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1. Introduction 

Due to the great development of molecular biology, DNA examinations have spread  in all the 

fields  of biology and medical sciences, including forensic sciences as well. They tend to gain 

ground  all over the world  in civil and criminal court cases together with blood-group 

determination tests.  

Identification of criminals is based on the testing of biological traces (e.g. blood,  saliva, sperm 

and hair) left at the scenes of crimes. In most cases their quantity is so little that traditional 

serological methods can produce no results. The DNA typing of the remains becomes 

necessary. 

In the parentage cases the paternity of the alleged male cannot be either proven or excluded in 

many instances with the classical serological methods and it makes the extension of the testing 

methods necessary.  It is provided by the DNA tests. The DNA analysis in the so-called  status  

court cases is first used in Hungary in our laboratory. 
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1.1.  Objectives 

In the practice of the determination of paternity only those methods can be applied which are 

based on known allele frequencies and genotype occurrence with a well established  and  proven  

information on the inheritance of the traits. For their applicability in forensic sciences the 

validation of the DNA systems is required that can be carried out with population genetic tests. 

Objectives of my PhD thesis are as follows: 

- The examination of distribution of genotypes in 5 somatic chromosomal  STR systems 

(HumVWA, HumTHOl, HumF13B, HumFES/FPS,  HumFGA) and 2 Y chromosomal  STR  

systems (DYS19, DSY390) in the population of Szeged and its environs, 

-  the calculation  of the allele frequency values of the individual  STR systems, 

-  the probability of the exclusion of paternity, 

-  as well as the calculation  of the combined probability of exclusion of the 7 DNA STR.  

systems 

- By using the probabilities of exclusion I plan to compile a combined protocol of optimal 

blood group and DNA systems which yield a combined exclusion probability near  100 %. 

- To challenge the practical applicability of the DNA examination in the parentage cases, I 

compare the results of the blood group systems that were combined with DNA analysis with 

the results of the blood group systems alone in  cases from the year  1997.  



-3  -

1.2. Organization of the human genome 

The human genome is made up by the DNA in the cell nucleus and in the mitochondria.  

Approximately  10% of the nuclear DNA  consist of a great number of repetitive sequences. 

They are organised in the form of the interspersed repeats and the tandem repeats (Figure  1)!  

The interspersed repeats are scattered  in the genome,  in small groups intermingled with the 

non repetitive DNA (Strachan and, Read  1996). They appear in two forms in the human 

genome. 

SINE (short interspersed nuclear elements) consist about form 5% of the Human genome, the 

so-called Alu-family also belongs here. The repeats are ~ 280 bp long and occur at about every 

4 kb within the human genome. The number of repeats is 750 000, therefore, this is the most 

known human genome sequence (Strachan and Read,  1996).  

LINE (long interspersed nuclear elements): They are 500 bp -7 kb long and their function is 

not completely known.  They may play a role in the DNA repair mechanisms (Strachan  and  

Read,  1996).  

The tandem repeats appear in blocks that are placed in succession or in blocks or in a row 

along the DNA strands. There can be so-called uncoded (intron) sequences inside the genes or 

sequences outside the genes.  On the basis of the number of repeats and the length of the units 

three types can be distinguished by density gradient centrifiigation, i.e. the satellite, the 

minisatellite and the microsatellite DNA (Strachan and Read,  1996).  

Satellite-DNA: The repeats form a long chain and are either localised in a  heterochromatic  

region or at around the centromere.  

Minisatellite-DNA: The medium-sized "tandem repeats" sequences belong here.  They are 9-

100 bp long sequences repeated several thousand times. Minisatellite DNAs are also known as  

the variable number of tandem repeat (VNTR) systems (Nakamura at  al.,1987).  

Microsatellite-DNA: The repeats are  1-6 bp long streches of DNA, their number is  100 000 

within the genome. The repeats are 1-6 bp long. The amplifiable fragment length polymorphism 

(AMPFLP) systems, where the sequences are  150-900 bp long with varying numbers of 

repeated bases,and  the short tandem repeats (STR) systems, where the stretches are  150-350  

bp long belong here (Edwards at al.,1992;  Strachan and Read,  1996).  



Fig. 1: Organization of human  genome  
(modified according to Fowler et al,  1988 ; Strachan and Read,  1996)  
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1.3. Microsatellite  systems 

Regarding the basic biological function of the microsatellite systems there have been various 

ideas on whether they play a role in gene regulation or gene conservation or in the 

determination of sexes or they are regarded as recombination hot spots. According to current 

opinion, these sequences were created by slippage mutation and have no functional 

significance (Strachan and Read,  1996).  

Similarly to the blood, enzyme and serum groups, the DNA sequences belonging to the 

microsatellite regions of the human genome also show genetic variability, they are 

polymorphic. Polymorphism is the form of a genetic variation where the human chromosomes 

include one or the other alleles. They are the result of a mutation in the DNA which can be 

passed further to the next  generation.  

1.3.1. Mutation  models  

We can draw conclusion for the mutational mechanisms from the two mutation models that 

lead to the development of various alleles in the microsatellite systems. Infinite allele model 

(IAM).Tt is a presumed that every new mutation results in a new allele (Wright,  1949; Kimura 

and Crow,  1964). In the microsatellite loci it means that the new alleles are the results of a 

complex mutational process that affects many repeat or the entire tandem region. 

Stepwise mutation model (SMM):This model has been introduced to explain development 

protein polymorphisms (Kimura and Ohta,  1973). In the case of microsatellite  loci it means 

the insertion or deletion of one repeat in the tandem region (Chakraborty,  1977; Chakraborty 

and Daiger  1991; Shriver at al  1993).  

1.3.2. Mutational mechanisms in the microsatellite  systems 

Slipped strand mispairing: This occurs when the normal pairing between the two 

complementary  strands of the double helix is altered by staggering of the repeats on the two 

strands, leading to incorrect pairring of repeats. Although slipped strand mispairing can be 

envisaged to occur in nonreplicating DNA. Replicating DNA may offer more opportunity for 

slippage, therefore the mechanism is often also called replication slippage or polymerase 

slippage. In addition to mispairing between tandem repeats, slippage replication has been 
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envisaged to generate large deletions and duplications by mispairing between noncontigous 

repeats (Strachan and Read,  1996).  

Gene conversion: This describes a non reciprocal transfer of sequence information between a 

pair of nonallelic DNA sequences (interlocus gene conversion) or allelic sequences 

(intraallelic gene conversion). 

One of the pair of interacting sequences, the donor, remains unchanged, but the other DNA 

sequence, the acceptor, is changed so that it gains some sequence copied from the donor 

sequence. Gene conversion events may be relatively frequent in tandemly repetitive DNA 

(Strachan and Read,  1996).  

Unequal crossover: This is a form of recombination in wich the crossover takes place between 

nonallelic sequences on nonsister chromatids of a pair of homologs. 

The crossover occurs between mispaired nonsister chromatids, the exchange results in a 

deletion on one of the participating chromatids and an insertion on the other. 

Unequal crossover is also expected to occcur comparatively frequently in complex  satellite  

DNA repeats and at tandemly repeated gene loci (Strachan and Read,  1996).  

1.3.3. Types of mutation 

The DNA of human genom is subject to a variety of different types of heritable change. 

Large-scale chromosome abnormalities involve loss or gain of chromosomes (numerical  

abnormalities) or breakage and rejoining of chromatids (structural  abnormalities).  

Smaller-scale mutations involve changes a single DNA sequence (simple mutation) 

or they involve exchanges between two allelic or nonallelic  sequences.  

Three classes of small-scale mutation can be distinguished.  (Table 1) 
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Table 1 

Small scale mutation  classes in the human  genome  

Mutation class  Type of mutation Incidence 

Base subtitutions  A U  t y p e s  

Insertions 

Deletions 

Transitions-transversion 

Synonymous - nonsyno-
nimous substitutions  

Gene conversion 

One or more nucleotides 
are inserted into a sequence 

one or more nucleotides 
eliminated from a sequence 

Common type in coding 
and in noncoding DNA 

unexpectedly;transitions  are  
commoner than transversions; in 
mitochondrial DNA 

synonymous substitutions commo-
ner than nonsynonymous in coding 
DNA 
Rare except at certain tandemly 
repeated loci or clustered repeats 

Very common in noncoding DNA 

Very common in noncoding DNA 

1.3.4. Brief description of the examined DNA STR systems 

HuraVWA: The 40th intron of the von Willebrand Factor gene is located on the  12th  

chromosome in the 12pl2-pter region. The fragment size is about  150 bp long and the 

TCTA/TCTG bases are repeated (Mercier et al.,  1991, Kimpton et al.,  1992).  

HumTHOl: The Ist intron of the Tyrosine hydroxylase gene is located on the  1 lpl5-15.5 

chromosome, the fragment is about  160 bp long in which 4 pairs of bases (AATG) are 

repeated (Edwards et al.,  1992).  

HumF13B: It is the 3'-ended region of the XIII b coagulation factor gene that is located on 

the  Iq31-q32 chromosome. It is about 200 bp long fragment inside which there are pairs of 

bases (ATTT) repeated. Its polymorphisms were first described by Nishimura and Murray 

(1992). 
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HumFES/FPS: It is the 5th intron of c-fes/fps protooncogene gene located on the  15q25-qter  

chromosome.  Its is about 250 bp long fragment in which 4 pairs of bases (ATTT) are repeated. 

It was first described by Polymeropoulos et al. (1991a). 

HumFGA: It  is the 3rd intron of the alpha fibrinogen gene. Its chromosomal localisation is  

4q28. It is about a 280 bp long fragment with the repeat of TCTT inside (Barber et al,  1996).  

DYS19  is about 200 bp long section located on the short arm of the Y chromosome inside 

which  10-19 repeats of the CTAT/C sequences can be seen.(Roewer  at al,  1992; Kayser at al, 

1997). 

DYS390 is about  220 bp long fragment located on the long arm of the Y 

chromosome inside which  18-27  repeats of the CTG/AT sequences can be seen.  (Kayser et al. 

1997). 
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2. Materials and methods 

2.1. Materials 

The DNA was extracted from blood samples  applied on a piece of  linen and EDTA blood 

samples that originated from the Albert Szent-Györgyi Medical University of Blood 

Transfusion Station and the Department of  Forensic Medicine's routine parentage tests.There 

were 489 unrelated adult individuals tested in the case of the HumVWA and HumTHOl 

systems, 465 in the HumF13B system, 360 in the HumFES/FPS and HumFGA systems, 308 

in the DYS19 and 268 in the DYS390 systems. 

2.2. Methods 

2.2.1. DNA extraction from blood 

The DNA extraction from EDTA blood samples was carried out with the NaCl extraction 

method of Miller et al. (1988). 

2.2.1.1. Lysis of red blood cells 

The EDTA blood is washed three times with 0.05 M KC1 solution. The ratio between the 

blood and the KC1 solution is  1:4. After the washing we gain a residue containing  leukocytes  

and red blood cell membranes free from haemoglobins. 

2.2.1.2. Lysis of leukocytes 

The DNA isolation was carried out in a buffer containing Proteinase K (Pro K) enzyme to 

dissolves proteins, e.g. nucleases and SDS to emulsify the lipid bilayers of the cell 

membranes, making thus possible the action of the enzyme. 

The process of digestion takes place in the presence of a so-called lysis buffer composed of: 
lOmM Tris/HCl pH:8,0 
lOmMNaCl 
lOmM EDTA-Na 

The lysis of the leucocytes was done in incubation in a 2 ml lysis buffer containing 250 pi Pro 

K (2mg/ml) and  100ml 20% SDS in 37°C at overnight. 
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2.2.1.3. Protein  extraction  

Following the incubation the proteins in the solution were precipitated by addition of 1 ml 6M 

NaCl solution.After centrifugation (20 minutes at 3600 g) the DNA remained in the 

supernatant. 

2.2.1.4. DNA extraction 

The supernatant was transferred into a centrifuge tube. A 96% cold ethanol solution is added 

and the tube was tilted to precipitate DNA. The DNA is appears in the ethanol-phase, 

transferred into another centrifuge tube, washed in 70% ethanol and  dried at room 

temperature. Finally, it is dissolved in TE buffer (lOmM Tris, ImM EDTA). 

2.2.2 DNA extraction from blood stain 

The DNA extraction from bloodstains was done with the Chelex method described by Walsh 

et al. (1991). 

The Chelex  100 (Biorad) is a styrene resin having reactive iminodiacetate groups which 

chelate with multivalent metal ions. The ions, especielly Fe ions in the case of blood, that 

catalyse the fragmentation of the DNA at high temperature (Singer-Sam et al.,  1989).  

In the first step a 3x3 mm piece of the bloodstain was put in an Eppendorf tube and incubated 

in 1 ml sterile distilled water at room temperature for 30 minutes while vortex - mixing it,  

therefore, accelerating the solution of the haemoglobin from the conveying material. After the 

incubation period it was centrifuged for 5 minutes at  14  OOOg. The supernatant, except  50 pi, 

was removed and  150 pi 5% Chelex solution was added. After incubation in a 56°C water 

bath for 30 minutes the cells were boiled for 8 minutes in order to accelerate the lysis of the 

cells. After the centrifugation the supernatant can be used in the PCR. 

2.2.3. Quantitative and qualitative DNA testing 

The estimation and quality testing of the DNA isolated from blood is done with agarose gel 

electrophoresis followed by ethidium-bromide  staining.  

For the estimation of the DNA concentration a 50,100,200,400  and 600 ng/ml solution of 

the DNA originating from the K562 cell line (Promega, Madison) is added into adjacent lanes 

of the same gel. For the electrophoresis we prepare an 0,8 % (w/v) gel concentration. 
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Components:  1,6 g Agarose (Serva, Heidelberg) 

20 ml  10% Loening buffer (0,4 M Tris, 
10 mM EDTA) 
200 mM Na-acetate (pH 7,4) 
200 ml Deionised water 

Prior to application the samples have been prepared as follows: 

lpl DNA sample + l lp l  TE buffer (10 mM Tris,  1  mM EDTA) + 3pi  Stopp-mix  

Stopp-mix components:5 ml Glycerol 

1 ml  1 OX TBE buffer (1.34 m Tris,749 mM Boric 
acid, 25,5 mM Na2-EDTA) 
1 ml Bromophenolblue (7 %) 
1 % Xylenecyanole (10 %) 

The electrophoresis lasts for 2 hours in the IX Loening electrode buffer at 250 mA. 

The extracted DNA is stained by incubating with a 0,2 % (w/v) ethidium-bromide  solution for 

30 minutes.The DNA bands become visible in UV light (320 nm) with the help of a 

transilluminator. 

2.2.4. PCR (Polymerase Chain Reaction) 

The in vitro synthesis (amplification) of the DNA region of interest is performed by PCR 

(Mullis and Faloona,  1987; Saiki et al.,  1988) in the presence of thermo-stable Taq-DNA 

polymerase. 

The reaction takes place in three phases. The first phase includes the separation of the double-

stranded DNA into single strands at 90-95°C (denaturation). The second phase includes the 

annealing of primers (synthetic oligonucleotide) to the opposite DNA strand (50-64°C). In the 

third phase (extension) a new DNA strand is formed from the nucleotides included in the 

system from the point where the primers are annealed (70-72°C). The process is repeated in 

30 cycles. 
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PCR mixture 

2 pi  1 Ox Reaction buffer (Promega) 
1-2 pi Deoxynucleotide (2.5-2.5 mM dGTP, dATP, dCTP, dTTP) 
1,5(0,125mM MgCl2 

0.2  (ol (1U) Thermus aquaticus (Taq)-DNA.polymerase  (Promega)  
x pi (lpM) Primer  1 and 2 
x pi (2ng) "Template" DNA (sample to be typed) 
ad 25pl Deionised water 

To prevent evaporation 25 pi Mineral oil (SIGMA) is layered on the top of the reaction 

mixture. 

The amplification reaction is done with a PTC  100MJ Research thermocycler.  

The primers used in the examinations are listed in Table 2. The optimal parameters of the 

amplification reaction for each individual primer are described in Table 3. 

2.2.4.1 The verification of the PCR product 

A 3.5 pi of amplification product is applied into a polyacrylamide gel with  123 bp molecular 

weight marker," the ladder" (SIGMA), as control and it is visualized with silver nitrate 

staining (See detailed description in Chapter 2.2.5). 

2.2.5. Detection of the genotypes 

The alleles are visualized in native discontinuous buffer (Allen et al.,1989) by polyacrylamide 

gel electrophoresis (PAGE) followed by silver nitrate staining (Budowle et al.,1991). During 

the electrophoresis it is as the number of the tandem repeat sequences is directly proportional 

to the lenght of the examined DNA strand, e.g.: the longer the DNA section it is nearer to the 

inoculation and the smaller its wandering speed is, therefore, it is further to the inoculation. 

With lower number of tandem repeats we can observe a longer distance of migration from the 

site of loading. 

The DNA samples can be typed  by comparison with an allelic ladder constructed by the 

known alleles and standardised in our laboratory. 



Table 2 

The used primers  in each STR systems 

Primer 1 Primer 2 

HUMVWA 
Kimpton et al. /41/ 

HUMTH01 
Edwards et al. 1221 

HUMF13B 
Nishimura, Murray /63/ 

HUMFES/FPS 
Polymeropoulos et al. 
1661 

HUMFGA 
/Mills et al. 1561 

DYS19 
Roewer et al 1611 

DYS390 
Kayser et al. /38/ 

5' CCC TAG TGG ATG ATA AGA ATA ATC 3' 

5' GTG GGC TGA AAA GCT CCC GAT TAT 3' 

5' TGA GGT GGT GTA CTA CCA TA 3' 

5' GGG ATT TCC CTA TGG ATT GG 3' 

5* GCC CCA TAG GTT TTG AAC TCA 3' 

5' CTA CTG AGT TTC TGT TAT AGT 3' 

5' TAT ATT TTA CAC ATT TTT GGG CC 3' 

5' GGA CAG ATG ATA AAT ACA TAG GAT GGA 
TGG 3' 

5' GTG ATT CCC ATT GGC CTG TTC  CTC 3' 

5' GAT CAT GCC ATT GCA CTC TA 3' 

5' GCG AAA GAA TGA GAC TAC AT  3*  

5' TGA TTT GTC TGT AAT TGC CAG 3' 

5' ATG GCA TGT AGT GAG GAC A 3' 

5' GAC AGT AAA ATG AAC ACA TTG C 3' 



Table 3 

The parameters  of the amplifikation (PCR) in each STR systems 

HUMVWA/2/  HUMTH01/2/  HUMF13B/3/  HUMFES/FPS  HUMFGA/4/  DYS19/38/  DYS390/38/  
/2/ 

94 °C 180s 94 oc 180s 

94 °C 60s 94 °C 60s 96 °C 60s 95 oc 60s 95 oc 60s 94 oc 30s 94 °C 15s 

50 °C 60s 64 °C 60s 60  OC  60s 54 oc 60s 60 °C 60s 5 P C 30s 58 °C 20s 

72  OC  90s 70 °C 120s 70 °C 90s 70 °C 90s 72 °C 60s 72 °C 90s 72 oc 20s 

30 cycles  10 cycles  10 cycles  30 cycles  30 cycles  30 cycles  5 cycles 

90 °C 60s 90 °C 60s 72 °C  10min  72 °C  10min  94 0C 15s 

64 oc 60s 60 °C 60s 54 °C 20s 

70 °C 120s 70 °C 90s 72 °C 20s 

17cycles  20 cycles  30 cycles 
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2.2.5.1. Polyacrylamide gel  electrophoresis  

Solutions necessary for an electrophoresis:  

1./ 29,1 %  Acrylamide (SERVA) 
0,9 %  Piperazine diacrylamid (PDA, SIGMA) 

2.10,28 M 2-Cyclohexylamino ethane-sulfonicacid (CHES) 
3./ 0,5 M  Tris/Formiate pH:9,0 
4./  0,35 M Tris/Sulphate pH:9,0 

The gel polymerisation takes place on the effect of the ammonium peroxo-disulphate  (APS)  

and NN,N',N'-tetramethylediamine  (TEMED). To check the amplification product we use an 

8% gel of  10 cm running distance, the thickness of which is 0.45 mm. The electrode buffer is 

0.28 M Tris/Boric acid, which contains 0.05% (w/v) bromophenolblue. The contact between 

the electrode and the gel is provided by a 230 mm x  10 mm x 5 mm sized, 2% agarose gel 

saturated with electrode buffer. 

The electrophoresis is carried out in a multiphore-2 gel electrophoresis chamber with upper 

electrodes (Pharmacia) at  100 V and 20 mA, until the bromophenolblue band reaches the 

anode. The sample is loaded at 2 cm from the cathode by a strip of Schleiher & Shuell 2013 

type filter paper. In order to indicate the genotypes we used a 0.75 mm thick 6% gel with 20 

cm running distance. The electrophoresis is carried out for 90 minutes at 5W and for 90 

minutes at  10 W and finally at  15 W, until the bromophenolblue reaches the anode. 

2.2.5.2. Silver - staining 

The indication of the DNA phenotypes was carried out with the method described by 

Budowle et al. (1991). The DNA fragments are fixed onto the gel with in  1 % (v/v) HN03  for 

5 minutes and the gel was washed 3 times with deionised water. The staining is carried out for 

30 minutes in 0.2% (w/v) AgN03 with continuous shaking, then it is rinsed with deionised 

water then washed with a 0.28M Na2C03  solution also containing 0.05% (w/v) formaldehyde. 

It is repeated as many times as it is necessary in order to have reddish or  greyish-brownish  

DNA bands on the light coloured gel basis. Then the gel is fixed in  10% (v/v) acetic acid 

solution for 3 minutes, washed in deionised water and befor air - drying it is transferred into 

5% (v/v) glycerol 5 minutes (Figures 2-8). 



Fig.2.  HumVWA  genotypes  allelic ladder/from left to right/:allelic  ladder  (13-20);  
14/15; 16/19; 14/15;  allelic ladder( 13-20);  14/15; 14/18; 17/17;  allelic ladder  (13-
20); 17/18; 13/17;  13/15;allelic  ladder  (13-20  

Fig.3.  HumTHOl  genotypes  / from left to right  /: allelic  ladder(6-9.3);7/9.3;6/7,9/9.3;allelic  
ladder  (6-9.3),6/9.3;6/9,3;7/9;  allelic  ladder(6-9.3);  

Fig.4.  HumF13B  genotypes  : /from left to right  /: allelic ladder(6,8-10);  6/7;7/l 0,9/10,  allelic  
ladder(6,8-10);  8/10;8/8;8/10;  allelic ladder(6,8-10);  8/10;10/10;  8/10;  allelic  ladder(6,8-10)  



Fig.5.  HumFES/FPS  genotypes:  / from left to right  /: allelic ladder(9,1 OA-14), 1 OA/12,  allelic  
ladder  (9,1 OA-14) 10/12; 10/11; 11 / 11;  allelic ladder(9,10A14);  11 /11; 1 OA/11; 1 OA/1 OA;  allelic  
ladder(9,1 OA-14); 1 OA/11; 11 /12;  11/11;  
allelic ladder  (9,1 OA-14) 

I 

Fig.6. HumFGA  genotypes:  / from left to right  /: allelic ladder(17-28);23/25;  25/25;20/25;allelic  
ladder  (17-28);22/23;20/23;20/22;  allelic ladder  (17-28);20/24;23/24;  21/21;  allelic  
ladder(9,10A-14)24/26;25/25;20/25;  allelic  ladder(17-28)  

Fig.7.  DYS19  genotypes:  / from left to right  /: allelic ladder( 13-17); 14; 15; 15;  allelic  ladder(13-
17);  14; 14; 14;  allelic ladder(l3-17); 15,14;  15;  allelic ladder(13-17);  14; 14; 14;  allelic  
ladder( 13-17) 



Fig.8.  DYS390  genotypes:  / from left to right  /: allelic ladder(21-25);22;23;23;  allelic  ladder  
(21-25);  22;22;21;  allelic  ladder  (21-25);21;24;24;  allelic  ladder(21-25);  
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3. Results 

The blood samples of unrelated adults from the Blood Transfusion Station of Albert  Szent-

Györgyi Medical University and from parentage cases of the Forensic Medicine Institute of 

Albert Szent-Györgyi Medical University have been tested 7 DNA-STR systems and the 

allele frequency values were calculated. 

3.1 Population genetic  analysis  

We have typed 489 individuals for the HumVWA and HumTHOl  systems, 465 for the 

HumF13B, 360 for the HumFES/FPS and the HumFGA systems. The distribution of the 

genotypes is given in Tables 4/A, B, C, D, and E  respectively.  

3.2. Statistical  analysis  

3.2.1, Calculation of significance 

With the knowledge of the allele frequencies I calculated the theoretical genotype occurrence. 

With x2 probe I tested if there is a significant difference between the found and calculated 

genotypes, i.e. a difference from the Hardy-Weinberg equilibrium (Table 7). 

3.2.2. Expected heterozygosity  (Table 8) 

H = 2n (l-Ixij2)/2n-l)  (Nei,  1978)  xy  = allele frequency 
n = total number of alleles 

3.2.3. Power of discrimination  (Table 8) 

DP =  l - E y i j 2  (Jones,  1972)  y = genotype  frequencies  

3.2.4. Gene/haplotype diversity (Table 8) 

h=  1- £q¡¡2  (Nei,  1987)  q =  gene/haplotype  
frequences 

3.2.5 Polymorphism information content (Table 8) 

PIC = 1 -Z Pi2 - S  2pj2 pj2  (Botstein et al.,  1980)  p = allele frequency 
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3.2.6.Comparative  study of the allele frequency values of the various  populations  

On the basis of G. Carmody's (Ottawa,  Canada) RxC contingency table (Tables  10/A, B). 

3.2.7. Genetic distance 

By the calculation  of genetic distances in the knowledge of the allele frequency values we can 

draw conclusions about the genetic relationships among various ethnic groups.  (Table  11).  

D(ij) = E[pi-pj] x  In  [pi/pj]  pi = allele frequency one population 
pj = allele frequency other population 

(Hummel and Kazarinowa-Fukshansky,  1991)  
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4. Evaluation of the results 

Among the results gained on the basis of the genotype occurrence in the 5 tested somatic DNA 

systems there were 26 genotypes typed in the HumVWA system (Table 4/A), where the 

occurrence frequency of the type  17/20 is quite low (0.082%), whereas that of genotype  17/18  

is high (11.042%).  

Table 4/A 

Genotype frequencies  in the  STR systems  HumVWA  

Genotype Found 
% 

Calculated 
% 

Genotype Found 
% 

Calculated 
% 

13/16 0.204 0.036 16/17 10.225 9.610 

14/14 1.227 1.416 16/18 7.566 7.498 

14/15 3.067 2.547 16/19 2.658 3.703 

14/16 4.703 4.332 17/17 7.975 6.969 

14/17 4.498 6.283 17/18 11.042 10.877 

14/18 5.521 4.902 17/19 4.908 4.752 

14/19 2.454 2.142 17/20 0.082 0.005 

14/20 1.431 1.618 18/18 4.294 4.243 

15/15 1.431 1.145 18/19 4.089 4.656 

15/16 4.089 3.894 19/19 1.840 0.81 

15/17 5.930 5.649 19/20 0.613 0.342 

15/18 4.908 4.408 

15/19 0.814 1.926 

15/20 0.204 0.410 

16/16 3.681 3.312 
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Among the 23 genotypes typed in the HumTHOl  system (Table 4/B) the occurrence frequency 

of 5/8, 5/9.3,9/10 is the lowest (0.204%), whereas at two genotypes (6/8.2, 9/9.3) there were 

high values if compared to others (11.040 % and  13.088%).  

Table 4/B 

Genotype frequencies  in the STR systems HumTHOl 

Genotype Found 
% 

Calculated 
% 

Genotype Found 
% 

Calculated 
% 

5/8 0.204 0.113 7/9.3 5.725 7.506 

5/9 0.410 0.166 7/10 0.613 0.251 

5/9.3 0.204 0.221 8/8 1.840 1.932 

6/6 6.540 5.570 8/9 5.521 5.616 

6/7 7.360 6.561 8/9.3 7.566 7.506 

6/8 6.750 6.561 8/10 0.408 0.251 

6/9 8.380 9.534 9/9 3.272 4.080 

6/9.3 11.040 12.744 9/9.3 13.088 10.908 

6/10 0.610 0.425 9/10 0.204 0.364 

HI 2.040 1.932 9.3/9.3 7.770 7.290 

7/8 3.476 3.864 9.3/10 0.613 0.486 

7/9 6.339 5.616 
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Among the  15 HumF13B genotypes (Table 4/C) found in the samples of the Szeged  region,the  

allele frequency of  9/11 was the lowest (0.22%) whereas that of the 8/10 was 24.95%. 

Table 4/C 

Genotype frequencies  in the  STR systems  HumF13B  

Genotype  Found  Calculated  
%  %  

6/6 1.080 0.876 

6/8 7.090 4.790 

6/9 3.440 4.790 

6/10 6.020 7.810 

7/9 1.075 0.420 

7/10 0.860 0.810 

8/8 4.730 6.540 

8/9 9.250 11.060 

8/10 24.950 21.340 

8/11 0.430 0.390 

9/9 5.160 4.670 

9/10 18.270 18.030 

9/11 0.220 0.330 

10/10 16.560 17.410 

10/11 0.860 0.630 
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Among the 22 genotypes defined in the HumFES/FPS  STR system (Table 4/D)  homozygote  

11 had the highest frequency value (21.94%), whereas the lowest values belonged to the 7/11 

and 8/10 (0.278 %). 

Table 4/D 

Genotype frequencies  in the  STR systems  HumFES/FPS  

Genotype Found 
% 

Calculated 
% 

Genotype Found 
% 

Calculated 
% 

7/11 0.278 0.140 10A/12 6.944 6.464 

8/10 0.278 0.236 10/12 2.222 2.336 

8/11 1.389 1.027 10/13 6.389 6.278 

8/12 0.278 0.352 11/11 21.944 21.809 

9/9 1.120 1.160 11 A/11 0.570 0.682 

9/10 0.556 0.496 11/12 14.167 14.944 

9/11 3.333 3.176 11/13 4.722 4.016 

9/12 1.111 1.090 12/12 2.220 2.560 

9/13 0.290 0.292 12/13 1.120 1.376 

10A/1 OA 4.444 4.080 

10A/10 2.778 2.949 

10/10 5.277 5.329 

10A/11 18.055 18.867 

The HumFGA (table 4/E) is the most polyphormic system in which we found 46 different 

genotypes, the frequency values vaied between 0.310 % and 7.98 %. 

On the basis of the distribution of the genotypes occurrence we calculated the allele frequency 

values for each STR system. 



Table 4/E  (continued)  

Genotype frequencies  in the  STR  systems  HumFGA  

Genotype Found  %  Calculated % Genotype Found  %  Calculated % 

16/22 0.310 0,060 21/23 7,980 6.110 

18/19 0.310 0,210 21/24 5,520 5.100 

18/20 1.230 0,460 21/25 2,450 2.900 

18/21 0.920 0,600 21.2/24 0,610 0.110 

18/22 0.310 0,600 22/22 3,370 3.920 

18/23 0.310 0,410 22/22.2 0,310 0.160 

19/19 0.610 0,480 22/23 4,910 5.300 

19/20 0.920 2,110 22/24 4,910 5.200 

19/21 2.450 2,650 22/25 2,150 2.900 

19/22 2.760 2,740 22/26 0,920 0.800 

19/23 1.840 1,900 22.2/24 0,310 0.110 

19/24 2.150 1,900 23/23 2,150 1.800 

19/25 1.530 1,000 23/24 2.450 3.500 

19/26 0.310 0,250 23/25 2.450 2.000 

19/27 0.310 0.100 23.2/22 0.310 0.240 

20/20 2.150 2.350 23.2/24 0.310 0.160 

20/21 4.910 5.900 23.2/25 0.610 0,100 

20/22 7.970 6.100 24/24 1.840 1.720 

20/23 3.370 4.100 24/25 0.920 1.900 

20/24 4.290 4.010 24/26 0.610 0.500 

20/25 2.760 2.210 24/27 0.310 0.110 

20/26 0.310 0.560 25/26 1.500 0.260 

21/21 3.070 3.690 

21/22 7.980 8.000 
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In the HumTHOl  (Table  5/A; Fig.9)  system we typed  7 alleles among which  allele  9.3  

occurred  the most  frequently (27%)  and  allele  5 the least  frequently (0.4%).  

Table  5/A  

Distribution  of HumTHOl,HumF13B  and  Hum  FES/FPS  allele frequencies  in  the  in  
population  of Szeged  and  its  environs  

Allele  HumTHOl  n=489  HumF13B  n-465  HumFES/FPS  n=360  
5 0.004 
6 0.236 0.094 
7 0.139 0.009 0.002 
8 0.139 0.256 0.011 
9 0.202 0.216 0.005 

9.3 0.270 
10 0.01 0.417 0.073 

10A 0.261 
11 0.008 0.431 

11A 0.012 
12 0.160 
13 0.043 
14 0.002 

Fig.9: Distribution  of  HumTHOl  allele frequencies  in  Szeged  
and  its  environs  

4> 'o c <u 
3 CT" <U 

<L> 

0,3 

0,25 

0,2 

0,15 

0,1 

0,05 

0 
7  8  

allele 
9,3 10 



- 2 0 -

In the HumF13B  system  6 alleles were typed  among which most  10 that occurred  frequently  

(41.7%)  in the tested  samples.  At the same time, however,  the frequency of alleles  7 and  11  

were very low, between  0.9% and 0.8% (Table  5/A;  Fig.  10).  

Fig. 10: Distribution  of  HumF13B  allele frequencies  in  
Szeged  and  its  environs  

O 
o c <u 
3 a-
J 
"5 

0,45 
0,4 

0,35 
0,3 

0,25 
0,2 

0,15 
0,1 

0,05 
0 

8  9  

allele 

10 11 

In the HumFES/FPS  STR  system  10 alleles were typed  among which  allele  11 occurred  at a 

frequency of 43.1%  and  it  is the highest  value.  At the same time, however,  the frequency 

value of allele  7 and  14 is 0.2%. (Table 5/A  ; Fig.  11).  

Fig. 11 .Distribution  of  HumFES/FPS  allele frequencies  in  
Szeged  and  its  environs  
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In the HumVWA system (Table 5/B ; Fig  12) 9 alleles were typified among which the most 

frequent one was allele  17 (26.4%), whereas the occurrence frequency values of allele  13 and 

21 were low (0.1%). 

Table 5/B 

Distribution  of HumVWA and HumFGA  allele frequencies  in the population  of Szeged 
and its environs 

HumVWA  HumFGA  

13 0.001 -

14 0.119 -

15 0.107 -

16 0.182 0.0015 
17 0.264 -

18 0.206 0.015 
19 0.090 0.069 
20 0.015 0.153 
21 0.001 0.192 

21.2 0.004 
22 0.198 

22.2 0.004 
23 0.133 

23.2 0.006 
24 0.131 
25 0.072 
26 0.018 
27 0.004 
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Fig.lZ:  Distribution of  HumVWA  allele frequencies  in  
Szeged  and  its  environs  
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The occurrence  frequencies of the  14 alleles typed  in the HumFGA  system  vary  between  

0.15%  and  19.8% (Table  5/B;  Fig. 13). 



Fig. 13:  Distribution  of HumFGA  allele frequencies  in Szeged  and  its  environs  
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Among the STR traits localised on the Y chromosome 6 alleles were typed in DYS19 system 

(Tablé 5/C; Fig. 14) in which alleles  14,15 and  16 occured nearly with the same frequency 

values (15.6% -29%) while allele  18 occured at a low  frequency,  0.6%.  

Table 5/C 

Distribution of DYS19  and DYS 390 allele frequencies  in the population  of Szeged and its 
environs 

Allele  DYS19  n=308  DYS390  «=268  

13 0.088 
14 0.256 
15 0.260 
16 0.290 
17 0.101 
18 0.006 
19 
20 
21 0.004 
22 0.097 
23 0.187 
24 0.470 
25 0.224 
26 0.019 
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Fig.14:  Distribution  of  DYS19  allele frequencies  in  Szeged  
and  its  environs  
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At the same time, however, of the  6 alleles typed  in the DYS390  system (Table  5/C; Fig. 15) 

the frequency of allele 24  is very high (47%)  as compared  to those of the others  that  have  

frequency values between  0.4% and  22.4%.  
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Fig. 15:  Distribution  of  DYS390  allele frequencies  in  Szeged  
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The frequency occurrence of the haplotypes defined on the basis of the combination of the 

typified alleles in the two systems of the tested Y chromosome is indicated in Table 6. On the 

basis of this it is haplotype  16/24 that has the highest frequency of occurence (12.69%), 

whereas haplotype  18/24 is the least frequent one (0.75%). 

Table 6 

DYS19/DYS390  haplotype frequencies  in the population  of Szeged and its  environs 

Haplotype obs. (n= 268) frequencies 
13/23 5 0.0187 
13/24 18 0.0671 
13/25 5 0,0187 
14/22 10 0.0373 
14/23 23 0.0858 
14/24 26 0.0970 
14/25 9 0.0336 
15/21 4 0.0149 
15/22 11 0.0410 
15/23 19 0.0709 
15/24 22 0.0821 
15/25 10 0.0373 
15/26 3 0.0112 
16/22 4 0.0149 
16/23 8 0.0298 
16/24 34 0.1269 
16/25 22 0.0821 
17/23 5 0.0187 
17/24 14 0.0522 
17/25 9 0.0336 
17/26 5 0.0187 
18/24 2 0.0075 
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On the basis  of the allele frequencies I performed an x2 test to see the level of  significance  

difference between the calculated genotype and the found genotype with. 

With the x2 tests performed in all 5 somatic systems, there were no significant difference 

among the found and the calculated genotypes.  There was no divergence from the Hardy-

Weinberg equilibrium.  (Table 7) 

Table 7 

Value of the  tf  test in each STR systems  

ZX2 df P 

HUMVWA 6.4586 16 0.98<P<0.99 

HUMTH01 6.5000 .  14  0.95<P<0.98 

HUMF13B 3.3406 8 0.90<P<0.95 

HUMFES/FPS 6.7558 12 0.80<P<0,90 

HUMFGA 6.6869 20 P>0.99 

The expected heterozygosity calculated from the allele frequency value (Table 8) in the 5 

somatic  STR systems vary between 70% and  86%. The observed heterozygosity value is high 

in the HumVWA (80.42%) and the HumFGA (85.68%) systems, whereas they are the lowest 

in the HumFES/FPS (70.83%).In the case of more hypervariable systems like in HumVWA 

and in HumFGA the value of the heterozygote  is higher, whereas in the STR systems of lower 

allele numbers the number of heterozygotes  is lower. 

In the HumVWA the expected heterozygosity varies between 80.41% and 83.9%,  between  

77.43% and  81.09% in the HumTHOl,  between 68.46 % and 72.68 % in the HumF13B, 

between 68.39% and 73.2% in the HumFES/FPS and between 85.55% and 85.77% in the 

HumFGA systems. The expected values correlate with the observed heterozygosity values.  

On the basis of the results of the discrimination index (Table 8) it is the HumVWA,  HumTHOl  

and HumFGA systems that result in a greater  possibility of distinction among the individuals  

(0.9247-0.9571), whereas the values are lower  in the HumF13B and HumFES/FPS  systems  
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(0.8531; 0.8564). In both systems there is an allele, therefore, they are allele  10 in HumF13B 

and allele  11 in HumFES/FPS that has a frequency higher than 40% in our samples, therefore, 

there is a lower discrimination possibility.  

Table 8 

Statistical parameters for  7 STR systems in Szeged and its  environs  
(Hobs  observed heterozygosity, Hexp  expected heterozygosity, DP discrimination  indices,  

h gene/haplotype diversity, PIC polymorphic information content) 

STR H-obs H-exp (± SE) DP h PIC 

HumVWA 0.8042 0.8214 ±0.0173 0.9402 0.8210 0.8329 

HumTHOl 0.7853 0.7926 ± 0.0183 0.9247 0.7918 0.8023 

HumF13B 0.7247 0.7057± 0.0211 0.8531 0.7049 0.7273 

HumFES/FPS 0.7083 0.7079 ± 0.024 0.8564 0.7130 0.7392 

HumFGA 0.8568 0.8566±0.0011 0.9571 0.8551 0.8572 

DYS19 - - - 0.7649 -

DYS390 - - - 0.7116 -

DYS 19/ 
DYS390 

- - 0.9403 0.9757 0.9405 

It can be stated on the basis of the values of the genes/haplotypes diversity and of the 

polymorphism information content (Table 8) that the HumFES/FPS and the HumF13B are  

less polymorphic and the variability of the alleles is smaller than in other three somatic STR 

systems. 

A high discrimination index (0.9403), a high haplotype variability (0.9757) and 

polymorphism (0.9405) are characteristics of the haplotypes that can be determined in the two 

STR systems located on the Y chromosome. (Table 8) 

The allele frequency value in the Szeged population and in the Szeged region have been 

compared to the data of other European and Asian populations, other regions in Hungary 
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(Budapest, Pécs) and a Romany population  in the neighbourhood  of Pécs in the HumVWA 

and HumTHOl  systems (Tables 9/A-G; Fig. 16-22). 

The comparison  of the data of Budapest and Germany in the HumVWA (Table  10) system to 

their own allele frequency values did not show a significant difference, whereas the frequency 

values of the Romany population in Pécs differed from our data considerably (x2  =  109.669; P 

= 0.000). In this population the frequency of allele  16 is higher (33.3%) than in Hungarian, 

other European  and Asian populations  (18.2-22.5%).  

When our frequency values in the HumTHOl  were compared (table  10) to those  of Budapest 

(X2 = 5.6317;P = 0.4668) and the German data (x2 =  16.5319; P = 0.0110), no significant 

differences could be seen. But it is not the case if we compare our data to the frequency values 

of Romany in Pécs, the Turkish,  and the Spanish populations.  

Our allele frequency values in the HumF13B system (table  10) significantly differ from the 

Thailander (x2 =  183.7589; P = 0) and Turkish frequency values (x2 = 32.4912; P = 0) where 

the frequency value of allele 8 is higher (38.8%) than in Europe. In the Thailander  sample  

allele  10 has a frequency value of 64%, whereas in the German, the Spanish, the Budapest  and 

in our own sample it is approximately 40%. 

On the basis of the comparative tests on the population in the HumFES/FPS system (Table  10)  

it can be seen that there is no significant difference between the frequency values in the 

German population and our frequency value data  (%1 =  15.1032; P = 0.0830).  At the same 

time, however,  our frequency value data differ significantly from those of  the Budapest  and 

the Pécs samples. Alleles  10 and  11A were not found in the samples from either Budapest or 

Pécs, this can be the reason for the significant difference in the samples within one country. 

In the HumFGA system (Table  10) it is only the frequency values of the Austrian and the 

Dutch populations that there is no significant difference from our own data. At the same time, 

however, the allele frequency values found during the typification of  127 individuals in Pécs 

has a minor but still significant difference (x2= 49.8552;P = 0). 



Table 9/E (continued) 

Comparison  ofHumVWA  allele frequencies  in several  populations  

Hungarian-Szeged  Hungarian-Budapest  Hungarian Romany  German  Spanish  Turkish  
n=489  11=446  /26/  n =  135/24/  n=321/57/  n=  100  111  n=228  /33/  

11 - - - - -

13 0,001 0,002 - 0,001 - -

14 0,119 0,108 0,085 0,095 0,100 0,103 

15 0,107 0,114 0,070 0,099 0,135 0,114 

16 0,182 0,206 0,333 0,204 0,225 0,162 

17 0,264 0,307 0,252 0,280 0,275 0,333 

18 0,206 0,173 0,233 0,220 0,200 0,173 

19 0,090 0,072 0,019 0,085 0,065 0,072 

20 0,015 0,016 0,007 0,013 - 0,037 

21 0,001 0,002 - 0,002 - 0,004 



Table 9/E (continued) 

Comparison  ofHumTHOl  allele frequencies  in several  populations  

Hungarian-Szeged  Hungarian-Budapest  Hungarian Romany  German  Spanish  Turkish  
n=489  n=446/26/  n=135  724/  n=l 10/75/  n=100/2/  n=174  /33/  

5 0,004 0,002 - - -

6 0,236 0,220 0,237 0,207 0,190 0,333 

7 0,139 0,159 0,085 0,180 0,160 0,118 

8 0,139 0,114 0,233 0,126 0,095 0,126 

9 0,202 0,209 0,181 0,171 0,165 0,172 

9.3 0,270 0,283 0,259 0,302 0,365 0,221 

10 0,011 0,013 0,004 0,014 0,025 0,023 

11 - - - - - 0,006 



Table 9/E (continued) 

Comparison  of HumF13B  allele frequencies  in several  populations  

Hungarian-Szeged  Hungarian -Budapest  German  Spanish  Turkish  Thailander  
n=465  n=223  1211  n=555  131  n=392/53/  n=188/33/  n=127/30/  

6 0,094 0,092 0,103 0,115 0,096 0,012 

7 0,009 0,004 0,012 0,010 0,005 0,004 

8 0,256 0,278 0,224 0,250 0,388 0,104 

9 0,216 0,217 0,225 0,189 0,181 0,228 

9C - - 0,001 - - 0,004 

10 0,417 0,401 0,432 0,431 0,330 0,644 

10C - - 0,001 - - -

11 0,008 0,007 0,001 0,005 - 0,004 



Table 9/D 

Comparison of HumFES/FPS allele frequencies in several  populations  

Hungarian-Szeged  Hungarian-Budapest  Hungarian-Pécs  German  Spanish  Turkish  
Allele 

n=360 n=446/25/ n =  164  /46/  n=414 /3 / n=100 111 n=:211/33/ 

7 0,002 - 0,006 - - 0,002 

8 0,011 0,018 - 0,012 0,015 0,005 

9 0,005 - 0,006 0,006 - -

10A 0,261 0,247 0,274 0,248 0,295 0,166 

10 0,073 - - 0,056 0,060 0,026 

10.3 - - - - 0,005 -

IIA 0,012 - - 0,030 - 0,009 

11 0,431 0,448 0,482 0,413 0,360 0,445 

12 A - - - - - 0,002 

12 0,160 0,224 0,189 0,188 0,220 0,291 

13 0,043 0,061 0,043 0,045 0,045 0,050 

14 0,002 0,002 _ 0,002 _ 0,002 



Table 9/D 

Comparison of HumFGA allele frequencies  in several  populations  

Hungarian-Szeged  Hungarian-Pecs  Austrian  Dutch  Egyptian  
n=326  n=127/48/  n=525/42/  n=205/65/  n=100/42/  

16 0,0015 - - - -

17 - - 0,001 - -

18 0,015 0,004 0,010 0,015 0,015 

19 0,069 0,13 0,063 0,059 0,075 

20 0,153 0,098 0,147 0,137 0,095 

21 0,192 0,169 0,170 0,180 0,140 

21.2 0,004 - 0,001 - 0,010 

22 0,198 0,205 0,207 0,166 0,160 

22.2 0,004 0,008 0,008 0,017 0,005 

23 0,133 0,138 0,131 0,144 0,165 

23.2 0,006 0,004 0,001 0,007 -

24 0,131 0,146 0,145 0,154 0,185 



Table 9/E (continued) 

Ulele  Hungarian-Szeged  Hungarian-Pecs  Austrian  Dutch  Egyptian  
n=326  n=127/48/  n=525/42/  n=205/65/  n=100/42/  

24.2  -  -  . . .  

25  0,072  0,075  0,083  0,083  0,075  

25.2  -  . . .  0,005  

26  0,018  0,016  0,025  0,029  0,040  

27  0,004  0,008  0,007  0,010  0,010  

28  -  -  0,001  -  0,010  

29  -  -  -  -  0,005  

>29  -  -  -  0,005  



Table 9/D 

Comparison of DYS 19 allele frequencies  in several  populations  

Hungarian-  German-  Italian-
Allele  Szeged  Münster  Roma  

n=308  n=272/43/  n=100/43/  

10 - - 0,010 

11 - - -

12 - - -

13 0,088 0,040 0,130 

14 0,256 0,570 0,520 

15 0,260 0,230 0,260 

16 0,290 0,120 0,050 

17 0,101 0,040 0,030 

18 0,006 - _ 

Slovakian-  Japanese  Mongolians  Chinese  
Bratislava 

e - M „  n=221 /43/  n=40/43/  n=36/43/  

0,070 0,080 - -

0,190 0,030 0,270 0,250 

0,210 0,510 0,320 0,280 

0,310 0,230 0,300 0,390 

0,210 0,150 0,050 0,050 

- 0,010 0,050 0,030 



Table 9/E (continued) 

Comparison  of DYS390  allele frequencies  in several  populations  

Hungarian-Szeged  German-Münster  Italian-Roma  Japanese-Osaka  Mongolian  Chinese  
Allele 

n=268  n=l 14/43/  n=100/43/  n=150/43/  n:40/43/  n:36/43/  

19 - - - - - -

20 - - - - - -

21 0,004 0,030 0,010 - - 0,030 

22 0,097 0,160 0,150 0,160 0,070 0,050 

23 0,1876 0,260 0,390 0,190 0,250 0,530 

24 0,470 0,370 0,390 0,220 0,370 0,250 

25 0,224 0,170 0,050 0,350 0,270 0,130 

26 0,019 0,010 0,010 0,070 - -

27 - - - - 0,020 _ 
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HumVWA  allele frequencies  in some  other  populations  

•  Szeged  
M Budapest 
•  gipsy  
Ei German 
•  Spanish  
DI1 Turkish 

11 13 14 15 16 
allele 

17 18 19 20 21 



Fig.17. 
HumTHOl  allele frequencies  in  some  other  populations  
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Fig. 19. 
HumFES/FPS  allele  frequencies  in  some  other  populations  
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Fig. 20. 
HumFGA  allele frequencies  some  other  populations  
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Table 10/E (continued) 

Comparison  between  different  populations  
(RxC  contingency table ) 

Population X2 P G  stat.  P 
HumVWA 

Szeged/Budapest /26/ 10.9370 0.1290 10.9651 0.2258 
Szeged/Romany /24/ 109.669 0.0000 114.853 0.0000 

(Pécs) 
Szeged/German 1511 5.7074 0.6944 5.7202 0.0237 
Szeged/Turkish /33/ 27.4095 0.0000 28.2479 0.0000 
Szeged/Spanish 111 24.9543 0.0038 25.4254 0.0038 

HumTHOl 
Szeged/Budapest /26/ 5.6317 0.4668 5.6500 0.4720 
Szeged/Romany /24/ 45.417 0.0000 47.481 0.0000 

(Pécs) 
Szeged/German 1151 16.5319 0.0110 18.1012 0.0070 
Szeged/Turkish/33/ 40.4195 0.0000 44.4692 0.0000 
Szeged/Spanish 111 42.1023 0.0000 43.9157 0.0000 

HumF13B 
Szeged/Budapest 1211 3.2324 0.6533 3.2816 0.6500 

Szeged/German /3/ 10.8657 0.0753 12.3949 0.0645 
Szeged/Turkish/33/ 32.4912 0.0000 35.5887 0.0000 
Szeged/Spanish /53/ 4.9573 0.4550 4.9692 0.4650 

Szeged/Thailander /30/ 183.7589 0.0000 196.4555 0.0000 
HumFES/FPS 

Szeged/Budapest 1251 34.6147 0.0000 42.7623 0.0000 
Szeged/Pécs/46/ 25.066 0.0000 30.1919 0.0000 

Szeged/German /3/ 15.1032 0.0830 16.1411 0.0930 
Szeged/Turkish 1331 91.9272 0.0000 96.3469 0.0000 
Szeged/Spanish 111 45.8573 0.0000 55.9511 0.0000 

HumFGA 
Szeged/Pécs/48/ 49.8552 0.0000 53.4326 0.0000 

Szeged/Austrian /42/ 17.0977 0.3120 19.2106 0.286 
Szeged/Dutch 1651 27.2083 0.0111 30.2537 0.0062 

Szeged/Egyptian /42/ 85.3162 0.0000 98.6637 0.0000 
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The reason for this may be the small number of samples (127) as the population in Pécs, 

similarly to the population in Budapest and Szeged, is a so-called mixed population. 

We have calculated the genetic distances between the various populations for each somatic 

system from the allele frequency values of the population of Szeged and its environs and the 

frequency values found in the various populations  (Table  11/A).  

Table 11/A 

Genetic distances in the population  of Szeged and its environs  to some other  populations  

Population  HumVWA HumTHOl HumF13BHumFES/FPS HumFGA 

Szeged-Romany  0.2725  0.0879  -
Szeged-German  0.0115  0.0251  0.0472  0.0273  
Szeged-Austrian  0.0250  
Szeged-Spanish  0.0290  0.0761  0.0099  0.0399  
Szeged-Turkish  0.0549  0.0616  0.0839  0.1769  

Szeged-Thailander  -  -  0.4215  
Szeged-Dutch . . .  .  0.0456  

Szeged-Egyptian  -  -  -  -  0.1071  

We found a high value between our population and the Romany one. It was 0.2725 in the 

HumVWA system, whereas it was 0.0879 in the HumTHOl  system. Then we analysed the 

differences between the various populations and our data in 2, 3,4 DNA STR systems 

(Table  11/B). The joint evaluation of the HumVWA and HumTHOl  systems show that the 

greatest genetic distance is with the Romany population in Pécs (0.36039) and the smallest is 

with the German population (0.03657). If we take into account the HumFES/FPS system as 

well, the German population is standing the nearest to that of the town of Szeged  (0.06390)  

and the farthest is the Turkish (0.29340). The Austrian and the Spanish population data show 

average distance values (0.1769 and 0.1450 respectively). 

When the analysed STR polymorphisms were supplemented with the HumF13B, it could be 

seen that there is a closer genetic relationship with the German population (0.1111) and a 

distant one with the Turkish population (0.3773). The Austrian and the Spanish population 

data show average distance values (0.1833 and 0.1549 respectively). 



Table U/B 

Genetic distances of  the  population  of Szeged and its environs to some other populations  by reason 2,3 and 4 STR systems 

Population 2 systems 
/HumVWA,HumTHO 1 / 

3 systems 
/HumVWA,HumTH01 .HumFES/FPS/ 

4 systems 
/HumVWA,HumTH01 ,HumFES/FPS,HumF 13B/ 

Szeged-Romany 0.36039 - -

Szeged -German 0.03657 0.06390 0.11110 

Szeged -Austrian 0.13220 0.17690 0.18330 

Szeged -Spanish 0.10513 0.14500 0.15490 

Szeged -Turkish 0.11650 0.29340 0.37730 

\ 
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We examined the difference from the European and Asian populations separately for the two 

systems located on the Y chromosome (Table  11/C).  

Table  11/C  

Genetic distances in the population  of Szeged and its environs  to some other  populations  

Population DYSI9 DYS390 
Szeged-German 0.4983 0.150 
Szeged-Italian 0.7116 0.4594 

Szeged- Slovakian 0.1154 -

Szeged-Japanese 0.6896 0.343 
Szeged-Mongolian 0.1420 0.059 

Szeged-Chinese 0.1062 0.630 

In contrast to the data calculated in the somatic STR systems, the population of Szeged and 

Szeged region is farther from the European populations in genetic terms, with the exception of 

the Slovakian (Bratislava) data, whereas it is nearer to the Mongolian population,  especially on 

the basis of the DYS390 system (0.059). 

If we want to make reliable statements about the genetic relatedness on the basis of the Y 

system, there is a need for the analysis of more Y systems and comparison  of the frequencies of 

their calculated haplotypes is more informative than the separate evaluation  of the two 

systems.Unfortunately, the haplotype frequencies values haven't been found in the data of the 

examined  populations.  

On the bases of the results of the genetic distance examinations in the somatic STR systems 

show  a closer genetic connection with the European populations which is probably the result 

of the migrations in the cours of history. 

The Y chromosome examinations tend to suggest a closer genetic relatedness with an Asian 

(Mongolian) population.This  is supported by the Y chromosome test by Lahermo et al. (1999). 

Their data in the Finnish population were compared to the results of tests on  18 populations, 

including a mixed population  sample from Hungary (Budapest)  and a Chango  sub-population  

sample. Our test indicate that genetically the Hungarian  population  is nearer to the Asian 

(Mongol) than to the European  population.  
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5. Applicability  of the DNA tests in parentage cases 

The DNA tests have been applied effectively in criminal and civil law cases all over the world. 

In my dissertation I wish to report on the national applicability of the DNA examinations in 

status cases that have been introduced  in Hungary first. 

5.1. About parentage  examination  

Our Institution has been conducting blood group tests since  1979. In the beginning we 

analysed  14 and since  1984  17 blood group systems.  

The blood group tests are the so-called negative proving in the judicial practice.  If the paternity 

is excluded, the judge dismisses the case. 

The exclusion may be based on: 

Lack of characteristics (rule of Bernstein I )  

In the disputed child has an allele that cannot be found either in the mother or the father. 

Mother: MM 
Child:  MN  

Putative father: MM 

Opposite homozygosity (rule of Bernstein II)  

The man and the child have opposite homozygosity for a given blood group  characteristic.  

Mother: MN 
Child: NN 

Putative father: MM 

In the non-excluded  cases we provide a mathematical probability. It is a matter of the judge to 

decide on the paternity. 

The calculation  of probability is based on the occurrence frequency of the blood group 

characteristics in a given population.  As for the probability of paternity, there are the following 

categories: 
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1.01% -  5%  Paternity is improbable 

5.01% - 94.99%  No probability opinion can be issued 

95.0% - 98.99%  Paternity  is probable 

99.0% - 99.74%  Paternity is probable to a great extent 

99.75% - 99.99%  Paternity is practically proven 

(On the basis of the  17"1 Methodology Letter of the National Institute of Forensic Medicine, 
1998) 

Since the blood group tests are rated as negative proving,  it is useful to  determine 

characteristics the theoretical  exclusion probability of which is relatively high. 

The theoretical exclusion probability means the number of males out of  100 who are not 

fathers and who can be excluded with the given method. 

In order to determine the theoretical  exclusion probability there is a need for the allele 

frequency values of the various systems. The formula of the theoretical  exclusion  probability  

according to Hummel and Gerchow (1981) is as follows: 

PE  = EPi(l-Pj)2  + Z(PiPj)2  (3P;+Pj-4)  Pi = the first allele  frequency  
Pj = the second allele frequency 

The so-called combined exclusion probability (Table  12) can be calculated from the theoretical 

exclusion probabilities of the various systems, the formation of which according to Jancik and 

Speiser (1952) is as follows: 

Pcomb = l-(l-PEi) (1-PE2) (l-PEn) 

The exclusion probability of the  17 systems that can be typified in a laboratory is 95.79%, 

which means that the paternity 4 of  100 tested males is not excluded, yet they are not the 

biological fathers. 

For this reason we need to introduce systems and characteristics that can increase the 

combined paternity exclusion probability to nearly  100%.  
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Table  12 

Probability  of exclusion of blood groups  systems and combined paternity  exclusion  

Serial no. System Exclusion pro-  Comb.paternity  
bability/PE/  exclusion  /Pcomb/  

Blood groups antigens 
1 ABO /28/ 0.186 
2 MNSs /28/ 0.311 0.439 
3 Rh/28/ 0.277 0.594 
4 Kell/cellano /28/ 0.034 0.608 
5 Duffy /28/ 0.187 0,681 

Serum groups 
6 Hp /28/ 0.184 0.740 
7 Gc /28/ 0.161 0.782 
8 Pi /17/ 0.226 0.831 
9 C3  /50/ 0.123 0.852 

10 Tf  /16/  0.195 0,880 
Enzymes 

11 PGMiSub.  /15/ 0.288 0.915 
12 AP/28/ 0.223 0.934 
13 GLOI  /45/  0.182 0.946 
14 ADA /28/ 0.039 0.948 
15 AK/28/ 0.019 0.949 
16 EsD  /44/  0.084 0.953 
17 PGP  /14/  0.105 0,958 

The results of the blood group tests of the past 20 years (Table  13 and Fig.23;Fig 24) indicate 

that the paternity probability is not very great  in 34% of the cases, i.e. 30-99%.  It makes 

necessary to perform further tests that can either increase the probability value or result in the 

exclusion of the paternity.  
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Table  13  

Results  of  the  paternity  examinations  between  1979  and  1995  

Probability  of paternity  Paternity  cases  

N  %  

< 9 5 %  188  

95.01  % - 99  %  329  

99.01  - 99,75  %  297  

99.75  % <  339  

Exclusion 

1  system  
opp.homozyg.  58  

lack of charact.  35  

more  systems  283  

Sum  total  1530  

Fig.23. 
Results  of paternity  examination  beUveen  1979  and  1995  
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Fig. 24. 
Distribution  of  exclusions  between  1979  and  1995  
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75% 

•  opp  homozyg  1 syst  •  lack of charact.  1 syst 
•  more  systems  

In  15% of the exclusions,  however,  paternity was excluded  on the basis of the rule  of  

homozygosity  in one system.  This could  as well be  a false exclusion  as well because  the  

phenotypically  homozygotic  characteristic  can be heterozygotic  where one allele  is silent,  i.e.  

cannot be typed by the applied  blood  group methods.  Its presence can only be proven  or  

excluded  with the so-called  extended  family tests,  i.e. in  an  indirect  way.  

The extended  family tests mean that  the male's  ascending  relatives  are also tested.  If  

incompatibility  can be  found there  as well,  especially  between  the male  and his mother,  we  

can speak  about  a silent  allele that  will  also appear  in the child.  In our Institute there were  58  

such cases between  1979  and  1995 but we could perform extended  tests  in  7 cases  altogether  

and could  only prove  our hypothesis  in 2 cases (Table  14).  

Table  14  

Result  of  the  extended  family  test  in  the paternity  cases  

mr  •  c  Rare  allele  Number  of  n  ,  x r  .  ,  Proved  Not  proved  
-cases 

Extended  family  test  7  2  5  
Father of  the defendant  died  14  14  
Mother  of the defendant  died  6  6  
Parents  died  9  9  
Dwelling-place  of  the parents  2?  
unknown 

Sum.  total  58  2  56  



When it was not possible to perform a family test or it did not have any result, we did not 

consider it an evident exclusion but we suggested to the court that further tests (HLA) should 

be carried out.  

In professional practice, however,  incompatibility based on the lack of the characteristics can 

be regarded as exclusions even if they are of one system. It occurred  in  1-2% of our cases and 

they were assessed as exclusions until the beginning of the early  1990s.  

Bender et al.(1991) reported  on a paternity case where an exclusion constellation was found 

between the male and the child that was based on the lack of a characteristic in the Pi system. 

With a DNA test the replacement of a nucleotide was proven as a result of crossing-over  inside  

a gene of meiosis. It induced a change in the primary structure of the protein took place that 

resulted  in the transformation of the phenotype. 

This report warns us that we have to take into account the possibility of a mutation  in the 

exclusions within one system. It needs exclusion within more systems so that the result can be 

interpreted  as exclusion. 

Bein et al.(1998) reported a paternity case where the male's paternity was excluded on the 

basis of both the blood group and the DNA systems located  on the same chromosome.  It was 

proven with a sequence analysis that at the birth of the mother's gamete the 6th  chromosome 

was inherited  in diploid form with meiosis non disjunction. At the same time there were not 

three but two 6th chromosomes in the zygote that developed from the mother's  and the father's 

chromosome eliminated. This statement supports the hypothesis that exclusion can only be 

accepted  if it is located  in more than one system and on various chromosomes.  It can rarely be 

done with blood group tests only. 

The confirmation of the exclusions that are based on the Bernstein I  And Bernstein II rules in 

one system as well as the low paternal blood group probability values in 30-40% of all cases 

make it necessary that the systems that can be tested and the methods should include DNA tests 

as well. 
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5.2. Results and evaluation of the DNA tests 

In our institute we started to utilise the possibilities provided by the DNA STR systems in 

paternity cases in  1996. At first three somatic STR systems and since  1997 five somatic and 

two Y-STR systems were tested. 

The exclusion probability and the combined exclusion probability of the various DNS  STR  

systems have been summarised  in Table  15.  

Table 15 
Probability  of exclusion  of DNA STR systems and combined paternity  exclusion  

Serial  System  Exclusion proba-  Comb.paternity  
n u m j )  bility /PE/  exclusion  /P comb/ 

1  HumVWA  0.878  
2  HumTHOl  0.659  0.957  
3  HumF13B  0.134  0.964  
4  HumFES/FPS  0.345  0.977  

5  HumFGA  0.888  0.997  
6  DYS19/DYS390  0.790  0.9995  

Among the somatic STR systems the exclusion probability of the HumFGA is the highest 

(88.8%) and that of the HumTHOl  is the lowest (65. 9%). It is alone greater than that of any 

blood group system. In most of the blood groups only 2-3 alleles are combined  in the 

population and it does not make greater discrimination  possible.  

With the application of 7 DNA STR systems alone we can achieve an exclusion probability of 

99.9% that would make the test of all  17 blood group characteristics unnecessary.  We should 

not advise to disregard the blood group tests because they can be used as filters on one hand 

and on the other hand with their joint  application it is possible to test various -  protein  and 

DNA -  systems located on several different chromosomes. 

On the basis of the previously quoted reference data and our own data, it is not necessary to 

make any further tests where with a blood group test an exclusion constellation  can be detected 

in a characteristic that can be found on at least two different chromosomes. 

In the case of the exclusion of one system and where the probability of paternity is below 99%, 

it is necessary to include the DNA tests as well. 
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Among the blood group tests only those are worth being carried out the costs of which are not 

too high and the probability of exclusion is relatively high. 

I recommend the application of nine blood group systems in the paternity cases. The combined 

exclusion probability of the nine systems is 85.4% (Table  16).  

Table 16 

Probability  of exclusion and combined paternity  exclusion of nine blood group  systems  

Serial 
numb. 

System Exclusion  pro- Comb.paternity 
bability /PE/  exclusion  /Pcomb/ 

1 ABO 0.186 

2 Hp 0.184 0.336 

3 Tf 0.195 0.466 

4 Pi 0.226 0.587 

5 C3 0.123 0.638 

6 PGMisub. 0.288 0.742 

7 AP 0.223 0.800 

8 PGP 0.105 0.821 

9 GLOI 0.182 0.854 

The exclusion probability in the case of females (with the blood group and DNA tests -  5  

DNA-STR systems) it is 99.97%, whereas in the case of males (with 7 DNA-STR systems) it is 

99.99% (Table  17).  
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Table  17 
Combined paternity  exclusion  with application of  the blood groups  and DNA STR  systems  

Combined  paternity  exclu-
sion  /Pcomb./  Female Male 

Pcomb blood group systems 0.854 0.854 

Pcomb DNA 0.997 0.999 
Pcomb blood group systems 0.9997 0.9999 +Pcomb.DNA 0.9997 0.9999 

It means that where the child is a girl the paternity of  3 out of  10 000 males can not be 

excluded, although, they are not the necessarily the biological fathers. 

Where the child is a boy the paternity of  1 out of  10 000 man can not be excluded.  In contrast 

however the analysis  17 blood group tests where the paternity of 400 men out of  10 000 is not 

excluded, apart from the paternity of the biological father. 

In  1996-98 we performed DNA-tests together with blood group tests in nearly  150 family in 

paternity cases. Our test results in the year  1997 are indicated in Table  18 and Fig. 25. 

Blood group tests indicated a probability rate below 95% in 27 cases out of  119. In 30 cases 

paternity was probable and in 43 cases probability was above 99%. Exclusion was found in  19  

cases, 7 of which were from one system and  12 of them were from more systems. Blood group 

tests with paternity probability below 95% indicated probability in only 6 cases above 95%, 

whereas in  18 cases it was above 99% and in 3 cases it was excluded with DNA examinations.  

Blood tests with probability results between 95%-99%,  except 2 cases,indicated  probability  

above 99% with DNA tests. At a serological probability value of 99.01%-99.75% we found 

one exclusion on the basis of HumVWA system where: 

Mother  HumVWA  15/18  
Child  HumVWA  16/18  
putative father  HumVWA 17/19  

Probability of paternity in the case of blood group tests was 99.72%. The child had a  16 allele 



Table 18 

Result of the paternity examinations in 1997 

DNS / Serol 
< 95 %  95.01% - 99 % 99.01% - 99.75 %  99.75 % < Exclusion 

1 system  more systems Sum. total 
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Result  of paternity  examinations  in  1997  

95,01-99  99,01-99,75  99,75  <  

probability  values  

Excl.  1  syst.  



-40 -

and the putativ father had  17 allele,this incompatibility indicated the possibility of mutation. 

In the HumVWA system the mutation rate is 0.199% as stated by Brinkmann (1998), that 

made 

the determination of the sequence of the HumVWA locus in the Institute of Forensic 

Medicine in Munster. The sequence analysis assumed the insertion at the child or deletion  at  

the putative father of  „TCTG"  tandem repeat sequence in the HumVWA locus (Table  19).  

Table 19 

Sequence  structure of  16 and 17 allele Hum VWA system 

Allele  bp  Sequences  

16  146  5'  -TCTA (TCTG)3 (TCTA)12 TCCA TCTA-

17  150  5'  -TCTA (TCTG)4 (TCTA)12 TCCA TCTA-

In 2 cases among the blood group incompatibilities in one system we found exclusion on the 

basis of the DNA system. As well as they were found in a 2 different systems located 2 

different chromosomes, we excluded the alleged male's paternity. 

In another case of exclusion in one system we excluded paternity on the basis of more than 

one DNA systems as well. 

Where paternity is not excluded with either a blood group test or a DNA test, we calculate a 

combined probability. The combined probability values calculated from the blood group tests 

and DNA tests done in  1997 are included in Table 20 and Fig.26. 



TABLE  20.  

Combined  probability  values  of  the  blood  group  tests  and  DNA  tests  in  1997  
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Fig  26.  
Comparison  of  the  combined  probability  value  and  the  

serological  probability  value  

<95 95,01-99  99,01-99,75  

probability values 

99,75 < 
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In 6 cases where probability of paternity was below 95% the DNA tests indicated probability  

between 99% and 99.75%, whereas in  18 cases it was above 99.75%. In 6 out of 30 cases 

where paternity was "probable" according to the blood group tests, the DNA tests  indicated 

that paternity was "probable to a great extent" and in the remaining 24 cases it was 

"practically proven". In 3 cases where blood group tests showed paternal probability values 

between 99% and 99.75%, the probability value was not changed, whereas in 21 cases it rose 

above 99.75%. 

Our results indicate that with the joint application of the blood group and the DNA tests in the 

not-excluded cases we can achieve so high probability values that are suitable for the proving 

of the so-called positive paternity, too. 

Evident exclusions -  by taking into account the possibilities of mutations (Bender,  1991;  

Bein,1998 and Henke,  1993) -  only those exclusions can be accepted that are located on 

different chromosomes in more than one systems and can mostly be achieved only with the 

joint application of blood group and DNA tests. 

If with the joint methods we cannot achieve an exclusion value on more chromosomes, 

mutation can be assumed the proving of which is possible with the sequence analysis of the 

DNA section. 

Both our tests and reference data suggest the extension of the Bernstein rules with the 

exception that incompatibilities located on more than one chromosomes can only be regarded 

as exclusions based on either the lack of a characteristic or the rule of opposite homozygosity. 
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6. Summary 

In 35% of the paternity cases serological tests do not provide great certainty which make the 

introduction of new methods and systems and the DNS tests necessary. In Hungary these tests 

have been used in civil court cases since  1996.  

To introduce new systems in forensic medical practice it is necessary to perform so called 

population genetic tests in order to learn about the allele frequency that is the basis of the 

parental probability  calculations.  

In the first part of my paper I report on the frequency of the occurrence of the allele frequency 

values of HumVWA, HumTHOl, HumFGA, HumF13B, HumFES/FPS, DYS19 and DYS390 

STR in the population of the town of Szeged and its vicinity. 

489 unrelated adults were tested for the characteristics in the HumVWA and HumTHOl 

systems, 465 in the HumF13B system, 360 in the HumFES/FPS and HumFGA systems, 308 

in the DYS19 and 268 in the DYS390 systems.  

The frequency values do not differ from the Hardy-Weinberg  equilibrium.  

In the knowledge of the allele frequency values of  the expected hereozygosity  (H),  

discrimination index gene and haplotype variance (h) and data characteristic of the 

polymorphism of the systems (PIC) can be determined in order to characterise the individual 

STR systems. 

The value of the heterozygosity, the variance of genes and the degree of polymorphism in the 

systems of higher allele number, i.e. in the hypervariable systems (HumVWA, HumFGA), are 

higher. At the same time the statistic values are lower in systems of lower allele number or in 

systems where one allele can occur with greater probability than any other allele  (HumTHOl,  

HumF13B,  HumFES/FPS).  

It can be seen in the comparison of the allele frequency values of European, Hungarian, 

Gypsy and Asian populations that in the somatic STR groups there is no significant difference 

between our data and the European population data. 

The tests on genetic distance show that the allele frequency values of the somatic  STR 

systems in the European population groups do not differ significantly which is probably the 

result of the migrations in the course of history. 

However, the characteristics of the Y chromosome that is inherited on the father's line show a 

close connection with the Asian (Mongolian) population will be tested  in our laboratory. 
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In the second part of my paper I analyse the applicability of the DNA STR systems in 

parentage cases.In 30-40% of the analysed cases the probability value of the parentage with 

blood group tests was between 30-99% and in 2-6% of the cases in one system it was 

excluded which require more tests in order to prove paternity or its exclusion without doubt. 

By testing only the 7 DNA STR we can merely get a paternal probability over 99% or an 

exclusion. Despite this fact, it is not recommended to exclude blood group tests because with 

the joint application of the blood group and the DNA test it is possible to examine the 

different protein and DNA systems that are located on several different chromosomes. With 

their help any incorrect opinion can be eliminated that might be caused by probable 

mutations. At the same time the  16 blood group characteristics become unnecessary.  Only 

those should be used that has a relatively high exclusion probability and the costs of which are 

not high. I recommend a series of tests of 9 blood group characteristics and 7 DNA systems 

with the help of which parental exclusion can be defined with near  100% probability.  Data 

from other authors and our own data also indicate that the classical exclusion rules (Bernstein 

I and Bernstein II) can no longer be applied in their original form.  I recommend the alteration 

of the exclusion rules in a way that they should only be acceptable if the characteristics are 

located on more chromosomes than one different chromosomes, because of probable 

mutations. 
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