 0.112 -54.262 ***       
 State 4 -3.980 0.075 -52.901 ***       
 State 5 -7.466 0.120 -62.345 ***       
 State 6 23.886 0.303 78.811 ***       
 State 7 -5.952 0.113 -52.684 ***       
1 PricePLSup -0.195 0.092 -2.111 ** 16.939 ** 7 16.035 ** 6 
2 PricePLSup -0.143 0.190 -0.751        
3 PricePLSup 0.050 0.126 0.400        
4 PricePLSup -0.086 0.051 -1.695 *       
5 PricePLSup 0.056 0.129 0.432        
6 PricePLSup -0.185 0.403 -0.459        
7 PricePLSup 0.375 0.125 2.991 ***       
1 AssrtSup -0.058 0.086 -0.675  74.896 *** 7 71.240 *** 6 
2 AssrtSup 1.149 0.197 5.825 ***       
3 AssrtSup 0.328 0.127 2.589 ***       
4 AssrtSup 0.133 0.051 2.625 ***       
5 AssrtSup -0.120 0.113 -1.065        
6 AssrtSup 2.782 0.368 7.568 ***       
7 AssrtSup -0.119 0.126 -0.947        
1 AdvPL -0.029 0.055 -0.529  7.288  7 7.213  6 
2 AdvPL -0.052 0.118 -0.438        
3 AdvPL -0.202 0.099 -2.050 **       
4 AdvPL 0.015 0.037 0.403        
5 AdvPL 0.011 0.095 0.116        
6 AdvPL -0.352 0.253 -1.393        
7 AdvPL 0.084 0.090 0.935        
1 DV (lagged) 2.873 0.102 28.163 *** 29682.669 *** 7 6563.606 *** 6 
2 DV (lagged) 8.621 0.090 96.223 ***       
3 DV (lagged) 3.980 0.088 45.203 ***       
4 DV (lagged) 7.631 0.048 158.300 ***       
5 DV (lagged) 2.044 0.130 15.714 ***       
6 DV (lagged) 9.400 0.243 38.694 ***       
7 DV (lagged) 3.397 0.116 29.403 ***       
 Quarter 1 0.052 0.043 1.195  2.131  3    
 Quarter 2 -0.040 0.043 -0.928        
 Quarter 3 0.017 0.043 0.398        
 Quarter 4 -0.029 0.043 -0.673        

***p < .01; **p < .05; *p < .1. 
Notes: Coef. = coefficient, SE = standard error, DF = degrees of freedom. 
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Table C5: State-Dependent Effects on Promotion Share 

Dependent variable (DV) = Promotion share (PromoSOW)   
Strat. Variable Coef. SE Z  Wald(0)  DF Wald(=)  DF 

 Intercept 24.833 0.136 182.176 *** 33187.946 *** 1    

 State 1 -9.033 0.241 -37.459 *** 6864.709 *** 6    
 State 2 -2.795 0.255 -10.951 ***       

 State 3 -8.791 0.272 -32.332 ***       
 State 4 0.681 0.158 4.304 ***       

 State 5 5.250 0.303 17.354 ***       
 State 6 -7.578 0.538 -14.090 ***       

 State 7 22.266 0.353 63.058 ***       
1 PricePromo 1.287 0.209 6.147 *** 778.307 *** 7 167.157 *** 6 

2 PricePromo 1.896 0.272 6.970 ***       
3 PricePromo 0.904 0.274 3.304 ***       
4 PricePromo 1.757 0.118 14.850 ***       
5 PricePromo 4.875 0.330 14.779 ***       
6 PricePromo 1.181 0.685 1.724 *       
7 PricePromo 4.267 0.327 13.035 ***       
1 DV (lagged) 9.936 0.247 40.207 *** 28912.398 *** 7 1639.597 *** 6 

2 DV (lagged) 13.940 0.275 50.768 ***       
3 DV (lagged) 8.810 0.299 29.498 ***       
4 DV (lagged) 17.410 0.131 133.216 ***       
5 DV (lagged) 13.851 0.306 45.315 ***       
6 DV (lagged) 8.732 0.613 14.238 ***       
7 DV (lagged) 8.122 0.288 28.167 ***       

 Quarter 1 -0.014 0.112 -0.127  119.050 *** 3    
 Quarter 2 -1.104 0.112 -9.834 ***       

 Quarter 3 0.318 0.112 2.841 ***       
 Quarter 4 0.800 0.111 7.192 ***       

***p < .01; **p < .05; *p < .1. 
Notes: Coef. = coefficient, SE = standard error, DF = degrees of freedom. 
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ESSAY II:  TRANSCENDING THE BOUNDARIES OF RELATIONSHIP 

MARKETING: HOW DIGITAL PLATFORMS CREATE VALUE AND 

SHAPE CONSUMERS’ LIFEWORLD AND HABITUS 

 

Authors: Julian R. K. Wichmann, Nico Wiegand, Werner J. Reinartz 

 

ABSTRACT  

Digital platforms have been important drivers of economic growth and the subject of myriad 

research activities. This article integrates the different platform concepts discussed in the 

marketing literature based on their locus of value creation and proposes a classification along 

two dimensions: Transactional digital platforms (TDPs) focus on facilitating exchanges and 

deliver primarily functional benefits to consumers. By contrast, relational digital platforms 

(RDPs) provide hedonic benefits and function as gateways into the consumer’s lifeworld and 

habitus, effectively merging the previously separate brand and consumer spheres. Recent 

technological advances are fueling this development by allowing brands to algorithmically 

orchestrate value-creating interactions through digital interfaces along a never-ending 

consumer journey. The authors devise several platform design levers that brands can use to 

foster the platform-consumer envelopment. However, they also caution managers and 

regulatory entities against malign outcomes such as discrimination and manipulation, which 

become increasingly subtle as traditional boundaries of relationship marketing are dissolved. 

Marketing’s role as an advocate of the consumer is more important than ever in this technology-

driven playing field. 

 

Keywords: Digital platforms, relationship marketing, value creation, lifeworld 
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 Introduction 

Digitalization has been blurring consumers’ physical and virtual worlds at an astonishing 

pace. Daily routines increasingly involve connected devices that digitalize, record, and transmit 

consumer’s every action—from reading news in an online outlet, tracking and sharing work-

outs with wearables, to ambient interactions with smart home appliances that digitalize the flick 

of a switch, doing the laundry, and brewing a coffee (Hoffman and Novak 2018). These 

activities continuously evolved from one-way read-only interactions in the 1990s to today’s 

symbiotic web, in which consumers connect in a multitude of ways with each other, third-

parties, and algorithms (Steinhoff et al. 2019).  

This technological progress eliminates boundaries that traditionally have confined the 

relationship between brands and consumers to a limited number of touchpoints and a narrow, 

largely commercial scope. In a world of social networks, mobile and wearable devices, smart 

and connected homes, voice assistants and chatbots, customer touchpoints have become 

multifaceted, omnidirectional, and omnipresent. This plethora of new digital channels offers 

companies a direct gateway into consumers’ daily lives. Thus, the interface to the consumer 

and competition over its dominance are more open than ever (Reinartz, Wiegand, and Imschloss 

2019). 

A versatile tool in the battle for the consumer interface are digital platforms, which bundle 

and orchestrate various activities under one roof and provide companies with a direct link to 

the end consumer (Boudreau 2017). In practice and literature, numerous platform types have 

been established, such as marketplaces (e.g., eBay, Amazon) or forums (e.g., Stack Overflow). 

While many of these platforms focus on facilitating exchanges between two market sides, a 

new relational type of platform has emerged that creates value through ongoing interactions 

with consumers beyond the initial purchase (e.g., Ramaswamy and Ozcan 2018). Such 
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platforms have the potential to intensify brand engagement and the frequency and depth of 

interactions with consumers (Ramaswamy and Ozcan 2016).  

These developments are not news to marketers and academics. However, and this is our 

main proposition, they have significant economic and sociological consequences. We 

demonstrate that digital platforms use new interfaces, data sources, and analytics to create 

unique value for consumers. This is tearing down the boundaries between brand and consumer, 

transforming their relationship from a series of discrete brand-centric interactions to a habitual, 

consumer-centric symbiosis, an almost unnoticed integration of the brand into the consumer’s 

lifeworld. This makes such platforms increasingly indispensable and influential (Hoffman and 

Novak 2018). In this paper, we discuss how digital platforms transcend common relationship 

marketing practices, with far-reaching implications for companies, consumers, and society. 

Specifically, we address the following research questions: 

(1) How do digital platforms create value for consumers and how do these values 

enable their blending with consumers’ lifeworld and habitus? 

(2) How can companies leverage platform design to shape consumers’ lifeworld and 

habitus? 

By addressing these research questions, this paper makes three main contributions. First, 

while much research on digital platforms has emerged in recent years, a comprehensive view 

does not exist. Rather, each study tends to focus on specific types of platforms, such as 

matchmakers (Wu, Zhang and Padmanabhan 2018), digital apps (Boyd, Kannan, and Slotegraaf 

2019), or online brand communities (Huang, Tafti, and Mithas 2018). We integrate the 

fragmented literature, differentiate the various concepts, and classify them in a holistic 

framework. We propose a classification along two dimensions¬—transactional and relational 

value creation—that each give rise to four major sources of consumer value. Firms can use this 

framework to position their (prospective) offering in the platform universe and derive activities 
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to strengthen this positioning. Second, we introduce the sociological concepts of lifeworld and 

habitus to the platform literature, which allow us to analyze how platforms transcend the 

boundaries between the brand and consumer spheres. This is a novel perspective that has only 

recently become conceivable through the advent of new digital interfaces and corresponding 

shifts in consumer behavior. Third, we combine the sociological theory of the colonization of 

lifeworlds (Habermas 1987) with a platform-design perspective to explicate how companies 

can actively shape consumer outcomes. In doing so, we combine insights from several literature 

streams (marketing, management, behavioral economics, information systems) to derive advice 

for companies seeking to transfer their offering beyond discrete exchanges and toward profound 

and perpetuated relationships.  

This research builds on the concept of the Digitalized Interactive Platform (DIP) 

introduced by Ramaswamy and Ozcan (2018). The authors pose that by continuously engaging 

consumers with digital offerings through smart connected products, value creation becomes 

ongoing and multidirectional. We extend this intriguing idea along two important perspectives: 

First, we take a step back to systematize DIPs’ value creation and relate it to other platform 

types. This allows us to develop a conceptual underpinning for different platform architectures 

by combining the anecdotally exemplified interactions to generalizable sources of value 

creation. Second—and using this understanding—we then develop the idea further, shedding 

light on the consequences of platform integration into consumers’ daily lives. It is here that we 

can examine the platforms’ potential to transcend the dichotomy of distinct brand-customer 

environments by the brand’s entering of consumers’ lifeworld and habitus and derive actionable 

recommendations for platform design choices. 

 Concepts of Digital Value Creation 

Today’s brands can choose among a variety of digital channels to interact with 

consumers. Accordingly, the academic and business literature have introduced numerous 
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terminologies, leading to a fragmented and unclear landscape with often fuzzy and inconsistent 

definitions such as platforms, ecosystems, or branded apps. Table 1 summarizes the various 

terms discussed in the literature, their definitions, defining characteristics, and examples.  

All of these digital channels aim at enabling and facilitating interactions within a brand’s 

ecosystem, which describes the loose network of all relevant stakeholders being directly or 

indirectly connected with each other and the focal company (Gawer and Cusumano 2008). To 

manage this network, a platform can connect the company with one or more of its stakeholders 

and/or stakeholders with each other (Altman and Tushman 2017). Hence, platforms represent 

the digital infrastructure that mediates any of the interactions within a company’s ecosystem. 

The involved parties fall into four categories: a) the platform owner(s), who own(s) the 

intellectual property of the platform, b) the platform provider(s), running the platform and 

controlling its interface with the user, c) platform producer(s) that offer products, services or 

content, and d) platform consumers that consume the offerings (Van Alstyne, Parker, and 

Choudary 2016). Importantly, the parties can take on several roles, that is, the same company 

may be the platform owner and provider while consumers can also take on the role of producers 

(Eckhardt et al. 2019; Van Alstyne, Parker, and Choudary 2016).  

Multisided platforms (MSPs) represent a specific group of platforms that enable direct 

interactions between two or more distinct sides (Altman and Tushman 2017; Hagiu and Wright 

2015). This definition implies that, first, the platform does not interfere with interactions but 

provides the infrastructure allowing parties to find and directly interact with one another. 

Second, demand and supply sides are clearly distinguishable during the exchange. Digital 

marketplaces, matchmaking platforms, and knowledge exchange platforms are common 

varieties of MSPs that meet this definition. Digital marketplaces are MSPs that strictly focus 

on commercial transactions between platform producers and consumers (Täuscher and Laudien 

2018). Matchmaking platforms are MSPs whose value proposition rests upon providing 
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matches between demand and supply (Wu, Zhang and Padmanabhan 2018), like dating sites or 

ride-hailing services. All platforms need to engage in matchmaking to some degree to ensure 

that consumers find the offering within an often vast assortment that best suits their needs. In 

the case of dedicated matchmaking platforms, however, the entire business model rests on 

algorithmically creating optimal matches (Wu, Zhang and Padmanabhan 2018). Finally, 

knowledge exchange platforms like Stack Overflow focus on knowledge sharing among users 

(Kuang et al. 2019). 

Perren and Kozinets (2018) introduce another group of platforms denoted lateral 

exchange markets (LEMs), which partly overlap with MSPs. They define LEMs as markets 

created by a “platform that facilitates exchange activities among a network of equivalently 

positioned economic actors” (p. 21, accentuation ours). That is, regular consumers can assume 

the role of producers as well as consumers. For example, on eBay actors are equivalently 

positioned because consumers may act as both, sellers and buyers of products. The authors 

identify four distinct architectures of LEMs: Matchmakers simply connect consumers and 

producers, which interact directly with each other. Contrary to the previously discussed 

matchmaking platforms, matchmakers in the LEM context only feature equivalently positioned 

actors, as is the case for services from the sharing economy (Eckhardt et al. 2019). Enablers 

focus on providing platform producers with the tools to exchange their offerings with 

consumers. Exchanges in hubs are largely controlled by the platform, and the extent of direct 

interactions between consumers and producers is limited. Forums allow direct interaction 

between consumers and producers without any platform intermediation (Perren and Kozinets 

2018). Contrary to knowledge exchange platforms, they may feature commercial transactions 

(Perren and Kozinets 2018). 
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While MSPs and LEMs center on orchestrating interactions between different 

stakeholders in the focal brand’s ecosystem, platform types also exist that focus on direct 

interactions between the brand and its customers. For example, branded apps, i.e. mobile 

applications provided by a brand, are described in the literature as systems for consumers to 

engage in self-service activities, shopping, or brand-related social interactions (Boyd, Kannan, 

and Slotegraaf 2019). Online brand communities are often owned and managed by brands 

connecting consumers around “the lifestyle, activities, and ethos of the brand” (Fournier and 

Lee 2009, p. 2), enabling them to share their knowledge of the brand, its products, and 

applications (Huang, Tafti, and Mithas 2018; Schau, Muniz, and Arnould 2009). Virtual 

Customer Environments (VCEs) represent various platform designs that involve customers in 

the brand’s product development process, for example in terms of product testing, co-

innovation, and co-design (Nambisan and Baron 2009).  

Ramaswamy and Ozcan (2016; 2018) introduce a novel, marketing-focused perspective 

on platforms. Their concept of Brand Engagement Platforms (BEPs) introduces a platform type 

that allows and encourages consumers to interact with each other, the brand, and third parties 

in a joint creation of experience and value (Ramaswamy and Ozcan 2016). In their concept of 

Digitalized Interactive Platforms (DIPs), the authors enhance this notion, arguing that DIPs 

allow brands to extend their activities beyond a simple “exchange of a fixed offering between 

a firm and its customers” (Ramaswamy and Ozcan 2018, p. 19) and instead to create value 

through interactions between the platform components. These components consist of artifacts 

(data), persons (platform participants), processes (mechanisms and algorithms), and interfaces 

(digital and physical touchpoints like apps, websites, wearables) (Ramaswamy and Ozcan 

2018). Recent technological advances have affected and will continue to affect each of the four 

platform components, further enhancing the creation of value: Today’s brands can collect, store, 

analyze, and transmit a myriad of data points (artifacts), personalize interactions through 
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algorithms (processes), connect with consumers through ambient devices (interfaces), and 

allow integration of participants through standardized APIs (persons). While Ramaswamy and 

Ozcan (2018) focus on interactions among these components, we assume a value-creation 

perspective, which allows us to examine how these platforms are able to build profound and 

ongoing brand-consumer relationships, merging the previously separate worlds. 

 

 Two Dimensions of Value Creation 

Our literature review on platforms provides an overview and clarification of the manifold 

terminologies used by researchers and practitioners. In the following, we analyze and cluster 

the platform types in terms of their locus of value creation for consumers. We demonstrate that 

two fundamental dimensions of value exist that differentiate the various platform types 

described above. These two dimensions help academics and managers understand the ways in 

which platforms create value for consumers and, thereby, reveal two paths to platform success.  

MSPs, LEMs, and their varieties may have distinct characteristics, but the interactions 

are all exchange-focused. Whether a commercial transaction takes place in a digital 

marketplace, an entrepreneur looks for investors on a crowdfunding platform, or a researcher 

posts a question on a knowledge exchange platform: All of these interactions are primarily 

exchange-based and finished once the exchange is completed. From a consumer perspective, 

the locus of value is thus created by the exchange itself and the transferred product or service 

(Holbrook 1999; Khalifa 2004; Vargo and Lusch 2004). Given this focus on value-in-exchange, 

interactions beyond the purchase stage are limited as these platforms primarily address 

consumers’ functional needs and immediate consumption-related goals (Lusch and Vargo 

2006; Park, Jaworski, and MacInnis 1986). Interactions on the platform have a clear starting 

point at the moment of need recognition and the formation of consumption intentions (Huffman, 

Ratheshwar and Mick 2003; Ratneshwar, Pechmann and Shocker 1996) and end with the 
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successful transaction. We thus call this family of platforms transactional digital platforms 

(TDPs).  

By contrast, BEPs and DIPs create the locus of value for consumers through ongoing 

interactions among the platform provider, producers, and consumers (Ramaswamy and Ozcan 

2018). Hence, the value-creation process resembles the value-in-use concept brought forward 

by the service-dominant logic (Vargo and Lusch 2004). On these platforms, the consumer plays 

an active part in the interactions and accordingly co-creates the experience (Prahalad and 

Ramaswamy 2004). While value creation on TDPs is mainly functional, economic, and 

utilitarian in nature, we propose that these platforms create several other types of value 

discussed in the literature, especially experiential, hedonic, social and epistemic value (Park, 

Jaworski, and MacInnis 1986; Sheth, Newman and Gross 1991; Smith and Colgate 2007). 

Contrary to TDPs, value creation is not restricted to a specific consumption need and the 

associated transaction but rather covers the entire relationship continuum. These extend to all 

platform participants (provider, consumers, and producers) and components (artifacts, persons, 

processes, and interfaces). For example, a consumer may use UnderArmour’s fitness app to run 

a route shared by a friend, receive feedback from the platform’s AI-powered coach, and enjoy 

content provided by the celebrities present on the platform. Value creation thus extends even 

beyond the value-in-use perspective (Lusch and Vargo 2006; Ramaswamy and Ozcan 2018). 

“[O]fferings are no longer ‘finished’” (Ramaswamy and Ozcan 2018, p. 19) but extended 

through ongoing interactions. Hence, consumers do not use these platforms in individual, 

potentially repeated exchanges but throughout a perpetuated relationship. We therefore call 

these platforms relational digital platforms (RDPs). 

Our clustering of platform types based on their locus of value creation thus reveals two 

underlying dimensions, transactional and relational value creation, which we use to structure 

the platform universe (Figure 1).  
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Figure 1: Concepts of Transactional and Relational Value Creation 

 

Some platform types discussed in the literature exhibit both transactional and relational 

features. For example, branded apps, VCEs, and online brand communities may enable 

purchases, implement interactive co-innovation systems or social features. However, these 

interactions are limited to the issuing brand and, therefore, lack the breadth of MSPs and LEMs, 

which offer access to different platform producers. Likewise, relational interactions are 

confined to the issuing brand, excluding third parties, and feature an often company-serving, 

narrow scope such as co-innovating a specific product. Hence, these platform types typically 

score low in terms of both transactional and relational value.  

TDPs represent the more traditional view on platforms that originated in the economics 

literature and focuses on the intermediation of two market sides (e.g. Rochet and Tirole 2003). 

In this way, their value creation resembles the product-centric orientation of companies 

prevailing in the 1950s and ’60s (Sheth, Sisodia and Sharma 2000). TDPs usually make up the 
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first wave of platforms in a sector’s digital marketplace. Examples are Amazon in consumer 

products, Airbnb in accommodation, and Uber in transportation. Just as companies gradually 

adopted a more customer- and relationship-centric approach over time (Sheth, Sisodia and 

Sharma 2000), platforms have become more relationally focused in recent years. Amazon, for 

example, has introduced community-like features through which users can manage own 

profiles, upload photos, and answer questions from other consumers. Airbnb complements its 

core offering with a variety of holiday activities, from city tours and cooking classes to 

organized journeys.  

While this breed of companies was born into the digital marketplace, traditional, offline-

focused companies are also embracing the digital environment—not just as a marketing or sales 

channel but as a distinct playing field with unique value-creation opportunities. Dutch brewing 

company Heineken launched Beerwulf, a TDP through which it sells craft beers from small 

breweries but also brands owned by direct competitors, Clos19 is a TDP through which the 

LVMH Group sells many of its brands, such as Hennessy and Moët, directly to consumers, and 

Siemens brings together its business consumers with third party spare parts suppliers. On the 

relational side, the most sophisticated RDPs stem from the health and fitness sector with 

Adidas’ Runtastic, Nike’s NikePlus, and UnderArmour’s Connected Fitness, which allow 

consumers to interact with AI-powered coaches and a community of consumers and celebrities. 

Other examples for RDPs have emerged in the automobile sector such as Mercedes Me, which 

provides consumers with content, third-party services, and suggestions for trips and scenic 

routes.  

As evident from Figure 1, a term for platforms situated in the upper right corner has not 

yet emerged. This may stem from the fact that only few brands occupy this area. WeChat is one 

of these rare examples, with a mind-boggling number of features such as access to a large 

variety of third-party offerings, appointment booking, community features, and investment and 
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personal finance management. In the coming years, we expect more of these platforms to 

emerge, especially through established TDPs incorporating relational aspects and RDPs 

adopting transactional components. 

3.1 Transactional Value Creation 

We propose that by bringing together parties and enabling their exchange, TDPs create 

value for consumers in four major ways: They (1) offer a broad assortment, (2) match supply 

and demand, (3) provide information on platform producers, consumers, and offerings, and (4) 

ensure a smooth and convenient fulfillment of the exchange. We discuss each of these 

transactional value components in the following.  

Assortment Value. Driven by (indirect) network effects, TDPs can attract a large number 

of consumers and suppliers through a positive feedback loop in which additional consumers 

draw more producers to the platform and vice versa (Chu and Manchanda 2016; Katz and 

Shapiro 1994). Digitization considerably boosts these network effects because it lifts physical 

and temporal constraints, allowing the platform to accommodate a virtually infinite number of 

consumers and producers irrespective of their physical location. Hence, consumers can enjoy 

an assortment that is wider and deeper than that of any classical online or offline retailer (Alba 

et al. 1997)—a fundamental source of value creation. Airbnb, for example, offers more 

accommodations than the major hotel chains combined (Hartmans 2017). The assortment value 

allows consumers to find precisely the offering they are looking for, thus minimizing the need 

to compromise (Brynjolfsson, Hu and Smith 2003; Hoch, Bradlow and Wansink 1999), 

allowing for one-stop shopping, and reducing transaction costs (Messinger and Narasimhan 

1997).  

Matchmaking Value. The assortment, however, is of little use, if consumers incur high 

search costs to find the offering that suits their needs. Especially if assortments are increasingly 

deep and wide, consumers can feel cognitively overwhelmed and fear to make the wrong choice 
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(Gourville and Soman 2005; Xu, Jing, and Dhar 2013). Moreover, the assortment may simply 

become too crowded to properly process (Huffmann and Kahn 1998) while also inflating 

consumers’ expectations (Diehl and Poynor 2010). As large assortments are of little worth 

without search functionalities, platforms employ matchmaking mechanisms that ensure 

consumers find the desired offering without an escalation of search costs. These matchmaking 

mechanisms may require active consumer input, as in the case of search boxes, ratings, and 

filters. Other approaches rely on machine learning methods that leverage data on past consumer 

behavior, such as automated recommender systems (Lee, Kim and Rhee 2001) and content 

curation mechanisms (Lazer 2015). Prior research shows that successful matchmaking 

increases the consumption of niche products in online vis-à-vis offline transactions, indicating 

that matchmaking not only reduces search costs but allows consumers to discover the very 

offering that best satisfies their idiosyncratic need (Brynjolfsson, Hu, and Simester 2011). 

Information Value. TDPs feature information on the products and services they offer. 

This information may be provided by (1) the respective platform producers (e.g. price and 

product attributes), (2) the platform provider (e.g. a product’s sales rank), or (3) the platform 

consumers, for instance in form of product reviews and ratings. Especially the latter have been 

shown to substantially influence consumers’ purchase decisions (Floyd et al. 2014). TDPs also 

provide information on the individual platform producers and consumers themselves, for 

example in terms of satisfaction ratings and reviews. Again, this information may be provided 

by any of the three platform parties and allows TDPs to function properly. It instills trust, 

incentivizes adherence to contractual obligations, prevents fraud, and alleviates asymmetric 

information (Hui et al. 2016; Roberts 2011), especially when the platform provider is agnostic 

towards producers’ and consumers’ a priori quality (Chu and Manchanda 2016).  

Fulfillment Value. TDPs are mediators of exchanges and, therefore, can create value by 

providing a smooth and convenient fulfillment of the exchange. Convenience is achieved along 
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five dimensions: access, search, evaluation, transaction, and post-purchase (Jiang, Yang, and 

Jun 2013). Platforms provide access convenience through their online accessibility and by being 

open to all consumers (Broekhuizen et al. 2019). They also offer search and evaluation 

convenience, which are reflected in the matchmaking and information values described above. 

Fulfillment value takes effect through transaction and post-purchase convenience. Transaction 

convenience is achieved, for example, by offering a variety of payment methods, a smooth 

check-out process, and additional features like Amazon’s one-click buying or dash buttons 

(Jiang, Yang, and Jun 2013). Post-purchase convenience is realized, for example, through 

timely delivery, eco-friendly shipping options, as well as services that mitigate the risks 

associated with exchanges as shown in the previous paragraph. Platform providers may offer 

money-back guarantees, buyer protection programs (Hui et al. 2016; Roberts 2011), or handle 

product returns and conflicts between exchange parties (Jiang, Yang, and Jun 2013).  

Successful TDPs deliver value along all four components. However, assortment value 

always lays the foundation that information, matchmaking, and fulfillment value build on (Chu 

and Manchanda 2016; Song et al. 2018). Their importance grows in relation to the assortment 

size, owing to the associated increase in crowdedness and quality discrepancies among 

offerings and producers. Matchmaking value reduces consumers’ search costs. Information and 

fulfillment value assure that offerings align with expectations and that parties meet their 

contractual obligations. Platform growth is indispensable for TDPs, as the associated network 

effects attract further platform producers that increase the assortment value, while consumers 

provide more data that elevate matchmaking and information values (Van Alstyne, Parker, and 

Choudary 2016).  
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3.2 Relational Value Creation 

We propose four value components that RDPs are able to create: (1) customization of the 

core offering, (2) social interactions, (3) assisting consumers in achieving personal goals (self-

actualization), and (4) providing hedonic experiences. We explicate each in the following.  

Customization value. RDPs can offer consumers customized solutions through two 

mechanisms: First, they complement core offerings with additional services, provided either by 

the platform provider or by external platform producers, which is commonly known as 

integrated solutions (Epp and Price 2011; Tuli, Kohli, and Bharadway 2007). This has been 

greatly facilitated through digitalization as third parties are not constraint by time or place and 

can use standardized interfaces (APIs) that ensure that third party offerings are deeply 

integrated into the value-creation process of the platform at low marginal costs (Reinartz, 

Wiegand and Imschloss 2019; Sheth, Sisodia and Sharma 2000). Second, through co-creation, 

consumers can tailor attributes of the core offering to match their unique requirements (Prahalad 

and Ramaswamy 2004). In doing so, consumers may not only create value for themselves but 

also for other consumers, for example by engaging in the development of new offerings (Etgar 

2008; Nambisan 2002) or creating user-generated content (UGC). UGC represents an important 

source of value for consumers (Kohler et al 2011; Trusov, Bucklin and Pauwels 2009) and 

allows platforms to offer a large variety of content and customized services, which was 

previously only possible at high costs (Kumar and Reinartz 2016; Labrecque et al. 2013).  

Social value. Social value relates to value derived from consumers’ interactions with other 

platform participants such as consumers, third parties, or employees. Research on co-creation, 

brand communities, and website usage shows that the associated social interactions lead to 

various psychological benefits for consumers (e.g. Nambisan and Baron 2009). They create a 

sense of belonging and social identity (Schau, Muniz, and Arnould 2009; Xie, Bagozzi and 

Troye 2008). Additionally, consumers enjoy the status, reputation, and esteem they build within 
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a community of peers as well as expressing a unique self-image, which gives them a sense of 

self-efficacy (Holbrook 1999; Nambisan and Baron 2009). Consumers may achieve these 

benefits on the platform through a variety of means, for example by sharing experiences and 

knowledge (Wasko and Faraj 2000), public badges or leaderboard rankings (Labrecque et al. 

2013), or expressing personal beliefs (Hollenbeck and Kaikati 2012; Marder et al. 2016).  

Self-actualization value. Consumers have the fundamental urge to self-actualize, that is, 

to live up to their full potential, “the desire to become more and more what one is, to become 

everything that one is capable of becoming” (Maslow 1943, p. 93; see also Csikszentmihalyi 

2000). Prior literature has incorporated individual aspects of self-actualization value in terms 

of acquiring knowledge, specifically epistemic value (Sheth, Newman, and Gross 1991), 

excellence (Holbrook 1999), cognitive and personal integrative benefits (Nambisan and Baron 

2009), as well as symbolic needs (Park, Jaworski, and MacInnis 1986). We extend this concept 

to include additional aspects of self-actualization such as self-respect and accomplishment 

(Holbrook 1999; Xie, Bagozzi, and Troye 2008). These are underlying today’s self-

quantification and self-improvement trends which are addressed in many RDPs, especially in 

the context of fitness, health, or nutrition. Its development is fueled by the widespread use of 

connected devices such as mobile phones and wearable devices that are capable of tracking and 

quantifying consumers’ daily lives and activities, workouts, sleep quality, heart rate, and more 

(James, Deane and Wallace 2019). The culmination of this development is the concept of the 

quantified self, which aims at data-based self-improvement (Kelly 2016; Wolf  2010). Through 

ongoing interactions with consumers, RDPs are able to provide educational content, 

performance and progress quantification, and personalized advice that collectively assist 

consumers in their pursuit of self-actualization. 

Hedonic value. Finally, RDPs provide consumers with hedonic value, which may come 

in the form of content provided for consumers’ pleasure or escapism (Holbrook 1999; 
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Nambisan and Baron 2009; Sheth, Newman, and Gross 1991) and which serves their 

experiential needs (Park, Jaworski, and MacInnis 1986). In addition, many platforms provide 

games and gamification features such as the ability to win virtual points through repeated 

interactions (Hofacker et al. 2016; Shankar et al. 2016). Hedonic experiences are traditionally 

less intense online than offline (Grewal, Levy, and Kumar 2009; Verhoef et al. 2009). However, 

more powerful devices and new technologies are enabling increasingly engaging digital 

experiences, especially through virtual and augmented reality (VR, AR) systems (Reinartz, 

Wiegand and Imschloss 2019).  

Similar to TDPs, the most successful RDPs such as UnderArmour’s Connected Fitness 

create value along all four components and thereby are able to transcend from an individual 

exchange focus to a perpetuated relationship focus. Self-actualization represents the pinnacle 

of the four components, addressing consumers’ long-term goals and, therefore, allowing RDPs 

to interact with consumers along their journey of attaining these goals. We elaborate on this 

aspect subsequently. Just as TDPs, RDPs profit from network effects. Additional producers and 

consumers elevate each of the four value components through complementary services, content, 

and interactions. The differences between TDPs’ and RDPs’ value components lead to distinct 

implications for management. TDPs need to attract producers that offer substitutes and thus 

directly compete with each other. To succeed, companies may need to dissociate themselves 

and their established brands from the platform as shown by Goldman Sachs: When it launched 

a TDP for financial products, other banks were reluctant to join the platform until it dissociated 

by selling shares to competitors (Hoffman 2018). RDPs, in contrast, incorporate third parties 

that provide complementary offerings. This means established companies can leverage their 

existing business connections to support their RDPs and build on their existing brands’ 

strengths and installed customer base.  
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The value components also reveal that TDPs may instill high behavioral loyalty in 

consumers and generate a direct revenue stream. In contrast, RDPs create profound attitudinal 

loyalty and affect revenues in the long run. Hence, TDPs present an attractive strategy for 

sectors still undisrupted by platforms, whereas RDPs allow companies to win back market share 

from competitors’ TDPs and are a crucial long-term strategy. 

Using the value components, managers can optimize platform designs to reflect the 

intended strategic orientation. For example, a company that sets out to provide transactional 

value for its stakeholders needs to put emphasis on offering a wide and/or deep assortment, 

matchmaking mechanisms, reliable information, and fulfillment enhancing options such as 

guarantees. To strengthen customer relationships, managers should add functionalities that 

empower consumers to co-create value, foster an active community, and provide educational 

and experiential content. The value components thus help managers to align their platform’s 

feature set with strategic goals and to “tick off boxes”, informing them how far they have 

already progressed on the respective value dimensions and which components their platform 

lacks.  

While literature to date extensively discusses the competitive advantages of platforms and 

their success factors from a company perspective, for example in terms of its openness 

(Boudreau 2010), network effects (Afuah 2013), and governance structures (Perren and 

Kozinets 2018), it neglects a distinct consumer perspective on platforms. The two value 

dimensions and eight value components presented in Table 2 address exactly this literature gap, 

identifying the concrete factors that allow platforms to succeed in the marketplace.  
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 Relational Digital Platforms: Towards Perpetual Value Creation 

The previous discussion suggests that TDPs and RDPs create fundamentally different 

value for consumers and, thereby, address distinct consumer goals. According to means-end 

theory, literature views these goals as hierarchically organized, that is, based on a natural order 

that defines the relations between them (Huffman, Ratneshwar and Mick 2003; Pieters, 

Baumgartner and Allen 1995). On the highest level, consumers formulate abstract goals that 

describe why they perform certain actions in the pursuit of their personal values and ideal self-

identity (Pieters, Baumgartner and Allen 1995), for example living sustainably (Belk 1988). 

These superordinate goals motivate specific focal goals that define a concrete target such as 

reducing one’s CO2 footprint (Belk 1988; Pieters, Baumgartner, and Allen 1995). On the 

lowest, subordinate level, consumers define actions and behaviors that allow them to achieve 

their higher-level goals, including purchases and the need for specific product attributes, like 

choosing a train ticket over a plane ticket (Belk 1988; Pieters, Baumgartner, and Allen 1995). 

Akin to this hierarchical view, Park, Jaworski, and MacInnis (1986) identify different types of 

consumer needs: Functional needs reside on a lower-level and relate to concrete consumption 

problems. They are followed by experiential and symbolic needs and the desire for hedonic 

experiences, self-actualization, self-identity, and sociality (Smith and Colgate 2007), which are 

more abstract in nature and never exhaustively satisfied (Park, Jaworski and MacInnis 1986).  

TDPs address consumers’ lower-level goals and needs by offering the previously 

discussed assortment, matchmaking, information, and fulfillment values. These TDP offerings 

are powerful indeed, explaining much of the dramatic rise of the platform model hereto. 

Continuing from there, RDPs are able to address higher-level goals and needs by providing 

customization, self-actualization, social, and hedonic value. Accordingly, they envelop a wide 

variety of consumers’ subordinate goals and needs—including purchases—that are motivated 

by higher-level goals (Pieters, Baumgartner and Allen 1995). Consequently, RDPs can extend 
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and prolong the interactions with consumers far beyond the boundaries of a typical customer 

journey. They create value for consumers along their pursuit of these higher-level goals and 

needs, which are never fully accomplished, as consumers strive to be or become someone, 

realizing their potential and nurturing their self-identity rather than performing individual 

actions (Huffman, Ratneshwar and Mick 2003; Pieters, Baumgartner and Allen 1995).  

Figure 2: Higher- and Lower-Level Goal Structure 

 

The structure of goals and associated behaviors, interactions, and transactions are 

represented in Figure 2, exemplary for the brand UnderArmour. Here, the consumer’s 

overarching goal is health improvement, which motivates lower-level goals such as healthy 

eating and exercising. Each of these goals create consumption opportunities such as buying new 

running shoes or a tracking device. They also spur ongoing subordinate goals like tracking runs, 

coaching, or following a proposed training schedule through which the platform is able to 

interact with the consumer on an ongoing basis. As a consequence, offerings are not only “no 

longer ‘finished’”, as Ramaswamy and Ozcan (2018, p. 19) state, but extend beyond the brand’s 

core value creation long after, long before, and even independent of an actual purchase through 

the perpetuation of value-creating interactions along various goals on different levels.  
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It is important to note that these ongoing interactions have only become possible as a 

result of recent technological advances. Consumers are “always on” via smartphones, wearable 

devices, smart home gadgets, and other interfaces. This means that platforms constantly receive 

consumer data, which allows them to personalize interactions. In the past, platforms had to rely 

on consumers to actively transmit data. Nowadays, data collection is increasingly passive with 

a large amount and variety of data points transmitted automatically by the connected devices. 

Furthermore, through advances in data management and analysis, especially in terms of the 

various machine-learning applications, interactions are no longer consumer-initiated but 

increasingly platform-initiated. That is, platforms autonomously trigger personalized 

interactions, for example through a push-notification on the consumer’s smartphone, a vibration 

on their wearable device, or an announcement by a voice assistant. Additionally, advances in 

system integration and the ongoing digitization of information allow for the seamless 

integration of partners to a platform through standardized interfaces (APIs). Finally, 

technological advances improve the integration across online and offline channels and devices, 

leading to further blurring of the lines between separate touchpoints and towards an integrated, 

ongoing relationship. RDPs, therefore, create tighter bonds between brands and consumers than 

ever before as a result of their focus on addressing consumers’ higher-level goals, enabled and 

fundamentally elevated through technological advances.  

Lemon and Verhoef (2016) argue that, in theory, a consumer’s prepurchase stage 

encompasses her entire experiences before purchase, starting with her very first 

“need/goal/impulse” (p. 76). Similarly, the post-purchase stage theoretically extends to the end 

of a customer’s life (Lemon and Verhoef 2016). RDPs are getting ever closer to these theoretical 

boundaries of the customer journey and may transcend them soon. Whereas the classical 

journey forms around a purchase incidence, RDPs create value independent of a purchase, 

transforming the customer journey into a consumer journey, in which the relational platform 
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envelops consumers’ pursuit of various goals, actions, and potentially transactions. The 

platform develops into a constant companion, gradually claiming larger parts of the consumers’ 

activities. This view goes far beyond classical marketing communication and customer 

relationship management which center on singular touchpoints. RDPs introduce ongoing and 

evolving interactions of very diverse nature between brands and consumers, which calls for a 

sociological perspective of analysis in order to determine how this evolution affects consumers. 

We propose that RDPs’ envelopment of consumers’ goals and activities allows them to become 

part of and significantly shape consumers’ lifeworlds and habitus. We elaborate on this 

proposition and discuss the potential consequences of this development in the following. 

 Entering and Shaping Consumers’ Lifeworlds and Habitus 

Lifeworld is a fundamental concept of phenomenological research going back to Edmund 

Husserl (1936), which has been widely adopted by sociology and anthropology (Giddens 1991; 

Schutz 1970). It takes a subjective view on the environment a person inhabits, describing how 

she lives in and experiences it, that is, “[t]he total sphere of experiences of an individual which 

is circumscribed by the objects, persons, and events encountered in the pursuit of the pragmatic 

objectives of living” (Schutz 1970, p. 320). These encounters are not necessarily physical but 

also include digital and otherwise mediated experiences, a point already raised by Schutz and 

Luckmann (1973). As brought forward by Ramaswamy and Ozcan (2016), platforms consist of 

artifacts, interfaces, persons, and processes, in other words, the very objects (artifacts and 

interfaces), persons, and events (processes) that Schutz (1970) identified as building blocks of 

consumers’ lifeworlds. However, not all encounters become part of one’s lifeworld. Infrequent, 

meaningless encounters do not inform consumers’ experiences and, therefore, enter the 

lifeworld only peripherally and non-permanently (Atkinson 2010).  

Interestingly, most of a company’s insular consumer-directed interactions and traditional 

marketing activities fall into this category. To a large degree, they remain meaningless because 
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they are not lasting, not personal, and not valuable. Not being able to create true meaning has 

been exactly traditional marketing’s long unresolved puzzle. Instead, the continuous encounters 

“in the pursuit of the pragmatic objectives of living” (Schutz 1970, p. 320), the “everyday 

experiences” (Atkinson 2010, p. 9) do build into a consumers’ lifeworld—these are precisely 

the types of perpetuated interactions that RDPs engage consumers in.  

Continuing our previous example, we illustrate this argument in Figure 3. The consumer 

may check burned calories and enter her meals on a daily level. Also, she may compare her 

performance to that of her friends and check up on the latest community updates. An app may 

also remind her of the upcoming workout the next day and suggest a jogging route to ensure 

that she stays on track to complete a half marathon.  

Figure 3: Ongoing Interactions on Relational Digital Platforms  

 

Over time, these interactions not only enter but also shape the consumer’s lifeworld. The 

community-initiated interactions constitute social interactions that, as prior research shows, 

lead to the emergence of unique subcultures within a platform (e.g., Fournier and Lee 2009; 
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Schau, Muniz, and Arnould 2009). The community’s shared culture affects each consumer 

individually and can carry over to the offline world, for example in the form of product 

purchases (Manchanda, Packard, and Pattabhiramaiah 2015) or social events (Schau, Muniz, 

and Arnould 2009). Platform-initiated interactions are increasingly powered by algorithms that 

are able to provide customized recommendations and content. These algorithms leverage 

personal data to initiate many value-creating activities that influence a consumer’s activities. 

The platform may prompt her to go for a walk in the park to meet her daily activity goal or to 

join a running group in the neighborhood. It may suggest a new jogging route or recommend 

nutritional supplements based on her individual workout patterns. Hence, all these interactions 

become part of the idiosyncratic set of experiences that form the consumer’s lifeworld and by 

extension build “uniquely into her biography and habitus” (Atkinson 2010, p. 9).  

The habitus is another prominent sociological concept that becomes important in the 

context of RDPs. Habitus describes a person’s “dispositions, propensities, and schemes of 

perception and appreciation” (Atkinson 2010, p. 3) that result from past experiences and, 

importantly, guide her conscious and subconscious actions (Atkinson 2010; Sayer 2005; 

Bourdieu 1977). An individual’s habitus is constantly updated through new experiences and 

interactions with the lifeworld (Atkinson 2010; Bourdieu 1990). Habitus and lifeworld 

influence each other reciprocally: The experiences that make up our lifeworld influence our 

habitus, which guides our actions and decisions. These in turn influence which objects and 

persons we encounter and interact with, thus shaping which experiences become part of our 

lifeworld (Atkinson 2010). A relational platform that is now able to enter a consumer’s 

lifeworld by definition also influences her habits and, consequently, her actions. Thus, RDPs 

can create a considerably more profound brand-consumer relationship in which the brand and 

its platform guide consumers’ daily lives. However, consumers only allow this to happen if the 
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platform creates value for them, specifically in terms of the value components discussed before. 

We depict this concept in Figure 4.  

Figure 4: How Platforms Enter Consumers’ Lifeworld and Habitus 

 

The formation and continuation of this close brand-consumer relationship hinges on 

providing valuable interactions at all times. Getting this right, however, is not always 

straightforward.  

Platform-initiated interactions and personalization of interfaces can easily be perceived 

as annoying and intrusive, leading to privacy concerns (Claussen, Kretschmer, and Mayrhofer 

2013; Wottrich, Reijmersdal, and Smit 2018). In order to alleviate these consumer concerns, 

trust has consistently been shown to be an important factor in various settings (Acquisti, 

Brandimarte, and Loewenstein 2015; Chen and Wang 2019; Sundararajan 2019). Especially in 

the context of RDPs, trust is a pivotal asset because consumers do not only trust brands with a 
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vast amount of personal data but even grant them access to their lifeworld. The Cambridge 

Analytical scandal presents a cautionary tale: Facebook gave third parties access to highly 

sensitive user data, which caused severe pushback from users, sending its stock price down by 

$120 billion (Frenkel 2018). Hence, building and maintaining consumers’ trust is of utmost 

importance for brands that employ RDPs. Besides privacy concerns, however, platform 

interactions may lead to further unintended consequences. The machine learning algorithms 

that power personalization can incorporate biases that lead to discrimination based on gender 

(Lambrecht and Tucker 2019) and race (Obermeyer et al. 2019). In addition, the platform 

community may show anti-social and potentially discriminatory behaviors (Edelman, Luca, and 

Svirsky 2017). Therefore, brands need to monitor outcomes and ensure their fairness. 

 Platform Design Choices 

The platform provider acts as a mediator of the interactions on its RDP by controlling the 

platform’s artifacts, processes, persons, and interfaces. Thereby, it—intentionally or 

unintentionally—influences when, how and what kind of interactions end up on the consumer’s 

interface as well as which information is transmitted to the platform and the community. 

Platform design decisions can help steer these outcomes. For example, the platform provider 

controls the content each consumer sees through its approach to content curation (Lazer 2015). 

It also influences the behavior highlighted and appreciated on the platform through rewards 

(whether with actual monetary or just virtual incentives). The platform architecture also dictates 

which consumers interact and how they interact (Spagnoletti, Resca and Lee 2015; Boon, Pitt 

and Salehi-Sangari 2015); Twitter, for example, limits the number of characters a user can post 

whereas the communication on Instagram strongly centers on posting and reacting to visual 

content. Hence, contrary to early platform types such as brand communities, which were mostly 

self-governed, today’s platform providers are much more involved. They purposefully design 
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interactions and components to influence outcomes in terms of individual consumer behavior 

and the shared culture evolving in the community.  

Figure 5: Platform Design Mechanisms 

 

The sociological literature calls the deliberate influence of a governing institution on a 

person’s lifeworld the “colonization” of said lifeworld (Habermas 1987). While in sociology 

these are typically governments, in our context the platform provider acts as the colonizer of 

consumers’ lifeworlds. As Habermas (1987) argues, colonization is realized through 

institutions, bureaucratic processes, and market forces based on a monetary regime. On RDPs, 

monetary rewards can also be at play but may extend to social currency in the form of status 
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and esteem, for example through public recognition of performance (Hamari and Koivisto 

2015) or virtual status symbols (Sailer et al. 2017). Additionally, the platform provider can 

establish institutions and bureaucracy that colonize consumers’ lifeworlds through the 

interfaces and processes that it controls and through which it governs interactions. 

Consequently, the question arises how to design these components deliberately to elicit desired 

attitudinal and behavioral outcomes. While this question is also relevant in the context of TDPs 

and has spurred initial research (e.g., Broekhuizen et al. 2019), we show that the long-term 

focus of RDPs presents a unique setting. Based on a review of various literature streams 

(marketing, behavioral economics, information systems, management strategy), we propose 

several important design mechanisms for RDPs, which we depict in Figure 5 and discuss in the 

following paragraphs. 

6.1 Gamification 

The marketing literature shows that companies can employ gamification elements to elicit 

desired consumer behaviors and attitudes, such as commitment, referrals (Wolf, Weiger and 

Hammerschmidt 2019), motivation and performance (Groening and Binnewies 2019; Mitchell, 

Schuster and Jin 2018) as well as innovation adoption (Müller-Stewens et al. 2017). 

Gamification can be employed in many ways: A platform may use scores, levels, badges, 

leaderboards, virtual currency and rewards, competitions, games and game-like experiences 

(Koivisto and Hamari 2019; Sailer et al. 2017). For example, the popular running app zombie 

run implements an interval running exercise into an AR game, in which virtual zombies chase 

the runner in a post-apocalyptic world. Prior literature shows that consumers are driven to 

engage in gamified experiences due to both intrinsic motivators, such as self-development and 

expressive freedom, and extrinsic motivators (e.g., social connectedness and comparison) like 

leaderboards, badges, or competitions (Mitchell, Schuster and Jin 2018; Wolf, Weiger and 

Hammerschmidt 2019). Hence, depending on the design, a platform’s gamification elements 
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either can act directly on the consumer or indirectly through the social effects elicited by the 

community members.  

Given the possibilities of self-quantification and social comparison paired with the 

potential of digital enhancements through audio, video, vibration, AR and VR, gamification is 

an important tool for RDPs to keep consumers engaged and focused on their goal progression. 

Additionally, the platform provider can use gamification elements to reward user behavior. For 

example, the platform may award a badge for consumers that have connected with at least 100 

people, and thereby reinforce the community aspect of the platform. The platform provider can 

leverage gamification in its communication with consumers by highlighting earned badges on 

the interface and implement gamification in its architecture by permitting consumers to 

challenge and compete with peers. UnderArmour takes an interesting approach to gamification 

in that they allow third parties to create branded challenges that consumers can participate in.  

6.2 Nudging 

Gamification and nudging overlap, because gamification elements like badges and digital 

rewards can nudge consumer behavior, operating through some of the same psychological 

mechanisms (Bhargava and Loewenstein 2015; Madrian 2014). However, nudging is far 

broader in its possible application, while lacking the profound experiential and hedonic 

component of many gamified experiences. As Thaler and Sunstein (2008, p. 6) put it, “a nudge 

[...] is any aspect of the choice architecture that alters people’s behavior in a predictable way 

without forbidding any options or significantly changing their economic incentives.” Hence, 

nudging can manifest in many mechanisms well known to marketers such as framing and 

anchoring, default options, choice architecture, and information presentation (Johnson et al. 

2012; Thaler and Sunstein 2008).  

While nudging has been researched in a variety of contexts (e.g., Adjerid, Acquisti and 

Loewenstein 2018; Ungemach et al 2017) and can be important for one-off consumer 
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interactions, it is especially important for RDPs. First, the number and variety of interactions 

on RDPs are large. Each of these interactions needs to be designed and integrated carefully to 

achieve the desired outcome. Furthermore, RDPs can easily capture large amounts of data and 

employ A/B-testing in order to scrutinize the effectiveness of the designs and continuously 

improve them on an individual level (Wedel and Kannan 2016). This may even culminate in 

systems that autonomously optimize interface designs for specific outcomes, as has been shown 

in the context of websites and banner ads (Hauser et al. 2009; Urban et al. 2013).  

Second, RDPs continuously interact with consumers over time. Therefore, they may 

employ nudging methods that leverage past data, such as progress towards a goal, reminders, 

or informing about consequences of past choices (Sunstein 2014). Additionally, they may 

nudge choices that are subject to intertemporal biases, like giving in to immediate temptations 

rather than following previously set goals (Johnson et al. 2012). Many decisions that consumers 

face imply a series of interconnected choices over time (Gul and Pesendorfer 2001). For 

example, a consumer who wants to eat out first decides where to eat before selecting an option 

from the chosen restaurant’s menu. How to best nudge these “cascading choices’ differs from 

singular choices, as shown by Adjerid, Acquisti, and Loewenstein (2018) for online privacy 

choices.  

Third, RDPs often allow consumer-to-consumer interactions. Platforms like LinkedIn and 

Facebook actively suggest new people to connect with, nudging consumers to extend their 

network and shaping whom they interact with. These platforms also curate the displayed 

content, hence, influencing whose information users receive. This influence of online social ties 

may then carry over into the offline world (Lazer 2015; Trepte, Reinecke, and Juechems 2012). 

The platform provider can also strategically highlight certain behaviors by other members of 

the community in its communication, and thereby create implicit social norms that nudge 

consumers to copy that behavior (Sunstein 2014; Hamari and Koivisto 2015). 



113 
 

6.3 Behavioral Engineering 

Gamification and nudging are a platform’s “soft” levers that subliminally motivate 

consumers to show specific behaviors while still admitting complete freedom of choice. In 

contrast, behavioral (economic) engineering focuses on the design of concrete mechanisms that 

dictate or incentivize a certain course of action (Bolton and Ockenfels 2012). Hence, contrary 

to nudging and gamification, behavioral engineering is a “hard lever” that does not allow 

consumers complete freedom and may apply economic incentives, i.e. rewards as well as 

punishments. These economic incentives are not necessarily monetary but may also be realized 

through, for instance, a platform’s search results ranking (Boon, Pitt and Salehi-Sangari 2015). 

Prior research shows that setting up a double-blind feedback process prompts users to give more 

reliable and useful reviews (Bolton, Greiner, and Ockenfels 2013; Fradkin, Grewal, and Holtz 

2018). The car-sharing platform ShareNow employs behavioral engineering by rewarding 

consumers that refuel a car with free credits for future rides. Thingiverse, the platform of 3D 

printer manufacturer MakerBot, allows users publishing 3D designs to receive a share of 

revenues for each print, which incentivizes high-quality and useful designs.  

6.4 Openness and Control 

Platforms can also shape the community of producers and consumers through another 

hard lever in the form of explicit rules and restrictions. Two fundamental factors are the 

platform’s openness, that is, who is allowed access to the platform, and the degree of control 

granted to platform participants (Boudreau 2010; Parker and Van Alstyne 2018). Both aspects 

are among the most complex and crucial design decisions a platform provider needs to make 

because they affect the co-creation and appropriation of value by consumers and third parties, 

as well as lock-in and network effects (Parker and van Alstyne 2018; West 2003).  

A platform provider may choose between opening the platform to customers only, to a 

specific subset of customers, or to all consumers, granting them different levels of control. 
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Likewise, the platform may be closed for third parties, open to a selection of third parties (e.g., 

only those who offer complementary services), or all third parties (Broekhuizen et al. 2019). 

The levels of control granted to platform producers and consumers range from allowing 

interactions with other members, over access to resources and data as well as the customization 

of interfaces and processes, to providing options for different revenue models (Broekhuizen et 

al. 2019). The levels of openness and control can be dialed in on a spectrum and calibrated over 

time. Their effects are not always straightforward (Parker and Van Alstyne 2018): Greater 

openness and control enable and elevate many of the value components discussed in the first 

part of this paper, such as assortment and information value as well as all of the relational value 

components. However, it may also lead to adverse effects such as the reduction in quality of 

offerings (Broekhuizen et al. 2019) and an increasing fragmentation (Boudreau 2010).  

The platform provider can employ the presented hard and soft levers to lead consumers 

towards desired outcomes. These outcomes may come in different shapes: Some may create 

value for (1) the platform provider (e.g., a more positive brand perception, increased usage of 

the platform, more comprehensive data collection), (2) the platform producers (e.g., purchase 

of a service), (3) the community (e.g., a helpful review), or (4) the individual consumer and her 

specific goal achievement (e.g., improving her running performance). Importantly, several 

parties may profit directly or indirectly from the same outcomes. For example, a helpful review 

not only creates value for the community but indirectly also for the platform provider through 

elevation of the platform’s attractiveness.  

Designing a relational platform to elicit self-serving outcomes, however, is not without 

controversy. Especially the more subversive mechanism like gamification and nudging can be 

perceived as manipulative and stress-inducing (Mitchell, Schuster, and Jin 2018; Wilkinson 

2013). Thorpe and Roper (2019) question whether gamification elements are ethical because 

they are designed to be highly engaging (“hyper-engaging”) and attention-grabbing, 
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encouraging ongoing use and, thus, are extraordinarily effective in inducing behavior change 

in consumers on a subconscious level. This argument is also reflected in the current debate 

about certain game mechanics resembling gambling and, therefore, needing to be regulated 

(Bailey 2018). Similarly, some applied nudging methods border on manipulation and 

accordingly are called “dark patterns” in the industry (Brignull 2019). For example, Amazon 

hides the option to close ones’ account deep in its settings. LinkedIn repeatedly prompts users 

to invite their entire address book to the platform, preselecting and visually highlighting the 

option through which users give consent (Brignull 2019). Further, badly designed gamification 

elements have been shown to lead to reduced motivation, lack of autonomy, and plunging 

performance (Hanus and Fox 2015; Groening and Binnewies 2019; Mitchell, Schuster, and Jin 

2018). Ill-conceived mechanisms thus bear the risk of provoking adverse effects for consumers 

and society. We outline these along with possible remedies subsequently. 

 Implications 

Platforms are not all created equal. On the contrary, industry practice and academia have 

given rise to a plethora of platform types and terminologies. This paper developed a 

classification of the platform universe along the two dimensions of transactional and relational 

value creation and characterized the major concepts discussed in the literature. Furthermore, 

we identified a set of distinct values stressed by each dimension to show why consumers adopt 

and use different platform types. We then turned to the sociological implications of current 

developments in relational platform architectures. We argue that RDPs have the potential to 

transcend previous boundaries of relationship marketing, which typically separated the two 

worlds of brands and consumers by catering to consumers’ higher-level goals and blending with 

their lifeworlds and habitus. We propose that platforms are thus developing into a Trojan horse 

to colonize (Habermas 1987) the everyday actions and attitudes of consumers and present 

several mechanisms platform providers apply to elicit such outcomes. 
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7.1 Implications for Platform Brands 

Although we are expecting to see the emergence of more platforms with both high 

relational and transactional value in the near future, they are likely to coexist alongside the 

many platform types that occupy the different quadrants of our 2x2 matrix. Not every platform 

needs to do everything. Instead, the two dimensions and underlying value components can 

guide brands to ensure their platform “hits their intended sweet spot” and aligns with their 

marketing strategy. The classification assists managers in grasping the platform universe, 

setting suitable goals for their initiative, and taking appropriate action to achieve these goals. 

Depending on the share of transactional and relational elements, brands need to enhance and 

communicate the values that create competitive advantage on the respective playing field.  

In particular, if the platform focuses on facilitating transactions, then the brand should 

intensify efforts to acquire third-party suppliers to broaden the assortment, refine algorithms 

and filters to optimize matchmaking outcomes, and implement a quality management system 

to ensure fulfillment standards. In doing so, these platforms need to account for the inherent 

hierarchy of value components, with assortment value as the sine-qua-non for all subsequent 

activities. That is, without a large assortment, benefits of finding matches, providing suitable 

information, and guaranteeing common fulfillment standards remain limited. As the assortment 

grows brands need to provide all value components simultaneously. Otherwise, they risk that 

consumers do not find what they are looking for and their platform experience suffers. 

Priorities for RDPs differ substantially. Here, value components are not as co-dependent 

but address heterogeneous consumer needs. Some place high value on social interaction, others 

on hedonic elements, and again others on the possibility to customize. However, self-

actualization constitutes the pinnacle of relational value creation and managers who want to 

build profound and perpetuated consumer relationships should seek to deliver on this front. 
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Even simple features, such as an automobile platform giving feedback on how to adjust once 

driving to be more ecological, can contribute to self-actualization value. 

Furthermore, perpetual value creation is key to achieve customer lock-in. Attention is 

limited and rival offerings are ubiquitous. To really become part of a person’s lifeworld and 

habitus, the platform must make itself indispensable. Brands can get there, for example, by 

occupying important, higher-level goal categories (e.g., fitness, lifestyle, food, DIY, pets, home, 

finances, etc.) and covering the entire range of activities, information, recommendations, 

products, and services related to these goals. Qualitative consumer research may help brands 

assess consumers’ higher-level goals. The point is that value creation must be holistic to blend 

with consumers’ lifeworlds. Limited applications that focus on a specific task might create 

repeat usage, but the corresponding brand remains in its own space, accessed from time to time 

by the user. At this level of integration, a seamless connection between the two will never be 

possible. 

Once an RDP has entered a consumer’s lifeworld and habitus, the platform design 

elements depicted in the previous chapter can help optimize outcomes. For maximum impact, 

we propose to integrate elements of all four mechanisms while carefully balancing soft 

(gamification and nudging) and hard (behavioral engineering, openness, and control) levers so 

that consumers do not feel restricted or niggled but are not tempted to exploit any loopholes, 

either. 

To achieve this, platforms with predominantly relational benefits need to build new 

competencies. These are, on the one hand, technical in nature: Providers need to be able to build 

a system that can handle the complexities of a platform architecture owing to the variety of 

interfaces, data sources, participants, and devices. Additionally, data management and analysis 

skills are crucial in leveraging machine learning to initiate automated value-creating 

interactions with consumers. On the other hand, the farther brands try to advance into 
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consumers’ lifeworlds, the more delicately interactions should be orchestrated. This is because 

relationships can go south very quickly if consumers feel censored, manipulated, or patronized. 

Moreover, as shown in the previous chapters, platform mechanisms can easily lead to 

unintended and even discriminatory outcomes. Therefore, brands need to monitor the platform 

outcomes continuously from both, quantitative as well as qualitative, perspectives. 

The integration of platforms into consumers’ lifeworlds and habitus gives brands 

tremendous (and sometimes terrifying) power over information flows and decision making. On 

RDPs, they can colonize many different aspects of everyday life such as sports, nutrition, 

lifestyle, social connections, products, and services so that consumers no longer notice let alone 

scrutinize the nature and source of information. The brand’s world becomes their own world. 

Therefore, it is crucial for brands to set up a team occupied with the behavioral and sociological 

implications of the platform architecture. It should include specialists from psychology, 

sociology, behavioral sciences, and marketing to ensure that platform features are socially and 

ethically acceptable and in line with the company’s core values. Not every feature that is 

technically feasible and potentially even profitable should be implemented. Thus, in an 

increasingly technology-dominated playing field CMOs continue to play a crucial role. 

Given the lack of platforms high on transactional and relational value, brands may be 

tempted to launch this type of platform first. Indeed, this could be a game-changer because such 

platforms would provide a very broad and deep offering, making it a very versatile interface. 

However, we caution brands aiming to walk this path because combining highly relational and 

transactional aspects could be risky. Imagine Adidas pushing large-scale product 

recommendations on their Runtastic platform or Google using health data from the recently 

acquired Fitbit to feed its ad network. There is a good chance that these self-serving actions will 

provoke pushback. Therefore, we suggest to go at it gradually and iteratively to not overstep 

any boundaries. Commercializing too fast and too boldly, especially exploiting cross- and up-
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selling opportunities, alienates consumers. Offering competitor products alongside own 

products, however, may signal that the platform has indeed consumers’ best interests at heart.  

7.2 Implications for Consumers, Regulatory Entities, and Society 

In light of the ever-deeper penetration of platforms into the consumers’ lifeworlds, the 

most pressing question is: How much power should we grant platform brands to accumulate 

and exercise? This is an individual as well as a societal question. Apart from the brands’ 

voluntary commitment to adhere to ethical standards, we stress the necessity to educate 

consumers and regulate where undesirable social outcomes emerge. This is because platform 

prevalence bears the risk of loss of privacy, restriction of the freedom of choice, loss of 

independence, and violation of equality, among others (Wertenbroch 2019; Kramer et al. 2014). 

Precedents exist in social media: For instance, Bakshy, Messing, and Adamic (2015) show that 

personalization of content leads to filter bubbles, where individuals increasingly receive 

information that matches their own attitudes and behaviors. Recently, the American 

government sued Facebook because its algorithm discriminated by race and gender when 

showing ads for housing—a violation of the Fair Housing Act (The Economist 2019). The threat 

of platform environments exerting monopoly power over consumers’ content consumption, 

information search, and shopping habits need to be closely monitored. Consumers, regulatory 

entities, and society should set boundaries depending on how much control they want to give 

up. The tradeoff is between relevance and convenience on the one hand, and intrusiveness and 

lack of freedom on the other hand. 

The more deeply brands enter consumers’ lifeworld and habitus, the more personal data 

they are able to gather. It is therefore also important to determine which data points platform 

providers can use for which purposes. For example, firms may use data on consumers’ eating 

and exercising habits to evaluate individual insurance risks. This, however, not only violates 

the democratic principle of equality (Wertenbroch 2019) but also leads the insurance concept 
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ad absurdum, as risks are no longer pooled. The result would be that everybody effectively pays 

their own medical bills, which undermines the idea of most healthcare systems. 

Furthermore, the depicted behavioral design elements may prompt consumers to perform 

potentially harmful actions they would otherwise not engage in. For example, the social e-

commerce shop Pinduoduo gave users discounts on products for sharing content with their 

friends on WeChat, effectively buying word-of-mouth. Athey, Catalini, and Tucker (2017) 

show that consumers can be easily incentivized to not only to give up their own private data but 

also that of their friends. Obviously, a dark side to nudging, gamification, and behavioral 

engineering exists that can be misused especially in complex multiparty systems. Incentivizing 

people to consume and spread content, disclose private data, or recommend products may have 

severely detrimental effects on the individual and society. Government and not-for-profit 

entities should challenge platform innovations regularly and prosecute any abuses. It is also 

important to establish faster legislative processes to take timely countermeasures if platform 

designs have unintended consequences.  

Despite these justified points of caution, platforms have an immense potential for creating 

value for consumers. Since platforms involve a variety of third-party suppliers controlling their 

own content and activities, pluralism is part of their DNA. Consumers act as co-creators of 

products, content, and services that otherwise would not exist at all or only at high costs. In this 

way, platforms are able to serve niche consumers and fringe groups usually underserved in the 

traditional marketplace. As many functionalities on RDPs are paid with data instead of cash, 

even low-income consumers can enjoy high-quality services, effectively counteracting many 

societies’ widening poverty gap. Moreover, TDPs and RDPs present consumers and businesses 

with additional sources of income. Furthermore, through smart design choices, deeply 

embedded platforms can change human behavior for the better, making us healthier, more 

balanced, knowledgeable, and connected. As much as skepticism is warranted, it is important 
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to impose regulations using sound judgment to not curtail the many advantages these new 

technologies bring about.  
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ABSTRACT   

Skippable online video advertisements have been around for almost ten years (Pashkevich et 

al. 2012) and are widely adopted by marketers (IAB Europe 2018). Nonetheless, literature on 

this unique ad format is scarce and lacks a detailed understanding of how it is perceived by 

consumers. Especially engaging in skipping poses an interesting conundrum that lacks research: 

On the one hand, the consumer can avoid the ad, which usually are perceived as annoying, but 

on the other hand, her ad viewing experience and the ad’s narrative are disrupted. This study 

sheds light on this issue and analyses how skippability and skipping influence consumers’ 

attitudes towards the ad and the brand. My results show that although skipping is self-imposed, 

it causes users to enjoy the ad less and creates a feeling of irritation. I present and test strategies 

for advertisers that help mitigate this effect. In particular, I show that displaying the brand and 

product during the initial seconds of a skippable ad leads to significantly better ad and brand 

perceptions. Also, combining skippable with non-skippable ad formats in a campaign 

significantly improves the performance vis-à-vis ad campaigns that only feature skippable ads.  

 

 

Keywords: Online video advertising, skippable ads, advertising avoidance 
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 Introduction 

In 2019, for the first time in history, digital advertising spending has surpassed spending 

in offline channels (Enberg 2019). An important driver of this growth has been online video 

advertising (OVA) for which expenditures increased by 20% from 2017 to 2018 to a total of 

$32 billion globally, which accounts for a fourth of total spending on online advertising and is 

forecasted to increase to a third by 2021 (Statista 2019). Online video ads offer new and unique 

opportunities for marketers. Besides the possibility of personalization, targeting and retargeting 

that it shares with other digital advertising methods (Bleier and Eisenbeiss 2015), a novel ad 

format that is specific to OVA has evolved: skippable ads. When a consumer encounters a 

skippable ad, she can skip it by the press of a button but only after she has watched the ad for a 

minimum required time, usually five seconds (Pashkevich et al. 2012). OVA is thus the only 

ad format in which the advertiser can actively grant consumers the option to avoid the ad. 

However, it does require consumers to watch at least a fraction of the ad so that ad avoidance 

through skipping is distinctly different from other types of ad avoidance such as zapping (i.e. 

switching the TV channel) or the usage of ad-blocking software, which both cause consumers 

to avoid entire ads altogether (Campbell et al. 2017; Dukes, Liu, and Shuai 2019). Despite its 

unique characteristics, advertising avoidance by skipping is scarcely researched so that it 

remains unclear how skipping affects consumers’ ad experience and brand perceptions.  

Skippable ads are adopted widely by marketers with 80% of them reporting to be using 

this format (IAB Europe 2018). In addition, skippable ads are already finding their way onto 

consumers’ TVs, for example through YouTube’s apps on smart TVs (Google 2019). Hence, 

given their novelty and growing relevance, properly understanding skippable ads, how they are 

perceived by consumers as well as how they affect marketing outcomes is crucial for managers 

and academics alike.  
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When consumers encounter skippable ads, multiple, partly opposing effects operate 

simultaneously. Most researchers argue that skippable ads decrease the intrusiveness and 

irritation consumers perceive when watching ads because they can easily skip the ad if they 

dislike it (Campbell et al. 2017; Jeon et al. 2019; Pashkevich et al. 2012). At the same time, 

however, I argue based on transportation theory (Green and Brock 2000) that skipping and thus 

only watching a fraction of a video ad considerably disrupts consumers’ ad experience leading 

to a significantly worse perception and enjoyment of the ad. This, in turn, may adversely affect 

brand attitudes, as shown in prior research in the context of zipping, i.e. fast-forwarding through 

an ad in prerecorded TV content (Stout and Burda 1989). Prior studies find that 65-70% of all 

skippable video ads are skipped and only 25% of consumers end up watching more than ten 

seconds of the ad (Arantes, Figueiredo, and Almeida 2016; MAGNA 2017). Therefore, it is 

crucial for marketers to understand how this widely spread skipping behavior and the associated 

partial ad exposure affect consumers’ ad and brand perceptions and how to optimally design 

and implement OVA formats in their campaigns.  

There are only few studies to data that have analyzed skippable ads. The majority of them 

focuses on the antecedents of skipping (e.g. Belanche, Flavián, and Pérez-Rueda 2017a, 2017b; 

Campbell et al. 2017; Jeon et al. 2019), while a detailed understanding of the process underlying 

perceptions of skippable and skipped ads and their behavioral and attitudinal consequences is 

still lacking. To address this gap in the literature and to provide managers with actionable 

insights on how to best utilize OVA, I answer the following research questions: 

1) How do skippable ads influence consumers’ ad and brand perceptions and what 

part does the initial, non-skippable part of the ad play? 

2) How does skipping influence consumers’ perception of an ad? 

3) How should skippable ads be designed and implemented into OVA campaigns 

to optimize consumers’ ad and brand perceptions? 
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I analyze these research questions by means of three laboratory studies that replicate a 

typical online content viewing experience. The design allows me to tightly control for 

confounding factors and to administer comprehensive questionnaires to uncover the processes 

underlying consumers’ perception of skippable ads. 

In doing so, I make several contributions. First, I describe in detail how consumers 

perceive skippable ads, being the first to uncover the underlying opposing effects. I find that 

skippable ads indeed can lead to a reduction in perceived intrusiveness and irritation improving 

ad and brand attitudes. However, I also find that skipping significantly worsens consumers’ 

enjoyment of the ad, thus increasing irritation and lowering its persuasive power.  

Second, I show that the initial, non-skippable part of a skippable ad plays a crucial role in 

its effectiveness and that while non-skippable ads should rely on a strong non-commercial 

narrative focus, skippable ads need to take a commercial focus, highlight the brand and 

advertised product during its initial seconds. In this way, advertisers are able to mitigate the 

above mentioned negative effects of skipping on ad enjoyment. 

Third, studies to date have consistently looked at skippable and non-skippable ads as 

substitutes and indeed so far no major advertising network offers campaign setups that combine 

both formats. However, my results show that skippable and non-skippable ads should be seen 

as complements that each address the other format’s weaknesses. Specifically, I show that 

forcing full ad exposure during the first ad encounter and making subsequent ad encounters 

skippable leads to optimal brand outcomes and is also perceived most favorably by consumers.  

In the following section, I first provide an overview of the literature on ad avoidance and 

skippable ads before introducing the underlying theories and developing the conceptual 

framework. Subsequently, I present and discuss the results of each of the three studies and 

conclude with a general discussion of my findings as well as concrete implications for 

management and future research.   



135 
 

 Skippable Ads and Advertising Avoidance 

Consumers always had an ambivalent relationship with advertising: On the one hand, 

they perceive ads as a nuisance (Johnson 2013; Olney, Holbrook and Batra 1991; Wilbur 2008) 

keeping them from consuming the content they desire (Dukes and Gal-Or 2003; Ha 1996). 

Therefore, consumers perceive ads as a restriction of their freedom (Edwards, Li, and Lee 

2002), which evokes reactance, i.e. the urge to restore that freedom (Brehm and Brehm 1981). 

This can lead to advertising avoidance (Bhattacharjee 2010; Edwards, Li, and Lee 2002; 

Morimoto and Chang 2009). Prior research shows that the more intrusive and irritating an ad is 

perceived, the higher the reactance and, thus, the degree of advertising avoidance (Edwards, Li, 

and Lee 2002; Li, Edwards, and Lee 2002; Olney, Holbrook, and Batra 1991). The desire to 

avoid ads has even led to the development of a sizeable industry offering software and apps that 

suppress online ads (Shiller, Waldfogel, and Ryan 2018).  

On the other hand, advertisers take great effort to craft ads that not only inform but also 

entertain consumers (Weinberger and Gulas 1992; Ducoffe 1995, 1996). At its extreme, ads 

can generate substantial hype such as, for example, ads during the super bowl (Siefert et al. 

2009) or viral ads that are shared frenetically among consumers (Teixeira 2012; Tellis et al. 

2019). Prior research shows that enjoyable ads reduce advertising avoidance (Campbell et al. 

2017; Siddarth and Chattopadhyay 1998; Elpers, Wedel, and Pieters 2003) by reducing 

perceived intrusiveness and irritation (Edwards, Li, and Lee 2002). Nonetheless, consumers 

tend to disregard and underestimate the gratification they receive from watching ads while 

overestimating their negative effects (Nelson, Meyvis, and Gallak 2009; Yang and Smith 2009) 

and, thus, end up avoiding ads they may have derived value from.  

Advertising avoidance boils down to two methods: cognitive avoidance by directing 

one’s attention away from the ad, and behavioral/mechanical avoidance, for example, by 

leaving the room or switching the TV channel (Speck and Elliott 1997). While cognitive 
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avoidance can be applied to any advertising method, behavioral/mechanical avoidance is highly 

dependent on the advertising medium: When watching TV, consumers may engage in zapping 

or zipping (Cronin and Menelly 1992; Siddarth and Chattopadhyay 1998; Van Meurs 1998) 

whereas online, consumers can use ad-blocking software (e.g. Shiller, Waldfogel, and Ryan 

2018; Redondo and Aznar 2018) or close display banners with a click (e.g. Cho and Cheon 

2004; Edwards, Li, and Lee 2002; Drèze and Hussherr 2003). 

Ad skipping has introduced a novel form of behavioral/mechanical avoidance of online 

video advertising. First implemented by YouTube in 2010 (Pashkevich et al. 2012), skippable 

ads force users to watch a fraction of the ad (usually five seconds) after which they are allowed 

to skip the ad and view the desired content (Pashkevich et al. 2012). If they do not skip the ad, 

it keeps playing until the end at which point the website automatically directs users to the 

requested content. Hence, ad avoidance through skipping possesses unique features 

distinguishing it from other types of ad avoidance: First, skippable ads require consumers to 

watch the initial seconds of an ad while other behaviors such as zapping, zipping and ad-

blocking eliminate an ad altogether (Dukes, Liu, and Shuai 2019; Elpers, Wedel, and Pieters 

2003) or considerably distort the ad viewing experience (Bellman, Schweda, and Varan 2010; 

Cronin and Menelly 1992). Advertisers can leverage skippable OVA’s initial seconds to spark 

interest in consumers (keeping them from skipping) or to convey the ad message in a way that 

even consumers who end up skipping have a touchpoint with the brand. Second, while pop-up 

banner ads work similarly to skippable OVA in the way that consumers are forcefully exposed 

to the ad before they are able to close it, the crucial difference is that since OVA’s content keeps 

evolving, the consumer might derive additional utility from continuing to watch the ad. 

Additionally, watching the ad represents the default option for skippable ads because the 

consumer reaches her desired content even if she does not engage in any action. In contrast, 

when faced with a pop-up banner ad, users have to actively close it or otherwise, they will not 
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be able to consume the requested content. Third, skippable ads are a form of advertising 

avoidance consciously enabled by the advertiser because they can typically choose between a 

skippable and non-skippable ad format when setting up the campaign. Accordingly, this control 

and empowerment given to the consumer may reflect positively on the brand (Liu and Shrum 

2009; Stewart and Pavlou 2002). 

 Literature Review 

Academic studies on skippable ads are still limited and mostly focus on the antecedents 

of skipping behavior. Belanche, Flavian, and Perez-Rueda (2017a, 2017b) find that previous 

exposure to a skippable ad format, skipping habit, and time urgency lead to increased skipping 

while arousing and context congruent ads are watched longer. Campell and colleagues (2017) 

identify a variety of advertising content factors such as humor, entertainment, and attention-

grabbing tactics associated with consumers’ skipping rates. Jeon and colleagues (2019) analyze 

how the presence of a timer in skippable and non-skippable ads influences perceived irritation 

and, in turn, skipping.  

While in the TV setting, around 30% of viewers engage in zapping (Schweidel and Kent 

2010; Steinberg and Hampp 2007), 65-70% of users skip video ads online of which 75% do not 

watch more than ten seconds of the ad (Arantes, Figueiredo, and Almeida 2016; MAGNA 

2017). As suggested by these numbers and confirmed by surveys, most consumers (76%) skip 

out of habit rather than because they disliked the ad, the product, or brand (MAGNA 2017). 

Watching an ad, on the contrary, is primarily driven by users enjoying the creative, a preference 

for the brand, and the ad being so short that it is not perceived worth the effort of skipping 

(MAGNA 2017). Hence, although it is often argued that skippable ads encourage self-selection 

of consumers that are truly interested in the advertised offering (Dukes, Liu, and Shuai 2019; 

Pashkevich et al. 2012), prior research shows that skipping is mainly driven by pure habit or 

enjoyment of the ad creative and only to a limited degree by an interest in the brand.  
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While prior studies make important contributions to understanding advertising avoidance, 

the underlying premise of optimizing skippable ads for the lowest skipping rate is problematic. 

After all, solely watching an ad does not imply achieving the intended goal of improved brand 

awareness, brand image, or sales. On the contrary, consumers may even be annoyed by ads 

designed to keep them from skipping (Campbell 1995; Darke and Ritchie 2007). Additionally, 

inconspicuous branding in ads might decrease skipping (Campbell 1995), but might also be 

detrimental for brand recall and awareness, especially for users that skip. Furthermore, although 

the majority of skipping occurs out of habit, there is still a significant fraction of users that self-

selects by choosing to skip an ad. This prevents the advertiser from spending advertising budget 

on users without interest in the product category or brand. Hence, purely optimizing ads for 

minimum skipping rates may imply retaining viewers that otherwise would have opted out of 

viewing the ad and on whom budget is wasted. 

Therefore, the more crucial question and the core of my research is how skippable ads 

and skipping influence consumers’ ad perceptions and brand outcomes, and how they can be 

leveraged optimally, especially in comparison to non-skippable OVA. Conversations with 

practitioners reveal an uncertainty concerning the choice between skippable and non-skippable 

ad formats driven by the inherent conflict between granting consumers control versus 

communicating the advertising message. Hence, they are unsure which format is more effective 

and under what circumstances. 

Literature to date lacks the necessary insights to solve this conundrum because studies 

have either ignored the underlying process that explains how consumers perceive these ads 

(Pashkevich et al. 2012; Campbell et al. 2017) or only analyzed singular components such as 

intrusiveness and irritation (Belanche, Flavián, and Pérez-Rueda 2017a, 2017b; Jeon et al. 

2019). Other findings are contradictory. For example, the analytical model developed by Dukes, 

Liu, and Suhai (2019) shows that skippable ads may be less effective for advertisers in reaching 
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consumers than traditional non-skippable formats, and Goodrich, Schiller, and Galletta (2015) 

find longer ads to be perceived more favorably. By contrast, Pashkevich et al. (2012) show that 

while users that voluntarily watch an ad are more likely to engage with the brand than those 

who skip, skippable and non-skippable ad formats are, overall, equally effective. Bellman, 

Schweda, and Varan (2010) experimentally yield the same results using skippable ads in 

prerecorded TV content.  

Hence, my results shed light on this disputed field and thus make several contributions to 

the literature. I specifically compare skippable to non-skippable OVA in a laboratory setting 

which allows me to take a detailed look at the underlying process of consumers’ perceptions of 

skippable ads and OVA in general. Thus, I am able to identify the effects of skipping on ad and 

brand perceptions and show conditions that influence the effectiveness of skippable OVA. 

Specifically, I focus on the ads commercial focus in the form of brand visibility during the 

initial, non-skippable part of the ad which proves to be an important moderator of the 

effectiveness of skippable ads. Additionally, I introduce a new perspective on OVA, being the 

first to analyze how the skippable and non-skippable formats can be used alongside each other 

as complements over the course of an ad campaign in order to improve consumers’ ad and brand 

perceptions.  

 Conceptual Background 

Consumers’ perception of ads can be described by the umbrella construct irritation, 

which is the result of an ad’s content (e.g. its entertainment level), execution (e.g. its image 

quality and length), and placement (e.g. the degree to which the ad keeps the user away from 

the desired content) (Aaker and Burzzone 1985; Li, Edwards, and Lee 2002). Making a regular 

OVA skippable, therefore, influences irritation on two levels—the placement and the ad 

content. While skippable ads initially block the content just as much as non-skippable ads, users 

can easily discard them once skipping is granted, which may alleviate intrusiveness and 
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irritation caused by the ad. However, as users that skip only watch a fraction of the ad content, 

they experience a disruption to the narration, which, as transportation theory shows, evokes 

displeasure and irritation (Green and Brock 2000; Van Laer et al. 2014; Wang and Calder 2006). 

These are the two fundamental opposing forces that operate alongside each other in skippable 

ads and for which I explicate the underlying theories in more detail in the following.  

4.1 Entertainment and Attitude towards the Ad 

The value that an ad provides in terms of information and especially entertainment has 

consistently been shown to reduce irritation (Edwards, Li, and Lee 2002; Goodrich, Schiller, 

and Galletta 2015; Ying, Korneliussen, and Gronhaug 2009). In the context of skippable ads, 

however, the act of skipping leads users to consume less of the ad content which may decrease 

its entertainment value. Prior research shows that longer ads are generally perceived as more 

entertaining than shorter ads (Goodrich, Schiller, and Galletta 2015; Newstead and Romaniuk 

2009). This is consistent with transportation theory, which argues that all types of content, 

especially multimedia formats like videos, have the potential to transport consumers, that is 

captivating them in their narrative (Green and Brock 2000), and bringing them into a state of 

“flow” (Csikszentmihalyi 1997; Green, Brock, and Kaufman 2004). This transportation 

generates enjoyment (Green, Brock, and Kaufman 2004; Chang 2009; Van Laer et al. 2014) 

and causes narrative ads to be highly persuasive and effective in elevating brand attitudes 

(Escalas 2004a; 2004b; 2006; Brechman and Purvis 2015). Disrupting this state, however, has 

been shown to induce negative feelings in the viewer (Green, Brock, and Kaufman 2004; Wang 

and Calder 2006; 2009).  

Prior literature usually regards ads as disruptors of a transportation experience that 

consumers derive from the content they are currently watching (Wang and Calder 2006; 2009), 

for example TV ads that interrupt a show. By contrast, this study focuses on pre-roll OVAs, i.e. 

ads that play before the requested content starts. Therefore, consumers have not been 
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transported by their requested content, yet, and, accordingly, the ad itself is not disrupting a 

state of transportation. Additionally, consumers may be more receptive to being transported by 

the ad than in a typical TV setting, which may further aggravate the negative feelings caused 

by skipping the ad.  

It might seem counterintuitive that a consumer may disrupt her own experience when this 

disruption would be associated with negative feelings. However, Nelson, Meyvis, and Gallak 

(2009) and Nelson and Mayvis (2008) show empirically that consumers in many cases fail to 

realize how their actions end up negatively affecting their hedonic experiences. Specifically, 

the authors demonstrate that consumers enjoy watching TV more when the content is 

interrupted by ads which, among other effects, is driven by consumers overestimating their 

negative perception of ads (Nelson, Meyvis, and Gallak 2009; Yang and Smith 2009).  

Hence, in the case of skippable ads, consumers may start to be transported into the 

narrative of the ad, but through an overestimation of the negative feelings associated with 

watching the ad, consumers skip the ad and, thereby, disrupt themselves in their ad viewing 

experience causing displeasure. This may also lead to higher perceived intrusiveness as shown 

by Edwards, Li, and Lee (2002), who find that more entertaining ads are perceived as less 

intrusive.  

When a user skips the ad, it has less potential to deliver its entertainment, emotions, 

creativity, and narration which all have been shown to reinforce the delivery of the intended 

advertising message and the persuasion of consumers (Edell and Burke 1987; Van Laer et al. 

2014; Yang and Smith 2009). Therefore, I expect that skippable ads are enjoyed less than non-

skippable ads, which adversely affects consumers’ perceived irritation and brand attitudes.  

Van Laer and colleagues (2014) find that ads with a strong non-commercial focus have a 

higher potential to transport viewers and elicit positive brand outcomes than highly 

commercially-oriented ads. This may also help explain why some studies find that consumers 
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perceive longer ads more positively than shorter ones (Goodrich, Schiller, and Galletta 2015; 

Newstead and Romaniuk 2009): Not only do longer ads have more time to tell a story that 

transports the viewer, but their advertising message is less obvious and takes up a smaller 

fraction of the ad, hiding the ad’s commercial focus and thus further elevating transportation of 

viewers. For skippable ads, this means that contrary to non-skippable ads, a strong narrative, 

non-commercial focus, especially in the initial, non-skippable five seconds of the ad is 

disadvantageous because it increases transportation, which in turn aggravates the negative 

feelings caused by disrupting this state through skipping. Therefore, I expect that skippable ads 

with a high commercial focus are perceived as less irritating and lead to better brand perceptions 

than skippable ads with low commercial focus, whereas for non-skippable ads, the effects are 

reversed.  

4.2 Intrusiveness and Control 

Advertising exposures—whether in the form of TV, pop-up banners, or video ads—keep 

users away from the content they desire which leads to feelings of intrusiveness (Campbell et 

al. 2017; Edwards, Li, and Lee 2002; McCoy et al. 2008). Intrusiveness relates to the degree to 

which a user perceives the ad as an obstruction to her intended content consumption (Ha 1996; 

Li, Edwards, and Lee 2002). Hence, skippable ads are commonly expected to decrease 

intrusiveness because by providing consumers the option to skip the ad, irrespective of whether 

they exercise this option, the perception of the ad as an impediment should decrease because 

consumers can easily remove it and continue to the requested content (Jeon et al. 2019; 

Pashkevich et al. 2012). Additionally, when consumers skip, the length of interruption is 

reduced, which also decreases the obstruction and perceived intrusiveness (Hegner, Kusse, and 

Pruyn 2016).  

A lower level of intrusiveness and the associated decrease in irritation have been shown 

to elevate brand attitudes and purchase intentions (Aaker and Bruzzone 1985; Goodrich, 
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Schiller, and Galletta 2015; MacKenzie and Lutz 1989). However, past research also shows 

that intrusive ads may increase brand attitudes and recall if they are able to communicate the 

advertising message (Bell and Buchner 2017; Cho, Lee, and Tharp 2001; Goldfarb and Tucker 

2011). Hence, the low intrusiveness of skippable ads may deteriorate brand outcomes when 

paired with a low commercial focus of the ad. Therefore, I expect skippable ads to improve 

consumers’ perceived intrusiveness and brand outcomes. However, brand outcomes will also 

depend on the commercial focus of the skippable ad with a low commercial focus leading to 

worse brand outcomes than a high commercial focus.  

The option to skip also generates a perception of control over and interactivity with the 

advertising experience (Jeon et al. 2019), which has been shown to improve the ad and brand 

perceptions (Acar and Puntoni 2016; Liu and Shrum 2009; McCoy et al. 2008; Stewart and 

Pavlou 2002). Therefore, I expect perceived control to decrease intrusiveness and irritation, 

improving consumers’ brand perceptions as well as exercising a direct positive effect on 

consumers’ brand perceptions. 

Figure 1: Conceptual Framework 

 

 
I summarize the proposed effects derived from literature in the conceptual framework 

depicted in Figure 1. The upper part represents the potential advantages of skippable ads that 
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reduce irritation and improve brand outcomes whereas the lower part shows potential 

disadvantages causing higher irritation and worse brand outcomes.  

4.3 Optimizing Skippable Ads 

Multiple strategies may exist to optimize the effectiveness of skippable ads. I focus on 

two that are highly specific to the ad format: taking advantage of the initial, non-skippable 

seconds of the ad and combining skippable with non-skippable ad formats. 

Leveraging the first five seconds. Given that consumers need to watch the initial five 

seconds of a skippable ad, the question of how to optimally design this section to optimize 

brand outcomes arises. Compared to non-skippable ads, the optimal design may differ 

significantly. My conversations with practitioners as well as observations of skippable OVA in 

the field suggest two contrasting strategies: Either, hiding the ad’s commercial focus revealing 

the brand and ad message only at the end of the ad and instead stressing its narrative aspects in 

order to keep consumers from skipping the ad, or highlighting the brand and product early in 

the ad to create brand awareness even among consumers that skip the ad.  

The previous discussion shows that a) transportation through a strong narrative, non-

commercial focus may be counterproductive for skippable ads because skipping disrupts the 

transportation experience and elicits irritation (Van Laer et al. 2014), and b) a low commercial 

focus paired with skippable ads’ low intrusiveness may negatively affect brand outcomes (Bell 

and Buchner 2017; Cho, Lee, and Tharp 2001; Goldfarb and Tucker 2011). Therefore, I expect 

that the strategy to use high brand visibility during the initial five seconds of the ad leads to 

better brand outcomes than the strategy of using low brand visibility.  

Complementing with non-skippable ads. Although all major publishers and advertising 

networks only offer to set up campaigns either with skippable or non-skippable ad formats, 

advertisers may profit from combining the two. Most advertisers try to show the ad to each 

consumer multiple times over the course of a campaign due to the positive effects of repeated 
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ad exposure (Campbell and Keller 2003). Forcing the exposure during the first ad encounter 

ensures that the advertiser can communicate the brand message and profit from transporting the 

consumer through its narration. Subsequent skippable ad showings will reduce possible adverse 

effects of repeated ad showings (Anand and Sternthal 1990; Campbell and Keller 2003) and, 

thus, mitigate the intrusiveness and irritation associated with non-skippable formats. 

Additionally, even if a consumer skips the subsequent ad showings, their initial five seconds 

may still function as a memory hook, triggering the consumer to recall the complete ad and thus 

reinforcing the message and brand. This effect has been shown in the context of zipping ads 

after an initial full exposure (Bellmann, Schweda, and Varan 2010; Gilmore and Secunda 1993). 

Therefore, I expect that combining skippable and non-skippable ad formats, specifically by 

forcing exposure during the first ad encounter and allowing consumers to skip subsequent ad 

encounters has the potential to combine the best of both worlds while mitigating their respective 

weaknesses.  

 Study overview 

In order to address my research questions, I designed three laboratory studies that 

replicate online video content consumption scenarios that are interrupted by video ads. Subjects 

are instructed to imagine a scenario in which they want to watch content videos on an online 

video platform. These content videos are preceded by pre-roll video ads. As soon as an ad ends, 

the content video starts automatically. The designs are reminiscent of market leader YouTube 

to ensure that the subjects are familiar with the situation. Across all studies, in the skippable ad 

condition, the skip button is initially deactivated and features a timer that counts down the five 

seconds that the subjects need to wait before she is allowed to skip the ad. In the non-skippable 

condition, a deactivated button that shows a countdown for the entire length of the ad is 

displayed in the same place. Subjects are always able to observe the duration of the ad by means 

of a progress bar. An example of this implementation is presented in Figure 2. The experiments 
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are followed by questionnaires that allow me to assess the between-subject differences in the 

perception of the ad and brand outcomes. I also measure whether and when subjects skipped 

the ad. A laboratory study is well-suited to pursue my research goal because it allows me to 

tightly control confounding factors and to administer the exhaustive questionnaire necessary to 

assess the various constructs of the underlying process, which would be difficult to implement 

in the field.  

Figure 2: Manipulation of Skippability 

Skippable ad 

 

Non-skippable ad 

 

  

Study 1 compares three different ad formats and their effects on subjects’ perceived 

irritation: a non-skippable 30-second ad, a skippable 30-second ad, and a non-skippable 6-

second ad. This design allows me to find out how skippability, (i.e. whether the ad is skippable 
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versus non-skippable), skipping, and ad length influence consumers’ ad perceptions. I also 

categorize and analyze subjects based on their viewing behavior, meaning whether they skipped 

(Skippers), watched the ad voluntarily (Voluntary Viewers), or were forced to watch the ad 

(Forced Viewers). Thus, I can compare forced to voluntary exposure and uncover possible self-

selection effects associated with skipping.  

In Study 2, I employ a 2x2 design comparing skippable and non-skippable ads that feature 

the brand and product either within the first five seconds (high brand visibility) or at the end of 

the ad (low brand visibility). In this way, I manipulate whether the ad is more commercially 

(high brand visibility) or narration (low brand visibility) focused and, thus, to which degree the 

ad is able to transport the viewer (Van Laer et al. 2014). I, thereby, uncover how ads’ 

commercial focus by means of brand visibility moderates the effectiveness of skippable versus 

non-skippable OVA. Also, while Study 1 focuses on irritation, Study 2 includes brand outcomes 

in the form of brand and product attitudes as well as brand recall and purchase intention. 

Additionally, I use the results to replicate my findings from Study 1. 

Table 1: Study Overview  

Study Focus Main DV(s) Focal IV(s) Outcome Variable(s) 
1 Uncovering the underlying 

process 
• Control 
• Intrusiveness 
• Entertainment 
• Ad Attitude 

• Ad Formats 
• Viewer Types 
• Skipping 

• Irritation 

2 • Replication of Study 1  
• Analysis of the 

moderating effect of 
brand visibility 

• Control 
• Intrusiveness 
• Entertainment 
• Ad Attitude 

• Skippability 
• Viewer Types 
• Skipping 
• Brand Visibility 

• Irritation 
• Brand Attitude 
• Product Attitude 
• Brand Recall 
• Purchase Intention 

3 Uncovering the effects of 
combining skippable and  
non-skippable ads 

• Intrusiveness 
• Irritation 
• Ad Attitude 

• Ad format 
combinations 

• Irritation 
• Brand Attitude 
• Purchase Intention 

     
 

In Study 3, I compare sequences combining skippable and non-skippable formats in 

several ad breaks and compare them to sequences which only feature non-skippable or 
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skippable formats. This allows me to uncover whether the two formats complement each other, 

improving advertising outcomes. In Table 1, I present an overview of the three studies. 

 Study 1: Uncovering the Underlying Process 

6.1 Design  

Subjects are asked to imagine they are planning a trip to Peru and are watching videos on 

an online platform to decide whether they rather take a hiking trail or a train to the Machu 

Picchu sights. The subjects see two content videos which each are around two minutes long and 

preceded by an ad for Nestlé’s ice tea brand Fuze Tea. Depending on the condition the ad is 

either 30 seconds long and can be skipped after five seconds (30Skip), 30 seconds long and 

cannot be skipped (30NoSkip), or six seconds long and cannot be skipped, called a bumper ad 

in the industry (Bumper). The two long versions of the ad are identical, whereas the bumper ad 

is the official bumper version of the creative and thus is not identical to the first five seconds of 

the 30-second ads in order to give consumers a realistic ad-viewing experience. Each subject 

sees the same ad and ad format twice (i.e. once before each content video), which has the 

advantage that each subject has the chance to evaluate the first five seconds of the ad and 

whether to skip or not twice. In addition, this more closely resembles a real ad viewing 

experience in which consumers receive the same ad multiple times over the course of a 

campaign.  

Subjects are allocated to the respective experimental conditions randomly. However, I 

inflate the likelihood of being in the skippable ad condition compared to the other two 

conditions (50% vs. 25%), as skipping rates are usually around 65% (Arantes, Figueiredo, and 

Almeida 2016; MAGNA 2017). This way, a greater number of subjects belong to the group of 

Voluntary Viewers, which otherwise would become too small to properly analyze statistically.  
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6.2 Data 

A total of 264 subjects finished the study of which I excluded 30 who did not meet the 

control questions which asked subjects whether they had the opportunity to skip the ad and 

whether they answered the survey diligently. This leaves me with a total of 234 respondents of 

which 50 were allocated to the Bumper, 123 to the 30Skip, and 61 to the 30NoSkip conditions. 

The mean age of respondents is 31.85 years with 65% being female, 33% male, and the 

remaining 2% indicating another or not disclosing their gender.  

6.3 Measures 

To measure the focal constructs, I resort to established scales from the academic literature. 

For intrusiveness, I use the well-established seven-item Likert scale by Li, Edwards, and Lee 

(2002). Irritation is measured by Wells, Leavitt, and McConville’s (1971) five-item Likert scale 

previously used in similar settings (Edwards, Li, and Lee 2002) and for perceived user control, 

I use Gao, Rau, and Salvendy’s (2010) three-item Likert scale, which the authors developed for 

interactive advertisements. I measure the ad’s entertainment value using Ducoffe’s (1995) 

three-item Likert scale. Following the recommendation in Bergkvist and Rossiter (2007), I use 

Haley and Baldinger’s (1991) single-item scale to measure ad attitude. All items were measured 

using five-point scales.  

The confirmatory factor analysis (CFA) of the measurement model for this study fits the 

data well (χ2 [195] = 389.249, CFI = 0.898, TLI = 0.879, RMSEA = .095, SRMR = .063). 

Convergent validity is indicated by the standardized factor loadings, which all exceed .60 and 

are significant at the .1% level. The average variance extracted (AVE) for each construct is 

greater than .50 and the composite reliability scores, as well as Cronbach’s alphas, are 

consistently larger than .80, indicating reliable and valid constructs.  
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6.4 Results 

65% of subjects in the 30Skip condition skipped the ad on both occasions while 35% 

watched the ad once. None of the respondents in the 30Skip condition watched the ad 

completely twice. During the first ad showing, 46% of subjects in the 30Skip condition skipped 

within five seconds of the skip button being activated and 66% skip within the first half of the 

ad. Hence, subjects’ skipping behavior closely resembles earlier findings from field data 

(Arantes, Figueiredo, and Almeida 2016; MAGNA 2017). 

The effect of skippability. I first compare the three conditions using a MANOVA for all 

five constructs, i.e. perceived control, intrusiveness, entertainment, ad attitude, and irritation, 

which indicates highly significant differences among ad formats (F(10, 454) = 4.689, p < .001). 

I subsequently use separate ANOVAs on each construct with Tukey’s post-hoc tests for 

homoscedastic and Games-Howell tests for heteroscedastic group variances.  

Subjects in the 30Skip condition perceive a significantly higher level of control (M = 2.6, 

SD = 1.1, p = .018) than subjects in the Bumper (M = 1.8, SD = .74, p < .001) and 30NoSkip 

(M = 1.8, SD = .91, p < .001) conditions, whereas the Bumper and 30NoSkip conditions do not 

differ significantly (p = .894). Despite differences in control and length, the three ad formats 

neither differ significantly in terms of intrusiveness (F(2, 231) = 2.23, p = .269) nor irritation 

(F(2, 231) = 1.21; p = .299). However, the ad format marginally influences subjects’ attitude 

towards the ad (F(2, 231) = 2.83, p = .061) with those in the 30NoSkip condition (M = 2.90, 

SD = 1.0) reporting a significantly higher attitude towards the ad than subjects in the 30Skip 

condition (M = 2.6, SD = .88, p=.048).  

To control for interdependence between the constructs and their joint effect on irritation, 

I construct a mediation model in line with the first part of the conceptual framework in Figure 

1, i.e. excluding brand outcomes for now. In addition to the effects depicted in Figure 1, I 

specify direct effects from control, entertainment, and skippability on irritation in order to 
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conservatively allowing for paths that may be unaccounted for by the current framework. For 

parsimony and interpretability, I exclude the bumper condition, allowing me to directly 

compare skippable to non-skippable formats. The resulting covariance-based structural 

equation model (SEM) is estimated with bootstrapped standard errors based on 10,000 

bootstraps (χ2 [3] = 6.281, CFI = 0.985, RMSEA = .077, SRMR = .038). I report standardized 

coefficients to allow for better comparability with the replication results in Study 2, which is 

based on 7-point Likert scales, whereas Study 1 uses 5-point Likert scales. 

The mediation model reveals the two suggested opposing forces in skippable ads that are 

equally strong: There is an indirect path through perceived control that decreases irritation (β 

= -.055, p = .044) as well as an indirect path through ad attitude that increases irritation (β = 

.053, p = .029), resulting in a total effect of skippability on irritation that is not significantly 

different from zero (β = .079, p = .294). The direct path from skippability on irritation is fully 

mediated through the indirect effects (β = .050, p = .78).  

On a more granular level, I find that the decrease in irritation is driven by the positive 

effect of skippability on perceived control (β = .321, p < .001), which in turn decreases irritation 

(β = -.171, p = .02). Contrary to my expectations, neither skippability nor control significantly 

reduce intrusiveness. Together with the prior ANOVA results, this suggests that users perceive 

all kinds of ad breaks as intrusive, irrespective of their length or their skippability. The positive 

indirect path is caused by the highly significant negative effect of skippability on subjects’ 

attitude towards the ad (β = -.159, p < .001), which, in turn, is associated with a significant 

decrease in irritation (β = -.335, p < .001), thus causing irritation to increase as a result of the 

lower ad attitude associated with skippable ads. In addition and in line with Edwards, Li, and 

Lee (2002), I find that entertainment decreases intrusiveness (β = -.288, p < .001).  

The effect of skipping. So far, I have restricted the analysis to comparing ad formats, 

irrespective of whether a subject actually skipped or not. In order to analyze how actual skipping 
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influences subjects’ ad perceptions, I use the two conditions with 30-second ads and 

differentiate subjects based on whether they skipped the ad (Skippers), watched it although they 

had the opportunity to skip (Voluntary Viewers), or were forced to watch the ad (Forced 

Viewers). Subjects can skip the ad any time after the initial five seconds, even right before the 

ad would have ended anyway. Therefore, I classify their skipping behavior not based on 

whether they clicked the skip button or not but rather by how much of the ad they have watched. 

I define skipping as watching less than 50% of the ad.  

A total of 80 subjects skipped both ads, classifying them as Skippers, while 44 Voluntary 

Viewers watched the ad at least once although they had the opportunity to skip. The 61 subjects 

in condition 30NoSkip who were not able to skip the ad represent Forced Viewers. Their means 

and confidence intervals are presented alongside the three ad format conditions for each of the 

constructs in Figure 3. 

The MANOVA of the five constructs on viewer types is significant (F(10, 354) = 3.904, 

p < .001) and the subsequent ANOVAs with Tukey post-hoc tests reveal significant differences 

for perceived control (F(2, 181) = 11.755, p < .001) and ad attitude (F(2, 181) = 5.110, p = 

.007). Quite naturally, Forced Viewers (M = 1.8, SD = .910) perceive significantly lower levels 

of control than Skippers (M = 2.7, SD = 1.10, p < .001) and Voluntary Viewers (M = 2.4, SD 

= 1.0, p = .024), while the latter two do not differ significantly. For ad attitude, I find that 

Voluntary Viewers (M = 2.8, SD = .87) like the ad marginally more than Skippers (M = 2.5, 

SD = .86, p = .082). However, the same holds for Forced Viewers (M = 2.9, SD = 1.00, p = 

.008) while attitude towards the ad of Voluntary Viewers and Forced Viewers is virtually 

identical (p = .857). These results are intriguing because one might expect that users skip 

because they do not like the ad or keep watching the ad because they do like it. In this case, one 

would expect to see a significant difference in attitude towards the ad between Skippers and 

Voluntary Viewers with Forced Viewers falling somewhere in between the two because Forced 
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Viewers are made up of both types of viewers, Skippers and Voluntary Viewers, who, however, 

are simply not allowed to skip. While I indeed find that Voluntary Viewers like the ad 

significantly better than Skippers, Forced Viewers do not fall in between the two but show a 

significantly higher attitude towards the ad than Skippers, too, and the same ad attitude as 

Voluntary Viewers. Hence, the results imply that the very act of skipping an ad may decrease 

the attitude towards the ad.  

Figure 3: Differences in Ad Perception among Ad Formats and Viewer Types 

 

Means and 10% confidence intervals of the focal constructs for conditions and viewer types. 

These findings already strongly suggest that skipping itself indeed changes how subjects 

perceive the ad and that differences in ad perceptions between Voluntary Viewers and Skippers 

are not purely driven by self-selection effects. 

To further substantiate this finding, I explicitly test for the effect of skipping on ad 

perceptions. To do so, I need to address the implied simultaneity bias: Subjects may skip the ad 

because they do not like it but, as argued above, by skipping their ad perception may deteriorate. 



154 
 

Hence, a reinforcing feedback loop would arise in which a worse ad attitude leads to skipping, 

which, in turn, decreases ad attitude.  

I create two groups, Skippers and Viewers with the latter consisting of both, Voluntary 

Viewers and Forced Viewers. I then estimate the effect of skipping (i.e. being a Skipper) on 

subjects’ ad perceptions using an instrumental variable (IV) approach and 2SLS estimation. As 

an instrument, I use the skippability condition itself, i.e. whether the subject is in the skippable 

or the non-skippable condition because it is strictly exogenous and has a strong effect on 

whether a subject skips or not. One might argue that the condition also affects attitude towards 

the ad by granting the user control so that she can enjoy the ad more and that her empowerment 

may exercise a halo effect on her attitude towards the ad. I control for this by adding perceived 

control as an independent variable. Accordingly,  

(1) 𝑆𝑘𝚤𝑝𝑝𝚤𝑛𝑔< =	𝛾1 +	𝛾@ ∗ 	𝑆𝑘𝑖𝑝𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝜈@ 

(2) 𝑦 = 	𝛽1 +	𝛽@ ∗ 𝑆𝑘𝚤𝑝𝑝𝚤𝑛𝑔< +	𝛽J ∗ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 + 𝜈J. 

For ad attitude, the F-test for instrument strength confirms the validity of the IV (pF < 

0.001) and the Durbin-Wu-Hausman (DWH) test is insignificant (pDWH=.562) indicating that 

simultaneity bias does not occur and that the naïve OLS estimate is consistent. According to 

the estimate, skipping an ad indeed exercises a significant negative effect on ad attitude (βOLS 

= -.486, p<.001). The same pattern emerges for the effect of skipping on entertainment (βOLS = 

-.352, p=.016; pF < 0.001, pDWH = .665) whereas irritation increases through skipping (βOLS = 

.273, p=.067; pF < 0.001, pDWH = .242). In contrast, skipping does not seem to affect 

intrusiveness or vice versa (βOLS = .02, p=.902; pF < 0.001, pDWH = .219).  

6.5 Discussion 

Study 1 reveals several interesting findings. First, despite their varying lengths and levels 

of control, the advertising formats do not differ significantly in terms of their intrusiveness. 

While granting users the ability to skip the ad increases their perceived control, this 
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empowerment does not translate into a reduction in intrusiveness. Instead, any kind of ad 

interruption seems to elicit feelings of intrusion. The subsequent SEM indeed shows that 

skippability leads to the emergence of the expected two paths that determine the overall 

perceived irritation of the ad with opposing signs that cancel each other out on aggregate. The 

increased control of having the option to skip leads to a reduction in irritation, while the 

increased skipping that comes along with the presence of a skip button leads to a reduced 

attitude towards the ad, which in turn increases irritation.  

The IV approach suggests that it is indeed the act of skipping that leads to the adverse 

effects on entertainment, attitude towards the ad, and irritation and not the other way around. 

This is also supported by the comparison of viewer types: Voluntary Viewers’ and Forced 

Viewers’ attitudes towards the ad are not significantly different from each other but both 

perceive a significantly higher ad attitude than Skippers. Hence, the results suggest that, in line 

with expectations, skipping leads to a disruption of the ad viewing and transportation 

experience, deteriorating subjects’ enjoyment of the ad and increasing irritation.  

 Study 2: The Moderating Effect of Brand Visibility 

7.1 Design  

Subjects are told they are part of an experiment that evaluates how consumers perceive 

educational content on online video platforms. They are asked to watch two 90 seconds long 

educational videos. Both content videos are preceded by 17 seconds long pre-roll ads for 

mascara by L’Oréal Paris. The study employs a 2x2 design in that a) subjects can either skip 

the ad or not (skippability) and b) the ad features the brand and the product within the first five 

seconds of the ad or not (brand visibility). I use the same ad creative in all conditions but 

manipulate it to either highlight the brand as well as product or not. Great care was taken to 

achieve a seamless manipulation as is evident from the comparison of the two creatives 
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presented in Figure A1 in the appendix. The experiment was followed by a questionnaire on 

the ad perception and brand outcome constructs and a debriefing of subjects. 

7.2 Data 

I acquired a total of 321 subjects for Study 2 of which I excluded 19 due to incorrect 

responses to control questions. 35% of respondents were men, 63% women, and 2% with a 

different or undisclosed gender. Age was inquired in terms of age brackets. The largest age 

brackets are 18-29 years with 77% of respondents followed by the 30-39 years with 11%.   

7.3 Measures 

I use the same measures as in Study 1. Additionally, I measured two more control 

variables in the form of subjects’ general attitude towards online advertising based on Cho’s 

(2003) seven-item Likert scale as well as subjects’ product category interest based on a five-

item scale that combines items from Smith and colleagues (2007) as well as Teixeira and 

colleagues (2014). Furthermore, I measure four brand outcome variables. Brand and product 

attitudes are based on McKenzie and Lutz’s (1989) well-established three-item semantic 

differential scale. Additionally, I assess purchase intention using a single-item scale (Morrison 

1979; Goodrich, Schiller, and Galletta 2015) and brand recall through a dichotomous measure 

(Hartnett, Romaniuk, and Kennedy 2016). Contrary, to Study 1, all items were measured on 

seven-point scales to allow for more nuanced responses. 

My measurement model fits the data well (χ2 [414] = 794.106, CFI = 0.925, TLI = 0.915, 

RMSEA = .055, SRMR = .061). Its standardized factor loadings exceed .50 and are significant 

at the .1% level with the exception of one item from the general attitude towards online 

advertising construct which has a factor loading of .367. The AVE exceeds .50 for all 

constructs, again except for general attitude towards online advertising for which the AVE is 

0.378. The composite reliability scores, as well as Cronbach’s alphas, are consistently larger 

than .80, except for control, which achieves a slightly lower composite reliability of .724 and 
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Cronbach’s alpha of .673. Therefore, I scrutinize the control construct with Omega- (McDonald 

1999) and Greatest Lower Bound- (Woodhouse and Jackson 1977) tests that mitigate some of 

the well-known shortcomings of Cronbach’s alpha (Sijtsman 2009; Trizano-Hermosilla and 

Alvarado 2016). The results, ω = .73 and GLB = .76, both exceed the common threshold of .70, 

signifying that the items reliably measure the construct. As the general attitude towards online 

ads construct performs well in terms of Cronbach’s alpha and because I only use it as a control 

variable in some of my estimations, I am not concerned with the observed deviations from 

optimal factor loading and AVE scores. 

7.4 Results 

Of those subjects that had the option to skip the ad, 72% skipped both ad exposures, while 

the remaining 28% watched the ad at least once, and a total of six subjects watched the ad twice. 

Hence, the subjects skipping behavior closely resembles that of Study 1 as well as skipping 

behavior observed in the field (Arantes, Figueiredo, and Almeida 2016; MAGNA 2017). 

Replication of Study 1. As a replication of the findings in Study 1 in construct the same 

mediation model. I report and present the results using standardized coefficients to allow for a 

better comparison between the two studies because Study 1 employed five-point whereas Study 

2 used seven-point Likert scales. Figure 4 presents an overview of the significant effects and 

indirect effects from both studies with results from Study 1 (Study 2) printed in regular (italic) 

font. The complete results table is listed in Table A1 in the appendix. 

Similar to Study 1, indirect paths emerge that significantly increase irritation through the 

perception of the ad creative. On the one hand, skippability affects entertainment (β = -.159, p 

= .005), which influences ad attitude (β = .623, p < .001), and in turn affects irritation (β = -

.310, p < .001). On the other hand, entertainment decreases intrusiveness (β = -.321, p < .001), 

which, in turn, is positively related to irritation (β = .447, p < .001). Both these indirect paths 

lead to a significant increase in irritation (β = .031, p = .017 and β = .023, p = .026, respectively). 
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The indirect path to irritation through control from Study 1 also appears in Study 2, 

however with reversed signs. This means, although skippability significantly increases 

perceived control (β = .273, p < .001), higher control is associated with an increase in irritation 

(β = .133, p = .015) resulting in a positive indirect path (β = .036, p=.028). We further 

investigate this finding in a later part of the analysis. Additionally, skippability has a direct 

negative effect on irritation (β = -.084, p=.091) that balances out the positive indirect effects 

leading to an insignificant total effect of skippability on irritation (β = -.032, p=.586). This, 

again, demonstrates that skippable ads are not necessarily perceived as less irritating than 

regular non-skippable ads.  

Figure 4: The Opposing Effects of Skippability on Consumers’ Ad Perception  

  

Standardized coefficients of the mediation model. Results of Study 1 in regular font, results of Study 2 in italic. 
* p < .10, ** p < .05, *** p < .001 

To substantiate my earlier findings that the act of skipping causes the deterioration of 

subjects’ ad perception, I replicate the IV approach from Study 1. In addition to subjects’ 
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perceived control, I include their attitude towards online ads and their product category interest 

as control variables. Again, I use the condition as the IV, which according to the F-test is a 

strong instrument in all of the regressions (pF < .001). Just as before, I find a significant negative 

effect of skipping on ad attitude (βOLS = -.278, p = .082). The DWH-test on the 2SLS versus 

OLS model is insignificant (pDWH = .426) suggesting that there is no simultaneity causing ad 

attitude to influence skipping. In terms of entertainment, the DWH-test is significant (pDWH = 

.006) implying that entertainment has an influence on skipping. The endogeneity corrected 

coefficient with robust standard error reveals that skipping significantly decreases 

entertainment (β2SLS = -.638, p > .001). I do not find significant effects for skipping on 

intrusiveness (β2SLS = .091, p = .672) and irritation (β2SLS = -.282, p = .202). An overview of 

these results alongside those of Study 1 is presented in Table 2 with values in regular font 

representing results form Study 1 and values in italic signifying results from Study 2. Although 

some small differences exist in relation to Study 1, Study 2 replicates and substantiates the prior 

findings.  

Table 2: The Effects of Skipping on Ad Perception  

Dependent Variables Skipping Coefficient (t-value) Instrument Strength DWH-Test 
Entertainment βOLS = -.352**  (-2.421) 154.523     (p < .001)   .188 (p = .665) 

β2SLS = -.638*** (-3.689) 366.319     (p < .001) 7.58 (p = .006) 

Ad Attitude βOLS = -.478***  (-3.358) 154.523     (p < .001)   .573   (p = .45  ) 
βOLS = -.278* (-1.747) 366.319     (p < .001)   .635   (p = .426) 

Intrusiveness βOLS =   .021  (.123) 154.523     (p < .001) 1.519   (p = .219) 
β2SLS =  .091 (.423) 366.319     (p < .001) 5.435   (p = .02  ) 

Irritation βOLS =   .273* (1.845) 154.523     (p < .001) 1.38     (p = .242) 
β2SLS = -.282 (-1.28) 366.319     (p < .001) 2.834   (p = .093) 

 

Results of Study 1 / Study 2 in regular / italic font.  
Instrumental variable (IV) strength based on F-test. DWH: Durbin-Wu-Hausman. 
* p < .10, ** p < .05, *** p < .001 

The moderating effect of brand visibility. Next, I turn my attention to the second 

dimension of this study, i.e. brand visibility during the first five seconds of the ad. Beyond 

irritation, I also analyze the impact on product and brand attitudes, purchase intentions, and 

brand recall.  
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Using a logit regression, I find that neither consumers’ product category interest nor 

gender—or in other words subjects’ target group affiliation—significantly decreases skipping; 

irrespective of the level of brand visibility. Brand visbility, in turn, neither significantly 

moderates nor directly affects skipping. Hence, a large portion of a brand’s target audience ends 

up skipping ads, which means that it is crucial that advertisers make sure they effectively deliver 

their message even to those consumers that skip.  

The MANOVA on the ad perception and brand outcome constructs finds significant 

effects for skippability (F(8, 291) = 10.607, p < .001), brand visibility (F(8, 291) = 5.517, p < 

.001), as well as their interaction (F(8, 291) = 2.069, p = .039). Hence, given that the covariates 

are binomial, I run individual OLS interaction models for each construct. Interaction plots for 

skippability and brand visibility are presented in Figure 5. 

Brand visibility and its interaction with skippability have no significant effect on subjects’ 

perceived control, entertainment, and ad attitude, but it significantly increases users’ perceived 

intrusiveness (β = .464, p = .042). This effect is reversed, however, for the interaction effect (β 

= -.702 p = .033). Hence, in non-skippable conditions, ads with low brand visibility are 

perceived as less intrusive whereas in skippable conditions, high brand visibility is perceived 

as less intrusive. The same holds true for irritation in that brand visibility by itself increases 

irritation (β = .576, p = .014) but in the context of skippability reduces irritation (β = -.817, p = 

.015).  

Brand visibility also influences brand outcomes. Skippability has a negative effect on 

product (β = -.413, p = .042) and brand attitude (β = -.504, p = .018), while brand visibility only 

significantly affects product attitude (β = -.534, p = .008). Again, this effect is reversed through 

the interaction effect between skippability and brand visibility, meaning that product attitude 

(β = .747, p = .014) and brand attitude (β = .722, p = .013) are both elevated by an early brand 

visibility in skippable ads, whereas brand visibility in non-skippable ads reduces subjects’ 
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product and brand attitudes. In terms of purchase intention, I find a significant negative average 

effect of skippability (β = -.378, p = .08), but no effect of brand visibility (β = .077, p = .718) 

or its interaction with skippability (β = .151, p = .622). The incremental effects for the 

probability of recalling the advertised brand show that low brand visibility significantly 

increases brand recall (β = .158, p = .031) while it decreases drastically through skippability (β 

= -.461, p < .001). This strong negative effect, however, is mitigated when brand visibility in 

skippable ads is high (β = .282, p < .001).  

Figure 5: Interaction Effects of Skippability and Brand Visibility 

 

Figures show means and 10% confidence intervals.  

In order to assess the overall effects of skippability and brand visibility on consumers’ ad 

and ultimately product and brand perception, I implement the full mediation model as depicted 

in the conceptual framework. I include brand and product attitude as outcome variables and, 

given their interdependence, allow for correlation between their residuals. Brand visibility is 
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introduced as a moderator. In order to keep the model parsimonious and avoid multicollinearity 

issues through a large number of interaction effects, I estimate two models: one for the two 

conditions with low brand visibility (χ2 [5] =   24.412, CFI = 0.957, RMSEA = .159, SRMR = 

.057) and one for the two conditions with high brand visibility (χ2 [5] =   35.373, CFI = 0.94, 

RMSEA = .202, SRMR = .059) using 10,000 bootstraps for each. I present the results in Table 

3. The constructs in italics are the dependent variables of the model’s respective part while 

constructs in regular font are the independent variables. Moving from the bottom of the table 

to the top represents a progression from left to right in terms of the conceptual model. 

Accordingly, the effects of skippability on entertainment and control are found in the lower part 

of the table, while the effects on the outcome variables are at the top of the table. Significant 

coefficients are highlighted in bold.  

The differences between the two models show that brand visibility significantly 

moderates the effectiveness of skippable ads in comparison to non-skippable ads. Specifically, 

in the low brand visibility model the total effects of skippability on brand and product attitudes 

are significant and negative (βPA = -.413, p = .031; βBA = -.504, p = .011), whereas in the high 

brand visibility model, the total effects do not differ significantly between skippable and non-

skippable ads (βPA = .309, p = .144; βBA = .243, p = .281). Hence, when brand visibility is low, 

skippable ads perform significantly worse than non-skippable ads, while high brand visibility 

negates this difference. In the low brand visibility setting, the negative total effect is driven by 

an indirect negative path from skippability to product and brand attitude through entertainment 

and ad attitude (βPA = -.113, p = .034; βBA = -.125, p = .016). In contrast in the high brand 

visibility model, I find a positive indirect path through irritation βPA = .134, p = .058; βBA = 

.157, p = .048).  
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Table 3: Effects of Skippability and Brand Visibility on Ad and Brand Perceptions 

 

LBV: χ2 [5] =   24.412, CFI = 0.957, RMSEA = .159, SRMR = .057 
HBV: χ2 [5] =   35.373, CFI = 0.94, RMSEA = .202, SRMR = .059 
Coefficients and z-values (in parentheses) for low / high brand and product visibility (LBV / HBV) 
* p < .10, ** p < .05, *** p < .001 à hier noch die indirekt effects für irrit rein 

Additionally, brand visibility also moderates perceived entertainment: While perceived 

entertainment is significantly lower in skippable than non-skippable ads (β = -.518, p = .006) 

when brand visibility is low, there is no such difference when brand visibility is high (β = -.234, 
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p = .221). Thus, in line with expectations, brand visibility mitigates the negative effects of 

skipping on subjects’ ad enjoyment. In terms of intrusiveness and irritation, the model reveals 

a significant effect of skippability when brand visibility is high (β = -.437, p = .035 and β = -

.396, p = .041, respectively), whereas under low brand visibility it does not alleviate 

intrusiveness nor irritation (β = .189, p = .417 and β = -.059, p = .773, respectively). I also find 

the positive effect of control on irritation from earlier and in addition a negative effect on 

product and brand attitude. However, these effects are moderated by brand visibility, thus, only 

occurring under low brand visibility.  

7.5 Discussion 

The results from Study 2 support those from Study 1, substantiating the finding of two 

opposing forces that influence consumers’ perception of skippable ads—on the one hand 

through a reduction of intrusiveness and increase in control, and on the other hand through the 

worse perception of the ad content. This study also further corroborates the finding that the act 

of skipping indeed leads to an adverse effect on ad attitude and entertainment.  

This effect, however, is moderated by brand visibility during the initial, non-skippable 

part of a skippable ad. I discover that high brand visibility is a crucial factor influencing ad 

perception as well as brand attitudes and recall. The results suggest that in non-skippable ads, 

advertisers should use low brand visibility to reduce the commercial focus of the ad and, thus, 

transport and persuade the consumer more effectively (Escalas 2004a, 2004b; Van Laer et al. 

2014), alleviating intrusiveness and irritation while improving brand attitudes. In contrast, in 

skippable ads, low brand visibility has adverse effects on ad and brand perceptions as it 

eliminates the negative effect of skippability on intrusiveness and irritation, decreases perceived 

entertainment, and causes control to adversely affect irritation and product and brand attitudes.  

The results on entertainment, intrusiveness, and irritation are in line with expectations 

based on the higher commercial focus of a high brand visibility ad, the associated weaker 



165 
 

transportation (Van Laer et al. 2014) and, consequently, decreased disruption due to skipping 

(Wang and Calder 2006). The adverse effects of higher perceived control are surprising but 

may be explained with the high cognitive load associated with exercising control (Ariely 2000; 

Brown and Krishna 2004). It increases with information and preference uncertainty as well as 

goal conflict which both are pronounced in skippable ads with low brand visibility as subjects 

cannot judge the relevance and purpose of the ad and are conflicted whether to watch the ad or 

not (Bettman et al. 1993; Broniarczyk and Griffin 2014). This may be amplified by the time 

stress induced by the short duration of the ad being perceived as a countdown that forces a 

decision (Etkin, Evangelidis, and Aaker 2015). 

Overall, skippable ads can be as effective as non-skippable ads in terms of product and 

brand attitudes when brand visibility is high but perform significantly worse in regard to 

purchase intentions and brand recall even with high brand visibility. When skippable ads feature 

low brand visibility, they lead to significantly worse brand outcomes compared to non-

skippable ads, especially in terms of brand attitudes, product attitudes, and brand recall. 

Therefore, managers should carefully weigh the intended campaign goals when choosing the 

ad format. For example, skippable ads may be better suited for performance, non-skippable ads 

for branding goals. In any case, however, they should refrain from employing a strong narrative 

focus at the cost of conveying the brand during the non-skippable fraction of a skippable ad.  

 Study 3: Complementary Effects of Combining Skippable and Non-Skippable Ads 

8.1 Design  

Subjects are asked to watch a series of three approximately 90 seconds long educational 

content videos. Each of the videos is preceded by 15 seconds long pre-roll ads for Cadbury 

chocolate. The content of the ads is identical but whether the user is able to skip the ad or not 

depends on the experimental condition. Subjects were either able to skip all three ad showings 

(SkipAll), skip none (SkipNone), skip the first two but not the last (SkipFirst), or skip the last 
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two but not the first (SkipLast). I use three ad showings in order to again give each subject the 

possibility to judge whether to skip the ad or not at least twice.  

8.2 Data 

A total of 198 subjects completed the questionnaire. After excluding subjects that did not 

answer the control questions correctly, a total of 159 subjects remained with 39 subjects in the 

SkipAll, 47 in the SkipNone, 36 in the SkipFirst, and 31 in the SkipLast condition. The sample 

has an average age of 30.51 years, with 57% female, 26% male, and 17% not indicating a 

gender.  

8.3 Measures 

Study 3 uses the same constructs as before with all items being measured on seven-point 

scales. The CFA fits the data well (χ2 [242] = 378.071, CFI = 0.898, TLI = 0.879, RMSEA = 

.095, SRMR = .063). The standardized factor loadings exceed .50 and are significant at the .1% 

level and the constructs’ AVE exceeds .50. The composite reliability scores, as well as 

Cronbach’s alphas, are consistently larger than .80. 

8.4 Results 

In the SkipAll condition 33% of subjects skipped all three ads, 46% watched the ad once, 

8% twice, and 13% watched all three ads. In the SkipFirst (SkipLast) condition, 57% (60%) 

skipped the ad on both occasions, 34% (20%) skipped it once, and 9% (20%) watched all ad 

exposures.  

Using separate ANOVAs along with the appropriate post-hoc tests, I compare the four 

conditions in terms of how users perceive the ad. Means and confidence intervals for each 

construct and condition are presented in Figure 6.  

In terms of intrusiveness (F(3, 148) = 2.23; p = .087) there is a significant difference 

between the SkipAll (M = 5.6, SD = 1.2) and SkipLast conditions (M = 4.8, SD = 1.2, p = .036). 

The same pattern emerges for irritation (F(3, 148) = 3.46; p = .018) with subjects in the SkipAll 
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condition (M = 5.4, SD = .88) reporting a significantly higher level of irritation than those in 

the SkipLast condition (M = 4.6, SD = .81, p < .001).  

Figure 6: Consumers’ Ad and Brand Perceptions by Ad Format 

 

Figures show means and 10% confidence intervals. 

Additionally, brand attitude differs significantly between these two conditions (F(3, 148) 

= 5.41; p = .028), being significantly higher in the SkipLast condition (M = 4.2, SD = 1.2, p = 

.018) than the SkipAll condition (M = 3.3, SD = 1.3). All of these results are robust with regard 

to the inclusion of subjects’ general attitude towards online advertising as control. Hence, in 

line with my expectations, the results suggest that a full ad exposure prior to skipping improves 

ad and brand perceptions.  

To further substantiate that indeed the first exposure rather than any exposure makes a 

difference, I identify all subjects that have watched the ad during the first exposure, voluntarily 

as well as non-voluntarily. I compare them (N=66) to all other subjects that have watched the 

ad (N=27), but not during the first exposure. Hence, I exclude those who skipped all ad 
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exposures and additionally exclude subjects in the SkipNone condition as their lack of control 

may confound the results. I again take an IV 2SLS approach in order to test and account for 

possible simultaneity bias. As instrument, I use a dummy for whether the first ad exposure was 

forced or voluntary which proves to be a strong instrument (pF < .001).  

I find that an initial full ad exposure indeed significantly reduces subjects’ perceived 

irritation (β2SLS = -1.329, p = .007; pDWH = .021) as well as increases brand attitudes (β2SLS = 

1.333, p = .042; pDWH = .084) compared to later ad exposures. 

8.5 Discussion 

In accordance with Studies 1 and 2, Study 3 shows again that non-skippable ads are 

perceived just as intrusive and irritating as skippable ads, even with three consecutive exposures 

to the same ad. Furthermore, the study shows that forced exposure may even help alleviate 

feelings of intrusion and irritation, and improve brand attitudes. Forcing at least one full 

exposure, especially during the first ad encounter, not only affects brand outcomes positively 

but even consumers’ ad experience.  

An initial full exposure allows consumers to be transported by the ad’s narration without 

a disruption (Wang and Calder 2009). In subsequent viewings, the potential for transportation 

and the associated disruption through skipping then may be reduced because the consumer 

already knows the complete story, especially when the ads are repeated in quick succession as 

in this experiment. Moreover, the first five seconds of the subsequent skippable ad encounters 

may act as a memory hook, reinforcing the brand image and the narrative experience even when 

the ad is skipped, which is in line with findings from previous studies on zipped ads that follow 

regular ad exposures (Bellmann, Schweda, and Varan 2010; Gilmore and Secunda 1993). 

 General Discussion and Managerial Implication 

My studies paint a detailed picture of the surprisingly complex processes that are 

underlying consumers’ perception of skippable ads. I find two fundamental and opposing 
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effects that explain why studies to date that have empirically analyzed the difference between 

skippable and non-skippable ads have found no significant differences in their performance 

(e.g. Bellmann, Schweda, and Varan 2010; Hegner et al. 2016; Pashkevich et al. 2012): 

Skippable ads tend to decrease irritation and improve brand outcomes through lower perceived 

intrusiveness and higher perceived control but at the same time increase irritation and worsen 

brand outcomes due to a lower enjoyment of the ad creative caused by skipping. As I show, 

however, this is strongly influenced by the brands’ visibility in the ad. In case of low brand 

visibility during the initial seconds of the ad, skippable ads perform significantly worse than 

non-skippable ads whereas a saliently communicated brand can even counteract the usually 

lower enjoyment of skippable ads. Consequently, practitioners should refrain from the strategy 

of hiding the commercial focus of the ad in order to keep consumers from skipping. Instead, 

they should use a strong brand focus in skippable ads whereas non-skippable ads profit from a 

low brand focus in favor of a strong, transporting narration. Hence, marketers may also employ 

the two formats for different strategic goals: non-skippable ads in order to create and reinforce 

brand image and recall, and skippable ads to drive conversions.  

Additionally, the findings reveal that brands, publishers, and advertising networks should 

not consider skippable and non-skippable as substitutes. Instead, my results show that they can 

be used as complements that compensate for each other’s weaknesses, especially, when 

consumers’ first ad exposure is non-skippable while subsequent exposures are skippable. In this 

way, brands can leverage the power of transportation through narration (Escalas 2004a, 2004b; 

Van Laer et al. 2014) while avoiding excessively irritating consumers, for example through 

high levels of ad repetition (Anand and Sternthal 1990; Campbell and Keller 2003). 

Additionally, this combination of ad formats may also lower advertising expenditures because 

publishers and advertising networks usually charge less or even nothing at all for skipped ad 

exposures (Pashkevich et al. 2012).  
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 Limitations and Future Research 

The laboratory studies allowed me to uncover the process underlying the perception of 

skippable ads in detail and subjects’ skipping behavior closely resembled that found in the field. 

Nonetheless, a field study is a desirable avenue for future research in order to add external 

validity to the findings. After all, consumers encounter a multitude of ads in their daily (online) 

lives and many campaigns use substantially higher ad repetitions than my experiments. 

Additionally, the experiments were conducted over a time span of roughly ten minutes whereas 

actual campaigns usually cover several weeks. Therefore, a field study could add further depth 

by analyzing the effectiveness of combining skippable and non-skippable ad formats over 

longer periods of time and with varying numbers of ad repetitions per viewer. In longer 

campaigns it may be necessary, for example, to force multiple ad exposures instead of just the 

first in order to counteract wear out effects (Campbell and Keller 2003).   

Additionally, I have excluded costs from my analysis. In practice, however, advertisers 

usually pay less or nothing at all for ad exposures that have been skipped by a user (Pashkevich 

et al. 2012). Hence, from an ROI perspective, the lower costs of skippable ads may make them 

more attractive to advertisers even if they are less effective. Hence, future research should take 

into account the cost side of the two ad formats in order to find out how they can be combined 

not only for maximum effectiveness but also for efficiency.  

Finally, I use theoretical concepts from literature such as transportation and cognitive load 

that are well-suited to explain the findings. However, given the focus of this work, I have 

refrained from rigorously scrutinizing the extent to which they apply and which boundary 

conditions exist, and, therefore, encourage future research to specifically address the role of 

transportation and cognitive load in the context of skippable ads and advertising avoidance. 
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APPENDIX ESSAY III 

Figure A1: Manipulation of Brand Visibility in the Creative  

High brand visibility condition 

   

   

   

Low brand visibility condition 

   

   

   
Note: The highlighted frame depicts the five-second mark from which on subjects were able to skip the ad. 
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Table A1: Overview of Full SEM Results from Study 1 and 2   

 
Standardized Coefficients of the mediation model with z-values in parentheses.  
Results of Study 1 in regular font, results of Study 2 in italic. 
* p < .10, ** p < .05, *** p < .001 
 
 
 

 
 


