
Abstraction-Based Model Checking

of Linear Temporal Properties

Milán Mondok, András Vörös

Budapest University of Technology and Economics

Department of Measurement and Information Systems

Email: mondokm@edu.bme.hu, vori@mit.bme.hu

Abstract—Even though the expressiveness of linear temporal
logic (LTL) supports engineering application, model checking
of such properties is a computationally complex task and state
space explosion often hinders successful verification. LTL model
checking consists of constructing automata from the property
and the system, generating the synchronous product of the two
automata and checking its language emptiness. We propose a
novel LTL model checking algorithm that uses abstraction to
tackle the challenge of state space explosion. This algorithm
combines the advantages of two commonly used model checking
approaches, counterexample-guided abstraction refinement and
automata theoretic LTL model checking. The main challenge in
combining these is the refinement of ”lasso”-shaped counterex-
amples, for which task we propose a novel refinement strategy
based on interpolation.

I. INTRODUCTION

Linear temporal logic (LTL) specifications are particularly

expressive and thus easy to use for engineers, but LTL model

checking is a computationally expensive task. An efficient and

commonly used linear temporal logic verification algorithm is

based on automata theory. It consists of constructing automata

from the property and the system, generating the synchronous

product of the two automata and checking its language empti-

ness. This reduces the LTL model checking task to product

calculation and language emptiness checking, which can be

efficiently computed on Büchi automata, but the problem of

state space explosion still hinders verification.

As the number of state variables in a system increases,

the system’s state space grows at least exponentially, which

makes the exploration resource-intensive. Several approaches

were developed to tackle the challenge of state space explo-

sion. Counterexample-guided abstraction refinement checks a

simplified model instead of the original problem, iteratively

adding more detail until the verification task can be decided.

Abstraction-based solutions proved efficient in reachability

analysis, but have not been elaborated in the domain of LTL

model checking yet.

We propose a novel LTL model checking algorithm that

performs automata theoretic model checking on an iteratively

refined abstract model. The abstraction is refined using a novel

algorithm based on interpolation.

Our approach is similar to the one described by Zhao Duan

et al. in [4]. As an optimization, they limit the scope of the ver-

ification to terminable programs and define an alternate version

of LTL that is interpreted over finite paths. These alternate LTL

formulas can be expressed using deterministic finite automata,

which makes their verification computationally less demanding

than regular LTL model checking.

II. BACKGROUND

We use the following notation [6] from first-order logic

(FOL) throughout our paper. Given a set of variables V =

{v1, v2, ...} let V ′ = {v′1, v
′
2, ...} and V 〈i〉 = {v

〈i〉
1 , v

〈i〉
2 , ...}

represent the primed and indexed version of the variables. We

use V ′ to refer to successor states and V 〈i〉 for paths. Given

an expression ϕ over V ∪ V ′, let ϕ〈i〉 denote the indexed

expression obtained by replacing V and V ′ with V 〈i〉 and

V 〈i+1〉 respectively in ϕ.

A. Control flow automata

In our work we describe programs using Control flow

automata (CFA) [6]. We define a Control flow automaton as

a 4-tuple 〈V, L, l0, E〉, where:

• V = {v1, v2, ..., vk} is the set of variables. Each variable

vi has an associated domain Dvi
;

• L is the set of control locations, which model the program

counter;

• l0 ∈ L is the initial location;

• E ⊆ L × Ops × L, where op ∈ Ops are FOL formulas

over V and V ′, is a set of directed edges representing the

operations that are executed when control flows from the

source location to the target.

A concrete state (l, c) is a pair of a location l ∈ L

and an interpretation c ∈ Dv0
× ... × Dvn

that assigns a

value c(v) = d ∈ Dv to each variable v ∈ V of its

domain Dv . The set of initial states is {(l, c)|l = l0} and

a transition exists between states (l, c) and (l′, c′) if an edge

(l, op, l′) ∈ E exists with (c, c′) |= op. A concrete path is a

finite, alternating sequence of concrete states and operations

σ = ((l1, c1), op1, ..., opn−1, (ln, cn)) if (li, opi, li+1) ∈ E for

every 1 ≤ i < n and (c
〈1〉
1 , c

〈2〉
2 , ..., c

〈n〉
n) |=

∧
1≤i<n op

〈i〉
i , i.e.,

there is a sequence of edges starting from the initial location

and the interpretations satisfy the semantics of the operations.

B. Counterexample-guided abstraction refinement

Counterexample-guided abstraction refinement (CEGAR)

[2] [6] aims to tackle the problem of state space explosion by

performing the verification task on a simpler, abstract model.

The abstract model is an overapproximation of the concrete

29

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/288478255?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

model: it contains all behaviours of the concrete model, but

can contain additional behaviour as well. Such models are

sufficient to prove the absence of counterexamples but can

contain false positives, meaning that the counterexamples in

the abstract models have to undergo further analysis.

The core of the CEGAR algorithm is the CEGAR-loop,

which consists of two components, the abstractor and the

refiner. The task of the abstractor is to calculate the abstract

state space based on the current precision and to search for

counterexamples, while the task of the refiner is to verify

the concretizability of the abstract counterexample and refine

the precision accordingly. The loop can only be left in two

scenarios, either if the abstractor finds no counterexamples, or

if the refiner finds that an abstract counterexample is feasible.

In Boolean predicate abstraction [6], an abstract state s ∈ S

in the set of abstract states is a Boolean combination of FOL

predicates. A precision π ∈ Π is a set of FOL predicates

that are currently tracked by the algorithm. For example, if

the current precision π contains two predicates, (x < 0) and

(x < 1), then true, x < 0 or !(x < 0) ∧ x < 1 are examples

of possible abstract states.

The result of the transfer function [6] T (s, op, π) is the

strongest Boolean combination of predicates in the precision

that is entailed by the source state s and the operation op.

This can be calculated by assigning a fresh propositional

variable vi to each predicate pi ∈ π and enumerating all

satisfying assignments of the variables vi in the formula

s∧ op∧
∧

pi∈π
(vi ↔ p′i). For each assignment, a conjunction

of predicates is formed by taking predicates with positive vari-

ables and the negations of predicates with negative variables.

The disjunction of all such conjunctions is the successor state

s′.

Locations of the CFA are tracked explicitly. Abstract states

SL = L × S are pairs of a location l ∈ L and a state

s ∈ S. The transfer function extended with locations is

TL((l, s), π) = {(l
′, s′)|(l, op, l′) ∈ E, s′ ∈ T (s, op, π)}, i.e.,

(l′, s′) is a successor of (l, s) if there is an edge between l

and l′ with op and s′ is a successor of s with respect to the

inner transfer function T .

An abstract path σ = ((l1, s1), op1, ..., opn−1, (ln, sn))
is an alternating sequence of abstract states and operations.

An abstract path is feasible if a corresponding concrete

path ((l1, c1), op1, ..., opn−1, (ln, cn)) exists, where each ci is

mapped to si.

The abstractor explores the abstract state space using a

search strategy (such as DFS of BFS) looking for counterex-

amples, i.e., abstract paths that start in the initial state and

end in an error state. The exploration starts in the abstract state

(l0, true). When visiting a state, all of its unvisited successors

with respect to the transfer function TL are visited by the

search. The search can be optimized by not visiting covered

successors, i.e. abstract states (lc, sc), for which an already

visited (lv, sv) exists such that lc = lv and (sc ⇒ sv). If

all reachable states were visited and no counterexample was

found, then the model is safe, however, if a counterexample

was found the refiner needs to check its validity.

The refinement [6] happens as follows. The input is a

path σ = ((l1, s1), op1, (l2, s2), op2, ..., opn−1, (ln, sn)) and

the current precision π. First, the feasibility of the path

is decided by querying an SMT solver with the formula

s
〈1〉
1 ∧ op

〈1〉
1 ∧ s

〈2〉
2 ∧ op

〈2〉
2 ∧ ... ∧ op

〈n−1〉
n−1 ∧ s

〈n〉
n . If this

formula is satisfiable, then the model is unsafe and a satisfying

assignment to this formula is returned as the counterexample.

Otherwise, an interpolant is calculated from the infeasible path

σ that holds information for the further steps of refinement.

A Craig interpolant [7] for a mutually inconsistent pair

of formulas (A,B) is a formula that is (1) implied by A,

(2) inconsistent with B, and (3) expressed over the common

variables of A and B.

A binary interpolant for an infeasible path σ can be calcu-

lated by defining A ≡ s
〈1〉
1 ∧ op

〈1〉
1 ∧ ... ∧ op

〈i−1〉
i−1 ∧ s

〈i〉
i and

B ≡ op
〈i〉
i ∧ s

〈i+1〉
i+1 , where i corresponds to the longest prefix

of σ that is still feasible. The refined precision returned is the

union of π and the new predicate that is obtained by replacing

the variables V 〈i〉 with V in this interpolant.

C. Automata theoretic LTL model checking

Kripke structures, LTL expressions and Büchi automata can

all be used to characterize ω-regular languages [10]. As LTL

expressions can only characterize a strict subset of ω-regular

languages, while every ω-regular language can be recognized

by a Büchi automaton, all LTL-expressions can be transformed

to equivalent Büchi automata, for example using the algorithm

of Gerth et al [5].

We regard the state space of the model as a Kripke structure

M . Given an LTL-formula ϕ let L(M) and L(ϕ) denote

the language that the Kripke structure can produce and the

language that the LTL-formula specifies. The LTL model

checking problem [3] can now be restated as follows: is the

set of provided behaviours a subset of the valid behaviours,

i.e., does L(M) ⊆ L(ϕ) hold?

An equivalent formalization is L(M) ∩ L(ϕ)
?
= ∅, where

L(ϕ) is the complement of the language L(ϕ). Complemen-

tation is computationally hard, but it can avoided in case of

LTL model checking by utilizing that the complement of the

language of an LTL-formula is the language of the negated

formula: L(ϕ) ≡ L(¬ϕ). This allows the model checking

problem to be reduced to language intersection and language

emptiness, both of which can be efficiently computed on Büchi

automata.

A possible way of checking the language emptiness of a

Büchi automaton is checking whether at least one strongly

connected component (SCC) that contains an accepting state

is reachable from the initial state. If such an SCC is reachable,

then the Büchi automaton contains at least one run that

contains an accepting state infinitely many times, fulfilling the

acceptance condition of Büchi automata. Tarjan’s algorithm [9]

identifies SCCs using a single depth-first search (DFS) and

clever indexing. Algorithms based on Nested DFS [8] offer

a different approach. These algorithms usually conduct two

depth-first searches, the former one to find and sort accepting

30

states, and the latter one to find cycles that contain accepting

states.

III. OVERVIEW OF THE APPROACH

LTL model checkers have always struggled with perfor-

mance. We propose to use counterexample-guided abstraction

refinement in LTL model checking. The key idea of our ap-

proach (Fig. 1) is that we conduct the automata theoretic LTL

model checking on abstract models that we iteratively refine

to the required precision using the the CEGAR algorithm.

The algorithm can work with various abstract domains, such

as explicit value abstraction [1], predicate abstraction, or even

a mix of the two. The appropriate abstraction method can only

be selected based on the desired application domain. In this

paper, we present the algorithm using predicate abstraction, a

variant more suited for reactive systems as variables in such

systems usually only get assigned a relatively small subset of

their domains as values.

The algorithm has the following steps:

1) The requirement specification is given in the form of an

LTL-formula ϕ. Negate this formula and transform it to

an equivalent Büchi automaton S;

2) Apply abstraction to the concrete model with the current

precision, calculate the abstract state space and represent

it with an automaton M ;

3) Calculate the synchronous product of the two automata

S × M . During each step of the product the model

automaton steps first, then the specification automaton

steps based on the target state of the model automaton.

4) Check the language emptiness of the product automaton

S ×M ;

• If the language of the product is empty, then the

model meets the correctness specification as no

counterexamples were found;

• If a counterexample is found in the abstract state

space, then verify whether it is feasible in the

concrete state space as well;

– A feasible counterexample means that the model

does not meet the correctness specification (i.e.

is unsafe), as we found a contradicting trace;

– If the counterexample isn’t feasible in the con-

crete system (i.e. spurious), then refine the pre-

cision and jump to step 2.

When using a suitable language emptiness checking al-

gorithm such as Nested DFS [8], the tasks of state space

generation, calculation of the product automaton and language

emptiness checking can be conducted together, which can

result in a significant increase in performance. If these three

tasks are carried out at the same time, then the model checking

is said to happen ”on-the-fly”.

IV. REFINEMENT

In this section we present a novel refinement method for

predicate abstraction. The algorithm searches for counterex-

amples that have a ”lasso”-like form. The first part of the

LTL to BA
¬φ

Abstractor

S × M

M

S

concrete model

L(S × M) ?= ∅

Refiner

✓

true

abstract

counterexample

concrete

counterexample

refined

precision

Xinitial precision

Fig. 1. Overview of CEGAR-based LTL model checking.

counterexample is a path leading to an accepting state and the

second part is a cycle which starts and ends in said accepting

state. If such a counterexample is found, then an accepting

run is possible, because by repeatedly traversing the cycle, an

accepting state can be explored infinitely many times, fulfilling

the Büchi acceptance condition.

The CEGAR algorithm is usually used for reachability

checking, where counterexamples are abstract paths leading

from the initial state to an error state. When verifying these

counterexamples the only thing that needs to be checked is

whether such a path exists in the concrete model, whose states

and transitions all correspond to the states and transitions of

the abstract path. However, the fulfillment of this condition is

required, but not enough, when analysing a cycle. A path that

is not a cycle in the concrete model might appear as one in

the abstract model.

We developed a novel counterexample refinement

strategy that is capable of handling ”lasso”-like

counterexamples. The input is an abstract path

σ = ((l1, s1), op1, (l2, s2), op2, ..., opn−1, (ln, sn)) and

an integer 1 ≤ cycle ≤ n that is the index of the initial state

of the cycle, i.e. the recurrent accepting state (scycle = sn).

The path is first fed to the traditional CEGAR refinement

algorithm presented in Section II-B. Based on the result of

this algorithm, we have two options. If the algorithm finds

that the path isn’t traversable and returns a refined precision,

then we simply return this refined precision. However, if the

algorithm finds that the path is traversable, then we conduct

further analysis to decide whether it is traversable in such

a way that the initial and the end state of the cycle are the

same concrete states.

Control locations are tracked explicitly during state space

exploration, thus deciding whether two concrete states that

belong to the same abstract state are identical can be done

by comparing their data values (i.e. the values assigned

to the variables in them). We construct a constraint B ≡∧
v∈V v〈cycle〉 = v〈n〉, which expresses that each variable

has the same value in the initial and end state of the cycle,

i.e. they are the same concrete states. We also construct

the same formula that the refinement algorithm in II-B used

to verify traversability, A ≡ s
〈1〉
1 ∧ op

〈1〉
1 ∧ ... ∧ s

〈cycle〉
cycle ∧

op
〈cycle〉
cycle ∧ ... ∧ op

〈n−1〉
n−1 ∧ s

〈n〉
n . By querying an SMT solver

with the conjuntion of these two formulas, i.e., A ∧ B, we

31

T !(x<=0) !(x<=0)
x'=1

x<5 ∧ x'=x

x'=x+1

!

"

#

Text

Fig. 2. Example of an abstract counterexample.

verify whether the counterexample is feasible. If this formula

is satisfiable then the model does not meet the requirement

specification (i.e. is unsafe) and a satisfying assignment is

returned as counterexample. If the formula isn’t satisfiable (i.e.

is spurious), then we refine the precision by calculating an

interpolant based on this formula.

Algorithm 1 Lasso refinement

Input: σ: abstract path, cycle: initial index of cycle

Output: (unsafe or spurious , π′)

1: procedure lasso refine(σ, cycle)

2: res := refine(σ)
3: if res is spurious then return res

4: else

5: A ≡ s
〈1〉
1 ∧ op

〈1〉
1 ∧ ... ∧ op

〈n−1〉
n−1 ∧ s

〈n〉
n

6: B ≡
∧

v∈V v〈cycle〉 = v〈n〉

7: if A ∧B is feasible then return (unsafe, π)
8: else

9: I ← get interpolant for (A, B)

10: η ← get satisfying assignment for A

11: π′ ← create predicate from I:

12: replace all v〈n〉 ∈ I with v

13: replace all v〈cycle〉 ∈ I with η(v〈cycle〉)
14: return (spurious, π ∪ π′)

To refine the precision we obtain an interpolant I for A

and B. This interpolant is interpreted over V 〈cycle〉 and V 〈n〉,

let’s denote this with I(v
〈cycle〉
1 , ..., v

〈cycle〉
k , v

〈n〉
1 , ..., v

〈n〉
k). We

also query the SMT solver for a satisfying assignment η

to the formula A, which describes a concrete path σ =
((l1, c1), op1, ..., opn−1, (ln, cn)), where ccycle 6= cn. To en-

sure that the spurious counterexample described by η isn’t

found again during later explorations of the abstract state

space, we need to extend our precision with a new predicate

π′(v1, ..., vk) that evaluates to false in ccycle and to true in

cn (or vice versa), so that ccycle and cn get mapped to differ-

ent abstract states. Formally, π′(η(v
〈cycle〉
1), ..., η(v

〈cycle〉
k)) =

false and π′(η(v
〈n〉
1), ..., η(v

〈n〉
k)) = true. To construct

the predicate π′ from the interpolant I , we replace the

variables V 〈n〉 with V , and V 〈cycle〉 with values that

are assigned to them by η. Formally, π′(v1, ..., vk) :=

I(η(v
〈cycle〉
1), ..., η(v

〈cycle〉
k), v1, ..., vk).

If we evaluate π′(η(v
〈n〉
1), ..., η(v

〈n〉
k)), i.e. π′ in cn, we

get I(η(v
〈cycle〉
1), ..., η(v

〈cycle〉
k), η(v

〈n〉
1), ..., η(v

〈n〉
k)), which is

true, because of the first property of Craig interpolants

(A → I), from which it follows that if an assignment η

satisfies A, then it also satisfies I .

Evaluating π′ in ccycle however, results in

I(η(v
〈cycle〉
1), ..., η(v

〈cycle〉
k), η(v

〈cycle〉
1), ..., η(v

〈cycle〉
k)),

which is false. In this case the variables V 〈cycle〉 are

assigned the same values as their counterparts V 〈n〉, which

means that B is true. It follows that I in this case is false,

because of the second property of Craig interpolants (I ∧ B

is unsatisfiable),

We demonstrate the refinement process on the abstract coun-

terexample in Fig. 2. The white rectangles represent abstract

states with the applying predicates displayed inside them, the

arrows represent transitions, the precision only contains one

predicate, (x ≤ 0). The value of cycle and n is 2 and 4,

respectively. We construct the following formulas based on

this path:

A ≡ true ∧ x〈2〉=1 ∧ !(x〈2〉≤0) ∧ x〈2〉<5∧x〈3〉=x〈2〉 ∧

!(x〈3〉≤0) ∧ x〈4〉=x〈3〉+1 ∧ !(x〈4〉≤0)

B ≡ x〈2〉=x〈4〉

By querying an SMT solver with the formula A∧B we find

that the counterexample in spurious, as A∧B isn’t satisfiable.

The solver returns the interpolant I ≡ x〈2〉 < x〈4〉 (note that

this is only one of the possible interpolants). We request a

satisfying assignment for A from the solver, and construct a

predicate from I by replacing x〈4〉 with x and x〈2〉 with 1

(the value that is assigned to it in the satisfying assignment).

Finally, we return that the counterexample is spurious, accom-

panied by the refined precision (x ≤ 0), (1 < x).

V. CONCLUSION

In our paper we examined LTL model checking and pro-

posed a novel algorithm, which combines the advantages of

counterexample-guided abstraction refinement and automata

theoretic LTL model checking. We also proposed a novel

refinement method for predicate abstraction. We implemented

our algorithm in the Theta framework [11], but chose to omit

experimental evaluation from this paper due to the lack of

space.

REFERENCES

[1] Dirk Beyer and Stefan Löwe. Explicit-state software model checking
based on cegar and interpolation. 2013.

[2] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement for symbolic
model checking. 2003.

[3] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model

Checking. MIT Press, 1999.
[4] Zhao Duan, Cong Tian, and Zhenhua Duan. Verifying temporal

properties of c programs via lazy abstraction. 2017.
[5] Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. Simple

on-the-fly automatic verification of linear temporal logic. 1996.
[6] Ákos Hajdu and Zoltán Micskei. Efficient strategies for cegar-based

model checking. 2019.
[7] Kenneth McMillan. Applications of craig interpolation to model check-

ing. 2005.
[8] Stefan Schwoon and Javier Esparza. A note on on-the-fly verification

algorithms. 2005.
[9] Robert Tarjan. Depth first search and linear graph algorithms. 1972.

[10] Wolfgang Thomas. Handbook of theoretical computer science (vol. b).
chapter Automata on Infinite Objects. 1990.

[11] Tamás Tóth, Ákos Hajdu, András Vörös, Zoltán Micskei, and István
Majzik. Theta: a framework for abstraction refinement-based model
checking. 2017.

32

