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Introduction

The study of complex systems such as vegetation, fau-
nas, landscapes, pedosphere, etc. with the aim to detect and 
understand the causes of their variation, from site to site or 
during time, is always based on the use of objects called 
operational geographic units (OGUs). The size and shape 
of the OGUs are often established according to the aim of 
the study (see Crovello 1981, Feoli and Zuccarello 1996 for 
references on OGUs), but often they are given by the nature 
of the OGUs, e.g., islands, watersheds, administrative units, 
industrial areas etc. The aim of this short note is to intro-
duce the use of a family of similarity measures, called the 
Simpson’s similarity functions or nestedness-based similar-
ity functions (NBSF), in order to cope with the fact that the 
differences between OGUs in terms of a set of features (spe-
cies, plant communities, vegetation series, land use, land 
cover, etc.) could be due not only to replacement (cf.  Podani 
and Schmera 2011, 2016) of the features from OGU to OGU, 
owing to the effects of specific environmental factors, but 
also to factors that would produce the so-called nestedness 
effect (Atmar and Patterson 1993, 1995, Ulrich et al. 2009, 
Ulrich and Almeida Neto 2012, Podani and Schmera 2011, 
2016 and references therein), e.g., the loss of features in the 
same type of combination of features that would correspond 
to a typology (vegetation type, ecosystem type, urban type 

etc.). These factors may be the extent of the area of OGUs, a 
small decrement or increment of soil fertility or moisture, an 
increment or decrement of human impact etc. and even inac-
curate descriptions of OGUs. This short note is a follow-up 
of a previous paper whose aim was to find a classification 
of watersheds of the province of Almeria (Spain) on the ba-
sis of vegetation series (Ibáñez et al. 2016). In that paper, 
we found that the classification based on Simpson’ s index 
provided a result more coherent with drainage and biocli-
matic patterns than the classifications obtained by similarity 
functions (e.g., Jaccard, Sørensen) that do not account for 
nestedness (Nestedness Free Similarity Functions, NFSF). 
We are aware of the potential importance of the nestedness 
concept in all branches of science, an example is given by 
Bustos et al. (2012) for the application in forecasting the 
industrial development, but we do not enter into discussing 
this aspect, nor the overall measures of nestedness in data 
matrices (Atmar and Patterson 1993, 1995), for which we 
refer to Ulrich et al. (2009) for a review, we just want to 
focus on the pairwise comparison between OGUs. 

The Simpson’s similarity index

Simpson (1943) introduced an index to measure the re-
semblance between faunas “to eliminate the effects of dis-
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crepancy in size between the faunas or samples“ (Simpson 
1960). The index is given by the following formula:
 

		
(1a)

where j and k are two OGUs, a is the number of features 
shared by them and nj and nk are respectively their number 
of features. The index (1) is generally written in the follow-
ing way:

	 	
(1b)

where b and c, according the formalism of the two-way con-
tingency table, are respectively the number of features pre-
sent in j and lacking in k and the number of features present 
in k and lacking in j. The index is equal to 1 when the sets of 
features of two OGUs are equal, or when the set of one OGU 
includes completely the set of features of the other OGU, e.g., 
in case of complete nestedness, it is 0 when the two OGUs 
have no features in common. 

In his papers, Simpson (1943, 1960) does not consider 
explicitly the concept of nestedness notwithstanding appar-
ently the concept was introduced, according to Ulrich et al. 
(2009) in biogeography, in the late 1930’s. 

In case of complete nestedness, the similarity calculated 
with the traditional indices i.e., Jaccard, Sørensen, chord dis-
tance etc., that we can call “nestedness free similarity func-
tions” (NFSF), depends upon the differences between nj and 
nk (richness difference, cf. Podani and Schmera 2011, 2016), 
where nj is the number of features in the set j and nk is the 
number of features in set k. If we consider that complete nest-
edness is realized when the absolute distance between two 
binary vectors is equal to the absolute difference between the 
totals of the vectors, e.g., nj and nk, it is easy to demonstrate 
that the Simpson’s index may also be written as: 

	
(1c)

where D is the absolute distance between j, k, Djk min is the 
minimum possible distance between them (the richness dif-
ference, see Podani and Schmera, 2011), and Dik max is nj+nk 
(i.e., a = 0). 

By the application of the “nestedness free similarity func-
tions” (NFSF) it happens, as shown in Table 1, that two ob-
jects (A and B) may have the same similarity-dissimilarity 
of other two objects (C and D), notwithstanding the pattern 
of features is completely different in the two pairwise com-
parisons. In fact, A and B show replacement (2 min(b, c) = 2, 
cf. Podani and Schmera 2011) while C and D show complete 
nestedness (b or c = 0). If we use Jaccard’s index (Podani 
2000) the similarity between the objects A-B, and C-D is the 
same: S(AB) = S(CD) = 2/4. If we apply the Kulczynski in-
dex (Podani 2000) the two values are different S(AB) = 2/3, 
S(CD) = 3/4, however, the index does not inform about the 
fact that in the case of C and D there is complete nestedness. 
If we apply the Simpson’s index, S(AB) = 2/3, S(CD) = 1, the 

two similarity measures are different and in the second case 
(S(CD)) being equal to one, it informs that there is complete 
nestedness, i.e., there is no replacement. 

The Simpson’s index is used by Baselga (2010) to calcu-
late the “nestedness-resultant component” of Sørensen dis-
similarity index, becoming a key tool and topic of what we 
can call the “beta diversity and nestedness dispute” (Baselga 
2010, Ulrich and Almeida Neto 2012, Carvalho et al. 2013, 
Legendre 2014, Baselga and Leprieur 2015, Podani and 
Schmera 2016 and references therein). We do not want to 
enter such a dispute that looks well clarified by the papers 
of Legendre (2014) and Podani and Schmera (2016), but, as 
we have said in the Introduction, we want only to present the 
concept of “nestedness-based similarity function” (NBSF) 
as a generalization of the pairwise Simpson’s index. For 
the discussion on the decomposition of NFSF into replace-
ment, nestedness, richness components, on the basis of the 
formalism of the two-way contingency table, we refer to the 
above mentioned papers (e.g., Baselga 2010, Legendre 2014, 
Baselga and Leprieur 2015, Podani and Schmera 2011, 2016). 

The family of nestedness based similarity functions 
(NBSF)

The Simpson index can be interpreted as the ratio be-
tween two scalar products, the first corresponding to the value 
calculated by the actual pattern of distribution of the feature 
among two objects, j and k, and the second corresponding to 
the value calculated considering the pattern of the features in 
case of complete nestedness. Formula 1) is actually the ratio 
between the scalar product a and the scalar product (min(nj, 
nk)) that is realized when two vectors of features describing j 
and k would be completely nested. Thus, being the index of 
Simpson a ratio between two scalar products and being the 
scalar product a basic index of similarity (see Orlóci 1978, 
Podani 2000) we can say that the index of Simpson belongs to 
a family of similarity indices that we can call the Simpson’s 
family indices and that could be written in the following way:

			       
(2)

where Sjk is the observed similarity between the objects j and 
k and Sjk max is the maximum similarity they would have 
when j and k are completely alike or when the features nj and 

A B C D Similarity index S(AB) S(CD)

1 1 1 0 Jaccard 2/4 2/4

1 0 1 0 Sørensen 2/3 2/3

0 1 1 1 Kulczynski 2/3 3/4

1 1 1 1 Simpson 2/3 1

Table 1. Two pairs of OGUs A versus B and C versus D, showing 
respectively replacement and nestedness.
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nk are arranged in a nested way (the set of features nj is com-
pletely included in the set of features nk or vice versa, i.e., in 
terms of two-way contingency table b or c is equal to zero). 
In this last case there is no replacement of features but only 
impoverishment or enrichment. 

Any “nestedness free” similarity index (NFSF) ranging 
between 0 and 1 (0 = no similarity, 1= maximum similar-
ity) can be used in formula 2). Of course, we cannot use the 
Simpson’s index, that actually is a measure of nestedness, 
because in this case it may easily happen that the ratio in 
formula 2) could be higher than 1 (e.g., when a/min(nj,nk) > 
(nj/nk or nk/nj). 

It is easy to show that among the NFSFs, if we use the 
one of Sørensen (Podani 2000), formula 2) becomes the in-
dex of Simpson. Formula 2) can be written also as formula 
1c) when a dissimilarity function is chosen instead similarity  
(see Appendix). 

In terms of fuzzy set theory (Zadeh 1965), formula 2) 
may also be called the degree of nestedness or “nestedness 
degree”. Its complement to one:
 Rjk(n) = 1 – Sjk(n) 				          (3)
can be considered a measure of non-nestedness, i.e., replace-
ment (Rjk(n)), the “non-nestedness component”, or in other 
words, the relative gap between the actual similarity and the 
maximum similarity two OGUs may have in case of being 
alike or being nested. Baselga (2010) for the Sørensen index 
in formula 2) and 3) suggests that the difference: 
 Djk(n) = Sjk(n) – Sjk				        (4)
should be called the “nestedness resultant dissimilarity”, it 
is 0 when j = k and when nj = nk, irrespective the value of a 
(the common features between two OGUs) since in this case 
Sjk max will be equal to 1. It is to be emphasized that Baselga 
(2010) is suggesting Djk(n) as difference between the comple-
ment of the Sørensen’s index (i.e., the Sørensen dissimilar-
ity index) and the complement of the index of Simpson (the 
Simpson dissimilarity index). However owing to the draw-
back mentioned above, i.e., that it could be 0 irrespective the 
value of a, Djk(n) is useless if used alone, but it could be use-
ful if used in ternary plots (e.g., Podani and Schmera 2011) 
that can be obtained thanks to the following relationship very 
easy to demonstrate: 
 Rjk(n) + Djk(n) + Sjk  = 1	 		      (5) 
In case of nj=nk, in the ternary plot a pair of OGUs will be 
toward Rjk(n) if b,c > a, and will be toward Sjk when b,c < a.

According to formula 4), formula 2) can also be written 
as:
 Sjk(n) = Sjk + Djk(n)				        (6)
that is to say, any NBSF is given by its “nestedness free simi-
larity function” plus the corresponding “nestedness resultant 
dissimilarity” or better, in terms of similarity, the loss of simi-
larity due to the loss or increment of features (i.e., due to the 
richness difference). Since Sjk(n) can be equal to Sjk only if 
nj = nk, i.e., when Sjkmax is equal to 1, we can conclude that 
given a certain a (i.e., the number of features in common be-
tween j and k), Djk(n) depends on the richness difference, or 

in other terms, given a certain a, Djk(n) is increases if |nj – nk| 
increases. However at parity of a, the nestedness measured 
by formula 2) (Sjk(n)) depends on the formula of NFSF used, 
if we use the formula of Sørensen, formula 2) reduces to the 
Simpson formula (1)) and it remains constant if the min(nj, 
nk) remains constant even if the richness difference is increas-
ing, while in the case of the Jaccard’s function it is easy to 
show that Sjk(n) is increasing as the richness difference in-
creases even if the min(nj, nk) remains constant. The choice 
of one NFSF is a matter of the weight we want to give to rich-
ness differences. It is easy to verify what it is happening with 
the application of different NFSF by the use of simple simu-
lated data or by simple algebra just remembering that, when 
calculating the Sjkmax, a (the number of features in common) 
is always equal to min(nj, nk). 

Comparison between the application of NBSF  
and NFSF

Data

To compare the performance of the NBSF with respect to 
the NFSF we use four simulated data sets. They contain 15 
vectors that represent OGUs described by features arranged 
in 4 different ways: 
1) the first simulated data set presents a classical situation of 
replacement along an hypothetical gradient with only the last 
vector nested in the previous one (Table 2); 
2) the second simulated data set shows two complete nested 
situations in which the two OGUs with the maximum number 
of features are more different from each other than from OGUs 
in their own group, i.e., the group they include (Table 3); 
3) the third simulated data set presents two complete nested 
situations in which the two OGUs richest in features are more 
similar to each other than to those nested with them (Table 4); 
4) the fourth simulated data set presents two situations with 
a very high nested component, but not with complete nested-
ness (Table 5). This last data set simulates the study on the 
land system of Almeria (Spain) by Ibanez et al. (2016) and 
Feoli et al. (2017) based on watersheds as OGUs, whose re-
sults inspired this paper. 

Data analysis

The 15 vectors (hypothetical OGUs) of simulated data 
have been compared by formula 2) in which Sjk and Sjkmax 
have been calculated by the Sørensen index, Jaccard index 
and angular separation (cosine) (Podani 2000) and by the 
same indices in their original form (NFSF). To the similar-
ity matrices we have applied the group average and complete 
linkage clustering algorithms (Podani 2000).

Results

Figures 1, 2, 3 and 4 show the results of the application of 
formula (2) and of the respective “nestedness free similarity 
functions” (NFSF) to the data of Tables 2, 3, 4 and 5. Each 
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figure presents only two dendrograms, obtained by average 
linkage cluster analysis by the Sørensen index implemented 
in formula (2) and applied as a NFSF, respectively. We have 
chosen to present only these two dendrograms for two rea-
sons: a) the use of Sørensen index gives exactly the Simpson’s 
index; b) the dendrograms based on all the three resemblance 
functions, namely Sørensen, Jaccard and “cosine”, are all top-
ologically very similar for each data set, when applied with 
formula (2) and when applied directly, irrespective the two 
different methods of clustering, i.e., the average and complete 
linkage clustering methods (Podani 2000). 

It is clear from Fig. 1, corresponding to Table 2, where the 
simulated data represent a typical gradient with replacement, 
that the results of the application of formula (2) and of the 
corresponding NFSF are almost the same.

Figure 2 shows that formula (2), applied to Table 3, where 
the simulated binary data represents two complete nested 
situations in which the two richest vectors (columns 6 and 
7) have a lower similarity with each other than with the cor-
responding nested vectors, gives two well separated clusters 
with the OGUs at same level of similarity. Each cluster con-
tains all the OGUs belonging to a nested situation. In this case 
the dendrograms of all the NFSF show the same two main 
clusters obtained by formula (2), the differences being that 
these dendrograms show the pattern of similarity within each 
cluster: a pattern that formula (2) is not able to show.

Figure 3 shows that formula (2), applied to Table 4, a case 
of two complete nested situation, gives different results with 
respect those obtained by the NFSF. As a matter of fact, while 
by NFSF the two OGUs richest in the number of features (6, 
7 with 13 and 15 features, respectively) are belonging to the 
same cluster, by formula (2) each of them belongs to the clus-
ter corresponding to the nested situation of which they are the 
elements with the highest richness. 

Figure 4 shows the results of cluster analysis correspond-
ing to Table 5, a case where the nestedness is incomplete 
within two main clusters. The results are similar to those of 
Figure 3, however, the dendrogram a) is able to detect and to 
show the cases of complete nestedness. 

Discussion and conclusions

Despite the many indices proposed in the literature 
to measure nestedness (see Ulrich et al. 2009, Urlich and 
Almeida-Neto 2012, Podani and Schmera 2011, 2012, 2016 
for reviews), there is no mention of NBSF as applied for clas-
sification purposes outside biogeography, although they may 
have relevance when we want to classify OGUs that are sub-
jected to nestedness effects.

The results obtained by simulated data support the idea 
that NBSF would give the same results of NFSF if there is not 
complete nestedness in the data sets or in their subsets, with 
the advantage of showing very clearly the cases of complete 
nestedness. However, in the case of complete nestedness 
between the OGUs of the same group (cluster), the dendro-
grams obtained by NBSF are not able to show the pattern of 
similarity between the OGUs. For this reason, we suggest to 

Table 2. A simulated binary data considering a regular replace-
ment and one nested situation (vector 14 includes vector 15).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 . . . . . . . . . . . . . .
2 1 1 . . . . . . . . . . . . .
3 . 1 1 . . . . . . . . . . . .
4 . . 1 . . . . . . . . . . . .
5 . . 1 1 . . . . . . . . . . .
6 . . . 1 . . . . . . . . . . .
7 . . . 1 1 . . . . . . . . . .
8 . . . 1 1 . . . . . . . . . .
9 . . . . 1 1 . . . . . . . . .
10 . . . . 1 1 . . . . . . . . .
11 . . . . . 1 1 . . . . . . . .
12 . . . . . . 1 1 . . . . . . .
13 . . . . . . 1 1 1 . . . . . .
14 . . . . . . . 1 1 . . . . . .
15 . . . . . . . 1 1 1 . . . . .
16 . . . . . . . 1 1 1 . . . . .
17 . . . . . . . . 1 1 1 . . . .
18 . . . . . . . . 1 1 1 . . . .
19 . . . . . . . . . 1 1 . . . .
20 . . . . . . . . . . 1 1 . . .
21 . . . . . . . . . . 1 1 . . .
22 . . . . . . . . . . 1 1 1 . .
23 . . . . . . . . . . . 1 1 . .
24 . . . . . . . . . . . 1 1 1 .
25 . . . . . . . . . . . . 1 1 .
26 . . . . . . . . . . . . . 1 1

Figure 1. Dendrogram of NBSF (a) and of NFSF (b) for data in Table 2. The Sørensen index and 

clustering by average linkage within merged groups have been used. 

 

 

 

 

  

Figure 1. Dendrogram of NBSF (a) and of NFSF (b) for data in 
Table 2. The Sørensen index and clustering by average linkage 
have been used.



Nestedness-based similarity functions                                   		  			      		     227 

use always the NBSF and the corresponding NFSF to have 
both: the evidence of nested situations, when they are present 
in the data set, and the nested free similarity pattern of the set 
of OGUs. In the paper of Ibanez et al. (2016), we have found 
that the use of a NBSF has shown a classification of OGUs 

more coherent with the drainage pattern of the watersheds 
system of the area and with climatic data.

We conclude by saying that the concept of nestedness is 
a fuzzy concept, in the sense that the nestedness of any two 
vectors measured by NBSF, in which n objects are described 

Table 3. Simulated binary data for a nested situation in which the 
two richest vectors (6 and 7) have a lower similarity with each 
other than with the corresponding nested vectors..

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 1 . . . . . . . . .
2 1 1 1 1 1 1 . . . . . . . . .
3 1 1 1 1 1 1 . . . . . . . . .
4 1 1 1 1 1 1 . . . . . . . . .
5 . 1 1 1 1 1 1 . . . . . . . .
6 . . 1 1 1 1 1 1 . . . . . . .
7 . . . 1 1 1 1 1 . . . . . . .
8 . . . 1 1 1 1 1 1 . . . . . .
9 . . . . 1 1 1 1 1 1 . . . . .
10 . . . . 1 1 1 1 1 1 . . . . .
11 . . . . . 1 1 1 1 1 1 . . . .
12 . . . . . 1 1 1 1 1 1 1 . . .
13 . . . . . . 1 1 1 1 1 1 1 . .
14 . . . . . . 1 1 1 1 1 1 1 1 .
15 . . . . . . 1 1 1 1 1 1 1 1 1
16 . . . . . . 1 1 1 1 1 1 1 1 1
17 . . . . . . 1 1 1 1 1 1 1 1 1
18 . . . . . . 1 1 1 1 1 1 1 1 1

Figure 2. Dendrogram of NBSF (a) and of NFSF (b) for data in Table 3. The Sørensen index and 

clustering by average linkage within merged groups have been used. 

 

 

 

 

 

 

  

Figure 2. Dendrogram of NBSF (a) and of NFSF (b) for data in 
Table 3. The Sørensen index and clustering by average linkage 
have been used.

Table 4. Simulated binary data for a nested situation in which the 
two richest vectors (6 and 7) have a higher similarity with each 
other than with the corresponding nested vectors. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 1 . . . . . . . . .
2 1 1 1 1 1 1 . . . . . . . . .
3 . 1 1 1 1 1 . . . . . . . . .
4 . . 1 1 1 1 1 . . . . . . . .
5 . . . 1 1 1 1 . . . . . . . .
6 . . . . 1 1 1 . . . . . . . .
7 . . . . 1 1 1 . . . . . . . .
8 . . . . . 1 1 . . . . . . . .
9 . . . . . 1 1 . . . . . . . .
10 . . . . . 1 1 . . . . . . . .
11 . . . . . 1 1 . . . . . . . .
12 . . . . . 1 1 1 . . . . . . .
13 . . . . . 1 1 1 1 . . . . . .
14 . . . . . . 1 1 1 1 . . . . .
15 . . . . . . 1 1 1 1 1 . . . .
16 . . . . . . 1 1 1 1 1 1 1 . .
17 . . . . . . 1 1 1 1 1 1 1 1 .
18 . . . . . . 1 1 1 1 1 1 1 1 1

Figure 3. Dendrogram of NBSF (a) and of NFSF (b) for data in Table 4. The Sørensen index and 

clustering by average linkage within merged groups have been used. 

 

 
  

Figure 3. Dendrogram of NBSF (a) and of NFSF (b) for data in 
Table 4. The Sørensen index and clustering by average linkage  
have been used.
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by m binary characters, is actually expressing a degree of be-
longing of the matrix of the two vectors to the set of matrices 
of complete (perfect) nestedness. The use of ternary plots of 
Podani and Schmera (2016) by considering several possibili-
ties: 1) only the single pairs of OGUs, 2) clusters of OGUs, 
3) all the pairs of OGUs or 4) the averages values of pairs in 
clusters or 5) the averages of all the pairs in the matrices D, 
R and S (following formula 5)), may show the relationships 
between nestedness, replacement and similarity to fully high-
light the similarity pattern within sets of OGUs. 

Aknowledgment: We thank J. Podani for reading and com-
menting the manuscript. 
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Appendix

We show that formula (2) becomes the index of Simpson 
when the nestedness free similarity function is the index of 
Sørensen.

The index of Sørensen can be written according to the 
formalism of the 2 × 2 contingency table as:

Since the maximum similarity is given when there is 
complete nestedness (or complete similarity) for the index of 
Sørensen it is:

it follows that, according to formula (2), Sjk(n) for the index 
of Sørensen becomes:

that is the Simpson’s index as in formula (1).
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