
o> 3 s o r 

Ph.D. Thesis 

INFLUENCE OF VARIOUS SUBSTANCES AND 

DIFFERENT TECHNOLOGICAL PROCEDURES 

ON SOME PARAMETERS OF TABLETS AND 

CRYSTALS 

PÉTER KÁSA, Jr., D.Pharm. 

DEPARTMENT OF PHARMACEUTICAL TECHNOLOGY 
UNIVERSITY OF SZEGED 

SZEGED, HUNGARY 

2001 



- 2 -

Contents 
1. INTRODUCTION 5 
2. LITERATURE SURVEY 5 

2.1. Tablet preparation by direct compression 5 
2.2. Preparation of low-dose tablets 8 
2.3. Preparation of high-dose tablets 8 
2.4. Granule preparation 8 
2.5. Pellet preparation 9 

3. AIMS OF THE STUDY 11 
4. MATERIALS AND METHODS 12 

4.1. MATERIALS 12 
4.1.1. Active ingredients 12 
4.1.2. Auxiliaries 13 

4.2. METHODS 13 
4.2.1. Tablet preparation 13 
4.2.2. Granule and pellet formation 13 
4.2.3. Morphological investigations 14 
4.2.4. Particle size analysis 14 
4.2.5. Homogenization 14 
4.2.6. Mass by volume 14 
4.2.7. Flow properties 14 
4.2.8. Compactibility and compressibility tests 15 
4.2.9. Powder rheology and particle size 15 

5. RESULTS AND DISCUSSION 16 
5.1. The formation and properties of tablets 16 

5.1.1. Metronidazole and different cellulose derivatives used for tablet 
preparation 16 

5.1.2. Nitrazepam and different binders applied for tablet preparation by 
direct compression 20 

5.1.3. A301 and A302 properties during compression 22 
5.2. Crystal structure changes during processing 23 

5.2.1. ASA crystals 23 
5.2.2. AA salt crystallization for direct tablet making 25 
5.2.3. Nitrazepam crystals 27 
5.2.4. Phenobarbitone and a-methyldopa crystals 28 
5.2.5. Sulfadimidine crystals 30 
5.2.6. Tolbutamide crystals 32 

5.3. Pellets and kneaded products 33 
6. SUMMARY AND CONCLUSIONS 36 

6.1. Results on the formation and properties of tablets 36 
6.2. Results on crystal structure changes during processing 37 
6.3. Results on pellets and kneaded products 37 

7. REFERENCES 39 
ACKNOWLEDGEMENTS 44 
ANNEX 45 



- 3 -

LIST OF ORIGINAL PUBLICATIONS 

This thesis is based on following publications that in the text are referred by their Roman 

numerals I-XIII and can be found in the Annex. 

I. Deák, D., Pintye-Hódi, K., Szabó-Révész, P., Kása, P. Jr., Erős, I. and Muskó, Zs.: 

Use of different cellulose derivatives for the preparation of tablets with a high active 

agent content. S.T.P. Pharma Sci., 9, 525-529 (1999). 

II. Deák, D., Pintye-Hódi, K., Szabó-Révész, P., Kása, P. Jr., Erős, I. and Muskó Zs.: 

Influence of the granulating process on the parameters of tablets. Hung. Ind. J. Chem., 

28,117-120(2000). 

III. Göcző, H., Szabó-Révész, P., Farkas, B., Hasznos-Nezdei, M., Serwanis, S.F., 

Pintye-Hódi, K., Kása, P. Jr., Erős, I., Antal I. and Marton, S.: Development of 

spherical crystals of acetylsalicylic acid for direct tablet-making. Chem. Pharm. Bull 

(Tokyo) 48,1877-1881 (2000). 

IV. Kása, P., Pintye-Hódi, K., Szabó-Révész, P., Miseta, M., Selmeczi, B., Traue J. and 

Wenzel, U.: The compressibility of nitrazepam crystals. (Untersuchung der 

Komprimierbarkeit von Nitrazepamkristallen) Pharmazie 43, 556-557 (1988). 

V. Kása, P., Pintye-Hódi, K., Szabó-Révész, P., Miseta, M., Selmeczi, B., Traue J. and 

Wenzel, U.: Direct compression nitrazepam tablets (Untersuchung von 

direktverprePenNitrazepamtabletten). Pharmazie 43, 780-781 (1988). 

VI. Kása, P., Pintye-Hódi, K., Szabó-Révész, P., Miseta, M., Selmeczi, B., Traue J. and 

Wenzel, U.: Zur Komprimierbarkeit von Tolbutamidkristallen. Pharmazie 44, 47-48 

(1989). 

VII. Muskó, Zs., Pintye-Hódi, K., Szabó-Révész, P., Kása, P. Jr., Erős, I. and Deák, D.: 

Study of the influence of polymer coating films on drug release. Hung. J. Ind. Chem., 

28,111-115(2000). 



- 4 -

VIII. Serwanis, F.S., Szabó-Révész, P., Pintye-Hódi, K., Kása P. Jr. and Erős, I.: Surface 

treatment of acetylsalicylic acid with water soluble lubricants in a fluid bed coater by 

the Wurster method. Hung. J. Ind. Chem., 27,197-201 (1999). 

EX. Shourbaji, M., Pintye-Hódi, K., Nóvák, Cs., Madarász, J., Szabó-Révész, P., 

Kása, P. Jr., Erős, I. and Gál, S.: Morphological, thermoanalytical and 

crystallographic study of different sulphadimidine crystals. Hung. J. Ind. Chem., 27, 

221-226 (1999). 

X. Siaan, M., Pintye-Hódi, K., Szabó-Révész, P., Kása, P. Jr. and Erős, I.: 

Morphological and flowability study of some drugs: phenobarbitone and 

a-methyldopa. Hung. J. Ind. Chem., 27,209-213 (1999). 

XI. Siaan, M., Pintye-Hódi, K., Szabó-Révész, P., Kása, P. Jr. and Erős, I.: Study of the 

influence of some materials on the rearrangement of Avicel® PH 301 and 302. 

Pharmazie 53,424-426 (1998). 

XII. Sourbaji, M., Pintye-Hódi, K., Nóvák, C.S., Szabó-Révész, P., Kása, P. Jr. and 

Erős, I.: A study of sulfadimidine-b-cyclodextrin mixtures. J. Incl. Phenom. Macro 

Chem., 37,299-307 (2000). 

XIII. Szabó-Révész, P., Göcző, H., Pintye-Hódi, K., Kása, P. Jr. and Erős, I., Hasznos-

Nezdei, M. and Farkas, B. Development of spherical crystal agglomerates of an 

aspartic acid salt for direct tablet making. Powder Technol., 114,118-124 (2001). 



- 5 -

1. INTRODUCTION 

The preparations most widely used at present in the pharmaceutical industry are solid 

dosage forms, such as tablets, pellets, granules or coated tablets ("dragées"). All of these 

dosage forms must be easily administered, and have long physical and chemical stability. 

These forms, and especially tablets, are more popular among patients than dosage forms such 

as suspensions and emulsions. 

To prepare such dosage forms, various materials are used in different amounts. The 

preparation methods applied for tablets mostly depend on the properties of the active agents, 

but in some cases the properties of the auxiliary materials are decisive. If the material 

properties allow, the easiest and cheapest method is direct processing, but in some cases this 

method is not possible. In the preparation of solid dosage forms, the physical characteristics 

of the active agents and raw materials may cause different problems. However, there are 

many technological possibilities (direct compression [1-8], granulation [9-13], pelletization 

[14-23], etc.) with which such difficulties can be overcome. Additional problems may be the 

unfavourable taste or odour of the effective materials. 

The production of high-quality tablets requires a tablet mixture with excellent 

properties as regards homogeneity, flowability [24-36] and compactibility [37-51]. When the 

powder mixture does not possess these properties, it has to be preprocessed, or direct 

compression can be used. Direct compression is possible when the mixture itself has good 

tabletting properties. The mixture has to flow easily and furnish good binding during 

compaction. Unfortunately, most tablet mixtures lack these properties and a granulation or 

pelletization step is necessary. 

This thesis summarizes some of our research efforts aimed at satisfying the above-

mentioned criteria. 

2. LITERATURE SURVEY 

2.1. Tablet preparation by direct compression 
A number of methods are available for tablet making. Until the late 1950s, the vast 

majority of tablets produced in the world were manufactured by a process requiring 

granulation of the powder constituents prior to tabletting. Direct compression is a modem 

method in tablet manufacturing. 
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Many processing steps (granulation, drying, etc.) are eliminated in direct compression; 

additionally, wet technology can not be used with sensitive agents (e.g. in effervescent tablet 

making) [52-60]. 

A powder mixture intended for direct compression should possess adequate fluidity 

and compressibility. These features may be influenced by the powder rheological properties 

of drugs. However, many materials have unsuitable flow properties and compressibility. 

These materials require wet granulation or pellet preparation prior to tabletting. 

The greatest advantages as compared with other preparation forms, are the time and 

cost savings. However, the physical limitations of the drug and the physical properties of 

other raw materials become more critical and must be controlled more precisely. 

The advantages of direct compression are follows: 

• the number of preparation steps is reduced, which means lower needs for time and 

equipment; 

• the lower need for equipment means that fewer operators are required; 

• less material is lost; 

• heat- and water-sensitive materials can be applied safely; 

• the process is advantageous at low active material contents; 

• the disintegration time of preparations is relatively short; 

• the bioavailability is uniform because the dissolution of the active material is good. 

Unfortunately, there are only a few materials that can be processed in direct tabletting, e.g. 

such as inorganic salts as sodium chloride. This preparation method can be used only with 

solid binders because most drugs require the addition of a direct compression vehicle to aid 

compression [61-65]. 

Although, the use of this technique, seems quite simple, it depends on the habit of the 

particles (size, form, surface, etc.) and hence on [66-71]: 

• the flowability of the crystals, consistent with the production rates of modem 

compression technologies; 

• the bulk density of the powder, so that the correct amount of drug into a die cavity; 

• the compressibility of the powder. 

Some drug crystals exhibit appropriate properties, but many materials have very poor 

flowability and compressibility. For tablet making from the latter materials, possible solutions 

may be as follows: 
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• the use of alternative drug crystals, which have good flowability and compressibility 

properties; 

• direct tablet making with "good" excipients which promote direct compression. 

The first of these possibilities recently came into the forefront of interest in connection with 

the habit of crystals (form, surface, etc.). 

As concerns the use of "good" excipients, dry binders and lubricants are very 

important because they can influence the direct compressibility of powder mixtures 

significantly. 

The most important dry binder is microcrystalline cellulose, which was introduced as a 

direct compression tabletting agent in the early 1960s and is nowadays used as a filler too in 

tablet-making. Some authors deal with the availability of microcrystalline cellulose for direct 

compression [72-89]. 

Microcrystalline cellulose is the most compressible of all compression fillers and has 

the highest dilution potential. It is widely used because microcrystalline cellulose displays 

valuable plastic deformation properties. Hydrogen bonds between groups on adjacent 

cellulose molecules account almost exclusively for the strength and cohesiveness. 

Cellulose can bind together to form interlocking layers that produce solid bridges. 

Microcrystalline cellulose has extremely low coefficients of static and dynamic friction and 

therefore has no lubricant requirements. Microcrystalline cellulose generally withstands 

lubricant addition, without a significant softening effect at a high concentration (greater than 

0.75%) of alkali metal stearate. 

If lubricants are used, and the blending time is long, tablets containing 

microcrystalline cellulose will be soft. Hard compacts of microcrystalline cellulose 

disintegrate rapidly due to the rapid passage of water into the compact and the instantaneous 

rupture of hydroxy bonds. The effect of microcrystalline cellulose is due to the high water 

uptake capacity of cellulose. It is important that tablets contain a disintegration agent with a 

high swelling force, so that the tablets disintegrate perfectly. Experience indicates that the 

disintegrative effect of microcrystalline cellulose depends on the compression force and the 

solubility of active agents. 

The first family of microcrystalline cellulose was Avicel® (FMC Corp., Philadelphia, 

USA) with different registered names [89, 90]. 
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2.2. Preparation of low-dose tablets 
In the preparation of low-dose tablets, the main effect that determining the tabletting 

process is that of the auxiliary materials. Of course, it is not possible to neglect the physical 

properties of the active agent, but these are not considerable. Powder mixtures intended for 

direct compression should possess adequate fluidity and compressibility. These may be 

influenced by the powder rheological properties of the drugs. 

The most important factors are the size and the shape of the fillers, the disintegrants 

and the solid binders. 

In general, different microcrystalline celluloses are used as solid binders for direct 

tabletting. They can increase the cohesion between the particles, and therefore provide the 

tablets with satisfactory hardness. Many papers have been published on the application of 

cellulose derivatives [72-89]. They exhibit surface activity and can promote the dissolution of 

the drug from the tablet. 

2.3. Preparation of high-dose tablets 
The preparation of tablets with a high active agent content is particularly difficult. The 

aim is not to increase the weight of the tablets during tablet making. The smallest possible 

amount of excipients must be applied. 

However, the physical limitations of the drug and the physical properties of other raw 

materials become more critical and must be controlled more precisely [91, 92]. In the 

preparation of high-dose tablets, the shape and particle size of the active agents are very 

important. 

Powder mixtures intended for direct compression should possess adequate fluidity and 

compressibility. These may be influenced by the powder rheological properties of the drugs. 

From the aspect of direct tabletting, testing of the rheological parameters of drugs is also 

important. 

2.4. Granule preparation 
Many materials have unsuitable flow properties and compressibility. These materials 

require wet granulation prior to tabletting. During this process, the quality of the granules is 

affected by the granulating fluid. Furthermore, the parameters of the granules influence the 

quality of the resulting tablets. 
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One possibility for wet granulation is the kneading process [11-12, 37, 61, 83, 93-

100]. After homogenization of the components, the powder mixture is kneaded with a 

granulating solution. The wet mass is passed through a sieve, and the granules are dried. 

Another possibility for wet granulation is the fluidization process. In a fluid bed 

apparatus, the particles are floated upwards from below by the introduction of air at high 

pressure. The granulating solution is sprayed in from above. The particles can stick together 

and fluid bridges can be formed, which will become solid bridges during drying. 

2.5. Pellet preparation 
Pellets are built-up granulates. Pelletization is a procedure of agglomeration in which 

small particles are transformed into larger spherical units with good flowability. A pellet is 

therefore an agglomerate with nearly spherical symmetry and a diameter usually of 0.5-1.5 

mm. 

The latter, however, can vary with the production technology [36, 101, 102]. As 

compared with classical granules, pellets not only differ in shape, but also have a more 

compact texture, resulting in better flow characteristics. In the interior of grains with higher 

porosity and looser structure, bridges of solid particles form point-to-point bonds, resulting in 

a lower mechanical stability than that of pellets. 

In their use, pellets are similar to granulate. They can be: 

A separate dosage form, to make substances with a bad taste or a sticky consistency easier to 

take. 

An intermediate in tabletting, with the aim of improving the flowability of materials that can 

not be tabletted directly. The pellets produced involve larger and more flowable particles with 

lower specific surface and adhesion than those of the particles of the original powder mixture. 

Capsule fillings, due to their good morphology and appropriate stability. 

Pellets can be produced by technologies based on: 

• moving the solid component; 

• compacting; 

• drop formation. 

If the solid component is moved, the powder mixture is kept in motion while the 

granulating fluid is being sprayed on the surface of the particles. The particles aggregate and 

the fluid bridges are transformed into firm binding bridges by the concurrent drying. Forms of 

apparatus producing pellets by this method include: 
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Rotating drum: In the drum, the powdered raw material is kept in continuous 

movement. The granulating fluid is applied to the particle surface by spraying. 

Pelleting disk: The powder material is fed onto the surface of a disk with a low 

perpendicular rim rotating in a slightly tilted plane. The granulating fluid is applied by 

spraying. Granules that have reached a definite size will gather on the lower part of the disk 

and can be collected. 

Centrifugal granulators are open devices. The mixture is fed onto a disk rotating at 

high rate in a barrel. The granulating fluid is constantly sprayed onto the disk, whereby a 

pelletizing powder can also be applied. With the temperature chosen correctly, the procedure 

can be continuous. 

Fluidizing apparatus: A most up-to-date and preferred method. The mixture to be 

granulated is suspended (fluidized) in an air stream of appropriate speed and temperature, and 

sprayed with the liquid granulating agent. For pelletizing, roto-fluidizing machines are 

suitable. These are self-contained devices with a rotating disk at the bottom, to which the 

powder mixture is introduced. 

Pelletizing in a dragée pan: The powder material is forced to rotate constantly within 

the pan. The fluid is applied by spraying. 

Compaction is performed by extrusion and spheroidization. In this compound process, 

the powder mixture and the granulating fluid are kneaded into a wet mass, which is then 

passed through a perforated plate containing holes of appropriate size. The oblong grains 

obtained, extrudates, are spheroidized in a second step [103-105]. 

Pelletization with drop formation can be performed by spray-drying or spray-freezing. 

In spray-drying, the substance to be granulated is suspended in the granulating fluid and is 

atomized in a high-speed hot and dry air stream, where it is quickly formed into small 

isometric particles and dried. In spray-freezing, the melt of the material to be grained is 

sprayed. The spray drops quickly form isometric solid particles. 

In consequence of their good physical and powder Theological properties, pellets have 

diverse fields of use. They can be applied in the same way as traditional granulates, but their 

better morphological and mechanical characteristics make them preferred intermediates. With 

their good flowability, pellets are equally suitable for tabletting and capsule filling. 

Additionally, their spherical shape, smooth surface and mechanical stability make 

them suitable for coating. 
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3. AIMS OF THE STUDY 

The present study was designed to investigate a) the influence of various procedures 

on tablet formation and the effects of different substances on the parameters of the tablets, 

b) the properties of various crystals used for tablet formation, and c) pellets and kneaded 

products. 

The detailed aims were: 

Ad a: 

1. To study the various technological procedures, the morphological characteristics, the 

physical parameters, the flowability and the dissolution rates of different substances 

used for metronidazole tablet preparation. 

2. To demonstrate the effect of the granulating method on the parameters of the tablets. 

3. To reveal the effects of direct compression, various dry binders (Avicel® and 

Heweten 12®) and other adjuvants on the physical parameters and the texture of the 

tablets. 

4. To demonstrate the influence of some materials on the rearrangement of Avicel PH 

301® and Avicel PH 302® (important substances for tablet preparation) during direct 

compression. 

Ad b: 

1. To establish how the crystallization procedure and surface treatment can modify the 

various parameters and the morphology of acetylsalicylic acid crystals (ASA), the 

dissolution rate, the flowability, the compactibility and the tablettability. 

2. To develop spherical crystal agglomerates of an aspartic acid (AA) salt for direct tablet 

making. 

3. To study the compressibility of the nitrazepam crystals. 

4. To reveal the morphological structure and the flowability of phenobarbitone and 

a-methyldopa. 

5. To compare the morphological properties of sulfadimidine samples obtained from 

various batches. 

6. To study the compactibility and compressibility of tolbutamide crystals and the texture 

of the compressed material prepared under several pressure forces, with the use of 
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X-ray diffractograms to detect whether the structure of the crystals changes during 

compressing. 

Ad c: 

1. To demonstrate the influence of a polymer coating on drug liberation from pellets. 

2. To reveal the morphology and the dissolution rate of a physical mixture and a kneaded 

product containing sulfadimidine and P-cyclodextrin. The answer to this question is 

important because of the low solubility of sulfadimidine. 

4. MATERIALS AND METHODS 

4.1. MATERIALS 
Some of the most important substances used for the experiments are listed below, 

together with their chemical properties. 

4.1.1. Active ingredients 

Nitrazepam (Nitrazepamum, Ph.Hg.VII) was used to study the tablettability 

properties when the concentration of effective material in the tablets was low. The 

tablettability of nitrazepam has been investigated by several authors in the literature. 

Tolbutamide (Tolbutamidum, Ph.Hg.VII) served as a model material to investigate 

the effects of a high content of effective material in the tablet. The data in the literature 

indicate that tolbutamide has different polymorphic variations. 

a-Methyldopa (EGIS Pharmaceuticals Ltd., Budapest, Hungary). It has been 

established that variation of the crystallization conditions can result in differences in the 

crystal morphology, which influence the flow properties and tablet making. The direct 

compression of a-methyldopa is especially advantageous because of its discolouring in 

presence of water [106]. No polymorphism is observed and the crystals to belong in the 

monoclinic system [107]. 

Phenobarbitone (Ph. Eur. 3rd) (Alkaloida, Tiszavasvári, Hungary) 

This drug was selected because it is difficult to compress directly. 

Metronidazole (Ph. Eur. 3rd) 

Metronidazole is a drug that is frequently used in the treatment of various anaerobic 

infections. It is well absorbed following oral administration. The drug is useful in prophylaxis 

in obstetric and gynaecological interventions, colorectal surgery and appendectomy [108, 
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109]. The simple oral dose is generally 250 mg, and the tablets have a high active agent 

content. It has been discussed in various papers [110-117]. 

Aspartic acid salt (Merck, Darmstadt, Germany) 

White odourless crystals with an acidic taste. 

4.1.2. Auxiliaries 

These substances were applied for tablet or pellet formation using direct tabletting 

procedures and pellet formation. 

Avicel PH-101® (A101) (FMC Corp., Philadelphia, USA). This was selected as a 

reference adjuvant because of its similarity to the materials under investigation. It is widely 

used in direct tabletting and also because it is well known in the literature. 

Avicel PH-301® (A301) and Avicel PH-302® (A302) are high-density Avicel® 

products recently introduced to improve the flowability of Avicel®, to allow thinner tablets, to 

furnish a better tablet weight uniformity, etc. 

Heweten 12® (VEB Freiberger Papierfabrik, Germany). This was used in all materials 

that have hydrolytic sensitivity or water solubility. It gives a good disintegration time in direct 

tabletting. The morphological properties are similar to those of Avicel®. 

Vitacel A 300® (Rettenmaier & Sohne GmbH & Co., Ellwangen-Holzmiihle, 

Germany). This is a microfine cellulose. The manufacturer states that the number of glucose 

units per macromolecule is ca. 1000. Cellulose-like materials are highly useful as filler 

materials and as binding substances in direct tabletting. 

4.2. METHODS 
4.2.1. Tablet preparation 

Tabletting was carried out with a Korsch EKO eccentric tablet machine (E. Korsch 

Maschinenfabrik, Germany) mounted with strain gauges, and a displacement transducer was 

applied. 

4.2.2. Granule and pellet formation 

For the preparation of pellets, a centrifugal granulator (Freund CF-360, Japan) was 

used. Granulation was performed with a fluid bed apparatus (Strea-1, Niro-Aeromatic AG, 

Switzerland). 
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4.2.3. Morphological investigations 

The structural properties of the active agents and the auxiliary materials were 

investigated with Tesla BS300 (Tesla, Brno, Czech Republic) and Hitachi S-2400 (Hitachi 

Scientific Instruments Ltd., Tokyo, Japan) scanning electron microscopes (SEMs). A Polaron 

sputter coating apparatus (Polaron Equipment Ltd., Greenhill, UK) was applied to induce 

electric conductivity on the surface of the sample. The air pressure was 1.3-13 mPa. 

4.2.4. Particle size analysis 

For the testing of particle size, sieve analysis (according to Ph.Hg.VII) and an image 

analysis system were used. 

A sample of a few milligrams was dispersed in liquid paraffin for deaggregation, and 

the suspension was then distributed on a slide and tested with a Laborlux S light microscope 

and a Quantimet 500 (Q500MC) image processing and analysing system (Leica Cambridge 

Ltd., Cambridge, UK). 

Particle length, breadth and roundness were measured for more than 500 particles 

each. The obtained data were treated statistically by using the Statgraphics package. 

The roundness is a shape factor which provides information on the circularity of the 

particles It is calculated by the software according to the following formula: 

, perimeter2 

roundness = — 
4 • n • area • 1.064 

4.2.5. Homogenization 

Powder mixing was performed with a Turbula mixer (Willy A. Bachofen 

Maschinenfabrik, Basel, Switzerland) (50 rpm for 10 min). 

4.2.6. Mass by volume 

This was tested with an ASTM apparatus (ASTM D 392-38) according to Ph.Hg.VII 

[118]. 

4.2.7. Flow properties 

The flow properties were tested with an ASTM apparatus (ASTM D 392-38) 

according to Ph.Hg.VII and also with powder testing equipment (PTG-1) (Pharma Test 

GmbH, Germany) were used. Both the flow time and the angle of repose were tested. 
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4.2.8. Compactibility and compressibility tests 

Calculations were based on loose and tapped densities. A tap density volumeter 

(Stampfvolumeter 2003, J. Engelsmann AG Apparatebau, Germany) was used for 

determinations in accordance with the literature [119]. 

4.2.9. Powder rheology and particle size 

Bulk density determination 

Bulk density was determined with the ASTM-D apparatus, official in Ph.Hg.VII. 

Flowability tests 

The flowability tests were also performed with the ASTM-D device and with the 

PTG-1. The flow-out time of a specified amount of the material, and the slope angle of the 

flowed- out bulk were measured. Depending on the slope angle, materials can be categorized 

in different groups (Table 1). 

Table 1. Relationship of flowability and slope 

Slope angle (°) Flowability 
<25 Excellent 

25-30 Good 
30-40 Modest 
>40 Very poor 

The influence of the flow on the compressibility was tested with an Engelsmann 

Stampfvolumeter according to the DIN (German Industrial Standards). In the test, a loose 

bulk of powder is exposed to a compacting effect under standard conditions, resulting in a 

volume reduction. With the mass given, the initial (loose) and final (tapped) densities can be 

calculated [120]. From these, Hausner's factor (Hf) can be obtained, which is an indicator of 

the density increase under the influence of the impacts: Hf = — , 

Pt 

where pi and pt are the densities in the loose and the compact state, respectively. According to 

the literature, Hf» 1 is advantageous for direct tablet compressing. If Hf >1.5, the material is 

better granulated first. 

Carr's index (%) can be calculated similarly: Carr's index = 
A 
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A low Carr's index means a better flowability and space-filling efficiency, resulting in 

a higher compressibility. According to the literature, the following groups can be defined 

(Table 2) [119,121]. 

Table 2. Flowability groups based on Carr's index 
Carr's index % Flowability 

5-15 Excellent 
12-16 Good 
18-21 Fair to passable 
23-35 Poor 
33-38 Very poor 
>40 Extremely poor 

Carr's index can be calculated according to the equation [122] 

Carr's index % = tapped density - loose density m 

tapped density 

5. RESULTS AND DISCUSSION 

5.1. The formation and properties of tablets 
It is well known that the morphological characteristics, the physical parameters, the 

flowability and the rates of dissolution of various substances can be altered during the various 

technological procedures and methods available for tablet preparation. With the application of 

different materials (metronidazole, nitrazepam and Avicel®), the variables mentioned above 

were studied and the results obtained are described below. 

5.1.1. Metronidazole and different cellulose derivatives used for tablet 

preparation 

Metronidazole has been used for many years in various formulae for the treatment of 

different illnesses. For the bioavailability of a drug, it is important to know which formula is 

the best. Among others, our aim in this investigation was to study the morphological 

characteristics, the flowability and the dissolution rates for better tablet preparation (I). 

The result of a morphological SEM study of metronidazole crystals are demonstrated 

in Figs 1 and 2. 
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Fig. 1. Metronidazole consists of heterodisperse, 

stubby columnar crystals. 
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Fig. 2. Particle size distribution of 

metronidazole crystals by 

length (top) and breadth 

(bottom). Most crystals had 

a length in the range 10-

30 pm, and a breadth in the 

range 5-20 pm. 
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In accordance with the roundness value, this crystal shape results in unsuitable flow 

properties. Various cellulose derivatives (hydroxyethyl cellulose, hydroxypropyl cellulose and 

methylcellulose) were therefore used as binders. The physical parameters of tablets are 

presented in Table 3. 
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Table 3: Physical parameters of tablets 

Samples Average Uniformity Friability Breaking Disintegration 
mass of mass hardness time 
(mg) (mg) (%) (N) (s) 

S 1 
10 kN 307.9 ±2.9 2.27 29.5 598 
15 kN 311.5 ±3.3 2.73 31.5 380 

S 2 
10 kN 313.6 ±2.5 0.83 107.2 156 
15 kN 312.6 ±2.8 0.80 112.7 190 

S3 
10 kN 296.1 ±4.0 2.31 22.2 92 
15 kN 295.4 ±6.9 2.18 23.5 92 

S 4 
10 kN 295.0 ±4.9 2.03 24.7 140 
15 kN 297.0 ±3.4 1.77 27.1 106 

In all cases, the uniformity of mass was within a limited range, according to Ph. Hg.VII. It can 

be seen that the value was best for S2, which was prepared by using hydroxypropyl cellulose 

(Klucel LF®). The hardness of the tablets was likewise most satisfactory with Klucel LF®. 

A small increase in hardness was observed at higher pressure levels, but only with the 

tablets prepared by using Klucel LF®. This was in accordance with the friability results. The 

disintegration time was longest for tablets prepared by using hydroxyethyl cellulose 

(Cellosize®). The disintegration time of the tablets compressed at 10 kN was longer. 

However, when the pressure was increased, the granule particles underwent a higher degree of 

breaking, and the polymer film also broke, resulting in a shorter disintegration time. The 

disintegration of other tablets occurred after almost the same period (1.5-3.0 min). An 

increase in pressure generally had no influence on the parameters of the tablets. 

The dissolution of the drug was very rapid (100% within 10-20 min), except for the 

tablets prepared by using Cellosize® (Fig. 3). 
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Dissolved d rug (%) 

Fig. 3. Rate of dissolution of 

metronidazole from tablets. 

Pressure: 10 kN. 

90 

Time (min) 

Overall, it can be concluded that the best physical parameters and most rapid 

dissolution were achieved with the tablets prepared by using Klucel LF® at 10 kN. The reason 

for this lies in the particle size and shape. 

In another set of experiments the effects of the granulating method on the parameters of 

the tablets were studied (II). 

The shape of the granules was demonstrated by SEM. The conventional granule 

consists of larger particles, whereas, the fluid granule consists of smaller particles (Fig. 4). 

As Fig. 4 shows, granules lead to better powder rheological parameters. 

Fig. 4. Granule shape 

x 2 0 0 6 7 8 1 8 . 0 k V 2 0 0 u m 
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The results with the granulating method are described in detail in II. It emerged that 

the flow properties of the crystals were unsuitable, and wet granulation should be preferred as 

the tablet manufacturing method. The physical parameters of the tablets and the rate of 

dissolution of the drug were also tested. 

The results permit the conclusion that the granulation process influences the 

parameters of tablets. 

5.1.2. Nitrazepam and different binders applied for tablet preparation by direct 

compression 

The aim of this study was to study the effects of direct compression, various dry 

binders and other adjuvants on the physical parameters and the texture of the tablets. The 

results of this study are described in detail in V. Here, only the most important findings will 

be summarized. 

With the help of SEM, it was revealed that the texture of the tablets was altered differently 

when A101 (Fig. 5) and Heweten® were applied in nitrazepam tablet formation. 

Fig. 5. SEM photo demonstrating the 

upper surface of a tablet 

prepared from nitrazepam and 

A101. 

When the dissolution rate was studied with nitrazepam, A101 and other auxiliaries (N/Al, 

N/A2, N/A3 and N/A4), it was demonstrated that the best rate could be obtained with N/A4 

(Fig. 6). 
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When Heweten was used for nitrazepam tablet preparation (N/Hl, N/H2 and N/H3), 

the dissolution rate was lower than that with A101 (Fig. 7.). 

N / A 4 

N / A 2 
N / A 3 

N/A1 

Fig. 6. The rate of dissolution of 

nitrazepam in the presence of 

A101. 

The results show that the use of A101 leads to slow dissolution, and the use of 

Heweten 12® to fast dissolution. 



5.1.3. A301 andA302 properties during compression 

We earlier described the advantages of direct compression and the rearrangement of 

A301 and A302 [123]. These microcrystalline celluloses are used as dry binders to decrease 

the friction work between the die wall and the side of the tablet. Furthermore, in most cases 

diluents (fillers) (e.g. different starches or sugars) are used to prepare the tablets. 

Disintegrants (e.g. starches) are generally found too in a tablet composition [120, 124, 125]. 

These components influence the rearrangement of the particles of the powder mixture in the 

first phase of the compression [126]. 

The specific aim in this study was to demonstrate the influence of some materials on 

the rearrangement of A301 and A302 during direct compression (XI). 

We tested the density and compactibility of powder mixtures. The results show that 

the moisture contents of A301 and A302 were decreased by sorbit (A301S and A302S). 

However, on the addition of corn starch to this mixture (A301SS; A302SS), the moisture 

contents again rose to about 3.0%. The moisture content of phenobarbitone and a-methyldopa 

[bulk substances (Ph; Md) and with 0.5% of magnesium stearate (Ph+ and Md+)] were low, 

but increased a little on the addition of A301 or A302 (A301Ph; A302Ph; A301Md; A302Md). 

Magnesium stearate (0.5%) had no influence on the densities of A301 (A301+) and A302 

(A302+). However, the densities changed when the mixtures contained sorbit (A301S; 

A302S) or sorbit plus corn starch (A301SS; A302SS). 

It can be concluded that the compactibilities of A3 01 and A302 may be corrected by 

the addition of sorbit. 

The densities of the mixtures containing active agents and A3 01 or A302 (A301Ph; 

A301Md; A302Ph; A302Md) were higher than those of A301 and A302 alone, but the 

Hausner ratio and Carr's index remained almost the same. 

It is well known that the compactibility behaviour is very important during 

compression. It depends on the rearrangement of the particles. The rearrangement constants 

were calculated according to the literature [123]. The data are presented in Table 4. 

The results of regression analysis show that the exponential model reflects the 

rearrangement for the studied materials. It can be seen that the excipients and the active 

agents influence the rearrangement of A301 and A302. Analysis of the data reveals that the 

different ingredients have different effects on the rearrangement, but there is practically no 

difference between the mixtures containing A3 01 and A302. 



Table 4: Regression analysis of compactibility test 

Material Linear model Exponential model 
y = 1 + kn y = exp (1 + kn) 
(p < 0.05) (p < 0.05) 

r k F-ratio r k F-ratio 
A301 0.626 10049 3.219 0.982 0.2276 135.06 
A3 02 0.748 3236.6 6.356 0.989 0.2216 220.80 
A301+ 0.644 2776.6 3.544 0.982 0.2056 135.65 
A302+ 0.644 14888 3.535 0.973 0.2368 87.52 
A301S 0.704 113.33 6.885 0.994 0.0894 586.51 
A302S 0.684 414.6 6.146 0.981 0.0965 178.27 
A301SS 0.495 10665.2 5.516 0.987 0.1130 627.08 
A302SS 0.543 7655.4 5.593 0.976 0.1186 216.47 
Ph 0.699 27516 16.290 0.978 0.1177 382.38 
Ph+ 0.570 106267 8.654 0.979 0.1072 417.09 
A301Ph 0.661 26755 13.220 0.984 0.1147 514.46 
A302Ph 0.681 11911 12.090 0.981 0.1575 355.68 
Md 0.610 230382 9.491 0.996 0.1580 1814.08 
Md+ 0.597 23539 8.289 0.993 0.1636 1095.91 
A301Md 0.659 9686.38 10.74 0.987 0.1533 540.41 
A302Md 0.691 8553.12 13.71 0.979 0.1227 349.53 

Finally, it can be stated that the studied materials have a positive influence on the 

rearrangement of A3 01 and A302, and these mixtures exhibit a good compactibility. 

5.2. Crystal structure changes during processing 
The crystal structure, morphology, size and crystal quality can affect the chemical 

reactivity, bulk powder flow, rheology and stability of suspensions, and other mechanical and 

physical properties of a substance. For pharmaceutical applications, an appropriate choice of 

crystal form can enhance the bioavailability of the drug. Data obtained from an investigation 

of the properties of various crystals for tablet making are presented below. 

5.2.1. ASA crystals 

The purpose of this experiment was to learn which crystallization procedure is the best 

for the crystal habit (form, surface, size, etc.) of ASA and how the surface treatment can 

modify the various parameters (morphology, dissolution rate, flowability, compactibility and 

tablettability) of the crystals (III). 

The results of this experiment indicated that that only the typical spherical 

crystallization technological procedure leading to spherical crystals of ASA can be 



recommended because this can result in excellent flow properties, favourable compactibility 

and tablettability values. 

The next questions to be answered were how the surface coating can modify the 

flowability, the compactibility, the dissolution rate and the tablettability of ASA. 

Commercial, unlubricated ASA crystals are tetragonal prism-shaped, with uneven and 

fragmented edges. About 50% of the particles measured between 0.63 and 0.8 mm. 

The coating process was studied with 0.5 or 1% of Lutrol F68 and 0.5% 1% of 

Carbowax 6000 in the fluid bed coater. The Strea-1 Aerocoater with the Wurster method 

facilitated the intensive motion of the crystals in the product column. The parameters of the 

surface treatment of the ASA crystals were the same in all cases. 

After evaporation of the solvent (a water and alcohol mixture), a thin film coat 

adhered to the surface of the ASA crystals, due to the film-forming properties of Lutrol F68 

and Carbowax 6000. 

The compactibility and cohesivity properties of the unlubricated and lubricated ASA 

crystals were also investigated. Both parameters are very important in tablet making. The 

unlubricated ASA crystals exhibited good compactibility (VIII). 

The cohesivity values give information on the flow properties of the crystals. The 

coating process influenced the flowability of the crystals favourably, except for the ASA 

crystals coated with 1% of Lutrol F68. This can be ascribed to the change in the ASA particle 

size during the coating process. 

We studied the effects of the lubricants involved on the tablettability of ASA crystals. 

Strong friction between the side of the tablet and the die wall was experienced during the 

pressing of unlubricated ASA crystals. This was indicated among others by an unpleasant 

noise from the machine. Signs of adhesion to the punches were observed on the surface of the 

tablets with increase of the pressure force. Nevertheless, the tablets prepared from 

unlubricated ASA crystals had a very good breaking hardness. 
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Table 5: Parameters of tablets with unlubricated and lubricated ASA crystals 

Sample 
Pressure force, 

kN 
Weight variation. 

R.S.D. 
Breaking 

hardness. N 
Disintegration 

time, s 

ASA+Lutrol F68 0.5% 

ASA+Carbowax 6000 1% 

ASA+Carbowax 6000 0.5% 

ASA+Lutrol F68 1% 

Unlubricated ASA 
5 
10 
5 
10 
5 
10 
5 
10 
5 
10 

0.933 
0.792 
0.957 
1.926 
1.220 
0.980 
1.107 
0.901 
1.100 
0.840 

167.0 
200.0 
129.8 
200.0 
112.0 
161.4 
135.0 
194.8 
139.4 
198.5 

32 
63 
13 
43 
14 
49 
13 
32 
19 
80 

(R. S. D. Relative Standard Deviation) 

In the last step, the lubricant coats were studied with regard to the rates of dissolution 

of ASA crystals from tablets. The values of U3.2% for the lubricated tablets indicate a longer 

dissolution time than that for the unlubricated tablets. Moreover, the wetting of the lubricants 

can not be effective because of the decreasing crystal surface during compressing. Although 

the disintegration time of the tablets compressed from lubricated ASA crystals was shorter 

(wetting effect) than that of the tablets prepared from unlubricated crystals, larger crystal 

aggregates with a small surface underwent only disintegration, instead of perfect 

disaggregation (Table 5). 

From the results presented in these experiments, it can be inferred that the Strea-1 

fluid bed coater with the Wurster column can be suggested for the surface treatment of 

crystals with water-soluble lubricants. The process is fast and well reproducible. 0.5% of 

either of the water-soluble lubricants (Lutrol F68 or Carbowax 6000) was sufficient to 

decrease the electrostatic charge. This amount was also sufficient to cover the surface 

irregularities (edges) of the crystals. The lubricant coat improved the flow properties and the 

tablettability of the ASA crystals. The wetting of the coats was effective as concerns the rate 

of ASA dissolution and the tablet disintegration time. It can be stated that both Lutrol F68 and 

Carbowax 6000 resulted in good parameters, but 1% of Lutrol F68 can not be recommended 

for use in a coating process. 

5.2.2. AA salt crystallization for direct tablet making 

The aim of this investigation was to develop spherical crystal agglomerates of an AA 

salt for direct tablet making (XIII). 
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The investigated crystals and crystal agglomerates were found to have different 

particle sizes. The control (commercial) AA salt consists of single, very small crystals and 

agglomerated crystals with an unfavourable habit for direct compressing (Fig. 8). 

Fig. 8. Control (commercial) 

aspartic acid salt 

crystals. 

The size of 91% of the crystals was less than 71 pm. The structure, surface, size and particle 

size distribution of the crystal agglomerates were determined via the parameters of the 

crystallization process. In the same way, samples A and B (AA salt crystal agglomerates) 

were crystallized by salting-out combined with cooling, using the traditional mechanical 

stirring method. Sample A consisted of smaller particles than those of sample B (Fig. 9) 

because of the slower initial cooling and the higher stirring rate. The spherical crystal 

agglomerates of sample B had a closed "cauliflower-like" structure with a relatively large 

particle size (62% of the particles were larger than 250 pm). 

Fig. 9. Crystal structure of 

sample B with 

"cauliflower-like" 

appearance. 
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In fact, it was revealed that a higher initial cooling rate and a lower stirring rate are very 

favourable in the building-up of crystal agglomerates with a closed structure. 

The particle size distribution of sample C (produced in a recirculation process) was 

situated between those of sample A and sample B. The agglomerates of sample C had a small 

specific surface, a small micropore volume and a small average pore diameter. 

The different macro- and micromorphologies of samples A, B and C did not involve 

modification of the inner crystal structure of the agglomerates. This was documented by 

thermoanalytical investigations (for the details see in XIII). 

It is very important that the deformability of the A A (P1S-M) is not influenced by the 

crystallization parameters. Therefore, the internal crystal structure of the spherical 

agglomerates does not change; only the external morphology (size, form, surface, etc.) is 

affected. 

Both the traditional mechanical stirring crystallization and the recirculation process are 

suitable for the development of spherical crystal agglomerates of an AA salt. Samples A, B 

and C had very good flowability and compressibility, in contrast with the commercial 

(control) sample. Samples A, B and C can be used for direct tablet making according to the 

parameters of the tablets (mass, tensile strength, etc.). However, primarily sample B can be 

suggested for the production of tablets with a high active agent content. 

The results support the importance of the spherical crystal agglomeration technique. 

5.2.3. Nitrazepam crystals 

Nitrazepam is a safe long-acting benzodiazepine safe hypnotic and possibly the most 

commonly used soporific since 1966 [127]. 

The physical characteristics of this "life-saving" substance are still not fully 

understood; the purpose of this research was therefore to reveal the compressibility of 

nitrazepam crystals. 

To establish new characteristics of this substance, SEM was used. The results showed 

that, when the crystals were subjected to direct compression, the morphology underwent some 

structural alterations (IV). 

While the normal structure of nitrazepam crystals is to be seen in Fig. 10, the compressed 

surface of the nitrazepam tablet is demonstrated in Fig. 11. 
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Fig. 10. Normal structure of nitrazepam Fig. 11. Upper surface of nitrazepam tablet, 

crystal. 

Direct compression resulted in small crystals growing on the surface of nitrazepam tablets. 

5.2.4. Phenobarbitone and a-methyldopa crystals 

Before tablet making, preformulation tests have to be performed. Among these, a very 

important role is played by the powder rheological properties of drugs and other additives. In 

this part of this thesis, the morphological and powder rheological parameters of 

phenobarbitone and a-methyldopa will be described (X). 

The habits of the crystals were investigated by SEM, and the particle size distribution 

was tested with an image analysis system. The rearrangement factor (k), the compactibility 

and the cohesiveness of the crystals were calculated from the loose and tapped volumes of the 

drugs. 

From the micrographs of phenobarbitone, it can be seen that there are different habits 

and crystal sizes, with many columnar crystals and many crystal aggregates in the sample. 

Two forms can be observed at higher magnification. One of them involves larger column-like 

crystals, but it can be seen that the recrystallization is not faultless. Some small crystals are 

visible on the larger smooth crystal surface. The other is the aggregate presented in Fig. 12, 

which is built up from many small crystals. Phenobarbitone crystals have a large rough 

surface. 
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Fig. 12. SEM reveals the aggregated form 

of phenobarbitone. Many small 

crystals are evident. 

Scale bar = 50 pm. 

The sample of a-methyldopa proved to be heterodisperse. Among the well-grown 

crystals, numerous small particles could be observed. At higher magnification, the well-grown 

crystals are columnar in shape with a rough surface and the ends of some columns are planar, 

while others have moderately sharp ends (Fig. 13). 

Fig. 13 The appearance of a-methyldopa 

crystals. Scale bar = 100 pm. 

The results of particle size analysis showed that a-methyldopa has larger length and 

breadth values than those of phenobarbitone, but the roundness values are almost the same. 

The roundness influences the flowability of the materials, so it is an important 

parameter. When this value is near 1, it means that the shape of the particle is spherical. The 

shape can be observed in the SEM pictures, but the degree of sphericity can be obtained only 

from this parameter. 

When the particles are very small, their kinetic energy is also small, and those particles 

that have already fallen into the die are unable to move. If bigger particles fall into the die, 

x 4 0 0 5 2 5 6 3 . 0 k V 100WB 
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their greater energies allow them to rearrange the lower layers into more efficient packing 

arrangements and the mean weight of the compact thereby increases [128]. 

It can be stated that the habits (shape, surface, particle size and particle size 

distribution) of the tested drugs differ. This difference influences the flow and rearrangement 

behaviour of the crystals in the die. 

The degree of cohesiveness plays an important role in tablet making. Thus, the 

compactibility and cohesiveness of these materials were evaluated according to the Kawakita 

equation. The results are shown in Table 6. 

Table 6: Compactibility and cohesiveness values by Kawakita model 

Materials Correlation coefficient Compactibility Cohesiveness 
(r)(p<0.05) (1 la) (1 lb) 

Phenobarbitone 0.9964 4.4600 16.8811 
a-Methyldopa 0.9926 3.7703 22.9383 

It can be stated that the compactibility constant (1/a) of phenobarbitone is higher and 

its cohesiveness (1/b) is smaller than that of a-methyldopa. 

From these results, it can be concluded that phenobarbitone has smaller length and 

breadth values than those of a-methyldopa. Differences can also be seen in the particle size 

distribution and the shape and surface of the drug crystals. These properties influence the 

flowability of the crystals, and the rearrangement of the particles in the die during 

compression. The habit and particle size of phenobarbitone are favourable for rearrangement 

of the crystals in the first phase of compression. This means that the powder rheological 

properties of phenobarbitone are better than those of a-methyldopa. The effect of direct 

compression is widespread, so these properties should be taken into consideration before 

direct compression. It can also be concluded that the powder rheological parameters of 

phenobarbitone are better than those of a-methyldopa. 

5.2.5. Sulfadimidine crystals 

The commercial products of sulfadimidine exhibit various morphologies that influence 

the preparation of the solid dosage forms. The powder mixture must have adequate 

flowability and compactibility during direct compression and capsule filling. These properties 

are influenced by the morphological parameters of the particles, and are additionally 

important in the preparation of granules as concerns the distribution of the drug particles. 
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The aim of the present work was to compare the morphological properties of 

sulfadimidine samples obtained from three different batches (IX). 

The crystals in the three sulfadimidine samples displayed different structural 

properties. Sulfadimidine 1 consisted of thin tabular crystals with a rough surface. Some very 

small crystal particles could be seen on their surfaces (Fig. 14). Sulfadimidine 2 consisted of 

smaller, but stubby crystals with an irregular shape (Fig. 15). Sulfadimidine 3 was comprised 

of larger, thicker crystals with a smooth surface (Fig. 16); some of them had a columnar, and 

others a tabular form. 

Fig. 14. Sulfadimidine 1 Fig. 15. Sulfadimidine 2 Fig. 16. Sulfadimidine 3 
crystals (SEM). crystals (SEM). crystals (SEM). 

The particle sizes and the distributions of the particle size in the three samples also 

differed. The sulfadimidine 1 sample was homodisperse: 63% and 75% of the crystals 

measured under 10 pm in length and breadth, respectively. Most crystals of sulfadimidine 2 

were less than 30 pm in length and 20 pm in breadth. Sulfadimidine 3 was heterodisperse: 

92% and 82% of the particles were less than 60 pm in length and breadth, respectively. 

From the aspect of direct compression or capsule filling, sulfadimidine 1 and 

sulfadimidine 2 were unsuitable, because the particles were too small. Particles smaller than 

10 pm generally have van der Waals attractive forces that are greater than the force of gravity 

and consequently the material is cohesive [129]. In this case, the adhesion between the 

particles is too high. The flow properties of such samples are generally not suitable and the 

rearrangement of the particles in the die cavity or capsule is not uniform. In this respect, the 

best sample was sulfadimidine 3. For larger particles, the gravitational force, which increases 

in proportion to the cube of diameter, becomes much greater. 

From the morphological SEM observations, were was combined with image analysis 

of the various sulfadimidine forms, we can infer that the particle size distribution influences 



-32 -

the behaviour of the particles, which is very important in the first phase of the compression. 

The results permit a choice of the best sample for the preparation of a solid dosage form. 

5.2.6. Tolbutamide crystals 

Tolbutamide, an antidiabetic agent, is a typical pharmaceutical substance which 

exhibits polymorphism, the tendency of a substance to crystallize in different crystalline 

states. Each of the polymorphs, the solid forms of the same compound, display different 

physicochemical properties and as bioavailability, and the pharmaceutical industry is 

confronted by this behaviour. 

Our aim in this investigation was to study the compactibility and compressibility of 

tolbutamide crystals and the texture of the compressed material prepared at several pressures 

was also examined. X-ray diffractograms were made to detect whether the structure of the 

crystals changed during compressing (VI). 

Tolbutamide crystals have an oblong form with rounded ends (Fig. 17). High 

magnification clearly reveals small needle-shaped crystals adhering to the surface. The 

average size is 28.7x60.6 pm. The main size of the particles is less than 80 pm. 

Fig. 17. The SEM appearance of the 

tolbutamide crystal. Note the 

needle shape of the crystals. 

X-ray diffraction was performed to detect whether the structure of the crystals changed during 

compressing (Fig. 18). It is clearly demonstrated that 5 kN caused a significant alteration in 

the crystal structure; however, when the pressure was increased to 10 kN, no further alteration 

could be detected. These results permit insight into the behaviour of the tolbutamide crystal 

structure during compression. 
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Fig. 18. X-ray diffractogram of 

tolbutamide crystals 

grown under different 

pressure forces. 

4 0 2 6 

5.3. Pellets and kneaded products 

The aim of the investigation of the pellets was to study the influence of a polymer 

coating on the drug liberation (VII). 

Polymethacrylates (Eudragit and Eastacryl) and ethyl cellulose (Surelease) in different 

quantities were used as coating materials. The coating process was carried out in a fluid bed 

apparatus with a Wurster column. The surface of uncoated and coated pellets was investigated 

by SEM. 

The results of the SEM studies revealed that a suitable and uniform coating film is 

formed on the approximately spherical pellet surface (Figs 19 and 20). 

Fig. 19. The surface of the uncoated pellet 

is rough and several and various 

micropores can be revealed. 
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Fig. 20. Surface of a coated pellet. Note 

the disappearance of the 

prominences and the recesses, 

and the smooth appearance of 

the pellet surface. 

The results of the dissolution tests demonstrated the influence of the nature and 

quantity of the coating material on the liberation of the drug (Figs 21a, 21b and 21c). 

Fig. 21. Drug dissolution from coated pellets: a) coating material Eudragit 100-55; 
b) coating material Eastacryl 30D; c) coating material Surelease. 
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It can be seen that the polymethacrylate films (Eudragit and Eastacryl) with the 

smallest dry material content proved to be protective films. Increase of the dry material 

content in the coating dispersion ensured a slow drug release. The dissolution profile 

exhibited a sigmoid shape at higher dry film coating material content. A slow liberation could 

be seen in the gastric juice, but at higher pH values the total drug dissolved within 5 h. 

From these results it can be concluded that a lower Surelease quantity was sufficient to 

attain a slow release from the coated pellet. As indicated by the characteristic dissolution 

time, the agent was most rapidly liberated to 63.2% from pellets coated with Eudragit film. A 

comparison of Eudragit vs. Eastacryl coatings of identical thickness revealed a close 

similarity in t63.2%- This is not really surprising because the two substances are both 

polymethacrylate derivatives. Surelease, on the other hand, differs from the previous two in 
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chemical structure and in properties. Surelease films of the same thickness liberated the active 

agent much more slowly than did polymethacrylate film. 

The next experiment was designed to reveal the morphology and the dissolution rate 

of a physical mixture and a kneaded product containing sulfadimidine and p-cyclodextrin. A 

more detailed description of the results is to be found in Annex (XII). 

The SEM investigation revealed the morphology of the typical sulfadimidine crystals 

of many different sizes in their original form in the physical mixture (Fig. 22). On the other 

hand many small adhered crystals were observed in the sulfadimidine-P-cyclodextrin kneaded 

product (Fig. 23). 

Fig. 22. The appearance of the sulfadimidine Fig. 23. The appearance of the sulfadimidine-
crystal is demonstrated by SEM. p-cyclodextrin kneaded product, 

shown by SEM. 

Dissolution. The rate of dissolution of sulfadimidine is very poor, as can be seen on (Fig. 24). 

Fig. 24. Rates of dissolution of 

sulfadimidine, the physical 

mixture and the kneaded 

product. 

+ 
1 
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1 
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Only about 4% of the drug dissolved during 30 min. The rates of dissolution of 

sulfadimidine products containing P-cyclodextrin were much higher than that of the bulk 

substance. As concerns the two products, the dissolution of the kneaded product was faster. 

About 80% of the drug dissolved from the physical mixture during 30 min, whereas less than 

10 min was sufficient for the total mass of the drug to dissolve from the kneaded product. 

From the results, it can be inferred that P-cyclodextrin influenced the rate of 

dissolution of sulfadimidine. The accelerating effect of P-cyclodextrin on the dissolution rate 

is connected with the regular distribution of the active agent, and the better solubility of P-

cyclodextrin and the small crystals adhering to the surface. The better solubility of the 

kneaded product can be explained by the formation of granule particles, in which crystals of 

sulfadimidine and P-cyclodextrin are present together. Overall, therefore, the application of P-

cyclodextrin is of advantage as concerns the process of sulfadimidine dissolution. 

6. SUMMARY AND CONCLUSIONS 

6.1. Results on the formation and properties of tablets 

1. It was shown that the best physical parameters and highest rates of dissolution of 

metronidazole tablets can be obtained with the use of hydroxypropyl cellulose (Klucel 

LF®) at 10 kN. 

2. We revealed that the wet granulation process influenced the parameters of tablets. 

3. We demonstrated that Avicel® and Heweten 12® not only influenced the tablet 

formation when direct compression was applied, but also affected their dissolution 

rates. 

4. It was also revealed that the compactibilities of A3 01 and A302 may be corrected by 

the addition of sorbit. The mixtures studied have good compactibility and a positive 

influence on the rearrangement of A3 01 and A302. 

Conclusion: From the results, it can be concluded that not only the drug substance, but also 

the various auxiliaries and the different techniques used for tablet formation 

may affect the properties of a tablet. 
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6.2. Results on crystal structure changes during processing 
1. The results on ASA crystals indicated that only the typical spherical crystallization 

technological procedure and surface-treated ASA can be recommended for tablet 

preparation. These crystals may posses excellent flow properties and favourable 

compactibility. 

2. With the development of spherical crystal agglomerates for AA salt, it was revealed 

that a higher initial cooling rate and a lower stirring rate are very favourable in the 

building-up of crystal agglomerates for direct tablet making. 

3. The physical characteristics of "life-saving" nitrazepam crystals was demonstrated by 

SEM. The morphological results indicate that the direct compression of the substance 

resulted in recrystallization on the surface of the tablet. 

4. It was found that the habits of phenobarbitone and a-methyldopa crystals were 

different, as were the particle sizes and the particle size distributions. It was also 

established that the powder rheological parameters of phenobarbitone are better than 

those of a-methyldopa. 

5. When sulfadimidine crystals from various batches were investigated, we demonstrated 

that the particle size may be different and their distribution may influence the behaviour 

of the particles, which is very important in the first phase of the compression. 

6. It was clearly demonstrated that 5 kN caused a significant alteration in the structure of 

tolbutamide crystals, but no further alteration could be detected when the pressure was 

increased to 10 kN. 

Conclusion: This work has shown that not only the technological procedures (direct 

compression), but also other parameters (cooling rate, stirring rate), may exert 

important effects on both the structure and the behaviour of the crystals. 

6.3. Results on pellets and kneaded products 
1. The results showed that a suitable and uniform polymer coating film can be formed on 

the surface of spherical pellets. Moreover, it was established that a drug may be 

liberated most rapidly from pellets coated with Eudragit film. Surelease films of the 

same thickness liberated the active agent much more slowly than did polymethacrylate 

film. 
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2. The results reveal that P-cyclodextrin influenced the rate of dissolution of 

sulfadimidine. The better solubility of the kneaded product can be explained by the 

formation of granule particles, in which crystals of sulfadimidine and P-cyclodextrin 

are present together. Overall, the application of P-cyclodextrin is of advantage as 

concerns the process of sulfadimidine dissolution. 

Conclusion: From the results presented, it can be concluded that a spherical pellet can be 

coated uniformly and the various polymethacrylate films used for coating 

differently affect the release of an active agent from the pellet. From the 

investigation of sulfadimidine, it may be concluded that the low solubility of this 

drug can be improved by the addition of /3-cyclodextrin to the active substance. 

\ 

\ 
73. 
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