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I. INTRODUCTION 

1.1 G-PROTEINS 

1.1.1 General features of structure and function 

The heterotrimeric guanine nucleotide binding proteins - G-proteins - have been 

discovered about 20 years ago and are such key participants in signal transduction that the 

discoverers were honored with Nobel prize in medicine in 1993. They function as 

intermediaries in transmembrane signaling pathways that consist of three proteins: receptors, 

G-proteins, and effectors'. They belong to the superfamily of GTPases that includes factors 

involved in protein synthesis (for example elongation factor Tu) and small molecular weight 

(20-25 kDa) monomeric G-proteins, such as p21 ras and its relatives2"5. G-proteins consist of 

three subunits, designated as a , P and y. Traditionally the type of a subunit is used to define 

the G-protein oligomer. To date, 23 distinct a subunits encoded by 17 genes have been cloned 

with molecular mass between 39 and 46 kDa6. These can be divided into four subfamilies, 

namely, Gs, Gj, Gq and G12, based on amino acid sequence homology. Some of them are 

ubiquitous, like a s , others are more or less specialized, like a<> for brain tissue or a t i and etc 

for retinal rods and cones, respectively. G-protein a subunits are enzymes with inherent 

GTPase activity. They are also subject to several cotranslational and posttranslational 

modifications. <Xi, a 0 and <xz are myristoylated at their N-terminus7, others are modified by 

different saturated and non-saturated 12- and 14-carbon fatty acids facilitating membrane 

attachment of a subunits and increasing their affinity for Py dimers8. In addition to this 

irreversible lipid modification, some a subunits, like a s , are reversibly palmitoylated, what 

seems to have regulatory function9. There are also several possible sites for phosphorylation. 

However, the most characteristic modification of certain types of G-protein cx subunits is the 

ADP-ribosylation by bacterial toxins. Pertussis toxin catalyzes the covalent binding of ADP-

ribose to a cysteine residue located four amino acids from the C-terminus. All a 0 and (Xj 

subunits can be modified that way resulting in uncoupling from the receptor by inhibiting the 

activation of the a subunit. Cholera toxin specifically ADP-ribosylates an arginine residue in 

a t , a s and a0if, leading to inhibited GTPase activity, thus, constitutive activation of those a 

subunits10. 

Five P (35-37 kDa) and twelve y (8 kDa) subunits have been described up to now"'13. 

They are tightly associated and form one functional unit. There is evidence, that a degree of 
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specificity governs Py dimer assembly and not all possible combinations are formed (reviewed 

in 6). y subunits are either farnesilated or geranylgeranylated serving the anchorage to the 

plasma membrane. It is generally considered that P subunit interacts with the a subunit while 

y determines the effector specificity in the action of the dimer. 

1.1.2 The role of G-proteins in signal transduction 

1.1.2.1 Receptor-G-protein interaction 

G-proteins serve as membrane-bound transducers of chemically and physically coded 

information. That extracellular information is received by receptor (R) molecules that are 

integrated plasma membrane proteins. Certain classes of those receptors (e.g. ligand-gated ion 

channels or tyrosine kinase receptors) have themselves effector domains, others, characterized 

by 7 transmembrane a helical domains (7TM receptors or G-protein-coupled receptors, 

GPCRs), however, first activate G-proteins, what in turn activate the effector molecules. Steps 

of that cycle are presented on Fig. 1. 

• A 

Fig. 1. Ligand activated GTPase cycle of G-proteins. In the resting state heterotrimeric G-proteins 
bind GDP. Ligand-bound receptor can activate the G-protein resulting in exchange of GDP to GTP 
and subsequent dissociation of a-GTP and Py dimer, both of them are capable of activating effectors. 
The effect is terminated by the inherent GTPase activity of the a subunit and re-association of a-GDP 
with Py. R: receptor, A: agonist ligand. 
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Usually the third intracellular domain and the C-terminal intracellular tail of the receptor 

molecule determine the R-G-protein interaction. For the activation of G-proteins Mg2+ and 

GTP are essential. Little is known about the regulation of the GTPase cycle, since in vivo it 

goes 10- to 100-fold faster, than in vitro, however, recently several proteins were described 

having GTPase activating properties (GAPs) for Ga subunits. They are termed regulators for 

G-protein signaling (RGS) and definitely the members of this family will increase fast in the 

future (14 and references cited therein). 

G-proteins are also signal amplifiers. It can be achieved at different levels. First, single 

receptor can activate several G-proteins in turn, second, the dissociation of a and Py subunits 

leads to the bifurcation of the signal, and on the third level G-protein subunits can activate 

several effector molecules before re-association174. 

1.1.2.2 G-protein-effector interaction 

Recent results show that upon activation of a G-protein both a and Py subunits are able to 

interact with different effectors15 to induce further changes in the state of the cell leading to 

answer to the extracellular stimulus, or, in a broader sense, to adaptation. The effectors and 

their activator G-protein subunits are listed in Table 1. 

1.1.2.3 Influence of G-proteins on the gene expression >. 

One main pathway for regulation of gene expression by extracellular signals transduced 

by GPCRs leads via activation of adenylyl cyclase and the subsequent production of cyclic 

AMP (cAMP). cAMP regulates the transcription of a variety of genes through a distinct DNA 

sequence termed cAMP response element (CRE) present in their promoter regions. This 

element is recognized by the cAMP response element binding protein (CREB), a transcription 

factor of 43 kDa. Activation of CREB is achieved by cAMP-dependent protein kinase 

(PKA)17'20. 

The other pathway what G-proteins can influence is the signaling route of the receptor 

tyrosine kinases such as epidermal growth factor, leading to cell differentiation, proliferation 

and cytoskeletal effects through mitogen-activated protein kinase (MAPK) cascade. There are 

several convergence points between the two signal transduction pathways, for reviews see 21, 

22. 
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Table 1. Mammalian G-protein subunits and effectors interacting with them 

Subtype Expression Effectors 

ctss (2 forms)" Ubiquitous Adenylyl cyclase T (all types) 
O s l ( 2 forms)" Ubiquitous Ca2+ channel T (L-type) 
ctoir Olfact. epithelium Adenylyl cyclase T (type V) 

(XgUSt Taste buds, gut 7 
a,.r Retinal rods cGMP phosphodiesterase T 
a,« Retinal cones 
an Widely Adenylyl cyclase 1 
a,2 Ubiquitous (types I, III, V, VI) 

Nearly ubiquitous K+ channel T 
®o\* Neuronal and Ca2+ channels I 
0to2* neuroendocrine (L- and N-types) 
Otz Neuronal, platelets Adenylyl cyclase T ? 

Oq Ubiquitous Phospholipase-CP T 
ail Ubiquitous (p4 > pi > P3 > P2) 
a M Kidney, lung, spleen 
ais (mouse) Hematopoetic cells 
ai6 (human) 

ai 2 Ubiquitous ? 
a u Ubiquitous 7 

1 

P . Ubiquitous Adenylyl cyclase i (type I) 
P2 Ubiquitous Adenylyl cyclase T (types II, IV) 
P3 Ubiquitous Phospholipase-CP T 
p4 Ubiquitous (p3 > p 2 > p l > p4) 

Pss' Mainly brain K+ channel T 
PSL' Retina Ca2+ channels T 

Receptor kinases (type 2, 3) T 
Phospholipase-A21 ? 

Y.+ Retinal rods Phosphoinositide 3-kinase T ? 
Y2 Mainly brain 
Y3 Mainly brain 
Y» Mainly brain 
Ys Ubiquitous 
YT Widely 
Y8+ Retinal cones 
Y10 Widely 
Ym+ Widely 
Yl2 Ubiquitous 

Most of the known G-protein subunits are listed in the table together with the effectors they are 
interacting with. Py combinations apparently not formed are P2Y1, P2Y11; tissue specific combinations 
are P1Y1 for retinal rods and p3ys for retinal cones. * splice variants, + these y subunits are famesylated, 
all others are geranyl-geranylated (Table was taken from ref. 16). 
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1.1.2.4 Role of intracellular G-proteins 

Heterotrimeric G-proteins are found not only in the plasma membrane fractions, but also 

inside the cell, in the cytoplasm or connected to the endo-membrane systems such as the 

Golgi and the endoplasmic reticulum. They can be found in the non-nervous tissues such as 

liver23,24, muscle25 as well as in the brain26,27. 

These intracellular G-proteins can be newly synthesized molecules, which are transported 

to the cell surface probably in a fully functional state being able to interact with receptors and 

also with effectors28,29. Intracellular G-proteins may also be conveyed from the cell surface as 

part of the signal transduction process30"33. However, recent results show that G-proteins are 

not only transported as passive molecules, but they also have important functions 

intracellularly. They have been suggested to regulate various membrane trafficking processes 

including exocytotic and endocytotic membrane fusion34"37. Role of G-proteins in the 

maintenance of the highly specialized structure of the blood-brain barrier was also 

suggested38"40. 

1.2 THE OPIOID RECEPTORS 
« 

1.2.1 Opioid receptor types and function 

Opioid receptors also belong to the family of GPCRs, and so, are characterized by 7 

hydrophobic transmembrane segments and the ability to interact with different G-proteins41"43. 

Opioid receptors were identified in pharmacological studies by using peptide and alkaloid 

ligands and were classified into three main classes, p., 8 and K44. Cloning of the receptors has 

verified this model45"18, but failed to prove the existence of opioid receptor subtypes what have 

been proposed for all three classes on the basis of pharmacological studies. This suggests that 

the pharmacological subtypes may result from posttranslational, splicing modifications49 or 

differential protein-protein interactions between receptors or with associated proteins50,51. 

Pharmacological effects of the opioid receptors are shown on Table 2. 
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Table 2. Opioid receptor pharmacology 

Receptor Biochemical Physiological 
p cAMP inhibition analgesia 

stimulation of IP3 formation 
Ca2+ channel inhibition 
K+ channel stimulation 
increase intracellular Ca2+ 

Pi prolactin release 
acetylcholine turnover 
feeding 

P2 growth hormon release 
respiratory depression 
inhibition of G.I. transit 
guinea pig ileum bioassay 

Morphine-6ß-glucuronide inhibition of G.I. transit 
K analgesia 

K, inhibition of cAMP diuresis, sedation 
accumulation rabbit vas deferens bioassay 
inhibition of PI hydrolysis feeding 
Ca2+ channel inhibition 
K+ channel stimulation 

K, pharmacology unknown pharmacology unknown 

K3 inhibition of cAMP feeding 
accumulation i 

KOR-3/ORL-1 K+ channel stimulation hyperalgesia (early) 
inhibition of cAMP analgesia (later) 
accumulation 

S inhibition of cAMP analgesia 
accumulation mouse vas deferens bioassay 
K+ channel stimulation dopamine turnover 
increase intracellular Ca2+ 

5, G.I. motility 
ô2 G.I. motility 

Table was taken from ref. 52. with minor modifications 

1.2.2 Ligand binding to the opioid receptor 

Radioligand binding studies combined with site directed mutagenesis of the receptor 

molecules have provided a great deal of information on the interaction of opioid ligands with 

their receptors (for review see 53). It is thought that only agonist binding leads to activation of 

the receptor followed by conformational changes and information transfer. Antagonist binding in 

contrast would not elicit a biological response. It was shown that certain charged amino acids in 

the transmembrane regions TM II (Asp 114), HI (Asp 147) and VI (His297) are important for 

ligand binding and subsequent activation of effectors54. It was also shown that opioid peptides 
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and alkaloids, as well as agonists and antagonists bind to different parts of the receptor 

molecule54,55. In case of 6 receptors the third extracellular loop is also important for ligand 

selectivity56. The identification of the specific residues in the K receptor involved in agonist and 

antagonist binding may facilitate the further development of therapeutically useful opioids. This 

will be particularly important in the case of K receptor since kappa agonists have minimal abuse 

potential and do not cause respiratory depression, two major side effects of the use of mu 

receptor selective agonists. In contrast, kappa agonists are effective analgesics and useful diuretic 

agents. Previous results showed that frog {Rana esculenta) brain membranes are remarkably 

useful for the investigation of this opioid receptor type, since they contain high proportion of K 

receptors compared to p. and 598. Frog brain membranes also contain K receptor subtypes, namely 

Ki and K2134' 152. Detailed characterization of those binding sites in ligand binding studies 

indicated that they might couple to G-proteins147,153'156. 

Another way of investigation of Hgand-receptor interaction considers energetic aspects. 

Thermodynamic analysis provides means of determining the underlying driving forces of 

binding and intermolecular interactions which information can not be easily obtained by other 

techniques. Thus conformational changes or protein-protein associations should provoke 

characteristic thermodynamic behavior. Using this approach it is shown that opioid agonist 
i, 

binding is mainly entropy driven, while opioid antagonist binding is exothermic thus enthalpy 

driven57"60. 

Opioid binding is modulated by a number of reagents. Na+ and GTP decrease agonist 

binding and increase antagonist binding. Divalent cations also differentiate agonist and 

antagonist binding (61, 62 and references therein). These three agents are also known to be 

required for functional coupling of opioid receptors to inhibitory G-protems63"65. Thus, 

thermodynamic analysis of ligand binding might provide key information on the signal 

transduction function. 
1.2.3 Consequences of repeated ligand administration 

Chronic use of opiates results in drug addiction, including tolerance to and dependence 

on the drug, which phenomenon, besides its scientific importance, has a great social impact. 

Despite intense research on this field the precise molecular mechanism accounts for that is 

largely unknown. 

In biochemical terms long-term presence of the agonist generally leads first to 

desensitization which means that the receptor is unable to activate effector molecules due to 

the uncoupling of the receptor from the transducer G-protein. The reason for that is the 



12 

phosphorilation of the receptor by specific kinases66"68. This occurs on a minute time scale. 

Desensitization is usually followed by sequestration and internalization of the receptor into 

endosomal vesicles. This is still a minute to hour-long procedure. Proteins in the endosomal 

vesicles can be recycled to the cell surface or degraded in lysosomes. On a longer time scale 

down-regulation of the receptor can occur meaning reduction of the total (surface and 

intracellular) receptor number. This certainly involves much complicated regulatory steps in 

the gene expression, translation and/or degradation rate of the certain protein. The above 

mentioned steps might give rise to the pharmacological phenomenon of tolerance meaning 

that the same dose of the drug is ineffective to evoke the same response at repeated 

administration, or conversely, to achieve the same magnitude of effect larger and larger dose 

of drug is necessary. Dependence refers more to physiological (or somatic) and psychological 

aspects of addiction, the former characterized by withdrawal symptoms at cessation of drug 

administration, while the latter by drug seeking behaviour. The different anatomical correlates 

and molecular mechanisms responsible for the opiate dependence are reviewed in 69-71. 

Recent results showed that opioid receptors are regulated by ligand-specific manner72'76. 

However, in the manifestation of tolerance and dependence not only receptors take part but 

also other elements of the signal transduction pathway. Alteration was detected in the amounts 

and function of G-proteins77"82. Exposure of cells to agonists of receptors linked to G-proteins 

can result in up- or downregulation of cellular levels or redistribution of G-proteins from 

membranes to the cytosol. Agonist-induced reductions in G-protein levels have been observed 

for members of each of the Gs, Gi and Gq families of G-proteins, are likely to be dependent 

upon the level of receptor expression, and are generally restricted to the G-protein(s) with 

which the receptor interacts. The mechanisms responsible vary with cell type and include both 

second messenger-dependent and -independent enhanced protein degradation. Agonist-

induced reduction in cellular G-protein levels can provide one mechanism for the 

development of sustained heterologous desensitization (for review see 126). Various elements 

of the signal transduction pathway, such as adenylyl cyclase83,84, protein kinase-C (PKC)85, G-

protein coupled receptor kinase86, and protein phosphatases87 are also affected. 

n. AIMS 

In the present work, we studied the G-proteins in three brain tissues, namely rat brain 

subcellular fractions, frog brain homogenates and brain endothelial cells. It was of interest to 
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see if G-proteins of different origin share similar structural features. Also, we raised the 

question whether certain G-protein types or their absence can be associated with certain 

tissues. Finally, receptor-G-protein interactions were analyzed in order to gain more insight 

into the molecular mechanisms involved in opioid signal transduction in opioid naive as well 

as in morphine-tolerant states. In order to achieve these goals, a spectrum of state-of-the-art 

techniques were established. The following specific aims were set: 

1. Investigation of the ionic regulation and temperature dependence of p. and S opioid receptor 

binding in rat brain membranes, and calculation of thermodynamic parameters from the binding 

data. Investigation of guanine-nucleotide sensitivity of the p receptor binding, what might reflect 

receptor-G-protein interaction. 

2. Investigation of regulation of p. opioid receptor signal transduction. Detection of effects of in 

vivo chronic morphine treatment on rat brain G-proteins. I want to check whether the treatment 

causes alteration in the amount, state, function as well as localization of G-proteins. This part of 

the project also involves investigation of exposure level, affinity, subcellular distribution and 

signaling properties (desensitization, down-regulation) of p opioid receptors. 
I 

3. Determine the time-course of changes on p opioid receptors and G-proteins by applying 

morphine treatments of different length and dose (3, 5 and 10 days) and associate those with the 

development of analgesic tolerance. 

4. Application of protein synthesis inhibitors during the in vivo chronic morphine treatments 

would help to reveal molecular mechanisms underlying tolerance and dependence. 

5. In vivo treatments of rats with the antagonist naltrexone will also be done to compare resulting 

changes with that of chronic agonist treatment. 

6. Identification of G-protein types in a non-mammalian tissue (frog brain) that is a rich source of 

K opioid receptors, and comparison with those in rat brain. 

7. Detection of G-proteins in endothelial cell lines and primary cultures of rat brain endothelial 

cells with highly specialized function, namely, the formation of blood-brain barrier. 
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III. MATERIALS AND METHODS 

3.1 CHEMICALS 

For the thermodynamic analysis [3H]naloxone ([3H]NX, 72 Ci/mmol) was synthesized by Dr. 

G. Töth and associates88 [3H]-DAMGO (Tyr-D-Ala-Gly-MePhe-Gly-ol, 60 Ci/mmol) was 

purchased from Amersham. 

For other experiments urea was purchased form Merck (Darmstadt, Germany), ion-

exchange resin for urea purification (AG-501 X8) was from Bio-Rad (Richmond, CA, USA), 

Low Molecular Weight markers were from Pharmacia (USA), nitrocellulose (Hybond) and 

ECL were from Amersham (Buckinghamshire, England). Anti-G-protein antibodies AS/7 

(anti-Gtii2a; 1:500), RM/1 (anti-Gsa; 1:500) and GC/2 (anti-G0a; 1:500) were from Du Pont-

NEN (Boston, MA, USA). AS 11 (anti-Gß-common; 1:300)89, AS 369 (anti-Gq/na; 

1:1000)9°, AS 269 (anti-Gi2a; 1:150)43 and AS 86 (preferentially anti-Gi3a; 1:500)91 were 

characterized and kindly donated by Prof. G. Schultz and Dr. K. Spicher (Freie Universität 

Berlin, Germany). [a-32P]nicotinamide adenine dinucleotide ([a-32P]NAD; specific activity 

800 Ci/mmol) was purchased from New England Nuclear (Boston, MA, USA). Sources of 

other materials for the photoaffinity labeling have been cited92'93 [35S]GTPyS (37-42 

TBq/mmol) was obtained from Isotope Institute Ltd., (Budapest, Hungary). For chronic 

morphine treatment experiments DAMGO and [3H]DAMGO were obtained from Multiple 

Peptide System (San Diego, CA, USA) via the Drug Supply Program of NIDA (Rockville, 

USA). EKC and bremazocine was provided by Sterling Winthrop Research Institute, U-

50,488 was from RBI, sucrose was from Boehringer (Mannheim, Germany); trasylol 

(Gordox, aprotinin) was purchased from Gedeon Richter Pharmaceutical Company, 

(Budapest, Hungary), norbinaltorphimine was from Alkaloida Chemical Company Ltd 

(Tiszavasväri, Hungary). Ail other chemicals were purchased from Sigma Chemicals (St. 

Louis, MO, USA). 

3.2 METHODS 

3.2.1 Cell cultures, animals 

3.2.1.1 Primary cultures of rat CECs and cell lines 

Cultures were prepared as described in details earlier94, from 2-week-old rat brains [IH. 

from Publications, page 2], All CFY rats used for the primary cultures of CECs were acquired 
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from the local animal house and were cared for in accordance with international standards and 

guides. Cultures were maintained in Dulbecco's modified Eagle's medium (DMEM) 

supplemented with 20% plasma derived bovine serum (PDS), 2.0 mM glutamine and 

antibiotics at 37 °C in a humidified atmosphere of 5% CO2 and 95% air. To further purify 

cultures of CECs, a selective cytolysis of contaminating cells by specific anti-Thy 1.1 

antibody and complement was performed94. After 7 days in vitro, endothelial cells developed 

continuous monolayers, which were used for the experiments. The cultures were regularly 

tested for Factor VHI-related antigen, and over 98% of the cells expressed positivity. 

GP8 cells95 were kept in DMEM supplemented with 20% PDS, 1 ng/ml basic fibroblast 

growth factor (bFGF) and 300 pg/ml geneticine and used between passages 15-20. RBE4 

cells96 were cultured in DMEM plus 10% fetal calf serum, 1 ng/ml bFGF and 300 pg/ml 

geneticine and used between passages 32-47. Both cell lines expressed general endothelial as 

well as specific cerebral endothelial features as published95'96. 

3.2.2 In vivo experiments 

After approval had been obtained from the Animal Care Committee of Albert Szent-

Györgyi Medical University, female Wistar rats weighing 250-350 g were studied. All 

experiments were performed in freely moving animals during the same period of the day 

(8:00-13:00 h) to exclude diurnal variations in pharmacological effects. The animals were 

randomly assigned to treatment groups (n=6-16 per group) and the observer was blind to the 

treatment administered. 

3.2.2.1 Chronic administration of morphine 

The animals were made dependent on morphine by a series of subcutaneous injections of 

morphine hydrochloride administered twice daily at 8 a.m. and 6 p.m. for 3 (M3), 5 (M5) and 

10 (M10) days. The initial dose, 10 mg/kg was increased gradually (see the paradigm in 

Table). Control animals were handled simultaneously by saline injections [IV., V.]. In another 

set of experiments rats were treated for 5 days with the antagonist naltrexone (N5) according 

to the schedule of the morphine treatment [V.]. 

Table 3. The paradigm of chronic morphine treatment 
Dose of morphine (mg/kg) 
Day 1 2 3 4 5 6 7 8 9 10 

Morning 10 20 40 40 40 40 50 50 60 60 
Evening 20 40 40 40 40 40 50 50 60 60 
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3.2.2.2. Hot-plate and tail-flick tests 

The nociceptive sensitivity after the different treatments (3, 5 or 10 days morphine 

administration) was assessed by using hot-plate and tail-flick techniques [IV., V.]. The 

latency of licking one of the hind paws or jumping was measured on the hot-plate (52.5 °C, 

cut-off time: 60 s). The reaction time in the tail-flick test was determined by immersing the 

lower 5 cm portion of the tail in the hot water until the typical tail-withdrawal response was 

observed (51.5 °C water, cut-off time: 20 s). Baseline latencies were obtained immediately 

before, then 30, 60, 90 and 120 min after the drug injection (saline or 10 mg/kg morphine). 

Analgesic latencies in acute pain tests were converted to percentage maximum possible effect 

(%MPE) by using the formula: 

%MPE=[(observed latency - baseline latency)/(cut-off time - baseline latency)]* 100 

Data are presented as means ± S.E.M. Analysis of variance (ANOVA) of data for repeated 

measures was used for overall effects, with the Newman-Keuls test for post-hoc comparison 

for differences between means. A level P<0.05 was considered significant. 

3.2.3 Membrane preparation 

Cell cultures were washed twice with phosphate buffered saline'(PBS); the monolayers 

were detached from the plastic by tissue scraper and suspended in PBS (pH 7.4). Samples 

were sedimented for 10 min at 3,000 x g (4 °C) and the pellets then suspended in 10 ml lysis 

buffer (5 mM Tris-HCl, 50 pM CaCl2, 0.5 mM dithiothreitol, and 0.1 mM 

phenylmethylsulfonyl fluoride, pH 8.1) followed by homogenization in a glass teflon potter at 

4 °C. The homogenate was centrifuged for 5 min at 3,000 x g and the resulting supernatant 

spun at 20,000 x g for 30 min. Membrane pellets obtained were suspended in 50 mM Tris-

HCl (pH 7.4) to yield about 0.4-1 mg protein/ml and either freshly used for [35S]GTPyS 

studies or kept frozen at -70 °C until used for immunoblotting [HI.]. 

For thermodynamical analysis particulate membrane fractions were prepared as 

published97, with minor modifications [I.]. Briefly, rats (PVG/C strain) were killed by 

decapitation; whole brains without cerebella were excised and homogenized in 20 volumes 

(w/v) of ice-cold 50 mM Tris-HCl, pH 7.4 buffer with a Potter-Elvehjem homogenizer. The 

homogenate was centrifuged for 20 min at 40,000 x g and the supernatant discarded. Pellets 

were suspended in 20 volumes of fresh buffer and incubated for 30 min at 37°C to remove 

endogenous opioids. Centrifugation was then repeated as described above. Finally, pellets 

were suspended in 5 volumes of 50 mM Tris-HCl pH 7.4 buffer containing 320 mM sucrose, 
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and stored at -70°C. Membranes were thawed before use, diluted with buffer and spun at 

40,000 x g to remove sucrose. The resulting pellet was suspended in 80 volumes of buffer to 

give a protein concentration of about 300 pg/ml and was used for binding experiments. 
Qft 

Frog brain membranes were prepared as described . Adequate measures were taken to 

minimize pain or discomfort of the experimental animals. Briefly, whole brains were 

homogenized in 50 mM Tris-HCl buffer (pH 7.4), containing 1 mM EDTA, 0.1 mM PMSF, 

10 mg/ml bacitracin, and 40 klU trasylol. The homogenate was centrifiiged (20 min., 25,000 x 

g, 4 °C). The resulting pellet was resuspended in the same buffer containing 0.32 M sucrose 

and stored at -70 °C [II.]. 

After chronic morphine treatment subcellular fractionation of rat brains were done 

according to Roth et al." and Szűcs et a/.33. Saline treated control (C) and morphine-treated 

(M3, M5 or M10) brain homogenates were simultaneously assessed in every experiment. 

Briefly, rat brains were gently homogenized and after repeated centrifiigation of the 

homogenates the combined supernatants are centrifuged at 12,000 x g for 20 min. The pellet 

is resuspended in 10% sucrose, and consecutive centrifugations at 20,000 x g for 25 min and 

14,000 x g for 20 min (twice) result in crude SPM. Crude microsomes are obtained from the 

12,000 x g supernatant by consecutive 20,000 x g for 25 min and 165,000 x g for 1 h 

centrifugations. Purified SPM fractions were finally resolved on a 10%, 28.5% and 34% 

sucrose density step gradient centrifuged at 100,000 x g for 2 h, whereas microsomes (MI) 

were obtained from a 10% and 28.5% gradient centrifuged at the same speed. Both SPM and 

MI from gradient were diluted threefold with TRIS-HC1 pH 7.4, pelleted at 100,000 x g for 1 

h and resuspended in 50 mM TRIS-HC1 pH 7.4 [IV., V.]. 

In all cases protein content was determined according to Bradford100. 
3.2.4 G-protein methods 

3.2.4.1 fsS]GTPyS binding assay 

Membranes («10 pg of protein) were incubated in Tris-EGTA pH 7.4 buffer containing 

[35S]GTPyS (0.05 nM) and increasing concentrations (10'7 -10'3 M) of stimulating ligands in 

the presence of 100 pM GDP in a total volume of 1 ml for 60 min at 30 °C, according to Sim 

et al.101, and Traynor et al.102. Nonspecific binding was determined with 10 pM GTPyS and 

subtracted. Bound and free [35S]GTPyS were separated by vacuum filtration through 

Whatman GF/B filters with a Millipore manifold. Filters were washed with 3 x 5 ml ice-cold 
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buffer, and radioactivity was detected after drying in a toluene-based scintillation cocktail in a 

Searle liquid scintillation counter [II. - V.]. 

3.2.4.2 ADP-Ribosylation 

The protocol for ADP-ribosylation of membrane proteins was developed by Ribeiro-Neto 

et or/.103. Pertussis toxin was preactivated by incubation with 62.5 mM DTT at 37 °C. Per 

sample, approximately 180 pg membrane protein was subjected to ADP-ribosylation with 

lxlO7 dpm [a-32P]NAD and 60 pM unlabeled NAD. Samples were spun down, the pellet was 

resuspended in sample buffer and was electrophoresed [V.]. 

3.2.4.3 Photolabeling of G-protein a-subunits 

[a-32P]GTP azidoanilide was synthesized as described92. Membranes were suspended in 

ice-cold incubation buffer containing 100 mM Hepes, pH 7.4, 10 mM MgCfe, 2 nM 

benzamidine, 100 pM GDP, 150 mM NaCI and 0.2 mM EDTA to yield 25 pg protein/30 pi 

buffer. Sample tubes were preincubated for 3 min at 30 °C with 10 pi of 1 pM opioid ligand 

(DAMGO or DPDPE for rat brain membranes). Thereafter 20 pi of [a-32P]GTP azidoanilide, 

diluted in water, were added (2 millions cpm/tube), and the reaction was stopped after 5 min 

by putting the samples on ice. All the subsequent procedures were performed at 4 °C. The 

samples were centrifuged at 12,000 x g for 5 min, and the pellets were resuspended in 60 pi of 

photolysis buffer, containing 50 mM Hepes pH 7.4, 5 mM MgCl2, 1 nM benzamidine, 2 mM 

DTT, 150 mM NaCI, and 0.1 mM EDTA. The samples were irradiated for 10 sec at 4 °C with 

an UV lamp (254 nm, 150 W), from a distance of 3 cm. After irradiation samples were 

centrifuged again, and the pellets resolved in Laemmli sample buffer104 for gel 

electrophoresis. 

3.2.4.4 Gel electrophoresis and immunoblotting 

SDS-PAGE was performed according to Laemmli104 with modifications [II., HI., V.]. 

Unlabeled membrane samples of RBE4 and GP8 cells or rat and frog brains were delipidated 

in methanol : chloroform : water mixture (4:1:3), spun down in an Eppendorf centrifuge, 

washed with methanol and the pellet resuspended in sample buffer. Cells from the primary 

culture were lysed in sample buffer, sonicated for 1 min and boiled for 5 min. PTX- or 

photolabeled samples were resolved in sample buffer. Equivalent amounts of proteins (30-80 

pg) were loaded onto a 16 cm long 10% slab gel containing high purity, deionised urea (6 M), 

which improved the resolution of Ga and G13 subunits with molecular weights close to each 

other89,105. In case of membranes from saline- and morphine treated rats, different amounts of 
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protein were loaded onto the same gel between 7.5-60 pg to make the comparison of the 

matched samples more authentic. Electrophoresis was performed in room temperature at a 

constant voltage of 150 V for 6 h. After electrophoresis, the separating gels were either, in 

case of radiolabeled samples, stained with 1 % Coomassie blue G-250, dried and exposed to 

X-ray films (Kodak X-OMAT AR), or immunoblotted [II., HI., V.]. Proteins resolved by 

SDS-PAGE were transferred onto nitrocellulose membranes at a constant current of 200 raA 

for 1 h in a three buffer component semi-dry system106. Transfer buffer 1 containing 0.3 M 

TRIS-HC1, 20% methanol; transfer buffer 2 and 3 consisting of 25 mM TRIS-HC1, 20% 

methanol; and 25 mM TRIS-HC1, 20% methanol, 40 mM e-amino-caproic acid, respectively . 

Nitrocellulose membranes were amido-black stained for evaluation of the protein loading and 

transfer, blocked for 1 h in 3 % ovalbumin in TRIS-buffered saline (TBS), pH 7.4. Thereafter, 

filters were cut into stripes and incubated for 1 h with various anti-G-protein antisera, which 

were diluted in TBS (pH 7.4) supplemented with 1% (w/v) BSA (fraction V., protease free) 

and sodium azide. After washing with TBS supplemented with 0.05 % (v/v) Tween-20 

(TBS/Tween) for 15 min 4 times, filters were blocked again as above and subsequently 

incubated with the second antibody (goat anti-rabbit IgG, peroxidase conjugated, diluted 

1:1000) in TBS/BSA for 1 h. The extensive washing was repeated and labeled protein bands 
i 

were visualized by ECL reagent on Kodak X-OMAT AR film. Films were analyzed by an 

LKB Ultroscan XL Enhanced Laser Densitometer and GelScan XL Laser Densitometer 

Program computer software, or were scanned and data files were evaluated with ImageQuaNT 

software (version 4.1, Molecular Dynamics). In addition to that, photolabeled proteins were 

identified in the dry gel by careful position of the films onto the gel, and area containing the 

labeled bands were excised from the gel, solved in 30% H2O2 and radioactivity was measured 

by liquid scintillation counting. 

3.2.5 Receptor binding assay 

Routinely, the binding assay was performed in a total volume of 1 ml containing 7-800 pi 

membrane suspension (« 250 pg protein), [3H]-labeled ligands at 1 nM concentration with or 

without appropriate concentrations (10"5-10*M M) of displacers, in case of thermodynamical 

analysis ions (2 mM MgCl2, 100 mM or 25 mM NaCl for the antagonist and agonists, 

respectively) and nucleotide (5xl0's M Gpp(NH)p). Incubation was started by the addition of 

the membrane protein and continued until equilibrium was achieved (1 h at 0 °C, 1 h at 24°C, 

30 min at 33°C in the case of [3H]NX, [3H]DHM or [3H]DAMGO; and 90 min at 0°C, 40 min 

at 24 °C and 33 °C for [3FI]DT-B, respectively). In case of the heterologous displacements 
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additional temperatures were also assayed, 14°C and 18°C for 60 min and 28°C for 40 min. 

The reaction was stopped by filtration through Whatman GF/B ([3H]NX) or GF/C filters 

([3H]DHM, [3H]DT-B and [3H]DAMGO) with Brandel M 24-R cell harvester. Filters were 

rapidly washed twice with 10 ml ice-cold 50 mM Tris-HCl pH 7.4 buffer, dried and counted 

in a toluene-based scintillation cocktail in a Beckman LS 5000TD counter. 

Untransformed binding data were analyzed with the nonlinear least-squares regression 

computer program LIGAND107 to obtain Kd (dissociation constant) and B ^ (number of 

binding sites) values [I., IV., V.]. For comparing changes in receptor number due to agonist 

treatments, the significance was determined by a t-test in Bmax from matched samples of 

treated vs. control. 

3.2.6 Thermodynamical analysis 

For thermodynamical analysis, from the calculated affinity constants, Ka (1/Kd) the 

following thermodynamic parameters were calculated [I.]: 

Gibfr s free energy: AG°'= - R T In Ka 

standard free enthalpy: AH°- - R m 

standard free entropy: AS°'= (AH°-AG°) / T 

where R is the gas constant (8.31 J mol'1 K"1), T is the absolute temperature in degree Kelvin, 

m is the slope of the van't HofF plots (lnKa vs. 1/T) which was fitted by the computer program 

'Microstat' of Ecosoft, 1984). 

In the case of curvilinear van't HofF plots a non-linear regression analysis of the AG°' 

values as a function of temperature was performed according to the following equation108: 

AG01 = a + bT + cT2 (1) 

The coefficients a, b, c were calculated from the curve which fitted best the experimental 

results of AG°' versus T. AH0' and AS°' were evaluated from the mathematical derivatives of 

the above equation using the calculated a, b, c values: 

AH01 = d(AG° / T) / d(l / T) = a - cT2 (2) 

AS0' = d(AG°) / dT = -b - 2 cT (3) 
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IV. RESULTS 

4.1 THERMODYNAMICAL ANALYSIS OF RECEPTOR - G-PROTEIN 

COUPLING 

A widely used experimental paradigm for measuring GTP-shift of agonist affinity is to 

measure the displacement of a radiolabeled antagonist binding by unlabeled agonist in the 

absence or presence of guanine nucleotide. In our experiments where 10"5 - 10 " M unlabeled 

dihydromorphine (DHM) was tested as displacer of 1 nM [3H]naloxone ([3H]NX) at p opioid 

binding sites, analysis of the data with LIGAND resulted in a one-site binding either in the 

absence (control) or in the presence of regulators. The van't Hoff plots resulted in straight lines 

with negative slopes in the absence of regulators, or in the presence of Na+ or Mg2+ (r>0.9) (Fig. 

2. A,B,C) 
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Fig. 2. Van't Hoff plots of unlabeled DHM (10 l0-10"5 M) competition against 1 nM [3H]NX with no 
addition (A), in presence of Na+ (B), Mg2+ (C), Gpp(NH)p (D), Gpp(NH)p+Na+ (E), or 
Gpp(NH)p+Na++Mg2+ (F). Values shown are the mean±S.E.M. of InK, of at least 3 independent 
determinations at each temperature. 
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However, the presence of 50 pM Gpp(NH)p (a hydrolysis-resistant GTP analog), the 

simultaneous presence of Gpp(NH)p + Na+, or Gpp(NH)p + Na+ + Mg2+ changed the temperature 

dependence of the system which was reflected as a break in the plot (r=0.6, 0.5 and 0.85, 

respectively) (Fig. 2. D,E,F). Such non-linear van't Hoff plots can reflect complex binding 

interactions involving more than one step, or conformational change. As shown in Table 4. the 

thermodynamic parameters, especially AH°' and AS°' undergo major changes when uncoupling 

of the receptor from G-proteins presumably takes place. Thus increased entropy and enthalpy 

changes were detected when Gpp(NH)p, Na+ and Mg2+ were simultaneously present in the 

incubation mixture. 

Table 4. Thermodynamic parameters of the displacement of 1 nM [3H]NX by lO'MO'" M unlabeled 
DHM at 24°C in the absence (control) or in the presence of Na*, Mg*4, and/or Gpp(NH)p 

KD AG°' AH"' AS0' 
(nM) (kJxmol"') (kJxmol1) (Jxmol'xK1) 

control 5.86+1.5 -46.84 17.80 246 
+Na+ 29.80±16.9 -43.56 47.68 307 
+Mg2+ 2.47+1.1 -49.97 35.94 287 
+Gpp(NH)p 24.50± 6.7 -43.33 26.50 239 
+Gpp(NH)p+Na+ 313.00+59.0 -36.99 70.19 362 
+Gpp(NH)p+ 
Na++Mg2+ 275.00±10.0 -37.26 66.62 352 

Kq values are presented as mean±S.E.M. of 3 independent determinations. AG°\ AH°' and AS°' values 
were calculated from van't Hoff plots, but different equations have been used in the case of non-linear 
plots (Gpp(NH)p, Gpp(NH)p+Na+ and Gpp(NH)p+Na++Mg2+) (see Methods). 

4.2 MOLECULAR CHANGES ACCOMPANYING MORPHINE 

TOLERANCE 

4.2.1 Pharmacological tests of tolerance 

A single injection of 10 mg/kg morphine caused significant increases in the latency of the 

antinociceptive response in both the tail-flick and in the hot-plate tests in morphine-naive rats. 

Chronic administration of morphine for 3, 5 or 10 consecutive days significantly decreased the 

antinociceptive effect of morphine. The degree of the tolerance was the highest after 10 days 

administration of morphine. 

4.2.2 Changes in p. opioid receptor binding due to chronic morphine in vivo 

Agonist-induced changes in the ligand-binding parameters of pOR were analyzed with 



2 3 

homologous displacement experiments using [3H]DAMGO binding. Brains of control and 

morphine treated animals were subjected to subcellular fractionation to yield in highly purified 

synaptic plasma membranes (SPM) and microsomes (MI) as described in Methods. The receptor 

affinity (Kq) did not change due to chronic morphine treatment in either fractions (data not 

shown). There were about equal number of p binding sites in the SPM and MI fractions of 

control animals. Three days of morphine treatment caused no change compared to those in 

vehicle-treated brain fractions and the animals showed no signs of tolerance/dependence (data 

not shown). Upon 5-day morphine treatment, the number of surface pOR did not change, the 

Bmax values were 203±26 fmol/mg and 187±70 fmol/mg in control and M5 SPM, respectively. In 

contrast, a 68% increase in B^ , values of [3H]DAMGO binding sites from 199±15 fmol/mg to 

336±46 fmol/mg was measured in control and M5 MI, respectively. Chronic morphine treatment 

for 10 days resulted in elevated levels of the total number (surface + intracellular) of p binding 

sites. The resulting Binax values of [3H]DAMGO binding were 320±71 fmol/mg and 263±3 

fmol/mg in M10 SPM and M10 MI (Fig. 3). 
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Fig. 3. Changes in the of [3H]DAMGO binding due to opioid exposure. Animals were treated with 
saline (C) or increasing dose of morphine (M) for 3, 5 or 10 days. Subcellular fractionations of brain 
homogenates were performed to prepare synaptic plasmamembrane (SPM) and microsomal (MI) 
membranes as described in Methods. Results shown are expressed as fmol/mg protein in each fraction. 
Mean ± S.E.M., n = 3-8. Significance was determined by t-test, * p< 0.05 , ** p< 0.01 

4.2.3 Effect of chronic morphine treatment on G-proteins in rat brain 

Islet-activating protein (pertussis toxin, PTX), which catalyzed ADP-ribosyladon of the a-

subunits of G/G0 proteins was used to assess the G-protein distribution in subcellular fractions of 
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rat brain. The proteins incubated with [oc-32P]NAD were analyzed by SDS-PAGE and 

autoradiography. PTX catalyzed the labeling of proteins of 39-42 kDa that were present in all 

fractions (Fig. 4.). There was a 20% increase in density of the main labeled band of 42 kDa in the 

SPM fraction, while the density of the same band increased by 89% in the MI compared to their 

saline treated counterparts after 5-day chronic morphine treatment (Fig. 4.). 
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Fig. 4. Pertussis toxin (PTX) dependent labeling of G-proteins in rat brain subcellular fractions after 
chronic morphine treatment (M5). Proteins were labeled by [P32]NAD in the presence of PTX. Main 
labeled band of autoradiograms after SDS-PAGE were evaluated by laser densitometry. Shown are the 
% changes in the morphine treated rat brain synaptic plasmamembrane (SPM) and microsomal (MI) 
fractions compared to the saline treated counterpart, as 100%. Mean ± S.E.M., n = 3, significance was 
determined by t-test, * p< 0.05. Insert: shown is the autoradiogram of one representative experiment. 
Lane 1: MMI, lane 2: CMI, lane 3: MSPM, lane 4: CSPM, and the position of the molecular weight 
marker is on the right side. 

Morphine induced changes in the level and subcellular distribution of various G-proteins 

was also studied by Western-blotting a-subunits of Gs, Gjp Gq, G0 and Gq/n. It was shown that 

the density of the labeling was proportional to the protein amount loaded onto the gel (not 

shown). The results of the analysis are expressed as percentage of the densities of appropriate 

antibody staining in morphine-treated vs. the saline treated (control) fractions (Fig. 5.). We 

detected a rapid and transient decrease of GnCC in SPM (73±13%, p<0.05) and that of Gs 

(77±8%, p<0.05) in MI after 3-day morphine treatment (Fig. 5.A). These alterations were not 
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observed after 5-day morphine treatment. Significant decrease of Gs (57±3.5%, p<0.01) in M5 

SPM and increase of G.i, G2 and Gc in M5 MI were measured (125±8.6%, 121±2.7% 152±22%, 

resp., p<0.05 and p<0.001 for G^) (Fig. 5.B). This tendency of increase in the MI fraction was 

even more pronounced after 10-day morphine treatment. In the latter, besides G,i, G,2 and G0 

(150±24%, 130±9% and 165±21%, resp., p<0.01 except G.i, where p<0.05), Gq/u levels were 

also elevated (175±17%, p<0.001). In parallel, the exposure level of G0 and Gq/n was 

significantly decreased by 68±10% and 65±7%, (p<0.01) in M10 SPM, respectively (Fig. 5.C). 

Membranes from 5-day-naltrexone treated rat brains were also subjected to Western-blotting. No 

significant changes were detected in N5 SPM. An overall elevation, reaching statistically 

significant levels for G,i and G0, was found in N5 MI (Fig. 5.D). 
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Fig. 5. Western-blotting of different G-protein a subunits by subtype specific antibodies. Samples 
from saline and chronic morphine or naltrexone treated rat brain synaptic plasmamembrane (SPM) and 
microsomal (MI) fractions were run on SDS-PAGE, blotted onto nitocellulose and incubated with the 
appropriate antibody. Immuno-labelled proteins were visualized by ECL chemiluminescent detection 
system onto Kodak X-OMAT AR film. Films were scanned and data were evaluated by ImageQuant 
software (Molecular Dynamics). Results are presented as percent densities of saline-treated control as 
100%. A) 3 days morphine (M3); B) 5 days morphine (M5); C) 10 days morphine (M10); D) 5 days 
naltrexone (NX) treated membranes. Mean ± S.E.M., n = 3, significance was determined by t-test, * p< 
0.05, ** pO.Ol. 
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4.2.4 Morphine- induced changes in receptor - G-protein coupling 

Possible changes in the functional coupling between opioid receptors and G-proteins were 

investigated by measuring opioid stimulation of photoaffinity labeling of G-proteins with [a-
32P]GTP azidoanilide ([a-32P] AA-GTP) in subcellular fractions of saline as well as morphine 

treated M5 brain homogenates. Preliminary experiments were run to optimize the concentration 

of Na~ and GDP in the reaction mixture to obtain the best ratio of basal and stimulated labeling 

in our system. It was found that the presence of 100 pM GDP, 150 mM NaCl gives the best 

signal to noise ratio, thus they were included in further experiments. It was found that both p 

and 5 opioid agonists can stimulate the photoincorporation of [a-32P] AA-GTP into the Ga subunits 

in the untreated SPM, which indicates a functional coupling between the receptor and the transducer 

(Fig. 6.). Highly attenuated functional coupling of opioid receptors was detected in control Ml (Fig. 

6.) in accordance with previous ligand binding experiments33. Coupling became greatly reduced in 

the morphine treated SPM when the p agonist DAMGO was challenged. The stimulatory effect of 

the 5 ligand (DPDPE) was also attenuated, but not lost completely in this fraction (Fig. 6.) 
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Fig. 6. Photoaffinity labeling of Ga with [a-32P]GTP azidoanilide in subcellular fractions of control (C) and 
morphine-treated (M) rat brains. DPDPE: 6 peptide agonist; or DAMGO: p peptide agonist were added prior 
to photolysis to check functional coupling. Autoradiograms after SDS-PAGE were evaluated by laser-
densitometry, or labeled bands were excised from the dry gel and the total incorporated radioactivity was 
counted by liquid scintillation spectrometry, cpm: total incorporated radioactivity; %: total incorporated 
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radioactivity in percent compared to the basal activity (100 %) of each protein sample. Shown is a 
representative experiment which was repeated with similar results. 

4.3 STUDIES ON G-PROTEINS AND THEIR COUPLING TO k OPIOID 

RECEPTORS IN FROG BRAIN 

The G-protein composition of frog brain membranes was studied by Western blotting 

experiments using highly subtype specific antibodies that were raised against known sequences 

of mammalian G-protein types that were also applied in our studies with rat brain subcellular 

fractions (Chapter 4.2.3). This was necessary since the G-proteins of frog brain were not 

previously identified, thus, no antibodies against the proteins of this species were available. 

Preliminary experiments resulted in the labeling of proteins with appropriate molecular weights 

in frog brain membranes, similar to those detected in rat brain as outlined below. The Common 

antibody strongly reacted with proteins of about 39-41 and 44-45 kDa molecular weights. The Oi 

common antibody stained weakly a band at »44 kDa, but strongly a band at about 39 kDa, the latter 

also being labeled by the cm antibody. This band disappeared when the blot was incubated with 

the Oi2 antiserum that was pre-incubated with an excess of the peptide, which was used to 

generate the antibody, thus demonstrating the specificity of the labeling. The cts antibody gave a 

strong signal at 43 kDa that disappeared when the antibody was pre-incubated with Os peptide. 

The affinity-purified Ooommon and Ooi antibodies both strongly reacted with a protein of »40 kDa. 

Immunoblots were also tested for p subunits of G-proteins. The pcommon antibody immunoreacted 

with a doublet of bands of about 35 kDa which resembled very much those found with the Pi 

antibody (Fig. 7.). 

In order to assess the functional coupling of frog brain opioid receptors to G-proteins, the 

ability of opioid agonists to activate G-proteins was measured with [35S]GTPyS binding assay. 

EKC, a prototypic k opiate ligand which however also binds to p and 8 sites at least in rat 

brain109, was the most effective among the ligands tested achieving about 60% stimulation over 

the basal activity at 10 pM concentration (Fig. 8.). Bremazocine, another x-preferring ligand with 

cross-reactivity to p and 5 sites at high concentrations, was less efficient in activating G-proteins. 

The Ki selective U-50,488110 displayed very similar activation to the latter; the maximal 

stimulation was 20-30% at the highest concentrations tested (Fig. 8.). When the K antagonist 

norbinaltorphimine at 10 pM was also included, it completely blocked the stimulating effect of 

all three ligands tested at 1 pM, implying that their effect is, due to activation of x opioid 

receptors (data not shown). 
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Fig. 7. Immunoblots of G-proteins in frog brain membranes. Proteins were separated on a 10 % 
acrylamide SDS-gel, then blotted, and subsequently stained using G-protein subunit-specific antibodies, 
as described in Methods. The G-protein peptide antibodies used were etc: ac0rninon-antibody, ct*: cy-antibody. 
a,c: a, Common-antibody, a,2: a,2-antibody, OoC: cy, commo„-antibody, Ooi: etc -antibody, pc: |3common-antibody, and 
Pi: Pi-antibody. "+ peptide" designates the presence of an excess of the peptide to which the particular 
antibody was raised. Values on the left indicate the migration of molecular weight markers. This is a 
representative experiment out of 3-5 others giving similar results. 
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Fig. 8. Effect of opioid agonists on [^SjGTPyS binding in frog brain membranes. Proteins were incubated 
with 0.05 nM [35S]GTPyS and 10 pM GDP in Tris-EGTA pH 7.4 buffer in the absence (basal activity), or 
in the presence of various concentrations of EKC (•), U-50, 488 (•) or bremazocine (A). Basal binding 
was 84.5 ± 7 fmol/mg protein. Data are mean ± S.E.M. of 2-6 experiments each performed in triplicate. 
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4.4 G-PROTEINS IN THE RAT BRAIN ENDOTHELIAL CELLS 

G-protein composition of primary cultures of rat brain endothelial cell lysates and that of 

plasma membranes of immortalized rat brain endothelial cell lines, RBE4 and GPS was studied 

with immunoblotting. Again, the specific antisera against different mammalian G-protein 

subtypes were used that were previously characterized in rat and frog brain membranes (Chapter 

4.2.3 and 4.3). SDS-PAGE separation of proteins was performed in the presence of urea to 

improve resolution of the Ga subunits of closely similar molecular weights (39-43 kDa)xy 105 

Basically, all the Ga subunits tested were present in the three types of cerebral endothelial cells 

(CECs) studied with only slight quantitative differences (Fig. 9 ). 

Fig. 9. Immunoblot analysis of G-protein a subunits in primary cultured rat brain endothelial cell lysates 
(A), or crude membranes of RBE4 (B) and GPS (C) cell lines. Samples were run on SDS-PAGE 
containing urea and transferred onto nitrocellulose membranes. Immunoblotting was performed with 
specific anti-peptide antisera which recognise G-protein a subunits indicated on the top of each lane. 
Filter-bound antibodies were detected by ECL system. Molecular weights in kDa are indicated on the 
right. 



30 

Antiserum AS 369 (anti-G4ua) detected a protein band which, however, was in many 

experiments resolved into two distinct bands. Even in cases where the resolution was not visible, 

the densitometric analysis of the films revealed the presence of two peaks very close to each 

other. Heavy staining of proteins of 43 kDa was seen with antiserum RM/1 (anti- Gsa). A minor 

band of about 42 kDa was also detected mainly in GPS cell membranes (Fig. 9, panel C). This 

latter protein was sometimes also seen in the other two CECs tested. Antiserum GC/2 (anti-G0a) 

detected a faint band* at approximately 41 kDa, and a more intense staining at about 39 kDa. 

Antiserum AS/7 (anti-Giia and G^a) recognized one bulky band which comigrated with the G^a 

labeled band obtained by incubation of the membranes with AS 269 (anti-Giia). A faint band of 

approx. 42 kDa, what might correspond to Gnoc was also detected with AS7 in RBE4 and GPS 

cell membranes (Fig. 9.B and C) but was not seen in lysates of primary cell cultures (Fig. 9.A). 

AS 86 (preferentially anti-Gad) detected 2 bands of which the upper band might be Gad and the 

lower one G0d based on the known cross-reactivity of AS 86 with G0a91111, and also the 

comigration of this band with the lower band of the GC/2 (anti-G0a) detected bands (Fig. 9.). 

The GP-specific antiserum AS 11 detected a doublet with molecular weights of 40 and 41 

kDa in the tissues tested (data not shown) that are somewhat higher than the values obtained in 

most tissues, i.e. 35 resp.36 kDa89, and might be due to the presence of urea in the gel. 

V. DISCUSSION 

In this work we studied G-proteins of brain origin with different techniques to understand 

some of their roles first of all in the function of the brain opioid receptors. 

First we analyzed the opioid receptor - G-protein interaction by analyzing the binding . 

parameters of the receptor. Ligand binding studies performed at different temperatures can be 

used to get thermodynamical parameters what provide information about the underlying 

chemical forces of the interaction. 

The entropy increase observed when the p ligand DHM was displacing [3H]NX (Table 4.) 

might indicate hydrophobic interactions, and since it is present in all cases (also in homologous 

displacement experiments with subtype specific ligands such as [3H]DAMGO and [3H]DHM for 

p and [3H]DT-B for 5 opioid receptors as well as a general antagonist, [3H]NX [I.]), it might be 

one of the first general steps of the ligand binding, when ordered water molecules on the surface 

of the ligand and the receptors have to be removed113'114. Another source of the entropy increase 

might be a conformational change of the receptor upon ligand binding. Theories based on point 

mutation experiments of the cloned p2-adrenergic receptor resulting in constitutively active 

receptor mutants115'116 propose a model, in which the native receptor is conformationally 
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constrained in the unliganded, inactive state and hormone binding drives it into the activated, 

"relaxed" form, in which the third cytoplasmic loop becomes available for G-protein activation. 

This interaction requires the presence of Na~, Mg2" and guanine nucleotides64'65 and results in a 

conformational change and/or rearrangement of the membrane components. 

Na" has been suggested to affect agonist binding by directly interacting with receptors to 

cause G-protein uncoupling, thereby converting the receptor into a low affinity state for 
117 

agonists . Mg" plays multiple roles in the course of receptor function acting on both the 

receptor and the G-protein modifying their function and interaction118. In the extension of the 

ternary complex model Samama et al. suggested a direct role for these ions to regulate the 

receptor ability to isomerize between the active and inactive form119. In our experiments 

monovalent and divalent cations acted similarly to these, i.e. sodium decreased agonist affinity, 

but increased that of antagonist; and Mg2- increased agonist affinity primarily in case of DT-B at 

higher temperatures [I.]. Nevertheless, Na" or Mg2" results only in quantitative changes of AS01 

and AH01 values. 

Electrostatic interactions of the ligand with complementary polar residues of the receptor 

would lead to negative or slightly positive values of AH01. While the former is true for [3H]NX 

binding in homologous displacement experiments, the latter is the case for all the agonists (3H-

DHM, 3H-DAMGO, 3H-DT-B) tested in homologous displacement experiments . Importance 

of charged residues in TM II, m and VI for different functions are being delineated for opioid 

receptors54. 

The presence of Gpp(NH)p in heterologous displacement experiments (DHM competing 

with [3H]NX) resulted in curvilinear van't Hoff plots (Fig. 2.). We fitted the data without the lnKa 

value obtained at the lowest temperature and this also gave better fit for polynomial than for 

linear regression. The simultaneous presence of Gpp(NH)p, Na~ and Mg2" increased the enthalpy 

more than 3 times compared to the control value (66.62 vs. 17.80 klxmol'1), and at least doubled 

compared to the presence of a single regulator (Table 4.). Entropy likewise increased from 246 to 

352 Jxmor'xK'1. We suggest that these alterations are the consequences of the molecular 

rearrangement in the membrane due to uncoupling of the receptor-ligand complex from G-

proteins which results in "free" protein molecules. This hypothesis is strengthened by the low 

affinity of p-receptor agonist binding measured in this case (275 nM vs. 5 .86 nM of the control, 

Table 4.) indicating the utilization of the binding energy of receptor-ligand to drive G-proteins to 

the open form, thus weakening the observed binding of the receptor for the ligand. 

Physicochemical interpretations of thermodynamic parameters are more or less speculative 
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for such a complex system, however, some molecular events, such as molecular interactions 

discussed above can be postulated. 

Our further studies on the p opioid receptor signal transduction aimed to reveal 

contribution of altered receptor and G-protein function to the manifestation of morphine 

tolerance and dependence. The availability of membrane fractions originating from the cell 

surface (SPM) and from 'light vesicles' or microsomes (Ml), the latter highly enriched in 

endoplasmic reticulum and Golgi membranes as well as endosomes, allowed us to study the 

subcellular distribution of pOR and their cognate G-proteins in opioid naive and morphine-

tolerant animals. The fractionation protocol and detailed characterization of the fractions by 

marker enzymes, electron microscopy and receptor binding experiments was published33,99'120121. 

Consistent with earlier reports121, comparable BmaX values were measured with 

[3H]DAMGO in control SPM and Ml membranes (Fig. 3.). Upon 5-day morphine treatment, the 

receptor number did not change in the SPM implying the lack of internalization of the surface 

pOR. In parallel, however, the p-sites were up-regulated by 68% in Ml. When morphine 

treatment was performed with a higher dose for a longer period (10 days), the number of both 

surface and intracellular p binding sites was elevated (Fig. 3.). 

Mechanisms of receptor up-regulation include changes in receptor posttranslational 

modifications, compartmentalization, or turnover. Chronic morphine treatment may enhance 

the processing of latent or precursor receptors, or it may induce new receptor synthesis, 

probably from existing pool of mRNA, since literature data reveal no alterations in the mRNA 

levels of pOR either after opioid agonist or antagonist treatment122'123. We do not have direct 

evidence for such effect of morphine, since our attempt to block the protein synthesis in vivo 

by co-administration of cycloheximid had failed. Although this chemical is widely used in 

cell culture studies to inhibit mRNA translation on the ribosomes, and as a consequence, 

prevent protein synthesis, the smallest dose given in vivo was toxic for the rats. However, the 

following observations greatly agree with the possible role of morphine in the regulation of 

gene expression and protein synthesis. It has been showed before that newly synthesized pOR 

that are highly enriched in the microsomes of neonatal brain display enhanced coupling to G-

proteins compared to their adult counterparts33. These data were well supported by 

autoradiographic studies that showed that while newly synthesized receptors that are in transit 

from the soma toward the nerve terminals are GTP-sensitive, the internalized opioid receptors 

undergo retrograde axoplasmic flow and they are GTP-insensitive (29 and references cited 

therein). Our results found in M5 MI, namely, increased receptor and G-protein density and 

enhanced coupling between them can be the consequence of protein synthesis. Up-regulation 
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of intracellular nicotinic acetylcholine receptors (nAChR) was also reported after chronic 

nicotine (another abusive drug) treatment in primary cultures of fetal rat brain. It was 

suggested to entail a nicotine-stimulated conversion of the low-affinity reserve pool of 

nAChR into a high-affinity conformer124 125. 

It is well documented, that not only receptors are involved in the development of drug 
* 77 1 

addiction but G-proteins '""", as well as of various elements of the signal transduction 

pathway, such as adenylyl cyclase8384, protein kinase-C (PKC)85, G-protein coupled receptor 

kinase86, and protein phosphatases87 are also affected. Although most emphasis has been placed 

on analysis of the internalization and redistribution of GPCRs, it has also been recognized that 

sustained agonist treatment of cells can result in alterations in both the cellular distribution and 

levels of G-proteins activated by the relevant GPCR126. The possible alteration of G,/Go proteins, 

which are selectively labeled by PTX and are known to interact with the opioid receptors42'43' 

[II.], were assessed after PTX catalyzed ADP-rybosilation in subcellular fractions of rat brain. 

Most notable was an 89% up-regulation of G,/G0 proteins noted in the microsomes of morphine-

tolerant animals (Fig. 4.). 

Results of the immunoblotting experiments also showed increases in the amount of G, and 

Go in M5 and M10 MI (Fig. 5.). A transient decrease of Gn in SPM with simultaneous increase 

(statistically not significant) of the same protein in MI also occurred after 3 days of morphine 

treatment. Nonetheless, translocation can not be the single source of G-protein increase in MI, 

since in M5 membranes only microsomal increase was detected for Gii, Gi2 and G0 without 

decrease of the same proteins in SPM. Even in M10 MI the increase was larger than the decrease 

in the SPM. There was no sign of down-regulation of Gj and G0 in rat brain. Reduced amount of 

Go and Gq u was detected in M10 SPM, while elevated levels of the same proteins in Ml were 

also noted (although Gq,na is not known to directly interact with opioid receptors). We speculate 

that it can be explained by internalization of the surface G-proteins. Svoboda et al.128 detected 

translocation of Gna subunits from the plasma membrane into the low density membranes and 

cytosol fractions of transfected HEK293 cells upon chronic exposure to thyrotropin-releasing 

hormon (TRH). Similarly, redistribution of Gq and Gn was induced by stimulation of the 

muscarinic ml acetylcholine receptors in Chinese hamster ovary (CHO) cell line129. 

In the case of the stimulatory G-protein Gs, that was shown to play a particular role in 

morphine tolerance in the peripheral nervous system (130 and references cited therein) not only 

internalization, but down-regulation might take a place (Fig. 5). The total amount (surface + 

intracellular) of this subtype tended to be less in M3 and M5 fractions than in membranes from 

saline treated brains. During longer drug administration that phenomenon seems to be 
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compensated as in M10 membranes no significant reduction ofG„ was measured. 

The distinct pattern of changes of G-protein subtypes that were detected after 3, 5 and 10 

days of morphine administration (Fig. 5.) might represent different stages of the cellular 

adaptation to the continuous presence of the drug and might reflect different roles of the G-

protein subtypes in this process. Our data fit into the scheme of drug regulation of neuronal gene 

expression suggested by Nestler69'0, where one main group of genes targeted by the drug effect 

is that encoding G-proteins. The altered gene expression of several components of the cell 

signaling system, resulting in tolerance and addiction, is part of the adaptation processes to 

compensate the impact of agonist exposure131. 

Functional coupling of p- and 5-opioid receptors to G-proteins in subcellular fractions of rat 

brain before and after M5 treatment was also examined by measuring the ability of DAMGO (p) 

or DPDPE (8) ligands added to membrane fractions in vitro to stimulate photoaffinity labeling of 

G-proteins. After chronic morphine treatment DAMGO had completely lost its stimulating effect 

in M5 SPM indicating functional uncoupling of opioid receptors from G-proteins, while DPDPE 

had reduced effect compared to control (Fig. 6). The influence of morphine on both p and 8 

opioid receptor coupling to G-proteins might be its well-known cross-reactivity between p and 8 

opioid receptors, or a cross-talk between the signal transduction pathways175'177. In contrast, in 

M5 MI there was a tendency of increased stimulation by opioid ligands compared to the saline 

treated MI indicating enhanced interaction between opioid receptors and G-proteins. This might 

reflect an increased number of p-binding sites and/or G-proteins which is in a good agreement 

with the results of the ligand binding (Fig. 3-5). It is worth mentioning that the two different 

analysis of photoaffinity labeling experiments, namely, densitometry of the autoradiograms and 

scintillation counting of the incorporated radioactivity into the labeled proteins excised from the 

gel gave very similar results (Fig. 6). 

Since it is well documented that chronic administration of opioid receptor antagonists 

produces an up-regulation that might be accompanied by increased coupling to G-proteins121'132, 

another possibility, namely that morphine behaves like a partial antagonist in our system should 

also be taken into account. In agreement with this, Sternini et al.134 showed that morphine 

partially inhibited the etorphine-induced pOR rapid endocytosis in neurons. However, it does not 

explain our observation that only the intracellular sites were affected by shorter morphine 

exposure, but not the surface one (Fig. 3.). Also, there were some distinct patterns of changes 

when we tested the effect of chronic naltrexone treatment in our system. In agreement with 

literature data, [3H]DAMGO binding sites on the cell surface were up-regulated by 73% after 5-
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day-naltrexone treatment (N5). When membranes were also exposed to PTX, there was no 

change in the intensity of labeling in N5 SPM, while 58% increase was noted in the N5 MI (data 

not shown). In photoaffinity labeling experiments N5 treatment caused no change in the 

stimulating effect of DAMGO (119±2.5 %) and DPDPE (123±12 %) while these ligands had 

reduced capability to stimulate G-protein labeling after M5 treatment. 

The need for novel, strong analgesics free of abuse potential and side effects of morphine 

led to the intense research of non-p opioid sites, in particular K opioid receptors. The difficulty of 

the investigation of endogenously expressed K receptors due to their relatively low abundance in 

mammalian brain was overcame by using frog brain membrane preparations, what is a rich 

source of K opioid receptors98,134. Next part of this study characterizes the G-proteins present in 

frog brain membranes, and furthermore their activation by K opioid agonists. In order to typify 

the G-proteins we utilized antibodies raised against peptides with either common or subtype-

specific sequences of given G-protein subunits deduced from mammalian G-protein sequences 

as published previously89,134"139, since no sequence data of G-proteins in Rana esculenta have 

been available. Thus, the reactivity and subtype selectivity of the peptide antibodies had to be 

examined in frog. The immunolabeling pattern with ctcommon and cto were compared in rat and 

frog brain tissues in preliminary experiments. It was concluded that these antisera were able to 

recognize appropriate G-protein subunits in frog brain with identical or slightly different 

molecular weights than in rat brain membranes (data not shown). Published data concerning the 

G-protein composition in amphibian tissues such as Xenopus laevis oocytes140, frog skeletal 

muscle25, rod photoreceptors141, and even in neuronal tissues of different vertebrates including 

frogs142"144 have indicated a high degree of homology of the G-proteins of these tissues with their 

mammalian counterparts. Our results also agree with the above notions as outlined below. 

The G-protein composition of frog brain membranes was further elucidated by using more 

specific antisera (Fig. 7.). Our conclusions concerning the identity of a given immunostained 

protein band were based on: (i) its comigration with proteins which were reactive to other 

peptide antibodies in the absence and in the presence of 6 M urea in the separating gels; and that 

its mobility was in accordance with the molecular range labeled (ii) by [a-32P]GTP azidoanilide; 

or (iii) pertussis toxin-sensitive proteins. (This latter requirement obviously was not applicable to 

proteins immunoreactive to a« or P antibodies.) 

On the basis of our results one might speculate that p subunits emerge as two different 

isoforms of Pi (Fig. 7.), as the comigration of Pi- and pc0mmon-immunoreactive proteins and the 

absence of p2-reactive material (not shown) would suggest. The two Gs a forms shown by 
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peptide-reversible anti-Os immunostaining after running on a urea-containing gel were also 

reactive to the GUmmon antibody (not shown) that recognized cij, cio, a* a,, and to a lesser extent az 

in mammalian cells136. Testing for oii subunits led to the detection of an ai2-like protein of about 

39 kDa which was immunostained with the a^ affinity purified antibody and also coincided with 

the appropriate anti-ai common reactive band. The ai common peptide antibody which recognized the 

Oii, Cto, and ctj3 proteins136 did not however show immunolabeling in the region where an would 

be expected under the experimental conditions in frog brain (Fig. 7.). This result was confirmed 

with an antibody specific for an which also showed no labeling in frog (data not shown). The 

other, higher molecular weight band stained by the ai common antibody (Fig. 7.) might correspond 

to ai3 which protein was also detected in frog skeletal muscle89. The affinity-purified Ooi 

recognized a protein band at 40 kDa that was also seen with the ao common antiserum (Fig. 7). An 

antibody specific for Oo2 showed no detectable signal (data not shown). These observations 

suggest that there is only one type of G0 protein in frog brain, and that G0i seems to play a role in 

K opioid receptor signaling in frog brain. 

Evaluation of agonists stimulation of [35S]GTPyS binding offers an opportunity to study the 

direct coupling of a receptor to the activation of G-proteins regardless of the types of G-proteins 

and effector systems involved. In this respect it is similar to agonist stimulation of photolabeling 

by [a-32P]AA-GTP or the high Km GTPase activity measurements. Previous literature data 

provided evidence for the coupling of kappa (besides p and 8) opioid receptors to rat brain 

GTPase145. In frog brain membranes, K opioid ligands resulted in a concentration-dependent 

stimulation of [35S]GTPyS binding (Fig. 8.) which was fully inhibited by the K-specific 

antagonist norbinaltorphimine. The rank order of potency was EKC > U-50,488 « bremazocine. 

The E C 5 0 values defined as the concentration of the ligand producing 50% of the maximal 

response was in the nanomolar range for all three agonists tested (Fig. 8.) which agrees well with 

the equilibrium dissociation constants of these ligands obtained in receptor binding 

experiments134146"151. While U-50,488 is considered to be a selective ligand for K\ opioid 

receptors110 that represent only 20-30% of the kappa receptor pool in frog brain134'142, the 

benzomorphan EKC and bremazocine bind to both Ki and K2 subtypes152 besides their well-

documented cross-reactivity with p and 5 sites109. Although the potency of the latter two ligands 

is similar in most mammalian tissues, this is not necessarily the case in frog brain. Previous 

experiments revealed unique characteristics of opioid sites of frog brain, among them the 

antagonistic like binding pattern of these two ligands in v/7ro146'153 154, and the ability of EKC to 

antagonize morphine-induced antinociception in vivo155. The observation that EKC was more 

potent than bremazocine in stimulating [35S]GTPyS binding will require future work, 
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nevertheless it agrees with recent results of Benyhe et al.149, who studied the binding of Met-

enkephalin-Arg6-Phe7, the proposed endogenous ligand of the x2 receptors152. In their study 

bremazocine and EKC displaced about 50% and 80% of the specific binding of the radioligand 

in frog brain membranes, respectively149. The potency of Met-enkephalin-Arg6-Phe7 has also 

been evaluated in [35S]GTPyS binding. This full agonist of the K2 sites displayed about 120% 

stimulation over the basal activity at 1 pM concentration156. The main conclusion that can be 

drawn from [35S]GTPyS binding experiments is that kappa receptors including xi and x2 

subtypes do interact with G-proteins in frog brain. This observation is also supported by previous 

ligand binding experiments where the binding of [3H]EKC, [3H]dihydromorphine, [3H]etorphine 

and [3H]U-50,488 was shown to be regulated by guanine nucleotides142,150,153. 

Further experiments by photolabeling of G-protein a subunits by [a-32P]GTP azidoanilide in 

the absence and presence of opioid agonists identified multiple bands in the molecular weight 

range of 39-42 kDa. The 39 kDa band which showed very faint labeling comigrated with the 

protein specifically labeled with the aa antibody. The 40 kDa band was identified as Ooi. The 

other two bands were also stained with the (Winon antibody, but were not further identified. 

Photoincorporation of the label was slightly but significantly stimulated by EKC and U-50,488 

into three bands, including proteins identified as Ooi, aa, and the unknown a-subunit with higher 

molecular weight. Based on the observation that the kappa ligands enhanced photolabeling of 

multiple proteins by AA-GTP it seems likely that multiple types of G-proteins are able to interact 

with x sites in frog brain. Likewise, this was shown to be the case for the cloned rat x 

receptors172,173 and for the 8 opioid receptors in NxG 108-15 cells42, as well as for p. and 8 

receptors in human neuroblastoma SH-SY5Y cells43. Thus multiple types of G-proteins might 

seem to couple to all three opioid receptors. 

The acute and chronic effects of opioid drugs are fundamentally determined by the 

concentration of the compound in the brain. P-glycoprotein is a transmembrane protein 

expressed by multiple mammalian cell types, including the endothelial cells that comprise the 

blood-brain-barrier178. P-glycoprotein functions to actively pump a diverse array of 

xenobiotics out of the cells in which it is expressed. P-glycoprotein acts to limit the entry of 

some opiates into the brain and that acute administration of P-glycoprotein inhibitors can 

increase the sensitivity to these opiates, so the BBB can differentially regulate the exchange 

of related substances between the CNS and blood179. In this part of this work we identified the 

G-proteins that are present in cerebral endothelial cells and might contribute to their specific 

function. 
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Highly purified primary cultures of CECs were studied to avoid possible astrocytic and 

pericytic contamination157. By using specific antibodies raised against various G-protein 

subtypes and immunoblot techniques, we were able to demonstrate the presence of a complex set 

of G-proteins such as Gsa, Gaa, Gua, G^na, G0a and G0 in CECs. The same proteins were also 

present in the two immortalized cerebral endothelial cell lines tested, i.e. RBE4 and GP8 which 

showed similar morphological and functional characteristics to primary CECs96,97. 

The presence of the principal stimulatory G-protein, Gsa in CECs shown in our study (Fig. 

9.) may constitute an important element in coupling different 7TM receptor proteins to 

intracellular signaling pathways. Previously certain 7TM receptors, known to be coupled to Gsa 

in other systems, like P-adrenoceptors158, histamine H-2 receptors159, and dopamine D-l 

receptors160, have been shown to be expressed by the cerebral endothelium. Activation of these 

receptors may lead to increased intracellular cAMP levels. Increased endothelial cAMP levels in 

turn have been shown to regulate BBB permeability in vivo161 and in vitro162'163, and to inhibit 

endothelial cell proliferation164. 

Inhibitory G-proteins have also been detected on the cerebral endothelium (Fig. 9.). To our 

knowledge this is the first report describing the presence of G0a proteins in cells of endothelial 

origin. This might be characteristic to brain endothelial cells since no detectable amount of G0a 

was expressed in peripheral endothelial cells165, and might support the highly specialized 

function of brain endothelial cells, namely, the maintenance of BBB. Previous studies have 

demonstrated the expression of different Gi types (GBO, Gja) in peripheral endothelial cells with 

the predominance of Gi2a, and their role in stimulating endothelial cell proliferation and 

angiogenesis164'166. In this respect the CECs have similar characteristics expressing significant 

amount of G,2(x and Gja (Fig. 9.). Activation of these G-proteins have been shown to decrease 

intracellular cAMP levels and activate K+ channels in other systems. 

G-proteins possibly coupling membrane receptors to phospholipase-C (PLC) turned out to 

be present in CECs as well (Fig. 9.). Similarly to its demonstrated role in peripheral endothelium, 

Gqina may be involved in mediating the effect of potent vasoactive substances like 

bradykinin167, histamine168, endothelin169, thrombin170 and fibrin171. Moreover, G-proteins may 

be involved in the regulation of ion channels as well. 

To our knowledge this was the first study to identify the G-protein types in cerebral 

endothelial cells. 
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VI. CONCLUSIONS 

In this work we presented qualitative and quantitative investigation of heterotrimeric G-

proteins of brain origin. Our laboratory was among the first in Hungary introducing ligand 

stimulated [35S]GTP-y-S binding and photoaffinity labeling experiments to achieve that. From 

immunoblotting experiments it can be concluded that the structure of most heterotrimeric G-

protein types is well preserved during phylogenesis, since antibodies against mammalian G-

proteins could recognize frog, as well as rat G-proteins. G-proteins are expressed ubiquitously in 

the tissues examined, namely, rat brain subcellular fractions, rat brain endothelial cells and frog 

brain membranes. Recently strong emphasis was made on functional studies (such as ligand 

stimulated [35S]GTPyS binding, photoaffinity labeling by [a-32P]AA-GTP, GTPase or adenylyl-

cyclase activity assays), because receptor binding experiments only characterize one aspect of 

the receptors (ligand binding), but not transfer of signal to elicit function. These methods use 

different assay conditions (GDP and Na+ content, incubation time, which is for example 3 

minutes versus 1 hour in photoaffinity labeling and [35S]GTPyS binding, respectively). So, they 

might have different sensitivity towards G-protein function and photoaffinity labeling due to the 

short incubation time might detect differences in the fine tuning of the kinetics of G-protein 

activation, what might be masked during longer incubation time. Also the detection of 

incorporated radioactivity is different, autoradiography after affinity labeling versus liquid 

scintillation counting after [35S]GTPyS binding and GTPase assay. However, when these two 

different analysis were applied for the same experiment, i.e. photoaffinity labeling, densitometry 

of the autoradiograms and scintillation counting of the incorporated radioactivity into the labeled 

proteins excised from the gel gave very similar results (Fig. 6.). 

The most important findings of this work are summarized below: 

1. Thermodynamical analysis of the agonist binding of the p. opioid receptor can reveal 

receptor-G-protein coupling in the presence of GppNHp, Na+ and Mg2 \ 

2. In vivo chronic morphine treatment increases the density of intracellular p opioid binding 

sites and does not cause down-regulation of the receptor. 

3. In vivo co-administration of cycloheximide, the protein synthesis inhibitor, with morphine 

was lethal to the animals. So, the source of p receptor up-regulation (de novo synthesis or 

activation of spare receptors) could not be defined. 

4. Density and intracellular localization of G-proteins are also affected by in vivo chronic 

morphine treatment. Alterations in the amount of the different G-protein subtypes are dependent 

on the length of the treatment (3, 5, or 10 days). 
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5. Various G-protein subtypes are differently regulated by in vivo chronic morphine 

treatment. 

6. The functional coupling of the |i opioid receptor to G-proteins has been changed due to in 

vivo chronic morphine treatment. Increased coupling was detected at intracellular |i sites. 

7. In vivo chronic naltrexone treatment resulted in different pattern of G-protein alteration 

than morphine did and it did not alter the receptor-G-protein coupling. 

8. K opioid receptors and G-proteins interact in situ, i.e. within the native plasma membrane 

as revealed by opioid stimulated [35S]GTPyS binding. 

9. There are multiple G-proteins activated by K opioid ligands in frog brain. 

10. G0cc proteins are present in cells of endothelial origin. This might be characteristic to 

brain endothelial cells since no detectable amount of G0a was expressed in peripheral endothelial 

cells, and might support the highly specialized function of brain endothelial cells, namely, the 

maintenance of BBB. 
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Vm. ABBREVIATIONS 

7TM receptors, 7 transmembrane domain containing receptors 

[a-32P] AA-GTP, [a-32P]GTP azidoanilide 

BBB, blood-brain barrier 

cAMP, cyclic adenosine monophosphate 

CECs, cerebral endothelial cells 

CNS, central nervous system 

CRE, cAMP response element 

CREB, cAMP response element binding protein 

AG°\ Gibb's free energy 

AH°\ standard free enthalpy 

AS°\ standard free enthropy 

DAMGO, Tyr-D-Ala-Gly-(NMe)Phe-Gly-ol 

DHM, dihydromorphine 

DNA, deoxyribonucleic acid 

DPDPE, [D-Pen2,D-Pens]enkephalin 

DT-B, deltorphin-B (Tyr-D-Ala-Phe-Glu-Val-Val-Gly-NH2) 

DTT, DL-dithiothreitol 

EKC, ethylketocyclazocine 

GAPs, GTPase activating proteins 

GDP, guanosine 5'-diphosphate 

G-protein, heterotrimeric guanine nucleotide binding regulatory protein 

GPCRs, G-protein-coupled receptors 

GppNHp, 5V -guanylylimidodiphosphate 

GTP, guanosine 5' triphosphate 

GTPyS, guanosine-5'-0-(3-thio)triphosphate 

MAPK, mitogen-activated protein kinase 

[a-32P]NAD, [a-32P]nicotinamide adenine dinucleotide 

NX, naloxone 

PKA, cAMP-dependent protein kinase 

PLC, phospholipase C 

PMSF, phenylmethylsulphonyl fluoride 
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PTX, pertussis toxin 

RGS, regulators for G-protein signaling 

SDS-PAGE, sodium dodecyl sulfate Polyacrylamide gel electrophoresis 

U - 5 0 , 4 8 8 , trans-(±)-3,4-dichloro-N-methyl-N-(2-[l-pyrrolidinyl]cyclohexyl)benzene-

acetamide 
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