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1. List of abbreviations 
 

ABA: abscisic acid 

APX: ascorbate peroxidase 

AsA: reduced ascorbate 

CaMV35S: cauliflower mosaic virus 35S 

promoter  

CAT: catalase 

CDNB: 1-chloro-2,4-dinitrobenzene 

CHP: cumene hydroperoxide 

CO2: carbon dioxide 

DHA: dehydroascorbate 

DHAR: dehydroascorbate reductase 

DHE: dihydroethidium 

DNA: deoxyribonucleic acid 

DTT: dithiothreitol 

Ehc: half-cell reduction potential 

ETC: electron transport chains 

FAO: Food and Agriculture Organization 

FDA: fluorescein diacetate 

FW: fresh weight 

GPOX: glutathione peroxidase 

GPX: mammalian glutathione peroxidase 

GPXL: glutathione peroxidase-like  

GR: glutathione reductase 

GSH: reduced glutathione 

GSSG: glutathione disulfide, oxidized glutathione 

GST: glutathione transferase 

H2DCFDA: 2′,7′- dichlorodihydrofluorescein 

diacetate 

H2O2: hydrogen peroxide 

 

 

 

 

LP: lipid peroxides 

MDA: malondialdehyde  

MDHA: monodehydroascorbate 

MDHAR: monodehydroascorbate reductase  

MES/KCl: 2-(N-Morpholino) ethanesulfonic 

acid/ potassium chloride buffer 

MS: Murashige-Skoog medium 

NTR: NADPH-dependent thioredoxin 

reductase 

1O2: singlet oxygen  

O2
•-: superoxide radical anion  

OH•: hydroxyl radical 

PCD: plant cell death 

POX: guaiacol peroxidase 

PSI: photosystem I 

PSII: photosystem II 

PUFAs: polyunsaturated fatty acids 

PVPP: polyvinyl-polypyrrolidone 

qRT-PCR: quantitative real-time polymerase 

chain reaction 

ROS: reactive oxygen species 

SOD: superoxide dismutase 

t1/2: half-life 

TBA: thiobarbituric acid  

TBARS: thiobarbituric acid reactive substances  

TCA: trichloroacetic acid 

TPOX: thioredoxin peroxidase 

TRIS: Tris(hydroxymethyl)aminomethane 

TRX: thioredoxin 
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2. Introduction 

2.1 The main environmental stresses and the effect of excess salt on plants  

Being sessile organisms, plants always live in a very dynamic environment that are often 

adverse or stressful for their growth and development. These disadvantageous environmental 

circumstances include biotic stresses, such as attack by the pathogens and herbivores; abiotic 

stresses, such as drought, heat, cold, nutrient deficiency and surplus of salt or toxic metals in 

the soil. More than 50 % reduction in the average yield of large-scale crops has been attributed 

to the abiotic stresses (Wang et al., 2001; Fahad et al., 2017). Drought, salt and high or low 

temperature are the major environmental abiotic stress factors that affect the geographical 

distribution of plants in nature, limit plant productivity in agriculture and chief threats to food 

security. A published Food and Agriculture Organization (FAO) of the United Nations report 

in 2013 reported that 37.6% of the 13,003 million hectares (Mha) of the global land area is 

devoted to agriculture (Polle and Chen, 2015). According to Wicke et al. (2011), 1128 Mha, 

including 20% of irrigated lands, are estimated to be affected by soil salinity 

(http://www.fao.org/water/en/), with the largest area of 189 Mha being place in the Middle East 

(Fig. 1). Worldwide, soil salinity has adversely affected about 30 % of the irrigated land and 

6% of total land area (Chaves et al., 2009) with a resultant monetary loss of 27.3 billion US$ in 

agricultural production (Qadir et al., 2014). Approximately 13% of Hungary or one third of the 

soils on the Great Hungarian Plain (N 46–48.5° and E 19–22.5°) are mainly affected by salinity 

problem and loose a significant amount of crop (Tóth, 2011). 

 

Fig. 1. Salt‐affected soils around the world (Wicke et al., 2011).   
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Among the abiotic stresses, salt stress is considered one of the most adverse factors influencing 

the plant growth and productivity in the field. However, saline soils are rich in the form of most 

soluble and abundant sodium chloride salt that affect plant growth and productivity due to the 

gathering of salts over long periods of time in arid and semiarid zones or due to weak drainage 

and absence of impermeability in soils and accumulation of salt particles in the superficial 

horizons (Imadi et al., 2016; Hachicha et al., 2018). There are mainly two causes of soil salinity 

which are the followings: 

- Primary cause of salinity happens due to natural processes such as wind, rain, flooding of the 

land by seawater or seepage of seawater. The increment in soil salinity also occurs with the 

aggravation of freshwater shortage 

(https://www.salineagricultureworldwide.com/salinization). 

- Secondary cause of salinity is due to anthropogenic activities (salinity due to irrational land 

use and inappropriate agricultural practices). In a non-sustainable manner, the continuous use 

of groundwater is reducing the water tables in a rather concerning way notably because 20% of 

the water used in irrigation supplied from groundwater. Beside reducing its potential for future 

use, it generates multiple negative externalities, including salinity, stream depletion, or land 

subsidence that directly affect agricultural productivity, water users and the environmental 

deposition of oceanic salt (Munns, 2005; Manchanda and Garg, 2008; Hasanuzzaman et al., 

2013).  

Plant’s responses to salinity occur in two phases: a rapid phase and another one is slower phase. 

Rapid phase is an osmotic phase which inhibits the growth of leaves by decreasing in the soil 

the water potential, the slower one is an ionic phase that accelerates the senescence of mature 

leaves due to increase of salt in the cell wall or cytoplasm of plants (Munns et al., 1995, Munns 

and Tester, 2008). An early phase manifest itself as an osmotic stress due to high salt 

concentrations outside of the root cells and mostly overlaps with drought stress, whereas the 

later phase is a specific ionic stress caused by accumulation of Na+ and Cl− ions to toxic levels 

that inhibits key enzymatic reactions in plant cells, mostly affecting the photosynthesis and 

shoot growth. Long-distance signals must regulate the reduction in the growth of leaves in the 

form of hormones or their precursors because the reduced leaf growth rate is independent of 

carbohydrate supply (Munns et al., 2000) and water status (Munns et al., 2000; Fricke et al., 

2002). In the response of different environmental conditions, DELLA proteins are negative 

growth regulators that mediate the growth-promoting effects of gibberellins in several species 

and integrate signals from a range of hormones and abiotic stress conditions, including salinity 
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(Achard et al., 2006; Zhang and Zhang, 2016). The increased salt concentrations outside the 

roots create osmotic stress and induce stomatal closures which restrict CO2 uptake, resulting in 

reduced carbon fixation and assimilation in leaf tissues (Fricke, 2004; James et al., 2008). 

Carbohydrate production during photosynthesis is therefore reduced, which impacts on plant 

growth and crop yield. Another consequence of stomatal closures can be the interruption of 

evapotranspiration of water, water potential and aggregation of reactive oxygen species (ROS) 

(Møller et al., 2007).  

To acclimatize in the saline habitat, halophyte plants emerged an efficient mechanism to sustain 

their growth and yields (Orsini et al., 2010). According to Taji et al. (2004), Thellungiella 

salsuginea (also named as T. halophila or salt cress) due to the incorporation of efficient 

physiological and genetic processes proved to be highly tolerant than Arabidopsis thaliana 

(glycophyes) not only to high salinity but also to oxidative stress. The level of lipid 

hydroperoxide in the leaves of Thellungiella was remarkably lower than in Arabidopsis under 

salt stress (M'rah et al., 2007). 

Plants are subjected to both abiotic (salinity, drought, high/low temperature, nutrient deficiency 

and high light) and biotic (pathogen attack) environmental factors throughout the entire life and 

the generation of ROS takes place in different organelles of the plants. Inequality between the 

rate of ROS generation and detoxification can create oxidative stress. Accumulation of ROS in 

excessive amounts is deleterious to the plants (Tripathy and Oelmüller, 2012; Huang et al., 

2019) and can lead to uncontrolled oxidation of membranes, proteins and DNA, causing 

oxidative stress and cells death (Fichman et al., 2019). ROS are playing a pivotal role in various 

cellular, subcellular processes and act as a systemic signal in plants and other organisms. ROS 

also regulate many different hormonal, physiological pathways and various other fundamental 

biological processes in plants, including development, proliferation, defence, recycling, death 

pathways and acclimation to different abiotic and biotic conditions (Fichman et al., 2019). 

2.2 Reactive oxygen species (ROS), oxidative stress, and their challenges 

In plants, ROS exist either in ionic and/or molecular states (Huang et al., 2019) and formed as 

a by-product of the aerobic cell metabolic processes. The healthy metabolism of oxygen (O2) 

or reduction of oxygen leads to the generation of ROS, which are naturally and constantly 

produced (about 1–2% of the total consumed O2 molecules) (Mittler, 2017). ROS consists of 

free radicals like superoxide radical anion (O2
•−), hydroxyl radical (•OH), along with nonradical 

molecules like hydrogen peroxide (H2O2) and singlet oxygen (1O2). In plants, ROS formations 
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are an unavoidable leakage of electrons onto O2 from the various normal metabolic activities 

which occurred in different kind of multiple cellular compartments such as in chloroplasts, 

mitochondria, and plasma membranes (Heyno et al., 2011; Sharma et al., 2012; Mhamdi and 

Breusegem, 2018). ROS are the example of a metabolic product that has a dual role in signaling 

as well as in the governance of plant growth and development (Foyer and Noctor, 2009; Mittler, 

2017; Noctor et al., 2018). Every type of ROS has unique and distinct chemical properties; at 

low levels they can act as intracellular signaling agents, inducing a decesive response in the 

antioxidant defence system (in both enzymatic and non-enzymatic); however, beyond the 

threshold level of excessive ROS it become deadly noxious and capable of interacting with all 

types of organic molecules, such oxidize lipids, cellular proteins and nucleic acids leading to 

cell death (Sharma et al., 2012; Foyer, 2018).  

 Superoxide radical anion (O2
•−) 

With a 1-4 μs half-life, a highly reactive nucleophilic O2
•− formation happen in the plant cells 

(Mittler, 2017), which begins a chains of reactions to produce other “secondary” ROS, namely 

hydrogen peroxide with either dependently or independently through enzyme- or metal-

catalysed processes depending on the cell type or cellular compartment (Kimura et al., 2017; 

Janků et al., 2019). A significant source of O2
•− production in a plant cell is the primary 

organelle such as mitochondria and chloroplast in complexes I, III and photosystems (PSI, 

PSII), respectively, and it is mainly associated with electron transport chains (ETC) (Noctor et 

al., 2006; Sharma et al., 2012). However, its production also takes place in other organelles, 

such as peroxisomes, glyoxysomes, as well as in the cell wall (Gill and Tuteja, 2010). O2
•− 

radical anions can be diffuse for a few up to micrometers from the site of the generation and 

react with two molecules of H+ and dismutate into H2O2 and O2 (Demidchik, 2015). Superoxide 

radical anion preferentially reacts with other radical compounds, including nitric oxide 

derivatives and diverse protein components in both containing hem and non-hem iron centers 

(Halliwell, 2006; Janků et al., 2019). Being a moderate reactive radical relatively to other ROS 

molecules, it can not directly bind and chemically modify biological macromolecules. 

Accumulation of O2
•− concentration become highly toxic due to their reducing ability, which 

can donate an electron to Fe3+ to become reduced Fe2+ moleculece. Fe2+ directly interact with 

H2O2 and accelerates the production of OH•, which is one of the lethal ROS due to its nature of 

highly reactiveness and it may cause peroxidation to membrane lipids and cellular weakening 

of different organelles (Ahmad et al., 2008; Demidchik, 2015; Mittler, 2017). 
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 Hydrogen peroxide (H2O2) 

Peroxisomes are one of the foremost leading production sites of H2O2 (Foyer and Noctor, 2003; 

Corpas, 2015), which is the most stable ROS with essential physiological functions 

(Demidchik, 2015). Several enzymatic systems are responsible for the direct production of 

H2O2 within these organelles (Corpas et al., 2015). Due to activities of catalase and peroxidases, 

the lifetime of H2O2 in the plant cell is not tremendously long. However, H2O2 with 1ms longer 

half-time is relatively stable molecules and can migrate from the subcellular synthesis sites to 

adjacent compartments and even neighboring cells (Corpas et al., 2015; Soares et al., 2019). 

However, the high toxicity of H2O2 can be easily interpreted by its oxidizing nature. H2O2 can 

react to enzymes and make them inactive by oxidizing their thiol groups. Oxidizing power of 

H2O2 makes them potentially fatal candidates for the surrounding cellular environment. 

Although, H2O2 also play a very important role as a signaling molecule to regulate the various 

physiological process, growth and development of plants (Gechev et al., 2006). 

 Hydroxyl radical (•OH) 

The hydroxyl radical (•OH) formed as an outcome of the Haber-Weiss reaction, due to the 

interplay between O2
•− and H2O2 in the existence of redox-active metals such as Cu and Fe 

(Cuypers et al., 2016) is the most highly reactive among all ROS with a half-life of 1 μs. Despite 

its low migration capacity (around 1 nm), However due to high constant reaction rate it rapidly 

interacts with all cellular molecules and causes of oxidative damages to proteins and nucleic 

acids, as well as lipids. It is directly involved in oxidative stress signaling and plant cell death 

(PCD) (Demidchik et al., 2010; Demidchik, 2015). Since there is no any potent enzymatic 

defence system to scavenging this noxious radical, its overproduction and excess accumulation 

in cells lead to triggers programmed cell death (Das and Roychoudhury 2014; Czarnockaa et 

al., 2018). Hydroxyl radicals are one of the most prevalent ROS, which cause lipid peroxidation.  

2.3 Lipid peroxides (LP) 

In general, plant lipid peroxidation is mainly due to ROS activity, where the dominant target of 

the ROS attack on lipids is the 1,4- pentadiene structure of polyunsaturated fatty acids (PUFAs) 

(Wagner et al., 1994; Porter et al., 1995), which are either free or esterified to cholesterol or 

glycerol (Browne and Armstrong 2002). Peroxidation of PUFAs, lacated in membrane 

phospholipids are notably susceptible to aggression by ROS, can lead to chain deterioration of 

membrane and, thereby, increase in membrane fluidity and permeability (Sharma et al., 2012). 

LP aggravates the oxidative stress through the production of lipid-derived free radicals that 
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themselves can react with other macromolecules like proteins and DNA (Sharma et al., 2012, 

Anjum et al., 2015) and triggering cell death (Foyer and Noctor 2005a). Over the years, with 

the expansion of molecular and biochemical studies on plant stress responses, secondary 

product of LPs, reactive aldehydes such as malondialdehyde (MDA) has been extensively used 

as a widely accepted warning signal of the occurrence of oxidative damage.  

Most of the terrestrial plants including agricultural crops are glycophytic that can not withstand 

high concentration of salt and eventually die. Plant growth and development are hampered due 

to high salinity stress through (1) low osmotic potential of the soil solution (water stress), (2) 

nutritional imbalance, (3) specific ion effect (salt stress) or (4) a combination of these factors. 

Increased soil salinity can negatively influence the germination rates, growth and 

reproducibility of plants, physiological processes including photosynthesis, respiration, 

transpiration, membranes properties, nutrient homeostasis, and hormone regulation can lead to 

the production of higher ROS levels and their accumulation may lead to plant cell death 

(Mahajan and Tuteja, 2005; Hasanuzzaman et al., 2012). The effect of abiotic stresses have 

been investigated by using a number of approaches to elucidate the plant’s responses including 

genetics (Snape et al., 2007; Bressan et al., 2009), genomics (Vij and Tyagi, 2007; Collins et 

al., 2008; Hu et al., 2009), transcriptomics (Rostoks et al., 2005; Mohammadi et al., 2007; Zeller 

et al., 2009), proteomics (Qureshi et al., 2007; Caruso et al., 2009), metabolomics (Shulaev et 

al., 2008) and ionomics (Salt et al., 2008; Vanhoudt et al., 2008; Jeong & Guerinot, 2009), as 

well as physiological measurements and morphological traits (Izanloo et al., 2008; Bowne et 

al., 2018). 

Crop plants elicit a complex and unique cellular and molecular response in response to various 

stresses in order to prevent the damage and ensure survival (Fahad et al., 2015). In order to 

maintain the cellular homeostasis under both abiotic and biotic stresses (Mittler, 2017), plants 

equipped with a powerful and multifaceted antioxidant system that is consist  of enzymatic and 

non-enzymatic components (Fig. 2), with various kind of biochemical properties and distinct 

subcellular localization (Foyer and Noctor 2003, 2005a, b), which are involved in sensing, 

detoxification, elimination and/or neutralization of ROS overproduction (Gratão et al., 2005; 

Liebthal et al., 2018; Soares et al., 2019).  
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Fig. 2. Enzymatic and non-enzymatic antioxidant players in a typical plant cell. Words marked with a * 
represent new emerging components of the plant antioxidant system. SOD, superoxide dismutase; CAT, 
catalase; APX, ascorbate peroxidase; GR, glutathione reductase; MDHAR, monodehydroascorbate 
reductase; DHAR, dehydroascorbate reductase; GST, glutathione transferase; GPX, glutathione 
peroxidase; GPXL, glutathione peroxidase like; POX, guaiacol peroxidase (Soares et al., 2019). 

2.4 Non-enzymatic antioxidant defense system 

The components of non-enzymatic antioxidant defense system include the primary cellular 

redox buffers ascorbate (AsA) and tripeptide glutathione (γ-glutamyl-cysteinyl-glycine, GSH) 

as well as tocopherol, carotenoids, proline and phenolic compounds. These components of 

antioxidant system can neutralize, remove and transform ROS, allowing the management and 

sensing of ROS homeostasis in order to achieve the cellular redox balance in plants under 

stresses (Gratão et al., 2005; Mittler, 2017; Carvalho et al., 2018). 

 Ascorbic acid (AsA) 

Ascorbic acid, commonly known as vitamin C, is an essential and most abundant antioxidant 

among non-enzymatic antioxidants in plant cells (Smirnoff, 2008) and acts to prevent or in 

minimizing the damage caused by ROS in plants (Smirnoff, 2005; Khan et al., 2008). AsA is a 

most potent ROS scavenger compound because of its nature to provide electrons in many 

enzymatic and non-enzymatic reactions. It is a water-soluble metabolite, which can reach up to 

300 mM concentration in different organelles of the plant cells (Smirnoff, 2008), and present 

in distinct subcellular compartments, about 30 to 40% of the total ascorbate is available in the 

chloroplast (Gill and Tuteja, 2010).  

The ascorbate redox system consists of L-ascorbic acid, monodehydroascorbate (MDHA) and 

dehydroascorbate (DHA). Smirnoff (2000b) has been reported that AsA mostly remain 

available in reduced form in leaves and chloroplasts under normal physiological conditions. 
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The reduced pool of AsA is maintained due to the activity of monodehydroascorbate reductase 

(MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and glutathione 

(Gill and Tuteja, 2010). Evidence to support the actual role of DHAR, GSH and GR in 

maintaining the foliar AsA pool have been observed in transformed plants overexpressing GR 

(Foyer et al., 1995). Furthermore, it can protect membranes by directly scavenge the O2
•− and 

OH• and by regenerate α -tocopherol from tocopheroxyl radical. In plants, mitochondria played 

a central role in metabolism and biosynthesis of AsA by L-galactono-γ-lactone dehydrogenase 

(EC 1.3.2.3), being posteriorly transported to other organelles via active transport or facilitated 

diffusion (Sharma et al., 2012). Ascorbic acid has essential function in AsA-GSH cycle, as well 

as maintained the activities of enzymes that contain prosthetic transition metal ions (Noctor and 

Foyer, 1998). 

 Glutathione (GSH) 

The tripeptide glutathione (γ-glutamyl-cysteinyl-glycine) is a crucial low molecular weight 

non-protein thiol. GSH is a potential scavenger that can react chemically with O2
•−, •OH and 

H2O2 and therefore functions as a master regulator of intracellular redox homeostasis (Sharma 

et al., 2012). It is localized in all cell compartments like cytosol, endoplasmic reticulum, 

vacuole, mitochondria, chloroplasts, peroxisomes as well as in apoplast (Mittler and Zilinskas, 

1992, 1993; Jimenez et al., 1997, 1998). GSH plays a central role in several physiological 

processes, including regulation of sulfate transport, signal transduction, conjugation of 

metabolites, detoxification of xenobiotic compounds (Xiang et al., 2001), expression of stress-

responsive genes (Mullineaux et al., 2005) and serving as an electron-donating cofactor in 

biochemical reactions (Cobbett and Goldsbrough, 2002; Noctor et al., 2011). GSH plays a 

fundamental role in the antioxidative defense mechanism by regenerating another antioxidant 

component, like AsA via the AsA-GSH cycle (Foyer and Halliwell 1976). Under normal 

conditions, total tissue glutathione pool is mostly reduced; ratios of the reduced and oxidized 

forms (GSH/GSSG) in leaves are usually no less than 20:1 (Noctor et al., 2012). Many scientific 

reports indicate that GSH is one of the most important scavengers of ROS, and its ratio with 

oxidised glutathione (GSSG) may be used as a marker of oxidative stress.  

 Glutathione half-cell reduction potential 

The most important components which can determine the redox state of the cell are the pyridine 

nucleotides (NADPH/NADP+; NADH/NAD+), glutathione (2GSH/GSSG), ascorbate 

(AsA/DHA), thioredoxins (TRXred/TRXox), tocopherols, glutaredoxins, peroxiredoxins and 
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thiol proteins (Dietz, 2003; Kocsy et al., 2013; Halliwell and Gutteridge, 2015). Many reports 

indicate that the level of stress tolerance in the plants were highly correlated with the redox 

change (H2O2 level, AsA and GSH concentration and the ratio of their reduced to oxidized 

form) and the reduction potential of the GSH/GSSG couple (Soltesz et al., 2011). Glutathione 

reduction potential (EGSH) depends on the absolute glutathione concentration and the ratio of 

GSH to GSSG (Meyer and Hell 2005). The reduction potential of the GSH/GSSG couple (half-

cell reduction potential; Ehc) can be calculated from concentrations of GSH and GSSG by using 

the Nernst equation applying the formula of Schafer and Buettner (2001). Aller et al. (2013), 

reported that under optimal conditions, cytosolic GSH buffer is immensely reduced and hence 

more negative than −310 mV and changes in the EGSH can drastically affect the plant 

development. Increase of EGSH to −260 mV (e.g., in the roots of root meristemless1 (rml1) 

mutants) is sufficient to prevent the cell cycle G1/S progression and induced large changes in 

the transcript profiles of roots and shoots and an increase to −170 mV instigate the apoptosis in 

Arabidopsis (Aller et al., 2013; Schnaubelt et al., 2015).  

2.5 Enzymatic antioxidant defense system 

The antioxidant enzymes include superoxide dismutase (SOD), catalase (CAT), ascorbate 

peroxidase (APX), MDHAR, DHAR, GR, glutathione peroxidase (GPX) and guaiacol 

peroxidase (POX) (Fig. 2.). 

 Superoxide dismutase (SOD; EC 1.15.1.1.)  

The first line of defence provided by the SOD isoforms against the ROS-induced damages in 

the plants (Gratão et al., 2005; Soares et al., 2019). The antioxidant SOD enzyme belongs to 

metalloenzymes group can catalyze the transformation of O2
•− by dismutation into H2O2 and O2 

(Giannopolitis and Ries, 1977). SOD antioxidants enzyme prevents the possibility of OH• 

formation by the Haber-Weiss reaction which is extremely reactive and may cause serious 

damage to membrane lipids, proteins and DNA macromolecules (Ahmad et al. 2010; del Río et 

al., 2018; Luis et al., 2018). SOD is a part of antioxidant defense system plays a key role in 

maintaining cellular defense against ROS and providing help to the plants against combating 

the environmental stresses. Based on the metal cofactors, SODs are classified into three known 

types: the copper/zinc (Cu/Zn-SOD), the manganese (Mn-SOD) and the iron (Fe-SOD), which 

are localized in different cellular compartments (Mittler 2002). SOD activity is increased by 

abiotic stress conditions (Boguszewska et al., 2010). Moreover, the improvement of stress 
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tolerance in plants over-expressing SOD genes underlines the vital role of these enzymes in 

counteracting the potential adverse effects of ROS (Gill et al., 2015). 

 Catalase (CAT; EC 1.11.1.6)  

Catalases are tetrameric heme-containing proteins with pivotal enzymatic function; able to 

remove of peroxisome-generated H2O2 by directly catalyzing the dismutation of H2O2 into H2O 

and O2 (Gill and Tuteja, 2010) without the need of reducing cofactors, was the first antioxidant 

enzyme to be discovered and functionally characterized (Sharma et al., 2012; Soares et al., 

2019). Among all the antioxidant enzyme, CAT has one of the highest turnover rates and able 

to reduce 6 million molecules of H2O2 to H2O and O2 per minute (Gill and Tuteja, 2010). 

However, plant catalases have relatively low affinity for H2O2, meaning that catalase activities 

rise linearly as H2O2 levels increase (Mhamdi et al., 2012; Soares et al., 2019). There are three 

catalase genes (CAT1, CAT2 and CAT3) in the Arabidopsis thaliana (Frugoli et al., 1996; Hu 

et al., 2010) and their expression patterns indicate that these genes help in the elimination of 

H2O2 in the metabolic processes such as β-oxidation of fatty acids, photorespiration and 

senescence, respectively (Mhamdi et al., 2012). At the subcellular level, it is not only present 

in the peroxisome, but in other cell compartments like cytosol, chloroplasts, and mitochondria 

(Mhamdi et al., 2010). 

 Enzymes of the ascorbate-glutathione (AsA-GSH) cycle  

The Foyer-Halliwell-Asada pathway (other name is ascorbate–glutathione cycle; AsA-GSH) is 

an important pathway to scavenge H2O2 in which ascorbic acid (AsA) is used as the electron 

donor (Gill and Tuteja, 2010; Polle, 2001). The AsA-GSH cycle mainly involves in the 

consecutive oxidation and reduction of AsA, GSH, and NADPH catalyzed by these following 

enzymes: APX, MDHAR, DHAR, and GR.  

2.5.3.1 Ascorbate peroxidase (APX; EC 1.11.1.11) 

APX is a central component of AsA-GSH cycle and involved in scavenging of H2O2 in water-

water and AsA-GSH cycles (Foyer and Noctor, 2003, 2005a, b). APX utilized two molecules 

of AsA to reduce H2O2 to water molecule with a concomitant generation of two molecules of 

MDHA (Sharma et al., 2012) and plays a crucial function in the regulation of intracellular ROS 

levels (Mittler et al., 2004; Sharma et al., 2012). APX isoenzymes have much higher affinity 

for H2O2 than CAT (Wang et al., 1999; Soares et al., 2019) and can also exert its functions even 

with low amount of this ROS, while CAT is mainly participated in preventing H2O2-induced 
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cellular damage by eleminating excessive ROS production (Mittler, 2002). APX not only 

responsible for modulation of H2O2 levels necessary in signaling events but also act as an 

efficient scavenger of H2O2 under stressful conditions. 

2.5.3.2 Monodehydroascorbate reductase (MDHAR; EC 1.6.5.4.) and dehydroascorbate 

reductase (DHAR; EC 1.8.5.1.)  

The scavenging of H2O2 by APX leads to the formation of a very unstable MDHA radical, and 

if not rapidly reduced, it nonenzymatically disproportionates to AsA and DHA (Ushimaru et 

al., 1997; Smirnoff et al., 2000a). MDHAR and DHAR are essential participants of the AsA-

GSH cycle as they both help ascorbate to get reduced from either monodehydro ascorbate or 

dehydroascorbate (Inze´ and Van Montagu, 1995; Asada, 2006). So far, MDHA can also be 

reduced by MDHAR, a flavin adenine dinucleotide (FAD) containing enzyme using reducing 

power from NAD(P)H (Park et al., 2016). Due to the nonenzymatic disproportion of MDHA to 

AsA and DHA, the very short-lived DHA can either be hydrolyzed irreversibly to 2,3-

diketogulonic acid or recycled to AsA by DHAR. DHAR classified as a monomeric thiol 

protein, is a necessarily present in seed tissues, roots and green organs (Eltayeb et al., 2007). 

DHAR enzyme is a crucial element of the AsA-GSH cycle, allowing the regeneration of AsA 

from its oxidized form DHA using GSH as the electron donor; consequently, it also contributes 

to the regulation of redox balance (Hossain et al., 1984; Mittler, 2002; Jaleel et al., 2009; Gill 

and Tuteja, 2010; Soares et al., 2019).  

2.5.3.3 Glutathione reductase (GR, EC 1.6.4.2.)  

GR is a flavo-protein oxidoreductase and potential enzyme of the AsA-GSH cycle. GR is 

mainly present in chloroplasts, but it can be located in mitochondria, cytosol and peroxisome 

too (Gill and Tuteja, 2010). It catalyzes the reduction of GSSG to GSH, allowing the 

maintenance of GSH/GSSG ratio (Yannarelli et al., 2007), therefore it is regarded as playing 

an important role in defense system against ROS by maintaining the GSH pool of cells (Arora 

et al., 2002; Gill and Tuteja, 2010). 

 Guaiacol peroxidase (POX; EC: 1.11.1.7) 

POX, a heme-containing protein can regulate H2O2 intracellular levels using different organic 

aromatic electron donor compounds such as guaiacol or pyrogallol (Gill and Tuteja, 2010). 

Guaiacol peroxidase is a ubiquitous protein; structurally composed by monomers of around 40–

50 kDa and possesses four conserved disulfide bridges and two structural Ca2+ ions (Gill and 
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Tuteja, 2010; Das and Roychoudhury, 2014). POX isoenzymes can be found explicitly in 

distinct plant organs and organelles, especially in vacuoles, cytosol and cell wall (Sharma et al., 

2012). POXs are not only widely accepted as a stress enzyme but also participates in many 

critical biosynthetic processes, contributing to cell wall’s lignification, wound healing, 

catabolism of IAA, and biosynthesis of ethylene (Sharma et al., 2012). 

 Glutathione transferases (GSTs; EC 2.5.1.18) 

GST represents a very ancient class of enzymes that participate in a broad network of catalytic 

and regulatory functions and their existence in different types of organisms, including animals 

and plants (Basantani and Srivastava, 2007; Ghelfi et al., 2011). Plant GSTs are grouped into 

ten different classes, and generally they are cytoplasmic, but some isoenzymes were also been 

present in chloroplasts, apoplasts and microsomes (Gill and Tuteja, 2010), among them the tau 

(GSTU), phi (GSTF), lambda (GSTL) and dehydroascorbate reductase (DHAR) are specific to 

plants. The tau and phi classes are mostly responsible for catalyzing the conjugation of GSH 

with a wide range of electrophilic substrates (Marrs, 1996; Gill and Tuteja, 2010; Cummins et 

al., 2011). Their most known function is the detoxification of exogenous and endogenous 

harmful toxic compounds, including herbicides, xenobiotics and endogenous stress metabolites. 

Besides their function as necessary antioxidant enzymes, they have also been involved in 

numerous redox, hormone, and stress responses. Glutathione-dependent peroxidase activity can 

be associated with GST isoenzymes and can convert lipid peroxides and other peroxides to less 

harmful compounds (Edwards et al., 2000; Horváth et al., 2019). 

 Thiol-based peroxidases 

Peroxidases oxidize various substrates utilizing H2O2 or organic hydroperoxides, hence they are 

involved in scavenging of ROS (Bela et al., 2015). Peroxidases can be divided in heme-based 

and thiol-based peroxidases. CAT, APX and POX (already described above) are heme co-

factor-containing peroxidases, while into the non-heme-containing peroxidases belong 

glutathione peroxidases (GPX; EC 1.11.1.9) and thioredoxin peroxidases, which possess redox 

active cysteine or selenocysteine residues in their active site (Bela et al., 2015; Dietz, 2016). 

Both GPXs and GSTs reduce H2O2 and hydroperoxides by thiol-mediated pathways (Dietz et 

al., 2002; Chang et al., 2009; Bela et al., 2015). According to some authors, enzymes like GSTs 

can also be considered as thiol-based peroxidases; however, strictly, only thioredoxin 

peroxidases and GPXs are thiol peroxidases, due to their high affinity to peroxides (Dietz, 

2016). 
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The plant thiol peroxidases can be classified into five subgroups, which include the 2-Cys Prx, 

1-Cys Prx, type II Prx, Prx Q and GPX type peroxidases (Rouhier and Jacquot, 2005). In 

Arabidopsis thaliana 18 thiol peroxidases were identified: one 1-Cys Prx, two 2-Cys Prxs, six 

type II Prxs, one type Q Prx and eight GPXs (http://peroxibase.toulouse.inra.fr; Koua et al., 

2009, Bela et al., 2015  

2.6 Glutathione peroxidases (EC 1.11.1.9, EC 1.11.1.12 and EC 1.11.1.15) 

GPX enzymes are non-heme thiol peroxidases that catalyse the reduction of H2O2 or organic 

hydroperoxides to water or corresponding alcohols using reduced glutathione or thioredoxin 

(TRX) (Arthur, 2000; Battin and Brumaghim, 2009; Yang et al., 2016; Bela et al., 2018). The 

first time, Mills observed the reaction with H2O2 in enzyme preparations from mammalian red 

blood cells and coined the term glutathione peroxidase; mostly accepted abbreviation of them 

is GPXs (Mills, 1957; Bela et al., 2015). The mammalian GPXs are central components of 

processing ROS and lipid peroxides, thus they participate in the maintenance of the membrane 

integrity (Islam et al., 2015). GPXs act as intermediate signaling molecules that can pass the 

redox signals via the oxidation of cysteine-containing proteins involved in the signaling, such 

as phosphatases, kinases, and transcription factors can be induced or regulate the different 

pathways (Luo et al., 2005; Marinho et al., 2014). In the sperm of mammals, after oxidization 

of GPX4 by hydroperoxide act as signal transducer and reacts with sperm mitochondria-

associated cysteine rich proteins and involved in the sperm motility (Maiorino et al., 2005). 

GPX1 regulates the insulin signaling by affecting of the hydrogen peroxide homeostasis, it also 

helps to prevent oxidative DNA damage and inhibit the initiation of carcinogenesis (Baliga et 

al., 2007; Brigelius-Flohé and Kipp, 2009; Bela et al., 2015). Moreover, GPX2 and GPX3 are 

not only involved in the oxidative stress, but also connected to many types of inflammation and 

cancer even to obesity (Lee et al., 2005, 2008; Dittrich et al., 2010; Burk et al., 2011; Brigelius-

Flohé and Kipp, 2012). Some reports indicate that, GPX7 and GPX8 supposed to be involved 

in the re-oxidation of protein disulphide isomerase during the protein folding in the endoplasmic 

reticulum (Brigelius-Flohé and Maiorino, 2013). In Saccharomyces cerevisiae, the GPX-like 

enzyme Orp1 (GPX3) has been reported to act as hydroperoxide sensor (receptor and redox 

transducer) that promotes the oxidation of Yap1 transcription factor to its intra-molecular 

disulfide bond (Delaunay et al., 2002). This relay mechanism has been exploited for the 

development of genetically encoded H2O2-sensors (Gutscher et al., 2009). The role of GPXs in 

signaling occurs in a wide range of organisms.  
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In contrast to the animal enzymes, the plant enzymes contain cysteine in their active site instead 

of selenocysteine, and most of them prefer TRX as electron donor rather than GSH (Figs. 3 and 

4) (Herbette et al., 2002; Iqbal et al., 2006; Navrot et al., 2006; Lubos et al., 2011, Bela et al., 

2018). Attacha et al. (2017) suggested using the GPX-like (GPXL) nomenclature for the 

Arabidopsis thaliana isoforms to avoid any confusion resulting from protein names, and now 

this abbreviation is applied in all referees to the earlier published information concerning plant 

glutathione peroxidases. The plant glutathione peroxidase-like genes are closely related to 

animal phospholipid hydroperoxide glutathione peroxidases (Margis et al., 2008), and it was 

reported that plant isoenzymes reduce more efficiently peroxides different from H2O2 such as 

lipid peroxides (Milla et al., 2003). They are commonly considered as one of the key players in 

the enzymatic defence system of plants. 

Fig. 3. Detoxification of H2O2 by plant glutathione peroxidase-like (GPXL) enzymes. GPXLs converts 
hydrogen peroxide into water using reducing equivalents from thioredoxin (TRXred). The oxidized TRX 
(TRXOX) is again converted into reduced form by NADPH-dependent thioredoxin reductase (NTR) 
(https://images.app.goo.gl/x3uJqGPrbGP8Q3b68). 
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Fig. 4. Model of the Arabidopsis GPXL8 and TRXh3 complex interaction. During the GPX 
regeneration, the CYS-39 of TRXh3 forms a disulfide bond with the CYS-89 of AtGPXL8, while 
aromatic residues could involve in the protein-protein interaction (Koh et al., 2007). 

A conserved structure of GPXs protein consists of a central β-sheets surrounded by α-helices 

(Koh et al., 2007), some mammalian GPXs forms the tetramers due to facilitated by their 

oligomerization loop between the α3-helix and β6-strand (Toppo et al., 2008). Interestingly, 

oligomerization loops do not exist in the plants GPXLs are reside in the monomeric forms 

(Maiorino et al., 1995, Navrot et al., 2006) except for the poplar (Populus trichocarpa) GPXL5, 

which showed a unique dimerization pattern mainly depending on hydrophobic contacts and 

was able to interact with Cd2+ ions (Fig. 5, Koh et al., 2007).  

 

Fig. 5. Proposed catalytic and TRX-dependent recycling mechanisms for poplar GPXL: (i) Nucleophilic 
attack of Cys-107 on peroxide (ROOH) leading to the formation of a sulfenic acid and the concomitant 
release of an alcohol; (ii) Formation of an intramolecular disulphide bridge between Cys-107 and Cys-
155; and (iii) Reduction of the intramolecular disulfide bridge by TRX leading to a reduced enzyme and 
an oxidized TRX (Navrot et al., 2006). 
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However, AtGPXL genes encode a protein of 167-236 amino acid residue long, 18.9-26.0 kDa 

molecular weight with 5.11-9.53 pI value and contained only six exons in the transcripts. 

Despite the highly conserved structures of Arabidopsis GPXLs members, some minor 

variations were also present. It seems that these divergences in GPXLs may not change the 

protein-3D structure, but they could attribute the new functional roles to catalytic activities (Fig. 

6). 

Fig. 6. 3D models of predicted Arabidopsis glutathione peroxidase GPXL1-8 sequences. Models were 
constructed by using Phyre2 server for AT2G25080.1 (GPXL1), AT2G31570.1 (GPXL2), 
AT2G43350.1 (GPXL3), AT2G48150.1 (GPXL4), AT3G63080.1 (GPXL5), AT4G11600.1 (GPXL6), 
AT4G31870.1 (GPXL7), and AT1G63460.1 (GPXL8) sequences, and colored by rainbow from N- to 
C-terminus (Ozyigit et al., 2016). 

Plant GPXLs contains three conserved cysteines in their catalytic sites, but only two of them, 

the so-called peroxidatic (CysP-S−) and the third one, the resolving cysteines (CysR-SH) take 

part in the catalytic activity (Navrot et al., 2006; Koh et al., 2007). During the reduction of 

peroxide, firstly peroxidatic cysteine transformed into the sulfenic acid (CysP-SOH), and after 

the concomitant release of an alcohol molecule, resolving cysteine form an intramolecular 

disulphide bridge with the peroxidatic cysteine, protecting CysP-SOH against overoxidation 

(Waszczak et al., 2014). However, in the Chinese cabbage the second and third cysteines might 

be having an involvement in the formation of disulphide bridge, while mostly in other plants 

the third cysteine is the resolving type (Jung et al., 2002; Navrot et al., 2006). The 2-Cys 

disulfide is reduced by thioredoxin – a low-molecular-weight protein with two vicinal Cys 
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residue (Fig. 5) – or by glutathione (Jung et al., 2002; Iqbal et al., 2006; Koh et al., 2007; Toppo 

et al., 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Amino acid sequence alignment of GPXLs from Arabidopsis thaliana. Numbering is according 
to GPXL1. Arrows mark the three conserved cysteines present in Arabidopsis GPXLs. Sequences were 
aligned by Mafft with default settings using JalView. Gaps within the signal peptides until position 70 
were removed manually. Highly similar residues (Score >0.8) are framed and coloured in red. Identical 
residues are marked in white letters on red background (Attacha et al., 2017). 

Glutathione and thioredoxin are the main components of cellular redox homeostasis and 

critically involved in healthy plant growth, development, successful organogenesis and 

regeneration of cultured cells (Marty et al., 2009; Bashandy et al., 2010; Lu and Holmgren 

2014; Bela et al., 2017). Reduced thiols are important for the processes that determine the root 

architecture (Benitez-Alfonso et al., 2009). Characterization of the Arabidopsis root 
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meristemless1 (rml1) mutant, which has damaged GSH biosynthesis (Vernoux et al., 2000), 

displayed altered expression of several hundred genes (Schnaubelt et al., 2015). GSH deficient 

mutants rml1 are unable to maintain the root apical meristem, however, the shoot apical 

meristem of rml1 mutants is not much affected, might be due to the thioredoxin-dependent 

control (Diaz Vivancos et al., 2010). Among the genes regulated by low GSH, numerous encode 

redox-related proteins, such as glutaredoxins (GRXs), h-type thioredoxins (TRXhs) and 

GPXLs. During the acute shortage of glutathione, more TRX is used as electron donor 

compared to the GSH, suggesting having a possible connection between the reduced GSH- and 

TRX systems (Schnaubelt et al., 2015). 

The plant GPXLs are present in different plant tissues, compartments and developmental stages 

(Bela et al., 2015). The plant glutathione peroxidase gene family has been studied and 

characterized in many plant species including Arabidopsis thaliana (Rodriguez Milla et al., 

2003), Lotus japonicus (Ramos et. al., 2009), Thellungiella salsuginea (Gao et al., 2014), Oryza 

sativa (Islam et al., 2015), Gossypium hirsutum (Chen et al., 2017), Cucumis sativus (Zhou et 

al., 2018), Sorghum bicolor (Akbudak et al., 2018) and Triticum aestivum (Tyagi et al., 2018). 

The Arabidopsis genome encodes 8 GPXL isoforms, which have been predicted to be localized 

in different subcellular compartments. AtGPXL1 and AtGPXL7 are chloroplastic proteins, 

AtGPXL2 and AtGPXL8 are localised in cytosol as well as in nucleus, AtGPXL6 can be found 

in cytosol and mitochondria, AtGPXL3 is a transmembrane protein of the secretory pathway, 

while AtGPXL4 and AtGPXL5 are associated to the inner side of the plasma membrane 

(Attacha et al., 2017).  

The chloroplastic isoenzymes AtGPXL1 and AtGPXL7 showed 82% amino acid similarity and 

are considered to be specific for chloroplasts. Milla et al. (2003) assumed their overlapping 

function because of the high sequence homology; however, both genes have different 

expression patterns under different stimuli (Chang et al., 2009). Chang et al. (2009) reported 

their role in photooxidative stress and immune response, and AtGPXL1 might be involved in 

the defence against the virulent pathogen infection. In the leaves of single insertional mutant 

Atgpxl7 or antisense double mutants (Atgpxl1 and Atgpxl7) showed higher H2O2 levels so that 

reduced the tolerance against photooxidative damage but enhanced the cell death and improved 

the basal resistance to virulent Pseudomonas bacteria. Additionally, a mutation can alter the 

leaves and chloroplast morphology: transgenic lines had irregular spongy mesophyll cells and 

larger intercellular air spaces and more abundant starch grains in the chloroplast compared to 

the wild type. Their essential role was also reported in the chloroplastic ROS homeostasis and 



22 
 

redox signaling between cellular compartments that may coordinate acclimatory and defense 

responses (Chang et al., 2009). The important role of AtGPXL7 has been verified in the 

regulation of the shoot and root development (Passaia et al., 2014). 

The least investigated isoenzyme AtGPXL2 was found in the cytoplasm as well in the nucleus. 

Xu et al. (2010) reported as a part of an antioxidant defense system and involved in the stress 

defence by converting H2O2 into H2O. AtGPXL2 gene exhibited the highest expression level 

among AtGPXLs in the shoot and roots of 10-day-old wild type seedlings (Passaia et al. 2014).  

However, the transcript level of AtGPXL2 interestingly decreased under osmotic stress caused 

by mannitol (Milla et al., 2003), but salt treatment increased the transcript level of AtGPXL2 

(Gao et al., 2014). Based on the results of Bela et al. (2018), the important role of AtGPXL2 in 

the stress response and development can be assumed. 

AtGPXL8 was also found in the cytosol and in the nucleus (Gaber et al., 2012), and the 

localization of AtGPXL8 was proved later by the Attacha et al. (2017). The most important role 

of AtGPXL8 is not only the protection of nucleic acid from the oxidative stress by scavenging 

the harmful peroxidases, but also the protection of nuclear cellular components (nucleus). 

AtGPXL8 knockout and overexpressing Arabidopsis transgenic plants showed decreased and 

increased tolerance against paraquat, respectively, that was correlated with enlarged and 

reduced growth inhibition (Gaber et al., 2012). According to the transcriptional data, the gene 

expression level of AtGPXL8 was upregulated by hypoxia, germination, callus formation, short 

term treatment of ABA and SA and long term of cold treatment; however, its expression level 

was down regulated by long term effect of drought stress and ABA treatment (Bela et al., 2015). 

The induction of AtGPXL8 gene in Arabidopsis shoot by plant hormones indicated that 

phytohormones regulate the AtGPXL8 gene expression (Gaber, 2011; Bela et al., 2015). 

The putative localization of AtGPXL6 in mitochondria and the cytosol has been reported and 

explained by an assumption that it may encode mitochondrial and cytosolic enzymes by 

alternative initiation (Milla et al., 2003). The mitochondrial localization of AtGPXL6 is also in 

agreement with the identification of AtGPXL6 in the proteome of mitochondria in Arabidopsis 

(Yoshida et al., 2013). Beside AsA-GSH cycle, PRX-IIF and APX, the most suitable candidate 

for direct detoxification of H2O2 or preventing lipid peroxidation in mitochondria would be 

AtGPXL6 using TRX as an electron donor system. The mitochondrial potato homolog of 

AtGPXL6 has been found to be a potential target of TRX (Balmer et al., 2004). In Arabidopsis, 

two TRX proteins (TRXo1 and TRXo2) have been reported in mitochondria (Laloi et al., 2001) 

that can potentially act as a physiological electron donor for AtGPXL6. Sugimoto and 
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Sakamoto (1997) proved that the AtGPXL6 expression level elevated in salt and osmotic stress 

as well as under the influence of aluminum and iron treatments (Noctor et al., 2011). Other 

studies have also shown that the expression level of AtGPXL6 is mostly affected by abiotic 

stress and higher expression level were measured in the protoplast and guard cells (Milla et al., 

2003). 

AtGPXL3 is a monomeric transmembrane protein of the secretory pathway with enzymatically 

active portions of the Golgi lumen (Attacha et al., 2017). Atgpxl3 mutants have been shown to 

be more sensitive to drought stress and AtGPXL3 overexpressed lines as drought tolerant, and 

higher H2O2 content than wild-type plants (Miao et al., 2006, 2007). According to the results 

of Miao et al. (2006), AtGPXL3 functions as both a cytosolic redox transducer and a scavenger 

of H2O2 in abscisic acid (ABA) and drought stress responses in the guard cell. It was 

demonstrated that AtGPXL3 does not only have a scavenging function but can also interact 

with 2C-type protein phosphatase ABA INSENSITIVE2 (ABI2), therefore it functions as an 

oxidative signal transducer in ABA and drought stress signaling. To support the above 

hypothesis, Miao et al., (2006) provided data indicating physical interaction of AtGPXL3 with 

the ABI1 and ABI2 proteins in both yeast two-hybrid and pull-down assays as well as 

bimolecular fluorescence complementation for GPXL3 and ABI2 fused with yellow fluorescent 

protein (YFP)-fragments complementing each other in the cytosol. The Atgpxl3 mutation 

disrupted the ABA activation of calcium channels and the expression of ABA- and stress-

responsive genes (Miao et al., 2006). Passaia et al. (2014) reported the role of AtGPXL3 also 

in the root development in ABA-independent manner. 

The AtGPXL4 and AtGPXL5 are poorly investigated GPXL isoenzymes of Arabidopsis. They 

are anchored to the plasma membrane, but they do not have a transmembrane domain (Attacha 

et al., 2017). In in vitro studies, biochemically these recombinant proteins are capable of 

scavenging H2O2 and organic hydroperoxide using thioredoxin as an electron donor but, 

interestingly, AtGPXL5 was unable to reduce the cumene hydroperoxide substrate by either 

TRX or GSH (Iqbal et al., 2006). Iqbal et al. (2006) reported their essential roles in the redox 

homeostasis by the equilibrium of thiol/disulfide or NADPH/NADP+ ratio. The transcript level 

of AtGPXL4 and AtGPXL5 were significantly notable in the pollen, stamen and phloem, but the 

expression level of AtGPXL4 in the shoot and root was below the detection level (Passaia et al., 

2014). According to data found in the Genevestigator database, AtGPXL5 is expressed in all 

developmental stages of Arabidopsis plants, both in shoots and roots (Bela et al., 2015). The 

phenotype of the Atgpxl5 mutants with severely decreased AtGPXL5 expression showed a rather 
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small alteration (Bela et al., 2018). Our earlier experiments conducted on 6-week-old 

hydroponically grown plants revealed relatively low AtGPXL5 transcript amounts compared to 

the other AtGPXLs both in control conditions and after applying salt or osmotic stress (Bela et 

al., 2018). In silico promoter analysis of the AtGPXL5 gene revealed the presence of two cis-

regulatory sequences connected to seed development (AAGAA-motif and Skn-1_motif), and 

several abiotic stress-related, such as anaerobic responsive element (ARE), heat shock elements 

(HSE), MYB binding sites (MBS) and biotic (Box-W1) stress-related cis-acting elements in the 

5’ regulatory region (Bruce et al., 1991; Washida et al., 1999; Bela et al., 2015).  

Detailed investigation of the GPXL genes and proteins were performed in Arabidopsis and in 

its extreme abiotic stress tolerant relative, Thellungiella salsuginea by Gao et al. (2014). It was 

hypothesized that differences in salt tolerance mechanisms between salt-sensitive glycophytes, 

such as A. thaliana, and salt-tolerant halophytes, such as T. salsuginea, are resulted from 

changes in the regulation of the same basic set of genes involved in salt tolerance (Zhu, 2001). 

Comparing the protein and gene expression patterns of glutathione peroxidases in Arabidopsis 

and Thellungiella, Gao and his co-workers found that more GPXL genes were induced under 

salt and osmotic stress conditions in Thellungiella than in Arabidopsis (Gao et al., 2014). 

According to their results, expression of TsGPXL2, TsGPXL3, TsGPXL4/TsGPXL5, and 

TsGPXL7 genes were induced under short-term osmotic treatment in both leaves and roots, and 

four of the encoded proteins (TsGPXL3, TsGPXL5, TsGPXL7 and TsGPXL8) were shown to 

be important for salt and osmotic stress response. Investigating the AtGPXL gene expression 

data found in AtGenExpress, they reported that AtGPXL2, AtGPXL6, and AtGPXL8 were 

significantly up-regulated due to short-term (6-24 h) salt treatments in leaves, and AtGPXL1, 

AtGPXL2, AtGPXL4, AtGPXL6, and AtGPXL7 in roots. GPXL5 was responsive to salt stress in 

Thellungiella, but not in Arabidopsis. It was concluded that the salt stress inducible TsGPXL5 

can be implicated in the enhanced stress tolerance of Thellungiella, moreover, they suggested 

that TsGPXL5 is essential in the effective salt tolerance of Thellungiella (Gao et al., 2014). 
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3. Aims 

Our aims were to investigate the role of AtGPXL5 isoenzyme in the salt stress response of 

Arabidopsis plants and to check the involvement of the enzyme in the oxidative stress 

responses. First the ROS levels and vitality of the Arabidopsis thaliana ecotype Columbia (Col-

0) and a glutathione peroxidase-like 5 T-DNA insertional mutant (Atgpxl5) seedlings were 

compared after applying NaCl stress, then the AtGPXL5 gene was overexpressed in Arabidopsis 

Col-0. Using the Col-0 wild type, the Atgpxl5 mutant and two AtGPXL5-overexpressing lines 

(OX-AtGPXL5-1 and OX-AtGPXL5-2), we were looking for the answers on main questions 

as follows: 

1) Has the AtGPXL5 role in the regulation of ROS and redox homeostasis and in the 

maintenance of the cell’s vitality?  

2) What is the effect of the decreased or increased AtGPXL5 expression on the activity of 

antioxidant mechanisms in control conditions and in the short-term salt stress response? 

Have the AtGPXL5-overexpressing or Atgpxl5 mutant plants altered glutathione redox 

potential?  

3) Has the AtGPXL5 any kind of function in the growth and development of Arabidopsis 

seedlings under control conditions and in the presence of 100 mM NaCl? 
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4. Materials and methods 

4.1 Plant material  

Arabidopsis thaliana (L.) Heynh. ecotype Columbia (Col-0) as a wild type control, a 

glutathione peroxidase-like 5 [AT3G63080] T-DNA insertional knockdown mutant (Atgpxl5, 

SALK_076628C) (Bela et al., 2018) and AtGPXL5-overexpressing lines (OX-AtGPXL5-1, 

OX-AtGPXL5-2) were investigated. The relative expression levels of the AtGPXL5 gene in 

these knockdown mutants were 0.27 and 0.16 in shoot and root, respectively, compared to the 

wild type (Bela et al., 2018). The T-DNA insertional line was obtained from the Nottingham 

Arabidopsis Stock Centre (NASC) (Scholl et al., 2000), and a homozygous mutant was used 

(Riyazuddin et al., 2019).  

 Growth conditions and stress treatments 

In the present study, two different experimental systems were applied. Firstly, the growth and 

development of wild type, Atgpxl5 mutant, and two overexpressing lines, OX -AtGPXL5-1 and 

OX-AtGPXL5-2 seedlings were compared in vitro under control conditions and in the presence 

of NaCl. Seeds were surface sterilized (Bela et al., 2018) and, after incubation overnight on 8–

10 °C, germinated on half-strength Murashige and Skoog medium (½ MS, Duchefa Biochemie; 

(Murashige and Skoog, 1962) with 0.5% sucrose. Plants were grown in controlled growth 

chambers (Fitoclima S 600 PLH, Aralab, Rio de Mouro, Portugal) at 21 °C under 100 μmol m−2 

s−1 photon flux density with a 10/ 14 h light/dark photoperiod and the relative humidity was 

65%. For stress treatments, seeds were germinated in the presence of 100 mM NaCl 

(germination assay), or 5-day-old seedlings were transferred to square Petri dishes containing 

½ MS medium supplemented with 100 mM NaCl (Fig. 8). The growth of roots was monitored 

on vertical culture plates containing 0.8% agar after 10 days (Passaia et al., 2014).  
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Fig. 8. 5-day-old seedlings were transferred to the ½ MS media containing the 100 mM of salt 
concentration and were grown vertically. 

Because the Arabidopsis AtGPXL5 showed a relatively low expression level and it was not 

induced by salt stress, but the homologous Thellungiella TsGPXL5 proved to be essential in 

the salt tolerance of plants (Gao et al., 2014), we aimed to overexpress AtGPXL5 gene to 

estimate the involvement of AtGPXL5 in the salt stress response of plants. 

4.2 Cloning of the AtGPXL5 gene and the used vector constructions 

Cloning of the AtGPXL5 gene was performed using the Gateway cloning system. A full length 

of cDNA was inserted into the pDONR201 vector by BP Clonase™ and by LR Clonase™ II 

enzymes (Thermo Fischer Scientific, Vilnius, Lithuania) into the pTCO27235S vector (Rigó et 

al., 2016), following the manufacturer’s instructions. Recovered clones were tested by 

sequencing using the pTCO35S new 5’ oligonucleotide (pTCO35SNEW5': 

GCAGGACGATCCGTATTTTTACAAC) (Rigó et al., 2016, Supplementary Table 1). The 

verified pTCO27235SAtGPXL5 binary vector construction (Fig. 9A, B) was transformed into 

GV3101/pMP90 Agrobacterium strain with tri-parental mating (Koncz et al., 1994). The 

presence of the proper sequence was confirmed using the pTCO35SNEW5' forward and the 

T35S/RD29rc reverse primers (T35S/RD29rc3': GGACTCTAGCATGGCCGCGGG) 

(Supplementary Table 1). To generate constitutively overexpressing AtGPXL5 lines, 

pTCO27235SAtGPXL5 construct was introduced into Arabidopsis Col-0 plants by 

Agrobacterium-mediated transformation as follows: Agrobacterium tumefaciens GV3101 

(pMP90) carrying the pTCO27235SAtGPXL5 construct were inoculated in liquid YEB media 

(5 g/L beef-extract, 1 g/L yeast extract, 5 g/L peptone (casein-hydrolysate), 5 g/L sucrose and 

2 mM MgSO4) containing 50 mg/L spectinomycin, 100 mg/L rifampicin and 25 mg/L 

gentamicin and grown overnight at 27°C. Cells were collected by centrifugation and 

resuspended in distilled water supplemented with 5% sucrose and 0.01% SILWET L-77 (Arysta 
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Lifescience; Hungary). Arabidopsis inflorescences were dipped into the Agrobacterium 

solution and covered with a foil paper for 24 hours. Plant transformation was repeated two times 

allowing 5-6 days between each infiltration. The primary transformants (T1) were selected in 

the greenhouse on the bases of survivorship after spraying with Basta herbicide (300 mg/L 

glufosinate‐ammonium; Bayer Cropsience, Hungary) according to Rigó et al. (2012) (Fig. 10). 

The AtGPXL5 gene expression level was measured in 10 transformant plants and two of them 

with the highest AtGPXL5 transcript amounts (OX-AtGPXL5-1 and OX-AtGPXL5-2) were 

introduced into our experiments. The seeds of the T3 generation of the genetically stable 

transformants were used in our experiments. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Overexpression of Arabidopsis glutathione peroxidase-like5 gene. Schematic maps of the 
pCaMV35S-AtGPXL5 gene construct (A) and the pTCO27235SAtGPXL5 binary vector (B). 
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Fig. 10. Selection of primary transformants (T1) after spraying with Basta herbicide (300 mg/L 
glufosinate‐ammonium). The base of the selection was the robust growth of green transformed 
seedlings, while the untransformed plants were died. 

4.3 RNA extraction, expression analyses with quantitative real-time PCR (qRT-PCR) 

The expression rate of AtGPXL5 gene was determined by RT-qPCR after the purification of 

RNA from 100 mg plant material according to Chomczynski and Sacchi (1987), as was 

described in Bela et al. (2018). Plant material was collected from root and shoots of 6-week-

old hydroponically grown Col-0, Atgpxl5 and OX-AtGPXL5 plants. The concentration of the 

isolated RNA samples was checked on a Biophotometer plus microvolume spectrophotometer 

(Eppendorf; Germany). cDNA synthesis of 1 µg of total RNA was carried out in a total volume 

of 20 µL using reverse transcriptase (Thermo Fisher Scientific; USA) and random hexamer 

primers. To check the purity of cDNA synthesis, control transcripts without reverse 

transcriptase were also constructed and then PCR samples were run on the gel to check the 

purity. Diluted cDNA was used for the qRT-PCR reaction as a template, Luminaris Color 

HiGreen qPCR Master Mix (Thermo Scientific; USA), high rhodamine-X (ROX) reaction 

mixture, and primers in accordance with the manufacturer's instructions in a final volume of 10 

µl. The used oligonucleotide sequences are: F: 5’AATGGAAAATTGACCGGAATGT3’; R: 

5’CGGTGAGATCAACAACTGAGACA3’ (Supplementarry Table 1). Quantitative real time 

PCR (qRT-PCR) was carried out applying the SYBR Green master mix (Thermo Fisher 

Scientific) with the Fast Real Time System (qTOWER Real-Time qPCR System, Analytik Jena, 

Jena, Germany) following the next protocol: denaturation at 95 °C for 7 minutes, followed by 

40 cycles of denaturation at 95°C for 15 s and annealing extension at 60°C for 60 s. To analyse 

the qRT-PCR data, we used qTOWER Software 2.2 (Analytik Jena, Jena, Germany) software. 

Data from the RT-qPCR analysis were calculated using the 2-(ΔΔCt) formula (Livak and 

Schmittgen, 2001). The glyceraldehyde-3-phosphate dehydrogenase-2 (GAPDH2) gene 
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[At1G16300] was used as internal control for data normalization. To demonstrate the 

differences in the expression level of AtGPXL5, the transcript amount in the Arabidopsis 

thaliana Col-0 control shoot and root samples were considered to be one. 

4.4 Detection of ROS levels and vitality  

5-day-old Arabidopsis thaliana Col-0 (wild type) and Atgpxl5 T-DNA insertional mutant 

seedlings were transferred to ½ MS media containing different concentration of NaCl (50 mM 

NaCl and 100 mM NaCl) and were grown further for 7 days. Besides the investigation of the 

superoxide anion level; total ROS level and the cell vitality was detected of by fluorescent 

microscope (Zeiss Axiowert 200 M microscope, Carl Zeiss, Jena, Germany). 

To measure the level of superoxide radical anion, 12-day-old seedlings after applying 7 days of 

salt stress were incubated in 2 ml of 10 μM dihydroethidium (DHE) dye for 30 min at 37°C and 

then sample were washed more than 2 times with the Tris-HCl buffer. DHE dye prepared in 

Tris-HCl buffer (10 mM, pH 7.4) was used to visualise superoxide radical anions in seedlings 

roots according to Horváth et al. (2019). 

For ROS level detection, 2′,7′- dicholorodihydrofluorescein diacetate (H2DCFDA) fluorescent 

dye was used. Seedlings were incubated in 10 μM H2DCFDA (prepared in the 10 mM MES/ 

50 mM KCl, pH 6.15) for 15 min at 37°C and washed 3 times with MES/KCl buffer as it was 

published in Horváth et al. (2019). 

To detect the cell vitality, 10 μM fluorescein diacetate (FDA) (prepared in 10 mM MES/50 mM 

KCl buffer, pH 6.15) was used. 12 days old Arabidopsis seedlings were incubated in 2 mL of 

10 μM fluorescein diacetate (FDA) fluorescent dye for 30 min at 37°C and washed with the 

same buffer at least 3 times as was described in the Horváth et al. (2019). 

The intensity of fluorescence was quantified on digital images using Axiovision Rel. 4.8.2 

software (https://carl-zeiss-vision-axiovision-viewer.software.informer.com/4.8/) in the leaves, 

as well as in the proximal meristem of the roots in a circle with 50 μm radius, or in the middle 

of the leaves in a circle with 150 μm radius. The measurements were performed in three 

independent experiments (n ≥ 15) with the same microscopic settings.  

4.5 Investigation of the growth and development of seedlings 

The germination assay was carried out by counting the number of individual seeds using a small 

stereo microscope (Carl Zeiss Jena 402339) from three independent replicates of 50 seeds that 
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had a protruded radicle. The rate of germination in the presence of 100 mM NaCl or without 

salt was monitored daily for 7 days according to Zsigmond et al. (2012). 

The root length and number of lateral roots were analysed on seedlings grown vertically with 

or without the 10-day-long NaCl treatment. Square Petri plates containing 4 plants from each 

lines were scanned and root lengths were measured using ImageJ software (Schindelin et al., 

2012). Lateral roots were counted and lateral root density (LRD) was calculated by dividing the 

number of visible lateral roots by the primary root length for each root analysed (Passaia et al., 

2014). To measure the fresh weight (FW) the roots belonging to one genotype were pooled 

from 5 plates.  

Morphological parameters (rosette size, convex area, convex percentage) and pigment contents 

(chlorophyll and anthocyanin contents) of in vitro grown 15-day-old Col-0 wild type, Atgpxl5 

mutant and OX-AtGPXL5 seedlings were investigated using PlantSize 

(http://www.brc.hu/pub/psize/index.html) software according to Faragó et al. (2018). Convex 

area shows how large is the area within convex hull that encompasses the image and convex % 

is the ratio of the detected leaf area divided by the convex hull area in pixel unit. The convex 

hull is the smallest convex set of pixels that contains all other pixels in the system. To analyse 

the growth and phenotype of 15-day-old seedling’s shoots color images were taken after 10 

days of treatment with 100 mM NaCl by photographing the plates with white, transmission 

illumination of a transilluminator (biosetup LED) (Fig. 11). Canon 700D digital camera (18.0 

mega pixel APS-C (22.3 x 14.9 mm) sized CMOS sensor, maximum resolution of 5184 x 3456 

pixels with aspect ratios of 1:1, 4:3, 3:2 and 16:9, made in Taiwan) was used without any filter 

to take 2592x1728-pixel images. The following settings were used: ISO: 100, Integration time: 

5.0 millisecond (ms), Aperture: F/5.6, Manual focus, Exposure mode: macro. 
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Fig. 11. An experimental outline for non-destructive image analysis method to monitor the growth and 
physiological parameters. (A) 5 days old seedlings were transferred to ½ MS media supplemented with 
100 mM NaCl and photograph the pictures after 10 days. (B) Workflow of image analysis by PlantSize 
software and subsequent data processing (Modified from Faragó et al., 2018). 

In the second set of experiments, plants were grown in Hoagland nutrient solution. A Hoagland 

nutrients solution is the mixture of the following compounds: 5 mM Ca(NO3)2, 5 mM KNO3, 1 

mM KH2PO4, 2 mM MgSO4, 1 µM Fe-EDTA, 0.0475 µM H2BO3, 14.48 µM MnCl2, 0.8148 

µM ZnCl2, 0.3731 µM CuCl2, 0.001213 µM Na2MoO4 (pH 5.8). Seeds were surface sterilized 

(Bela et al., 2018) and after incubation overnight on 8–10 °C, the sterilized seeds were placed 

A. 

B. 
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on the top of end cutted Eppendorf filled with 0.7% agar and were grown for 6 weeks in a 1.5 

L pots filled with Hoagland solutions. Plants were grown in the growth chamber with similar 

parameters as was described earlier (at 21°C, 100 mmol m−2s−1 photon flux density, short-

daylight photoperiod), the relative humidity was 65%. 6-week-old plants were treated with 100 

mM NaCl for 24 hours, then samples were collected from fully expanded leaves and roots (Fig. 

12).  

 

Fig. 12 Six-week-old Arabidopsis Col-0 wild type, Atgpxl5 T-DNA insertional mutants and OX-
AtGPXL5-1 plants grown in the hydroponic system.  

4.6 Analysis of some stress markers  

Hydrogen peroxide (H2O2) content and the thiobarbituric acid (TBA)-reactive lipid 

peroxidation products were determined in 6-week-old hydroponically grown Col-0, Atgpxl5 

and OX-AtGPXL5 plants supplemented with or without 100 mM NaCl for 24 hours. H2O2 level 

was measured from the 200 mg fresh weight of shoot or root ground with 375 μl 0.1% 

trichloroacetic acid (TCA) on pre-chilled pestle and mortar as was described earlier in Bela et 

al. (2018), and the homogenate was centrifuged at 13,000×g for 20 min. In the reaction 

mixtures, 250 μL supernatant was added to 250 μL phosphate buffer followed by 500 μL 

potassium iodide (KI). After 10 minutes of incubation in dark, the absorbance of the samples 

was recorded at 390 nm (Uvikon 930 spectrophotometer, Kontron AG, Eching, Germany), 

using 10 mM PH 7.0 phosphate buffer as a blank. The amount of H2O2 was calculated using a 

standard curve prepared with 0.1-5 mM H2O2 concentrations. 



34 
 

Malondialdehyde (MDA) formation was measured with a TBA-reactive substances assay, 

based on the formation of TBA-MDA conjugate (Heath and Packer, 1968). Lipid peroxidation 

was measured from 50 mg frozen shoot or root tissues grind with liquid nitrogen and 

homogenized on ice with 0.5 mL 0.1% TCA and 50 μL of 4% butylhydroxytoluene (BHT) was 

added to avoid further lipid peroxidation (Bela et al., 2018) and centrifuged at 4oC, 13000×g 

for 20 minutes. In the reaction, 250 μL supernatant was added to the reaction mixture (20% 

TCA + 0.5% TBA) and boiled at 98°C for 30 minutes. After incubation, it was immediately 

transfered into an Eppendorf tube on ice and then refilled up to 1.5 ml. The absorbance of the 

samples was measured at 600 nm and 532 nm using 0.1% TCA as a blank. MDA concentrations 

were calculated using an extinction coefficient of 155 mM-1 cm-1. Malondialdehyde is 

expressed by nmol MDA g−1 FW. 

4.7 Evaluation of the AsA and GSH contents  

The leaves or roots (300 mg) of Arabidopsis plants was homogenized with 1.2 mL of 5% TCA. 

The homogenate was centrifuged at 13000×g for 20 min at 4°C and the supernatant was 

collected for the further assay of AsA and GSH pool. To measure the total ascorbate content 

100 μL 10 mM dithiothreitol (DTT; Sigma-Aldrich, Germany) was added to 100 μL of the 

supernatant. After 10 min of incubation at room temperature, the excess DTT was removed by 

100 μL 0.5% N-ethylmaleimide (NEM; Sigma-Aldrich, Germany). The ascorbate (AsA 

contents were measured spectrophotometrically as was published originally by Law et al. 

(1983). AsA concentrations were determined by measurement of the optical density (OD) at 

525 nm against the 5% TCA reference. Oxidized dehydroascorbate (DHA) content was 

calculated as a difference between the concentration of total and reduced ascorbate. A standard 

curve was obtained from reduced AsA (AsA; Sigma-Aldrich, Germany) within the 0-10 mM 

range.  

Total glutathione and oxidized glutathione (GSSG) concentrations were measured 

spectrophotometrically (Griffith, 1980). To measure the GSSG contents in shoot or root, the 

reduced glutathione was masked by adding 2-vinylpyridine and incubated at room temperature 

for 60 minutes then 2 μL triethanolamine (TEA; Sigma-Aldrich, Germany) was added to the 

reaction. Again, centrifuged at 13000×g at room temperature for 20 minutes and then 20 μl 

supernatant was used for measurement. GSH and GSSG concentrations were determined by 

measuring OD at 405 nm, using a glutathione reductase (GR) enzymatic assay (Carlberg and 

Mannervik, 1985). The reaction mixture contained 0.2 mM NADPH (Sigma-Aldrich, 

Darmstadt, Germany), 0.25 mM 5,5'-dithiobis-2-nitrobenzoic-acid (DTNB; Sigma- Aldrich, 
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Germany), 20 μL tissue extract and 1 U of GR (from baker’s yeast, Sigma-Aldrich) in a 

phosphate buffer (0.1 M, pH 7.5) in a total volume of 1 mL. Reduced GSH content was 

calculated from the difference between the concentration of total GSH and GSSG. Standard 

curves were obtained for GSH (Sigma-Aldrich, Germany) and GSSG (Sigma-Aldrich, 

Germany) within the 0-2 μM range. 

4.8 Calculation of the glutathione half-cell reduction potential 

The reduction potential of the GSH/GSSG couple (half-cell reduction potential; Ehc) was 

determined with the Nernst equation using the formula of Schafer and Buettner (2001): Ehc= -

240 - (59.1/2) log([GSH]2/[GSSG]) mV; where –240 mV is the standard reduction potential of 

glutathione on 25°C, pH = 7.0. 

4.9 Antioxidant enzyme activity measurements  

The enzyme activities were determined as published in Bela et al. (2018). 250 mg fresh shoot 

or root tissue was homogenized on ice in 1 mL cold extraction buffer (100 mM phosphate buffer 

pH 7.0, containing 1 mM phenylmethylsulfonyl fluoride and 1% polyvinylpolypyrrolidone). 

The homogenate was centrifuged for 20 min at 13000×g at 4°C. The supernatant of the enzyme 

extract was collected in new Eppendorf tube and filled the volume up to 1 mL with extraction 

buffer and used for enzyme activity assays.  

The thioredoxin peroxidase (TPOX; EC 1.11.1.15) enzyme activity was measured with cumene 

hydroperoxide (CHP; Sigma-Aldrich) substrate. The reaction mixture contained 0.2 mM 

NADPH, 5 μM TRXh3, 0.1 μM NADPH-dependent thioredoxin reductase (NTRa) 

recombinant protein produced by E. coli according to Marty et al. (2009), 50 μL of enzyme 

extract and 0.25 mM substrate in a Tris-HCl buffer (0.1 M, pH 7.4) in a total volume of 1 mL. 

The NADPH consumption was followed by measuring the absorbance at 340 nm. The 

nonspecific NADPH decrease was corrected by using additional measurements without the 

CHP substrate. One U was equal to nmol converted NADPH in 1 min, ɛ340 = 6.22 mM–1 cm-1.  

The glutathione peroxidase (GPOX; EC 1.11.1.9) activity was also measured 

spectrophotometrically with CHP substrate using a protocol of Horváth et al. (2015a). The 

reaction mixture contained 4 mM GSH, 0.2 mM NADPH, 0.05 U of GR (from baker’s yeast, 

Sigma-Aldrich, Germany), 100 μL enzyme extract and 0.5 mM substrate in a phosphate buffer 

(0.1 M, pH 7.0) in a total volume of 1 mL. One U was equal to nmol converted NADPH in 1 

min, ɛ340 = 6.22 mM–1 cm–1. 
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The glutathione transferase (GST; EC 2.5.1.18) enzyme activity was measured 

spectrophotometrically using the artificial 1-chloro-2,4-dinitrobenzene (CDNB; Sigma-

Aldrich, Germany) substrate, as published earlier (Horváth et al., 2015a). The reaction mixture 

contained 1 mM GSH, 100 μL enzyme extract and 1 mM substrate in a phosphate buffer (0.1 

mM, pH 6.5) in a total volume of 1 mL. One U is the amount of the enzyme producing 1 nmol 

conjugated product in 1 min, ε340 = 9.6 mM-1 cm-1. 

The guaiacol peroxidase (POX; EC 1.11.1.7) activity was determined by monitoring the 

increase in A470 during the oxidation of the guaiacol substrate (Sigma-Aldrich), according to 

Horváth et al. (2015b). The reaction mixture contained 30 mM H2O2 (Merck Millipore, 

Darmstadt, Germany), 10 μL enzyme extract and 20 mM substrate in a phosphate buffer (50 

mM, pH 7.0) in a total volume of 1.5 mL. The amount of enzyme producing 1 μmol of oxidized 

guaiacol in 1 min was defined as 1 U, ε470 = 26.6 mM-1 cm-1. 

The ascorbate peroxidase (APX; EC 1.11.1.11) activity was assayed according to the protocol 

of Tari et al. (2015). For the APX assay, 1 mM ascorbate (Sigma-Aldrich) was added to the 

extraction buffer. The H2O2-dependent oxidation of ascorbate was followed by a decrease in 

A290. The reaction mixture contained 1 mM H2O2, 100 μL enzyme extract and 50 μM ascorbate 

in a potassium phosphate buffer (50 mM, pH 7.0) in a total volume of 1 mL. One U was equal 

to nmol oxidized ascorbate in 1 min, ε290 = 2.8 mM-1 cm-1. 

The catalase (CAT; EC 1.11.1.6) activity was determined by the decomposition of H2O2, 

measured spectrophotometrically by following the decrease in A240 (Horváth et al., 2015b). The 

reaction mixture contained 100 μL enzyme extract and 20 mM H2O2 in a phosphate buffer (50 

mM, pH 7.0) in a total volume of 1.5 mL. One U is the amount of decomposed H2O2 (μmol) in 

1 min, ε240 = 43.6 M-1 cm-1. 

GR (EC 1.8.1.7) activity was determined by measuring the absorbance increment at 412 nm 

when DTNB was reduced by GSH, generated from GSSG (Csiszár et al., 2018). The activity 

was calculated as the amount of reduced DTNB in nmol min-1g-1 FW, ε420=13.6 mM-1cm-1. 

Superoxide dismutase (SOD; EC 1.15.1.1) activity was determined spectrophotometrically by 

measuring the ability of the enzyme to inhibit the photochemical reduction of nitro blue 

tetrazolium (NBT; Sigma-Aldrich, Germany) in the presence of riboflavin in light (Csiszár et 

al., 2007). One U of SOD was the amount that causes a 50% inhibition of NBT reduction in 

light. 
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4.10 Statistical analysis 

Experiments were carried out at least two times. In the case of fluorescent microscopic analysis 

values presented here represent mean with standard error (±SE), n ≥ 15. Statistical analysis was 

carried out with SigmaPlot 12.0 software (SigmaPlot, Milano, Italy). After analysis of variance 

(ANOVA), Duncan's multiple comparisons were performed. Means were considered to be 

significantly different if p ≤ 0.05. In the second set of experiments (to analyse growth 

parameters of seedlings) means and standard error (±SE) were calculated, n=20, unless 

indicated otherwise. For seed germination assay, Student’s t-test was used, and asterisks 

indicate the significant differences (* p≤0.05, ** p≤0.01, *** p≤0.001). In the third set of 

experiments (to analyse ROS processing systems and redox state of plants) measurements were 

performed in three independent replicates, means and standard deviation (±SD) were calculated 

from the data of at least 3 measurements (n=3). 
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5. Results 

5.1 Investigation of the role of AtGPXL5 in ROS homeostasis using the mutant seedlings 

In plants, glutathione peroxidases like (GPXLs) isoenzymes are important ROS scavenger and 

protect cells against oxidative damage caused by generation of excessive reactive oxygen 

species (ROS) in vivo. These GPXLs are very important to prevent H2O2 accumulation, protect 

membranes against ROS-induced damages and act in cellular signaling (Foyer and Noctor, 

2011, Paiva et al., 2019). Plant GPXLs have their role in detoxifying lipid hydroperoxides and 

other reactive molecules in different species and under several stress conditions (Csiszár et al., 

2004; Bela et al., 2015). The ROS levels were investigated in the 12-day-old Arabidopsis 

thaliana Col-0 and Atgpxl5 insertional mutants after 7 days of treatments with 50 mM and 100 

mM NaCl the concentrations.  

 Effect of the mutation of AtGPXL5 on the ROS levels and vitality of seedlings  

Using dihydroethidium allows to investigate the superoxide (O2
•−) levels in roots. In ground 

stage, superoxide radical anion (O2
•−) contents in the root of Atgpxl5 was higher compared to 

the wild type Col-0 (Fig. 13). In Col-0, the lower (50 mM) and higher (100 mM) concentration 

of salt increased significantly the DHE fluorescence in the roots. The already elevated level of 

O2
•− in the root of Atgpxl5 mutants increased further due to 100 mM NaCl treatments and 

became even higher compared to the treated Col-0 roots (Fig. 13A, B).  
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Fig. 13. Superoxide content in the roots of 12-day-old Arabidopsis thaliana Col-0 and Atgpxl5 
insertional mutant after applying 50 mM NaCl and 100 mM NaCl concentrations for 7 days. 
Representative images of the fluorescent analysis of the superoxide radical anion (O2

•−) contents (A). 
Quantification of the O2

•− level in the roots (B) of wild type and Atgpxl5 plants by dihydroethidium 
(DHE) fluorescent dye. Data are mean ±SE, n ≥ 15, Different letters represent data considered 
statistically significant at p≤0.05 (Duncan test). Experiments were repeated 3 times independently. 

However, using the DCF fluorescent dyes revealed no significant changes in the total ROS level 

in the roots of Col-0 and Atgpxl5 plant under the control or salt treatment (Fig. 14A). Under 

control conditions, Atgpxl5 shoot had higher total ROS level compared to the Col-0. However, 

both low and high concentration of salt elevated the ROS contents in the shoot of Col-0 and 

Atgpxl5 plants (Fig. 14A-D). 

There were no differences in the vitality of the roots between wild type and mutant lines under 

the normal growth condition (Fig. 15A, C). Low (50 mM) concentration of salt has not, while 

high (100 mM) significantly reduced the FDA fluorescence in the root of Col-0 and Atgpxl5 

insertional mutant lines. In contrast, the lack of AtGPXL5 led to decrease in vitality at high 

concentration of NaCl. The vitality of Atgpxl5 mutants shoot under control condition were 

significantly lowered compared to Col-0 (Fig. 15B, D). However, applying both 50 mM and 

100 mM salt concentrations significantly decreased the shoot vitality of Col-0 and Atgpxl5 

mutant plants (Fig. 15A-D). 

A B 
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Fig. 14. Effect of 50 mM and 100 mM NaCl on the level of total ROS in the root and shoot of 12-day-
old Col-0 and Atgpxl5 plants after 7 days of treatment. Representative images of the fluorescent analysis 
of the total ROS in the root (A) and shoot (B). The level of total ROS was analysed in the roots (C) and 
shoots (D) of wild type and Atgpxl5 plants by H2DCFDA fluorescent dye. Data are the mean ±SE, n ≥ 
15. Data were analysed using one-way ANOVA followed by Duncan’s test. Different letters represent 
data considered statistically significant at p≤0.05. Scale bars =100 μm. Experiments were repeated 3 
times independently. 
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Fig. 15. Representative images of the fluorescent analysis of the vitality in the 12-day-old Arabidopsis 
thaliana Col-0 and Atgpxl5 insertional mutants after applying 7 days treatment with the concentration 
of 50 mM and 100 mM NaCl. The vitality in the roots (A, C) and shoot (B, D) were investigated by the 
FDA dye. Data are the mean ±SE, n ≥ 15. Data were analysed using one-way ANOVA followed by 
Duncan’s test. Different letters represent data considered statistically significant at p≤0.05. Scale bars 
=100 μm. Experiments were repeated 3 times independently. 
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5.2 Overexpression of AtGPXL5 gene  

Full length of AtGPXL5 cDNA was overexpressed under control of CaMV35S constitutive 

promoter in the Arabidopsis thaliana wild type Col-0. To investigate the involvement of the 

AtGPXL5 in development, the rate of germination and growth of two overexpressing lines with 

35 to 40-fold enhanced AtGPXL5 expression level (OX-AtGPXL5-1 and OX-AtGPXL5-2, Fig. 

16), the Atgpxl5 knockdown T-DNA insertional mutant and the Col-0 wild type seedlings were 

compared in the presence of NaCl and without the salt.  

 

 

 

 

 

 

 

 

 

 

Fig. 16. Expression level of AtGPXL5 gene in the shoots of selected OX-AtGPXL5 transformants (T1 

generation). 
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 The germination rate of the AtGPXL5-overexpressing seeds was less inhibited 
under salt stress 

The germination rate of OX-AtGPXL5-1 and OX-AtGPXL5-2 or Atgpxl5 mutant’s seeds did 

not differ from that of Col-0 under control conditions (Fig. 17A). However, while the seeds of 

the wild type and Atgpxl5 mutant showed delayed germination in the presence of 100 mM NaCl, 

germination of OX-AtGPXL5-1 and OX-AtGPXL5-2 seeds was less inhibited by the salt on 

the 2nd day after sowing (Fig. 17B). 

 

Fig. 17. Analysis the role of AtGPXL5 in seed germination. The rate of germination of two AtGPXL5-
overexpressing lines (OX-AtGPXL5-1 and AtGPXL5-2), the Col-0 wild type and Atgpxl5 mutant lines 
on control ½ MS medium (A) and on the medium supplemented with 100 mM NaCl (B). To compare 
the mean values of the WT, Atgpxl5 mutant and the OX-AtGPXL5 plant’s germination rate, Student’s 
t‐test was used; asterisks indicate the significant differences (* p≤0.05, ** p≤0.01, *** p≤0.001).  
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 The growth of roots of AtGPXL5-overexpressing lines under salt stress condition 
was more retained 

Under control conditions, the length of roots of 15-day-old T-DNA insertional mutant (Atgpxl5) 

seedlings were significantly lower compared to the Col-0. AtGPXL5-overexpressing lines had 

similar root length but higher fresh weight of roots than the Col-0 (Fig. 18A, C, D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

Fig. 18. Root phenotypes of 15-day-old Arabidopsis thaliana Col-0, Atgpxl5 mutant and two AtGPXL5-
overexpressing (OX-AtGPXL5) lines after 10 days of salt stress. The growth of the seedlings in vertical 
plates on control ½ MS medium (A) and on the medium supplemented with 100 mM NaCl (B), length 
of primary roots (C), the fresh weight of roots (D), the number of lateral roots (E) and the lateral root 
density (F) are shown. Data are the mean ±SE, n=20. Data were analysed using one-way ANOVA 
followed by Duncan’s test. Different letters represent data considered statistically significant at p≤0.05. 
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Among the salt-treated seedlings, the wild type and Atgpxl5 T-DNA insertional mutant lines 

had similarly lowered root length and fresh weight. The length and fresh weight of roots of 

plants overexpressing the AtGPXL5 gene were significantly higher compared to the Col-0 and 

Atgpxl5 mutants growing in the presence of 100 mM NaCl for 10 days (Fig. 18A-D). While 

there was no significant difference in the number of lateral roots among the untreated lines, 

under salt stress the OX-AtGPXL5-1 and OX-AtGPXL5-2 seedlings formed more lateral roots 

than the other genotypes (Fig. 18E). Under control conditions the LRD value was higher in the 

Atgpxl5 mutant compared to the wild type and overexpressing lines, but in the presence of salt 

the OX-AtGPXL5-1 and OX-AtGPXL5-2 seedlings had the highest lateral root density among 

the investigated lines (Fig. 18F, Fig. S1). 

 Developmental traits of shoots under salt stress  

Analysis of the development of shoots of plants by the PlantSize imaging software revealed 

that the total area, weight and convex area of rosettes of the Atgpxl5 mutant were significantly 

lower compared to the Col-0, However, convex percentage of the Atgpxl5 was like wild type. 

Under control condition, fresh weight, total area, convex area and convex percentage of 

overexpressing lines were similar to wild type (Fig. 19A-F). Applying 10-day-long treatment 

of 100 mM NaCl reduced the fresh weight in all investigated lines, rosette size and convex area, 

but salt stress increased the convex percentage in wild type and transgenic lines compared to 

the control condition. Interestingly, the overexpressing plants grew better in the presence of 100 

mM NaCl: they had larger rosettes, convex area and lower convex percentage values than that 

of the wild type and Atgpxl5 plants (Fig. 19A-F).  
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Fig. 19. Growth parameters of 15-day-old Arabidopsis thaliana Col-0, Atgpxl5 mutant and two 
AtGPXL5-overexpressing (OX-AtGPXL5) lines after 10 days of salt stress estimated by PlantSize 
software after taking photographs. The relative rosette sizes (A, B, D), fresh weight of rosette (C) and 
the convex size of the rosette (E), and convex ratio (F) are shown. Data are the mean ±SE, n=20. Data 
were analysed using one-way ANOVA followed by Duncan’s test. Different letters represent data 
considered statistically significant at p≤0.05. 
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 Image analysis of shoots indicate less affected chlorophyll and anthocyanin 
contents in overexpressed plants under salt stress 

 

Estimation of the chlorophyll content by the non-destructive image analysis showed decreased 

amounts of the photosynthetic pigments in the untreated Atgpxl5 mutants compared to Col-0 

and AtGPXL5-overexpressing lines (Fig. 20A, B). Under salt stress, the chlorophyll content of 

the OX-AtGPXL5-1 and OX-AtGPXL5-2 lines remained higher in comparison to the wild type 

and mutant plants (Fig. 20A). In addition, the anthocyanin content of plants changed according 

to a similar pattern: while under control conditions the mutants had lower pigment content than 

the other genotypes, in the presence of NaCl it decreased in a lower extent in the overexpressing 

lines (Fig. 20B). 

Fig. 20. Effect of salt stress on the chlorophyll (A) and anthocyanin (B) contents of 15-day-old Col-0, 
Atgpxl5 mutant and the AtGPXL5-overexpressing (OX-AtGPXL5-1) plants after 10 days of salt stress 
estimated by PlantSize software. Data are the mean ±SE, n= 20. Data were analysed using one-way 
ANOVA followed by Duncan’s test. Different letters represent data considered statistically significant 
at p≤0.05 

 

The two investigated transgenic lines behaved rather similarly, thus further experiments were 

performed on the OX-AtGXL5-1, the Atgpxl5 and the Col-0 plants (Fig. 16). 
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5.3 Overexpression of AtGPXL5 influences some stress-related parameters in adult 
plants  

To investigate the involvement of AtGPXL5 in salt stress response, hydroponically grown 6-

week-old OX-AtGXL5-1 and wild type (Col-0) plants along with Atgpxl5 mutants were treated 

with 100 mM NaCl, and several physiological parameters and the AtGPXL5 expression level 

were determined after 24 h. The developmental stages of 6-week-old plants are demonstrated 

in Supplementary material (Fig. S1).  

 Expression level of AtGPXL5 in the root and shoot of Arabidopsis plants with or 
without salt treatment 

Under control conditions, the AtGPXL5 transcript amounts were about 24 and 17-fold higher in 

the roots and the shoots of OX-AtGPXL5-1, respectively than in the wild type. On the contrary, 

the expression level of this gene in the Atgpxl5 mutant was about one-third of the value of Col-

0. One-day salt treatment reduced the AtGPXL5 transcript levels in the shoots and the roots of 

the Col-0 plants by ca. one-third (Fig. 21A, B). 

Fig. 21. Effect of one-day 100 mM NaCl treatment on the expression of AtGPXL5 gene (A, B), in roots 
and shoots, respectively, of 6-week-old Arabidopsis thaliana wild type (Col-0), Atgpxl5 insertional 
mutant and AtGPXL5-overexpressing (OX-AtGPXL5-1) plants. The data are presented by mean values 
± SD, n=3.  
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 Thioredoxin peroxidase and glutathione peroxidase activities of the overexpressed 
Arabidopsis plants are almost like in the wild type plants 

 

Under normal growth condition, both the total extractable glutathione peroxidase and 

thioredoxin peroxidase activities of OX-AtGPXL5 or Atgpxl5 plants were similar to that of wild 

type, moreover the GPOX activity in the root of AtGPXL5-overexpressing plants were even 

lower than in Col-0 (Fig. 22A).  

 

Fig. 22. Effect of one-day 100 mM NaCl treatment on the glutathione peroxidase (GPOX) activity (A, 
B), thioredoxin peroxidase (TPOX) activity (C, D) in roots and shoots, respectively, of 6-week-old 
Arabidopsis thaliana wild type (Col-0), Atgpxl5 insertional mutant and AtGPXL5-overexpressing (OX-
AtGPXL5-1) plants. The data are presented by mean values ± SD, n=3. Data were analysed using one-
way ANOVA followed by Duncan’s test. Different letters represent data considered statistically 
significant at p≤0.05 and non-significant (n.s.) at p>0.05. 

In the root and shoot of wild type and transgenic plants, the salt stress did not cause any 

significant changes in the TPOX activity but increased the GPOX activity in these genotypes 

(Fig. 22A-D) compared to the control condition. The GPOX activity in Atgpxl5 shoot was also 

induced at a lower extent than that in Col-0 under 100 mM NaCl treatment (Fig. 22B). However, 
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in the AtGPXL5-overexpressing plants neither the GPOX nor the TPOX activities increased 

significantly compared to the other lines (Fig. 22A-D).  

 Hydrogen peroxide content and lipid peroxide level of plants 

In the wild type shoot, the H2O2 level was significantly increased but in its roots the level of 

H2O2 remained unchanged after the 24-hour NaCl exposure. More changes occurred in the 

Atgpxl5 mutant shoot after salt stress. The amount of H2O2 in the Atgpxl5 shoot was increased 

significantly and reached higher level than that in the wild type (Fig. 23A, B). 

 

Fig. 23. Effect of one-day 100 mM NaCl treatment on the level of H2O2 (A, B) and malondialdehyde 
(MDA) contents (C, D) in roots and shoots, respectively, of 6-week-old Arabidopsis thaliana wild type 
(Col-0), Atgpxl5 insertional mutant and AtGPXL5-overexpressing (OX-AtGPXL5-1) plants. The data 
are presented by mean values ± SD, n=10. Data were analysed using one-way ANOVA followed by 
Duncan’s test. Different letters represent data considered statistically significant at p≤0.05 and non-
significant (n.s.) at p>0.05. 

There was no difference in the lipid peroxidation marker MDA level in roots of the investigated 

plants, but in shoots the amount of MDA in the OX-AtGPXL5 was significantly lower than that 

in Atgpxl5 mutants under normal conditions. In the wild type root and shoot, there were no 
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significant changes in the MDA level, but in the Atgpxl5 root the amount of lipid peroxide was 

elevated significantly under the 100 mM NaCl treatment (Fig. 23C, D). MDA level was 

increased also in the OX-AtGPXL5 shoots due to salt stress. The lowest H2O2 level was found 

in these transgenic plants after the salt treatment and their roots possessed the least MDA among 

the treated ones, indicating the presence of efficient ROS-processing mechanisms. 

 H2O2-related enzyme activities in the wild type and transgenic Arabidopsis plants 

Investigation of the main antioxidant enzyme activities in 6-week-old plants revealed that 

although in the Atgpxl5 mutant some peroxidases worked in an elevated level compared to the 

Col-0 (POX in control shoot, APX both in the treated and control shoots), other enzymes had 

lower activity (CAT in untreated shoots and SOD in the NaCl treated root and shoot). In the 

OX-AtGPXL5 plants the investigated ROS-processing enzymes worked similarly to those in 

the Col-0 wild type; elevated activity was found in the case of CAT in the control roots. The 

APX activity in the roots of the overexpressing line was lower than that in the wild type in both 

with salt stress and without it. In the shoot, the activity of two other enzymes was decreased 

(CAT in control plants, SOD in the 100 mM NaCl treated shoot) (Fig. 24A-H). 
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Fig. 24. Effect of one-day 100 mM NaCl treatment on the superoxide dismutase (A, B), catalase (C, D), 
ascorbate peroxidase (E, F), guaiacol peroxidase (G, H) activities in roots and shoots, respectively, of 
6-week-old Arabidopsis thaliana wild type (Col-0), Atgpxl5 mutant and OX-AtGPXL5 plants. The data 
are presented by mean values ± SD, n=3. Data were analysed using one-way ANOVA followed by 
Duncan’s test. Different letters represent data considered statistically significant at p≤0.05. n.s: 
statistically not significant. 
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 GSH-related antioxidant enzymatic activities of plants 
 
There are other thiol peroxidases, such as GSTs with glutathione peroxidase activities, that may 

have a similar function to those of GPXLs in the maintenance of the ROS level. Under control 

condition, GST activity was found higher only in the root of overexpressing OX-AtGPXL5 

plants compared to the wild type plants. In Col-0 plants, 24-hour salt treatment elevates the 

activity of GST enzyme in both root and shoot. However, there were no changes in the activity 

of GST enzyme in the root and shoot of Atgpxl5 mutant plants. In the OX-AtGPXL5 plants, 

GST activity was increased in the shoot after 100 mM NaCl stress (Fig. 25A, B).  

 

Fig. 25. Effect of one-day 100 mM NaCl treatment on the glutathione transferase (GST) activity (A, B) 
and glutathione reductase (GR) activity (C, D) in roots and shoots, respectively, of 6-week-old 
Arabidopsis thaliana wild type (Col-0), Atgpxl5 insertional mutant and AtGPXL5-overexpressing (OX-
AtGPXL5-1) plants. The data are presented by mean values ± SD, n=3. Data were analysed using one-
way ANOVA followed by Duncan’s test. Different letters represent data considered statistically 
significant at p≤0.05. 

In normal condition, GR activity was decreased in the shoot of transgenic lines compared to 

wild type. In Col-0 plants, 24-hour salt treatment elevates the level of GR enzyme activity only 

in the root. However, the shoot of Atgpxl5 mutant plants had lower GR activity in control and 

treated conditions compared to the Col-0. After applying the salt stress, GR activity in the root 

of Atgpxl5 was elevated while in the shoot GR activity was decreased. The GR activity was 
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lower in the shoots of the overexpressing OX-AtGPXL5 line than that in the wild type under 

the 100 mM NaCl treatment (Fig. 25C, D) and the lowest GR activity were also found in the 

treated overexpressing shoots among all investigated lines 

5.4 The ascorbate and glutathione levels and their reduced status  

Comparison of the amounts and redox status of the main non-enzymatic antioxidants revealed 

no difference in the AsA or DHA levels among the investigated plants under control conditions, 

except for higher AsA in OX-AtGPXL5 shoot than in Atgpxl5 mutant shoot (Fig. 26A, B). 

Applying 100 mM NaCl increased both the reduced and oxidized ascorbate forms in the Col-0 

and Atgpxl5 mutant roots. However, in shoots the applied salt stress decreased the AsA level of 

the wild type, while elevated both the DHA and AsA levels in the Atgpxl5 plants. In OX-

AtGPXL5 root salt stress did not cause any changes in the amount of AsA but increased the 

level of DHA. In shoot of OX-AtGPXL5 plants, the DHA content did not change, but the level 

of the reduced AsA was elevated and became higher by ca. 30% than in the salt-treated wild 

type shoot (Fig. 26A, B).  

Different alterations were detected in the case of glutathione. Under control conditions, 

significantly lower GSH was found in the Atgpxl5 mutant roots while its amount was 

significantly elevated in the OX-AtGPXL5 shoot. The applied salt stress caused generally 

moderate changes at all plants, but revealed that the overexpressing plants accumulated the 

highest amount of reduced glutathione and the less GSSG among the investigated lines even 

after the treatment, and the oxidized form (GSSG) increased most in the Atgpxl5 roots (Fig. 

26C, D).  

In line with these results, the redox potential values calculated from the measured GSH and 

GSSG contents showed the lowest, –223±6.74 and –222±5.04 mV values in the Atgpxl5 roots 

both under control conditions and after applying 100 mM NaCl, respectively, indicating the 

most oxidized status in mutant roots. The most negative values were detected in the OX-

AtGPXL5 plants reaching –251±5.81 mV in the salt treated shoots (Fig. 26E, F). 
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Fig. 26. Effect of salt stress on the ascorbate (A, B), glutathione (C, D) contents and glutathione half 
cell reduction potential (Ehc) (E, F) in roots and shoots, respectively, of 6-week-old Arabidopsis thaliana 
wild type (Col-0), Atgpxl5 mutant and OX-AtGPXL5 plants. In the case of AsA and GSH contents the 
dark segment of the bars represents the oxidized dehydroascorbate (DHA) and oxidized glutathione 
(GSSG), respectively.  
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6. Discussion 

6.1 Role of plant GPXLs in stress tolerance 

Each organism on Earth is exposed to the influence of various environmental conditions and of 

other living organisms. These factors can trigger stress and make the organism more vulnerable. 

Salinity is one of the most brutal environmental factors affecting plant growth and productivity. 

To adapt to saline environment, plants have evolved elaborate mechanisms to preserve growth 

and yield. These mechanisms incorporate many physiological and genetic processes, which can 

function very efficiently in halophytes. Comparative studies between salinity stress adaptation 

in Arabidopsis thaliana and its salt-tolerant relatives have provided insights into the 

physiological and genetic bases of halophytism (Orsini et al., 2010; Rigó et al., 2016). 

Thellungiella salsuginea (also named as T. halophile or salt cress) proved to be more tolerant 

than Arabidopsis not only to high salinity but also to oxidative stress (Taji et al., 2004). 

Various types of normal metabolic activities (e.g. photosynthesis and respiration) and different 

types of adverse environmental factors (such as high concentration of salt, drought) stimulate 

the overproduction of ROS, including hydrogen peroxide and superoxide radical anions (Zhai 

et al., 2013). Uncontrolled generation of ROS can cause damages to membrane lipids, proteins, 

nucleic acids and initiate the plant cell death. ROS homeostasis regulated mainly by the 

enzymatic (among them APX, CAT, SOD, TPOX, GPOX, GPXL) and non-enzymatic (like 

AsA and GSH) antioxidant defense mechanisms to withstand the oxidative damages and to 

ensure the right answer having role even in signaling.  

Previous studies had proved that glutathione peroxidases (GPXs), the non-heme thiol 

peroxidase enzymes characterized in various organisms as one of the most important enzymes, 

are involved in ROS scavenging (Arthur, 2000; Noctor et al., 2012; Yang et al., 2016; Bela et 

al., 2017). GPXs catalyse the reduction of H2O2 or organic hydroperoxides to water or 

corresponding alcohols (Herbette et al., 2007; Passaia et al., 2014). The plant enzymes were 

suggested to call glutathione peroxidase-like (GPXL) enzymes (Attacha et al. 2017). It was 

reported that exogenously applied hydrogen peroxide can elevate the GPXL mRNA level in the 

Panax ginseng and Oryza sativa plants (Li et al., 2000; Passaia et al., 2013; Kim et al., 2014; 

Bela et al., 2017). GPXLs also participate in the removal of organic hydroperoxides and lipid 

peroxides (Bela et al., 2017). Arabidopsis thaliana harbors eight isoenzymes. Their role in salt- 

and osmotic stress tolerance was investigated earlier by using T-DNA insertional mutants (Bela 

et al. 2018). According to the previous results all of the AtGPXLs have some role in abiotic 
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stress responses, but AtGPXL5 was suggested to have most important function in salt stress 

tolerance (Gao et al. 2014, Bela et al. 2018). Here the AtGPXL5 cDNA was overexpressed under 

the control of CaMV35S promoter. We have investigated the role of AtGPXL5 in development 

and responses to salt stress using T-DNA insertional mutant and AtGPXL5-overexpressing 

lines. 

6.2 AtGPXL5 isoenzyme has a key role in the regulation of the ROS homeostasis and in 

the maintenance of the cell’s vitality in the Arabidopsis thaliana seedlings 

To examine whether a deficiency of AtGPXL5 might affect the of ROS scavenging activity and 

the vitality of plant cells, we investigated the effect of salt stress on the sensitivity of 12-day-

old Atgpxl5 seedlings. In our study, the untreated roots of the Atgpxl5 mutant showed a higher 

O2
•− level in comparison to the wild type roots. In Atgpxl5 shoots the total ROS level was 

enhanced and led to decreased vitality compared to wild type shoot. Salt stress further increased 

the higher level of O2
•− in the Atgpxl5 roots and became significantly higher compared to the 

treated Col-0 roots. The H2O2 content in the shoots and roots of 6-week-old mutant plants was 

higher in the insertional mutant than in the other genotypes, and its level increased in the highest 

extent due to salt treatment. These results indicate that AtGPXL5 has an important role in the 

ROS processing system and maintaining the cell’s vitality in the root and shoot (Figs. 13-15, 

23).  

There are other peroxidases, such as catalase, ascorbate peroxidase, GSTs with glutathione 

peroxidase activities, that may have a similar function to those of GPXLs in the maintenance 

of ROS level. In our experiments, among the ROS-processing enzymes the APX and POX 

activities were enhanced in mutant shoots, while the CAT and GR activities was decreased 

compared to the non-treated 6-week-old Col-0 plants grown hydroponically. In the OX-

AtGPXL5 plants the GPOX, TPOX and the other ROS detoxifying enzymes generally exhibited 

similar activity to the Col-0 wild type, but not the APX (in root) and GR (in shoot) (Figs. 22, 

24). This can be explained by the similar H2O2 levels in the OX-AtGPXL5 and wild type plants. 

Furthermore, the lower activity of APX and GR correlated with the elevated AsA and GSH 

levels of OX-AtGPXL5 plants compared to the wild type.  

It was reported that Arabidopsis gpxl1 mutant lines had higher H2O2 level under both low-light 

and high-light stresses (Chang et al., 2009). Atgpxl3 knockdown mutant and Osgpxl3 

knockdown mutant plants showed higher level of H2O2 compared to the wild type (Miao et al., 

2006; Passaia et al., 2013). Moreover, AtGPXL3 was suggested to be involved not only in H2O2 
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scavenging but also in ABA signaling (Miao et al., 2006). Overexpression of the Rhodiola 

crenulata GPXL5 gene in Salvia miltiorrhiza increased tolerance to oxidative stress, induced 

by H2O2 and drought (Zhang et al., 2019). The relative expression levels of several Salvia 

miltiorrhiza genes were altered including transcription factor genes and genes connected to 

ROS processing and ABA signaling (such as CAT, APX, GR, monodehydroascorbate reductase 

and ABI2 coding genes) (Zhang et al., 2019). Constitutive expression of RcGPXL5 caused a 

reduced production of ROS and MDA, higher levels of reduced and total glutathione and 

increased GR, APX and GPOX enzyme activities compared to the wild type.  

In our experiments, the elevated peroxide levels of Atgpxl5 mutant compared to wild type 

indicates that the AtGPXL5 protein has a role in fine-tuning the ROS homeostasis. Remarkably, 

these results suggested that GPXLs might have a significant function in maintaining the cell’s 

vitality and the ROS homeostasis through ROS scavenging in the plants under normal and 

abiotic stress conditions. 

6.3 The expression level of AtGPXL5 gene can influence the main antioxidant 
mechanisms in the short-term salt stress condition 

M'rah et al. (2007) reported that the level of lipid hydroperoxides in the Thellungiella leaves 

under salt stress was remarkably lower than in Arabidopsis. It was hypothesized that differences 

in salt tolerance mechanisms between salt-sensitive glycophytes, such as A. thaliana, and salt-

tolerant halophytes, such as T. salsuginea, are resulted from changes in the regulation of the 

same basic set of genes involved in salt tolerance (Zhu, 2001). Comparing the protein and gene 

expression patterns of glutathione peroxidases in Arabidopsis and Thellungiella, Gao and his 

co-workers found that more GPXL genes were induced under salt and osmotic stress conditions 

in Thellungiella. They concluded that the salt stress inducible TsGPXL5 can be implicated in 

the enhanced stress tolerance of Thellungiella (Gao et al., 2014). We have confirmed the 

importance of AtGPXL5 in salt tolerance by salt hypersensitivity of the Atgpxl5 knockdown 

mutant compared to the Col-0 wild type plants, which well-correlated with the enhanced H2O2 

content of the mutant (Fig. 23A, B), and by the enhanced salt stress tolerance of OX-ATGPXL5 

plants. 

Gao et al. (2014) reported that the amounts of TsGXPL transcripts and/or proteins were elevated 

at least at one time-point in both leaves and roots of Thellungiella during the 24 h salt treatment. 

By analysing the data of the AtGenExpress (Kilian et al., 2007) database, these authors found 

that 6-24 h salt stress caused up-regulation of several AtGPXL genes (AtGPXL1, -2, -4, -6 and 

-7 in roots and AtGPXL2, -6 and -8 in shoots) (Gao et al., 2014). In our earlier experiments, salt 
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stress elevated the expression of the same AtGPXLs in the shoot of Col-0 as above, although 

partially different genes were up-regulated in the root (Gao et al., 2014; Bela et al., 2018). 

Analysis of the AtGPXL expression pattern of the Col-0 and Atgpxl mutants under control 

conditions and after applying salt and osmotic stress revealed that in the Atgpxl5 mutant’s root 

the expression of AtGPXL2 and -3 decreased along with that of AtGPXL5 even under control 

conditions. After applying 100 mM NaCl to the plants, the expression of AtGPXL1, -3, and -8 

were upregulated in the root and that of the AtGPXL2 and -6 in the shoot. Interestingly, strong 

down-regulation was found in the transcript amount of the chloroplastic AtGPXL1 (beside that 

of the AtGPXL5 gene) in Atgpxl5 shoots (Bela et al., 2018). Chang et al. (2009) reported that 

depletion of AtGPXL1 and AtGPXL7 transcripts led to decreased tolerance against 

photooxidative stress but increased the resistance of the Arabidopsis plants against virulent 

Pseudomonas syringae (Chang et al., 2009). A knockout mutation of AtGPXL8 led to increased 

sensitivity to salt and osmotic stress as well as to paraquat when compared to wild type, leading 

to suppressed root growth and higher level of oxidized proteins (Gaber et al., 2012).  

In the present experiments, investigation of the main antioxidant enzyme activities in 6-week-

old plants revealed that although in the Atgpxl5 mutant some peroxidases worked in an elevated 

level compared to the Col-0 (APX in the treated shoots), other enzymes had lower activity 

(CAT, GR and SOD in the NaCl treated shoot) (Fig. 24).  

6.4 AtGPXL5 affect the redox homeostasis by the enhancement of reduced glutathione 
and thus the reduction potential becomes more negative than in the wild type 

According to recent conception, the ROS-processing antioxidants not only keep ROS levels 

low but also allow the cells to sense and signal ROS availability and redox perturbations 

(Noctor et al., 2018). Glutathione is classically considered as one of the main low molecular 

weight antioxidants playing a role in ROS detoxification in cooperation with AsA in the 

ascorbate-glutathione cycle and as an electron donor of diverse antioxidant enzymes (Foyer and 

Noctor, 2005, 2011; Noctor et al., 2011, 2012). In the last decade, the involvement of the 

GSH/GSSG and AsA/DHA redox couples in the redox homeostasis and signaling came into the 

forefront (Noctor, 2006; Foyer and Noctor, 2013; Chen et al., 2017; Gullner et al., 2017; 

Hasanuzzaman et al., 2017; Locato et al., 2017). Enhanced ROS production suggests to 

temporarily shifts the redox potential to more oxidizing values (Foyer and Noctor, 2016). Many 

reports indicate that the [GSH]:[GSSG] ratio and, eminently, the glutathione half-cell reduction 

potential (EGSSG/2GSH), are effective markers of the overall redox homeostasis (Szalai et al., 

2009; Schafer, and Buettner, 2001; Meyer and Hell, 2005; Kranner et al., 2006; Meyer et al., 
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2007). Earlier we have found strong positive correlations between the GSH content of the Col-

0 roots and the expression of AtGPXL1, -2, -3, -5, - 6 and -8 genes under different stress 

conditions which have been changed in the Atgpxl mutants. Correlations were found between 

the GSH level and TPOX activity in the wild type shoots and roots too, which were altered 

especially in the roots of Atgpxl mutants (Bela et al., 2018). The enhanced germination and 

seedling growth rates or higher chlorophyll contents of the OX-AtGPXL5 seedlings under salt 

stress in the present experiments suggest that constitutive overexpression of AtGPXL5 increased 

the salt stress tolerance of plants. Our results revealed that the key point in the AtGPXL5’s 

effect might be the modification of the redox status. Overexpression of AtGPXL5 increased the 

amount of total GSH, thus the redox potential became more negative than that in the wild type 

even in the untreated shoots, and the differences increased and were significant both in the 

shoots and roots under salt stress (Fig. 26C-F).  

Herbette et al. (2005) reported that overexpressing a mammalian selenium-independent GPX in 

tomato plants maintained a significantly higher photosynthesis rate and fructose-1,6-

bisphosphatase activity under chilling stress. In the sustained viability, the role of modified 

levels of AsA and GSH was suggested (Herbette et al. 2005). Investigating the role of the 

mitochondrial OsGPXL3, Paiva et al. (2019) found that this isoenzyme is involved in redox 

equilibrium both in mitochondria and chloroplast. The rice OsGPXL3 has a role in the salt stress 

tolerance, but also in germination and growth of plants (Paiva et al., 2019). Passaia and Margis-

Pinheiro (2015) emphasized that the rather low peroxidase activity of plant glutathione 

peroxidases compared to the selenocysteine-containing animal GPXs, the presence of the thiol 

catalytic centre in them, their capacity to interact with regulatory proteins make GPXLs strong 

and promising candidate to be efficient redox sensors. Our results indicate that AtGPXL5 can 

be such protein having a role in salt stress response. 

6.5 AtGPXL5 has a role in the seed germination, growth and development of 
Arabidopsis seedlings under control and in the presence of 100 mM NaCl 

Shifts in the cellular glutathione redox status may reversibly modify redox-sensitive thiol 

groups of proteins either through glutathionylation or formation of cysteine cross bridges. A 

relatively small global shift in the glutathione Ehc is associated with a very large change in gene 

expression and plant development (Aller et al., 2013; Schnaubelt et al., 2015). It is likely that 

the enzymatic and non-enzymatic elements of the complex ROS-processing system and the 

signaling pathways controling growth and development overlap (Noctor et al., 2018). Either 

AsA, GSH or several GSH-related enzymes can be among the components linking ROS- and 
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redox signaling to growth (Schnaubelt et al., 2015; Bela et al., 2017; Bielach et al., 2017; Gietler 

and Nykiel, 2017; Horváth et al., 2019). According to our results, AtGPXL5 has a function both 

in development and oxidative stress response. In silico promoter analysis of the AtGPXL5 gene 

revealed the presence of several abiotic (ARE, HSE, MBS) and biotic (Box-W1) stress-related 

cis-acting elements in its 5′ up-regulatory region (Bela et al., 2015). Furthermore, two cis-

regulatory sequences of this promoter were connected to seed development (AAGAA-motif 

and Skn-1_motif, (Bruce et al., 1991; Washida et al., 1999). According to data found in the 

Genevestigator database, AtGPXL5 is expressed in all developmental stages of Arabidopsis 

plants, both in shoots and roots (Bela et al., 2015).  

The roles of Arabidopsis GPXLs were investigated using Atgpxl1, Atgpxl2, Atgpxl3, Atgpxl4, 

Atgpxl6, Atgpxl7, and Atgpxl8 T-DNA insertion mutants by Passaia et al. (2014). The shoot 

phenotypes of the mutants were largely similar to wild type plants, with small differences 

observed in the Atgpxl2, Atgpxl3, Atgpxl7, and Atgpxl8 mutants, which displayed minor 

differences in the number of rosette leaves and lateral roots of the 4-week-old plants (Passaia 

et al., 2014). These authors confirmed the connections among the AtGPXLs and plant hormones 

such as auxin, ABA, strigolactone hormones, thereby demonstrating the importance of 

AtGPXLs in the hormone-mediated regulation of lateral root development. The relationship 

between the changes in redox status and the auxin transport was proved by Jiang et al (2016). 

Using the redox sensitive green fluorescent protein (roGFP1) they demonstrated that treatment 

of the Arabidopsis seedlings with 50, 100 and 150 mM NaCl caused initially a more oxidized 

redox status in the roots, but in the presence of relative low salt concentration (< 100 mM) after 

1-3 days it could be re-establised. Coincident with the salt-associated changes in the redox 

profiles of roots were changes in the distribution of auxin transporters (AUX1, PIN1/2), which 

became more diffuse in their localization (Jiang et al. 2016). It was suggested that the adaptation 

to salinity in Arabidopsis might be mediated partly by an auxin/redox interaction (Iglesias et 

al., 2010; Jiang et al., 2016).  

GSH is specifically required to activate and maintain the cell division cycle in the root’s apical 

cells (Cheng et al., 1995; Vernoux et al., 2000; Frendo et al., 2005; Schnaubelt et al., 2015). 

Severe GSH depletion specifically inhibited root meristem development, and low root GSH 

levels decreased lateral root densities (Schnaubelt et al., 2015). A low level of GSH was 

reported to cause more oxidized redox potentials and to arrest the cell cycle in roots but not in 

shoots (Schnaubelt et al., 2015). It was shown that low GSH level modulates developmental 

responses through alteration of hormonal homeostasis of plants (Considine and Foyer, 2014; 
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Passaia et al., 2014; Schnaubelt et al., 2015; Jiang et al., 2016). Passaia et al. (2014) suggested 

that GPXLs may be required to mediate GSH and reduced TRX functions in roots that impact 

on lateral root production or growth. Plant GPXLs are considered to function as redox sensors 

(Milla et al., 2003; Miao et al., 2006; Herbette et al., 2007; Passaia et al., 2014, Passaia and 

Margis-Pinheiro, 2015). According to their relatively high expression levels, the AtGPX2, -3, 

-5, -6 and -8 gene products may play a role in the growth and differentiation of roots. 

Passaia et al. (2013) reported that the mitochondrial OsGPXL3 was essential for normal Oryza 

sativa shoot development and seed production and according to the results of Lima-Melo et al. 

(2016) even for photosynthesis and root development. Mutation in OsGPXL5 caused lower 

germination rate, reduced growth, and less filled grains compared to wild-type plants (Wang et 

al. 2017). In Arabidopsis, the relatively high transcription level of AtGPXL1, AtGPXL2, 

AtGPXL3, and AtGPXL6 in shoot apical meristems, seedlings, and rosette leaves suggests the 

physiological importance of the encoded isoenzymes in shoot development (Bela et al., 2015). 

Interestingly, 4-week-old Arabidopsis knockout mutants of GPXL7 under short-day conditions 

have greater rosette and under long-day photoperiod have more leaves than wild-type plants, 

indicating the role of GPXL7 in shoot development (Passaia et al. 2014). The relevance of 

AtGPXL7 in hormone-mediated root development, especially in lateral root development, was 

also demonstrated by using 1-naphtaleneacetic acid and synthetic strigolactone treatments 

(Passaia et al. 2014). 

It was reported that some GPXL genes are activated (AtGPXL2, -3 and -8), while others 

(AtGPX1, -4, -6 and -7) are repressed during the seed germination (Bela et al., 2017). According 

to our results, overexpression of AtGPXL5 resulted in maintained seed germination rate in the 

presence of 100 mM NaCl. There was no difference among the germination of the investigated 

lines under control conditions, indicating that the coded protein has a specific role in 

germination under salt stress. However, the decreased root length of the Atgpxl5 mutant and the 

reduced development of the shoot of seedlings indicate that this protein has a function even in 

normal development. The decreased growth of the primary root in the Atgpxl5 mutant caused 

higher lateral root density value than that in the Col-0. Interestingly, increased lateral root 

density was found also in the OX-AtGPXL5 seedlings after applying 100 mM NaCl for 10 days 

compared to the wild type, but in these plants the number of lateral roots remained higher in 

the presence of salt than in the other genotypes (Fig. 18E). Likewise, the un-treated 15-day-old 

OX-AtGPXL5 seedlings had similar rosette area, shoot biomass, convex area, chlorophyll and 

anthocyanin contents than the wild type (Fig. 17-20), but after applying salt stress these 
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parameters suggested less-impaired growth of the AtGPXL5-overexpressing lines. The 

differences found in the phenotype and salt stress response of the Atgpxl5 mutant and AtGPXL5 

overexpressing plants suppose a complex interaction of AtGPXL5 with plant hormones. 
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7. Summary 

Plant’s glutathione peroxidase-like (GPXL) enzymes are thiol-based peroxidases catalysing the 

reduction of H2O2 or hydroperoxides to water or alcohols using reduced glutathione (GSH) or 

thioredoxin as an electron donor (Navrot et al., 2006). Arabidopsis thaliana possesses eight 

isoenzymes located in different plant’s organelles and having different roles in redox-dependent 

processes. Among them, AtGPXL5 is a poorly known plasma membrane-associated enzyme, 

although its role in salt stress tolerance was suggested (Gao et al. 2014). We have constitutively 

overexpressed the AtGPXL5 cDNA and investigated the role of AtGPXL5 in response to NaCl 

treatment and in development. Experiments were performed by using AtGPXL5-overexpressing 

lines (OX-AtGPXL5) and Atgpxl5 mutant plants. Based on our results, we have made the 

following observations: 

1) 12-day-old Arabidopsis thaliana Atgpxl5 insertional mutants had higher level of superoxide 

radical anion and total ROS in untreated roots and shoots, respectively compared with Col-0. 

The higher level of ROS decreased the cells’ vitality in the shoot of Atgpxl5 seedlings even 

under control condition. After applying 7-day treatment with the concentration of 100 mM 

NaCl, the O2
•− level in the root was elevated further and reached higher level than in the wild 

type. These indicate that AtGPXL5 might play an important role in the ROS homeostasis and 

maintaining the cell’s vitality. 

2) The antioxidant mechanisms of the 6-week-old plants have altered, especially in the Atgpxl5 

mutants compared to OX-AtGPXL5 plants. Several ROS processing enzymes worked in 

elevated level in Atgpxl5 mutant, but OX-AtGPXL5 plant exhibited similar activity to the Col-

0 wild type. The GPOX activity was elevated in the lowest extent in Atgpxl5 plants while GPOX 

and TPOX enzymes in the AtGPXL5-overexpressing plants worked about on the level of wild 

type. 

3) Under control conditions, significantly lower GSH was found in the Atgpxl5 mutant roots 

while its amount was elevated in the OX-AtGPXL5 shoot. The applied salt stress caused 

accumulation of the highest amount of reduced glutathione and the less oxidized form (GSSG) 

in the AtGPXL5-overexpressing plants among the investigated lines, while the GSSG increased 

most in the Atgpxl5 roots. The amount of reduced glutathione was higher and the calculated 

redox potential was more negative in the overexpressed line than in Col-0. The result confirms 

that AtGPXL5 has function in regulating the redox state, through which they can also influence 

the growth and development.  
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4) AtGPXL5 enzymes are required for healthy growth and development of the Arabidopsis 

thaliana seedlings. Deficiency of AtGPXL5 led to reduce the length of primary roots, biomass, 

rosette size, convex area, chlorophyll and anthocyanin contents compared to other investigated 

lines under normal conditions. In the presence of 100 mM NaCl, Atgpxl5 mutant and the Col-0 

wild type seeds showed delayed germination, while germination of the OX-AtGPXL5 lines was 

not inhibited in the presence of 100 mM NaCl. Untreated OX-AtGPXL5 lines exhibited similar 

phenotype as Col-0, however the overexpressing plants grew better in the presence of 100mM 

NaCl: they had larger rosettes, larger convex area and lower convex percentage values with 

higher content of chlorophyll and anthocyanin than that of the wild type and Atgpxl5 plants. 

The reduced development of the shoots and decreased root length of the Atgpxl5 mutant indicate 

that this protein has a function even in the normal development. 
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8. Összefoglalás 

A tiol peroxidázok közé tartozó növényi glutation peroxidáz-szerű enzimek (GPXL-ek) 

redukált glutation (GSH) vagy tioredoxin elektron donort használva katalizálják a H2O2 vagy 

egyéb hidroperoxidok vízzé vagy alkohollá történő redukcióját (Navrot és mtsai., 2006). Az 

Arabidopsis thaliana 8 GPXL izoenzimet tartalmaz, amelyek különböző sejtorganellumokban 

lokalizáltak és eltérő redox-függő folyamatokban játszanak szerepet. Az AtGPXL5 egy kevéssé 

ismert plazmamembrán-kapcsolt izoenzim, bár szerepét feltételezték a sóstressz tolerancia 

kialakításában (Gao és mtsai. 2014). Kísérleteinkben konstitutívan túltermeltettük az AtGPXL5 

cDNS-t és a növények fejlődésében és NaCl kezelésre adott válaszában vizsgáltuk az AtGPXL5 

szerepét. Vizsgálatainkat AtGPXL5-túltermelő (OX-AtGPXL5) és Atgpxl5 mutáns növények 

felhasználásával végeztük. Eredményeink alapján az alábbi megállapításokat tettük: 

1) A 12 napos Arabidopsis thaliana Atgpxl5 inszerciós mutánsok gyökerében magasabb 

szuperoxid gyök anion és össz ROS szint található kontroll körülmények között is, mint a 

vad típusú (Col-0) gyökerekben. A magasabb ROS szint az Atgpxl5 hajtások csökkent 

életképességét eredményezte. 7 napig tartó 100 mM-os NaCl kezelés tovább emelte a 

gyökerekben a O2
•−   mennyiségét, szintje meghaladta a vad típusban kialakultat. Ezek 

alapján az AtGPXL5 fontos szerepet tölthet be a reaktív oxigénformák homeosztázisában 

és a sejt életképességének fenntartásában. 

2) A hat hetes Atgpxl5 mutáns és OX-AtGPXL5 növények antioxidáns mechanizmusait 

összehasonlítva jelentős különbségek mutatkoztak. Míg az Atgpxl5 mutánsban több 

antioxidatív enzim emelkedett aktivitást mutatott, az AtGPXL5-túltermelő növényekben a 

vad típushoz hasonló aktivitásokat mértünk. Míg az Atgpxl5 növények magasabb 

glutation peroxidáz (GPOX) aktivitással rendelkeztek, az OX-AtGPXL növényekben a 

GPOX és TPOX (tioredoxin peroxidáz) aktivitás is a vad típuséval azonos szinten 

működött. 

3)  Kontroll körülmények között a GSH tartalom szignifikánsan alacsonyabb volt az Atgpxl5 

mutáns gyökerekben, míg az OX-AtGPXL5 hajtásban magasabb. Az alkalmazott 

sóstressz után az AtGPXL5-túltermelő növények rendelkeztek legmagasabb GSH és 

legalacsonyabb GSSG szinttel, a GSSG mennyisége az Atgpxl5 mutáns gyökerekben nőtt 

legnagyobb mértékben. Az OX-AtGPXL5 vonalak számított redukciós potenciál értéke 

negatívabb volt, mint a Col-0 vad típusé. Az eredmények megerősítették, hogy az 

AtGPXL5 fehérje szerepet játszik a redox állapot szabályozásában, amelyen keresztül a 

növekedést és fejlődést is befolyásolhatják. 
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4) Az AtGPXL5 protein szükséges az Arabidopsis thaliana csíranövények normál 

növekedéséhez és fejlődéséhez. Hiányában csökkent az elsődleges gyökerek hossza, 

biomasszája, a rozetta mérete, a hajtások klorofill- és antocián tartalma kontroll 

körülmények között is. 100 mM NaCl jelenlétében az Atgpxl5 mutáns és a vad típusú 

növények magjainak csírázása gátlódott, azonban az AtGPXL5 túltermelőké nem. Az OX-

AtGPXL5 növények normal fiziológiás körülmények között a vad típushoz hasonló 

fenotípust mutattak, azonban 100 mM NaCl jelenlétében jobban növekedtek: nagyobb 

rozetta átmérővel rendelkeztek, a levelek nagyobb konvex területet foglaltak el, magasabb 

klorofill és antocián tartalommal rendelkeztek, mint a Col-0 és Atgpxl5 mutáns növények. 

Az Atgpxl5-nél megfigyelt csökkent hajtás- és gyökérnövekedés arra enged következtetni, 

hogy az AtGPXL5 fehérje szerepet játszik a növények normal növekedésében. 
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12. Supplementary data 
 
 

  
 

Figure S1 Hydroponically grown 6-week-old Arabidopsis Col-0 wild type, Atgpxl5 insertional mutant and OX-
AtGPXL5-1 plants treated with 100 mM NaCl for 24 h. A: Top view photos of selected un-treated 6-week-old 
hydroponically grown Col-0, Atgpxl5 and OX-AtGPXL5 plants, respectively B: side view photos of selected plants 
after one-day-long salt treatment. C: Maximum rosette diameter (cm) and length of roots of 6-week-old un-treated 
plants. Data are presented by mean values ± SE, n=20. Data with different letters are significantly different at 
p≤0.05, determined by Duncan’s test. 

OX-AtGPXL5 Atgpxl5 Col-0 
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Supplementary Table 1. List of oligonucleotides used during identification of interested 
sequences and in real time quantitative polymerase chain reaction (qRT-PCR) 

Vector name 
or gene ID 

Primer Sequence Reference 

pTCO35S new 
pTCO35SNEW-
F 

5’ GCAGGACGATCCGTATTTTTACAAC 3’ Rigó et al. 2016 

T35S/RD29rc T35S/RD29rc-R 5’ GGACTCTAGCATGGCCGCGGG 3’ Rigó et al. 2016 

At3G63080 
AtGPXL5-F 5′ TCATCATCATCATCTGTGTCGGA 3’ 

Bela et al. 2018 
AtGPXL5-R 5′ GGACTCCGTGAATCCGCATT 3’ 

At1G16300 
AtGAPDH2-F 5’ GAATCAACGGTTTCGGAAGA 3’ 

Riyazuddin et al., 2019 
AtGAPDH2-R 5’ CTCGGTGGTGATGAAAGGAT 3’ 


