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1. Introduction

1.1. Historical remarks

It is a truism that any experiment performed on the Earth is done under the effect of
gravity. Gravitation, one of the four basic interactions governing the structure and
behaviour of the material world, has by far the smallest effect. To detect a gravitational
effect objects of large masses which are electrically and magnetically neutral have to be
used. The gravitational coupling is so weak that the gravitational attraction between two
protons is 10% times less than the electric repulsion; an alternative comparison would show
that the order of magnitude of the gravitational term in the Hamiltonian is approximately
10° times less than the rest mass energy term when a particle in the Earth’s field is
considered. Even the Sun causes very little distortion of space-time; a ray passing by its
disk is deflected only by 1.75 seconds of arc. It is very difficult to detect these effects,
since the order of experimental error involved in these experiments, until recently, used to

exceed gravitational effects by several orders of magnitudes.



Chapter 1: Introduction

For these reasons it is standard practice to ignore the effect of gravity in the case
of laboratory experiments and to apply whatever physical theory is relevant; equivalently,
to apply the physical theory in flat, rather than in curved space. It sounds even more
plausible that this procedure is above all justifiable in the quantum regime: whoever
thought that gravitational effects would manifest themselves at the quantum level?

It is now more than twenty years since Colella, Overhauser and Werner succeeded
in performing an experiment which made it possible to detect gravitational effects in
neutron interferometry. This experiment and the improved follow-up versions are
commonly referred to as the COW experiments (for details see Ch. 2.4). When in 1975
Colella, et al. reported on their detection of gravitational effects in neutron interferometry,
their paper meant a lot more than simply a report on an experiment no-one had done
before. It proved that the standard practice of ignoring gravity when talking about quantum
systems was wrong. To put it right was not a matter of putting an extra term in the
calculations: a whole conceptual problem arose when one tried to combine general
relativity and quantum mechanics. The phase shift in the experiment was explained by the
authors using Newtonian mechanics, and this was a satisfactory approximation, because of
the order of the experimental error involved. Since 1975, however, new experiments have
been suggested, and the use of atomic interferometers is expected to increase the accuracy
of the COW experiments by a factor of 10'", which will take us to the regime where
relativistic corrections become relevant. So apart from the matter of principle, that the
proper description of gravitational effects is achieved by using Einstein’s general relati'vity,
there is a practical need too for a higher order description of gravitational effects on

quantum systems.
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1.2. Aim of thesis

As explained in the previous section, the direct evidence of gravitational effects
manifesting themselves in neutron interferometry established a demand for describing
general relativistic effects in quantum systems. In this work a synthesis of the distinct
fields of General Relativity and Quantum Mechanics is attempted.

The aim of this thesis is to find the proper method of analysing the behaviour of
quantum particles, especially spin-2 particles in an Earth-bound laboratory, i.e. to give a
description of gravitational and non-inertial effects on them. The method used throughout
this work is to find the Dirac Hamiltonian in whatever circumstance and approximation is
appropriate.

I shall work out a procedure for finding the form of the momentum operator in
coordinate representation in curved spaces for proper interpretation of results.

The effect of Earth on spin-Y2 particles shall be examined via calculating the Dirac
Hamiltonian. First, the spacetime shall be approximated with the Schwarzschild metric,
and an accelerated frame in flat spacetime. The derived Hamiltonian shall provide a
general relativistic description of the Earth's effect, as well as a quantum test of the
equivalence principle.

Then the Kerr space-time shall be used to describe the effect of Earth. On comparing
the three cases of non-inertial frame in Minkowski spacetime, Schwarzschild space-time
and Kerr space-time the applicability of these models shall be determined for terrestial
spin-¥2 experiments.

Finally the gravitationally induced phase shift shall be derived on a general

relativistic basis, providing a higher order description of the phenomenon.
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1.3. Outline of thesis

This thesis is a report of my work concerning non-inertial and general relativistic effects on
quantum systems, specifically on spin-¥2 particles.

Chapter 1 consists of general remarks, including a historical review of the topic, a
statement of objectives, an outline of the thesis and general remarks on notation.

In Chapter 2 the theoretical and experimental backgrounds of this work is
reviewed. This includes short discussions of the relevant theoretical concepts of Quantum
Mechanics and General Relativity, as well as raising the problem of applying these two
simultaneously. Then a brief overview of neutron and atomic interference experiments,
testing gravitational and non-inertial effects on quantum systems, is given. In the end a
summary of the preceding results in the field of finding the Dirac Hamiltonian in various
spaces is presented.

Chapter 3 shows how the Dirac equation may be written in a general Riemannian
space. It enters into details of the steps of the procedure such as choosing coordinates,
determining the frame, various methods of finding the connection coefficients, using the
epsilon symbol in curved spaces, absorbing the determinental factor of the invariant
volume element into the wavefunction, and taking the proper non-relativistic limit of the
resulting Hamiltonian. As examples of the use of the above, then, the form of the
momentum operator is derived in isotropic and spherical polar coordinates, and the effects
of rotation and position dependence of the frame are investigated.

The thesis proceeds in Chapter 4 to the application of the method described above,
to give a description of the effect of stationary gravitational sources on spin-¥2 particles.
The Dirac Hamiltonian is written in the Schwarzschild field and then being compared with
the corresponding result in an accelerated Minkowski space. Then remarks are made and

conclusions arising from this analysis are drawn concerning the Equivalence Principle.
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Chapter 5 examines the effects of a rotating gravitational source on Dirac
particles. To analyse the situation rotating frames in Schwarzschild and Kerr spaces are
used and the resulting Hamiltonians are compared with each other, as well as, with the
purely non-inertial effects of an accelerated rotating frame to determine the limits of the
applicability of these three models when describing experimental results in Earth-based
laboratories.

A reanalysis of the COW experiments takes place in Chapter 6 as a general
relativistic derivation of the phase shift is presented.

A summary of the main results of the thesis and some directions for further study
are given in Chapter 7.

Finally references of all the work cited in this thesis is included.
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1.4. Conventions

Small Latin indices (a,b,...i, j,...) run from 1 to 3 referring to spatial components, while
small Greek indices (a,ﬂ,...x, u,...) running from O to 3 note all space and time

components. Unmarked indices, both Latin and Greek, (a,,..., B,...) refer to coordinate

A

basis components, indices with hat (ii, b,...@, ﬁ,...) refer to orthonormal basis
components.
The Greek letter phi is used in several contexts, but different letter types are used:

@ denotes the “gravitational potential”, ¢ the phase shift and ¢ is the polar angle. There

is a similar “degeneracy” in the notation concerning theta: 8* denotes the basis 1-forms

and @ is the other polar angle. Also, a g with a single index g, means one component of
the “gravitational acceleration” and with two indices g,, it refers to the metric tensor.
Evidently g with a vector notation is the acceleration.

G denotes the universal gravitational constant, M the mass of the gravitating
source. If the gravitational source is rotating, a is used to denote its angular momentum per
unit mass (for c=1), and  or mi=(0,0,w) its angular velocity. o is used also, as the angular
velocity of a rotating frame of reference, which has the same value as the angular velocity
of the rotating mass. An w,, with two indices refer to the connection 1-forms.

Cuw and Cuux are the connection coefficients or Christoffel symbols and the

structure constants, respectively. The ordinary derivative is usually denoted with a comma:

A= £ . Square bracket [ ] is used for commutator, curly brackets { } are used for

ax¥

anticommutator relationships.
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The signature of the space-time metric is (+,—,—,—). g uv 18 used to denote the
metric tensor in an arbitrary space in coordinate basis, and g,, =7,, notes metric in
orthonormal basis, i.e. the Minkowski metric tensor.

Basis 1-forms are denoted by 6*, and the dual vectors by e,. The duality is
expressed as

(0“,ev> =<e,,,9“)=53‘, (1.1)
whereas the scalar product is denoted by ordinary brackets:

(62.6")=g" and (e, .c,)=g,.- (1.2)
The wedge product of the 1-forms is antisymmetric

dx* ndx’ =-dx" Andx". (1.3)
The line element in coordinate basis is

ds’ = g, dx" dx", (1.4)
and in orthonormal basis

ds®> =1,,0"0°. (1.5)

At some points in this thesis equations have been simplified by using the
convention #=1 or c=1 or both, though in other places they have been retained for

clarity. The summation convention is used throughout the thesis, when the same index

appears twice, once in covariant and once in a contravariant position.



2. Background

2.1. The theory of gravity - General Relativity

“Gravity is a habit that is hard to shake off” (T. Pratchett, Small Gods)

Physics, trying to explain the behaviour of the inanimate world, is a collection of
mathematical models, consisting of differential equations, accompanied by rules
correlating mathematical results and meaningful quantities of the physical world. In the
case of the “gravitational interaction” it is Einstein’s theory of general relativity which is
the accepted model at present. Here the differential equations are geometric requirements
on space and time together with the field equations describing the interaction of matter and
space.

Studying gravitational effects is probably the oldest discipline in science: it can be
considered as old as man who looked up at the stars in the early days of history. During
this long time several concepts had to be demolished as more accurate observation

techniques developed. Also, the theoretical study of gravitation has always relied on
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advancements in mathematics: inventing calculus provided a useful tool for Newton to

formulate his theory, and general relativity could not exist without Riemannian geometry.

Shortly after the publication of Einstein’s Special Theory of Relativity (SR) it
became clear that it was inconsistent with Newton’s Theory of Gravity, because of its
space but not time dependence. The generalisation of SR (laws of physics are invariant
under all, not only linear transformations) provided a new theory of gravity. “The
extension of the principle of [special] relativity implies the necessity of the law of the
equality of inertial and gravitational mass. The general theory of relativity must yield
important results on the laws of gravitation.” [Einstein, 1924]

Based on the idea of Galileo’s falling body experiment Einstein generalised the
theorem, that no experiment in mechanics can distinguish a gravitational field from an
accelerated frame, to formulate the equivalence principle (EP): no experiment in physics
can distinguish the local effects of gravity and acceleration. A consequence of this
principle is that light travels on a curved path. Together with Fermat’s least action

principle it leads to the idea of curved spaces.

General Relativity (GR) is a theory of gravity describing it in terms of curved
spaces. Picturesque examples for GR can be given: the Earth orbiting the Sun can be
explained by saying that in a curved space curved orbits are natural or another example is
the bending of light by massive stellar bodies. In this theory, terms such as gravitational
field, force or gravitational interaction have no meaning any more. Many different
mathematical entities are associated with gravitation: the metric, the Riemann curvature
tensor, the covariant derivative, the connection coefficients, etc. Each of these plays an
important role in gravitation theory, and they are all related to each other. Thus the terms
“gravitational field” and “gravity” usually refer in a vague, collective sort of way to all of

these entities.
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Research in the field of GR may involve a purely mathematical analysis of the
differential equations of the model (Einstein’s field equations) finding as many exact
solutions as possible. See for example Kerr [1963] or for a summary on the subject Kramer
et al. [1980]. The other type of research in general relativity involves the mathematical and
physical interpretation of the obtained solutions. In my research I contributed to this latter
type of work using the known solutions for certain cases, such as Schwarzschild’s, Kerr’s

or the accelerated frame metric, analysing their properties and effects on quantum systems.

Experimental tests of gravity can be done on two levels: with the technological
advances of the last century the solar system, providing objects with large masses, became
a good source of observational data, whereas experiments in Earth-bound laboratories
allow controlling of various conditions. The dynamic progress of experimental techniques
provoked the quotation “General relativity is no longer a theorist’s paradise and an
experimentalist’s hell” [Misner et al., 1973). Overviews on experiments performed to test
general relativity are by Vessot [1984] and Cook [1988].

I have no intention to give a complete description of the principles of GR here.
Even a short summary would take up more space than this dissertation. I intend to give
only a basic insight into its concepts, and refer the reader to various textbooks for details
[see for example Misner et al., 1973]. Another short and very picturesque, with hardly any
equations involved, introduction is given in Feynman’s book [Feynman et al., 1975]. I will

define each quantity when necessary as it turns up along the calculations.

In mathematics curved spaces are dealt by using Riemannian geometry. A space is

characterised by a metric

dsz = gpv dxﬂ dxv (2.1)

10



Chapter 2: Background

which carries all the information about the space. Characteristic quantities are usually
calculated from the components of the metric tensor, carrying special information about
the space, for example the connection coefficients are calculated in a coordinate basis, as

1

58" (B * Bur ~ B ). @2)

FPa =

Unlike in SR, where the metric has only a passive role, in GR the metric plays an
active role, because the geometry of the space is not fixed in advance, but determined by
the mass distribution. To obtain a metric, Einstein’s field equations should be solved.
These are complicated nonlinear tensor equations, and no general solution is known. There
are a few special cases, such as the field outside a spherically symmetric body at rest, in

which the field equations can be solved. The metrics I use in my calculations are

e Schwarzschild space: outside the surface of a spherically symmetric, stationary

gravitational source [Stephani, 1990]

b 1- 2—G‘f
rc

ds® = ( 1-2@21)&1:2 —— L (49 +sin? 8 do?) (2.3)

e Kerr space: outside the surface of a spherically symmetric, rotating gravitational source

[Hawking and Ellis, 1974]

ds* = E(d—:-+d02)+ (r? +a?)sin? 9 do? - dr? +3;”:—’(asin2 8do-dt)
(2.4)
with
S =r+a’cos’® and A =r’-2mr+a® . (2.5)
o flat space in an accelerating, rotating frame of reference [Hehl and Ni, 1990]

2

2 i
ds® = (l + %) c’dr? —(dx' + [gx _{] c dt) (2.6)
c

c

11
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In GR contravariant, covariant and mixed tensors are defined by their
transformation properties. The method of changing the position of indices is to apply the

metric tensor. For example lowering the last index of the connection gives:

Fuwe = 80 T’ 2.7
where the usual summation convention is used.

A helping tool to deal with Riemannian geometry is the use of differential forms,
which may make calculation easier. An example is given in Appendix 3.12.1.

Finally I should note here that in this thesis gravity is treated in the classical way,

i. e. it is not quantised and torsion is not considered.

12
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2.2. Quantum Mechanics

At the end of the 19™ century, a series of experimental results (e.g. spectrum of blackbody
radiation, photoelectric effect, electron diffraction) were presented, which were impossible
to explain by the classical physics model. These observations led to the development of
quantum theory. Quantum mechanics (QM) is the presently accepted way to describe the
behaviour of matter and light in all its details on the atomic scale. As our everyday
experience concerns large objects only, one may find that QM “represents an abrupt and
revolutionary departure from classical ideas, calling forth a wholly new and radically
counterintuitive way of thinking about the world” [Griffiths, 1995].

In QM particles and waves are characterised by the probability density, which is
the square of the wavefunction. To determine the wavefunction, the wave-equation has to
be solved. The first such wave-equation was written down by Schridinger by substituting

differential operators for T and p into the non-relativistic energy relation:

T =2_ 2.8)

to get the Schrédinger equation of a free particle

2
ihsat—‘l’ = -;'—mvzw 2.9)

A starting point for a relativistic equation could be Einstein’s energy relation
E? = p*c* +m¢* (2.10)

giving the Klein-Gordon equation
2
(F-vz]www i @11

with the usual #=c =1 convention. The Klein-Gordon equation expresses nothing more

than the relation between energy, momentum and mass, so this equation has to hold for any

13
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particle. For particles with a spin, all the spin components have to satisfy the Klein-Gordon

equation.

The wave-equations for spin 2 (Dirac and Weyl equations) and spin 1 (Maxwell
and Proca equations) particles can be derived from the transformation properties of spinors
under the Lorentz group [Ryder, 1996 Ch. 2. and references therein]. Therefore these
equations simply express a relation between the components of the wavefunction; in
Weinberg’s words, they are a confession that we have too many spin components

[Weinberg, 1964].

The focus of this thesis is the effects on massive spin %2 particles, therefore the

Dirac equation will be used:

(7“ p,—m )‘1' =0 (2.12)

which equation became famous by successfully predicting the existence of antiparticles
and the correct value for the electron magnetic moment [for details see for example
Shankar, 1988].

In QM observables are represented by operators, and measurement results
correspond to the eigenvalues of the operators. Therefore physically meaningful results

require real eigenvalues, i.e. the operators have to be Hermitian.

I would like to note here that the above mentioned wave-equations are relativistic

in SR sense only, but they are not consistent with GR!

14
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2.3. Combining QM and GR

Any theory of the fundamental nature of matter must of course be consistent with relativity
as well as with quantum theory. GR usually concerns the behaviour of big objects, on the
scale of the solar system or larger, whereas QM plays an important role in the micro world.
Thus there seemed to be no need for these models to be applied simultaneously until the
COW experiments proved the opposite.

To resolve the problem of wave-particle duality, William Bragg once suggested
using the corpuscular theory on Monday, Wednesday and Friday, and the undulatory
theory on Tuesday, Thursday and Saturday (Sunday is a day off). A similar phrase could
easily be applied for the theories of QM and GR considering that the two models are really
different. The language of GR is-a language of scalars, four-vectors and tensors, while the
Dirac equation describes the state of quantum systems by spinors. The possible
combination of the two models was not even understood by Dirac, but later Weyl gave a
solution to this by applying tetrad-fields. This method will be described in Chapter 3. In
spite of all the differences in the essence of these theories, Anandan claims that “gravity
appears to be deeply rooted in the wave-particle duality of matter” [Anandan, 1980 and
references therein].

The general theory of relativity is compatible with all other classical theories, but
a complete unification with quantum theory has not been achieved. “Quantum theory
assumes a Minkowski space of infinite extent, whereas GR shows that the space is
Riemannian.” [Stephani, 1990] But it is possible to introduce a locally flat coordinate
system at every point of space-time, and consequently get rid of the gravitational effect,
which makes it possible for the two theories to work simultaneously at regions of small
curvature.

There are various possibilities to combine GR and QM.
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The successful unification of the weak and electromagnetic interaction gave rise to the
idea of including the strong and gravitational interactions, as well. Creating this “theory
of everything”, has not been achieved, so far. In case of a source-free weak field the
quantization of the gravitational interaction can be done and it results in massless, spin
2 quanta [Stephani, 1990 Ch. 13.2]. However, the general solution for quantizing the
gravitational field has not been found.

Another possible solution for the problem of the coexistence of GR and QM is the
semiclassical gravity theory. In this case the gravitational field is treated classically,
whereas the rest of the fields are quantized. Einstein himself was a supporter of this
view. The main problem in this approach is the interpretation of states. Even the
vacuum state is not universal: what one observer regards as vacuum, the other may
regard as a mixture of particles.

A third approach involves quantization in a given classical gravitational field. When
one tries to carry out the quantization procedure in curved space-time difficulties arise
because of the non-flat space-time. The most spectacular example of these difficulties
is the prediction of the creation of particles by a gravitational field. Hawking [1975]

found that in black holes particles are created, and they have a thermal spectrum

26

equivalent to a black body of temperature , where M is the mass of the black

body measured in grams. In this approach the problem of the back-reaction of the
particle creation on the metric is still unsolved.

Let me comment here on the different roles of gravity in quantum and classical

mechanics following Sakurai’s [1994] argument. In the classical equation of motion of a

falling body

mi = -mVo,,, (2.13)
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the mass term cancels, as a consequence of the equivalence of inertial and gravitational
mass. As mass does not appear in the equation of a particle trajectory, gravity, in classical
mechanics, is often said to be a geometric theory. On the other hand, in the wave-

mechanical formulation

h? d
—EVZ +m<l>m, ¥ = lha\y (2.19)

mass does not cancel, and it always appears in the combination hm . To see a nontrivial

quantum-mechanical effect of gravity, therefore, we must study effects in which # appears

explicitly. In the analysis of the COW experiments (Chapter 2.1) it is found, that the phase
shift depends on (%1)1 proving that at the quantum level gravity is not a purely geometric

concept.
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2.4. Experimental results and interpretation

2.4.1. Neutron interference experiments

Gravity is known as a theory of the large scale and quantum mechanics is associated with
the small scale. It was experimentally demonstrated that neutrons are subject to
gravitational acceleration, and found that they fall on a parabolic trajectory [Dabbs et al.,
1965]. Though this incorporates small particles and gravity, it is a classical phenomenon,
without any quantum mechanics involved. Some time later a neutron interference
experiment was suggested by Overhauser and Colella [1974] in which gravity and quantum
mechanics would play an essential role, simultaneously. The experiment was carried out
and the report on it [Colella er al., 1975] was the first to contain a formula with both the
gravitational acceleration and Planck’s constant in it. Therefore they provided, in principle,
the first link between GR and QM. This experiment is usually referred to as the COW

experiment.

Figure 2.1: Schematic diagram of the neutron interferometer used in the COW
experiment. Figure reproduced from paper by Colella et al., 1975
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The authors used a Bonse-Hart type [Bonse and Hart, 1965] interferometer, which
is equivalent to a double slit arrangement (see Figure 2.1). The interferometer consisted of
a silicon single crystal (see Figure 2.2). Three slabs were cut from the crystal. The first two

slabs served as beam splitter and mirror, whereas the last recombined the two beams.

Figure 2.2: Silicon interferometer of the COW experiment. Photograph supplied
by Prof. S. A. Werner.

By means of this setup one does not observe any interference pattern directly.
Instead it is designed for observing a phase shift induced by varying external parameters. If
the apparatus is rotated around the incident beam to change the difference in height, and
hence the gravitational potential, between the interfering beams, then a phase shift between
the two beams can be observed. This phase shift was explained by the authors using
Newtonian mechanics, assuming that neutrons travel in the gravitational potential of Earth.

Considering the accuracy of the experiment this was a suitable approximation. They found

ADpsy = Ggrey SinQ = 47IA -}-lg-z—mzd (@ +acos@)tan@sinc . (2.15)
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with « the angle of the rotation of the interferometer, A and m the de Broglie wavelength
and the mass of the neutrons, d and a the dimensions of the interferometer, and 0 the Bragg
angle. A 10% discrepancy was found between this formula and the experimental data. This
was explained by taking into account the bending of the interferometer base during rotation
out of the horizontal plane; after correcting for this, the discrepancy between the
(Newtonian) theory and experiment was reduced to 1%.

Increasingly precise measurements were carried out [Staudenmann er al., 1980
and Werner et al., 1988] and the experiments were re-analysed by Horne [1986] taking into
account the fact that the interferometer was an eight-path rather than a two-path device.

Experimental and theoretical values were then found to agree within 0.8% [Werner, 1994].

Laboratories on the surface of the Earth rotate relative to the “fixed stars”,
therefore non-inertial effects, such as Coriolis force, are observable due to the rotation of
the frame. In 1913 Sagnac demonstrated that optical interferometry is sensitive to rotations,
and in 1925 Michelson, Gale and Pearson succeeded in constructing an interferometer in
which the effect of the rotation of the earth was observable. A derivation using classical
mechanical arguments shows, that on the rotating Earth, neutrons also experience a
Sagnac-type shift [Werner, 1994]. The form of the phase-shift is

A,
h

A¢Sagnac = qsagnac COS& = A 4 COSOL cosa (2.16)

with @ the angular velocity of the Earth, Ao the area of the interferometer and 8, the

colatitude at the place where the experiment is carried out. It was found that the effect of

the rotation of the Earth adds only a small contribution to the gravitational effect;
APsugnac = 2%107* A¢,,,, . Nevertheless, using an interferometer in a vertical plane, being
rotated about the vertical incident beam, this Sagnac shift was also verified [Werner et al.,

1979].
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Following the logic of Einstein's equivalence principle in the quantum limit an
experiment, corresponding to COW, searching for a phase shift in an accelerated frame of
reference, rather than a gravitational field, was carried out by Bonse and Wroblewski
[1983]. An interferometer oscillating in a horizontal plane was used, taking stroboscopic-
type measurements at the inversion points of the movement. It was proved, to an accuracy

of 4%, that the effects of acceleration and gravitation are the same.

I would like to note here that these experimental results provide a proof of the
equivalence principle only within the limits of their accuracy. But the theoretical
considerations for the phase shifts in gravitational field all relied on using Newtonian
potential V = mgh or a homogenous g-field, which is equivalent with the non-inertial

effect of an accelerated frame, and not a genuine gravitational field!

As was made clear above, the theory with which the experimental data has been
compared in these experiments is Newton’s theory of gravity. From a fundamental point of
view, however, this is unsatisfactory; the theoretical expression for the phase shift should
be derived from General Relativity. General relativistic treatment of the COW experiment

is presented in Chapter 6.
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2.4.2. Atomic interferometry”

As compared with neutron-wave interferometers, atomic beam interferometers offer

several advantages:

e atoms can be prepared with very low velocity by means of laser cooling;

e atoms have a larger mass and therefore a smaller de Broglie wavelength;

e sources of atomic beams are easier to handle;

® because of the internal degrees of freedom there are additional effects that can be
tested;

e atoms may have larger spin and larger magnetic moments than single neutrons.

Atoms are of course more complex objects and should be described in an n-
particle approach. In some approximation, this yields a Pauli-type equation with magnetic
and electric dipole moments or its respective relativistic version. This represents a centre-
of-mass motion with additional degrees of freedom. [Audretsch e al., 1992b]

Apart from atomic interferometers based on a Young’s double slit arrangement
there are four other types in use: the most recent ones built by Kasevich and Chu [1991]
and Shimizu et al. [1992].

In the COW experiment a sensitivity of 102 g was reported. At present the most

accurate measurement of gravitational acceleration is done by using a superconducting
gravimeter, which is able to measure up to 107'° g . Atomic interferometry promises further
improvement, expecting to achieve a sensitivity of 1072 g. At these accuracies we have to
ask the question whether we measure general relativistic or other types of corrections.

Local fluctuations in the gravitational acceleration caused by tides (10~ g ) and changes of

* Based on review papers of Adams et al [1994], and Audretsch et al.[1992b]
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atmospheric pressure (107" g/ mbar ) can be subtracted, having a characteristic frequency.
But other effects such as the vertical motion of the Earth’s crust (10° g /cm) and changes

in the local distribution of mass (a physicist at a distance of 1m produces 10™'° g ) produces

anomalies at the order of the experimental accuracy. In the interference technique by the
means of two nearby paths for particles the closer the two paths the less the effect of local

fluctuations, but at the same time the relativistic effect is also reduced.
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2.5. Examining the Dirac equation in non-inertial frames and

gravitational fields

The above mentioned experiments, although involving atoms and neutrons, are not
sensitive to spin effects. Therefore it was not necessary to use the Dirac equation in
analysing them. In the studies of Wu [1988] and Xia and Wu, [1989] it was found that the
spin polarisation of spin¥2 particles in the Earth’s field is also affected, therefore in the
analysis of experiments involving elementary particles in the Earth’s field the use of the

Dirac equation is necessary. The Dirac equation

ihy*D,¥ = mc*¥ (2.17)
is often rearranged in to the form

HY = ihd, ¥ (2.18)
and the Hamiltonian is used as characteristic quantity.

One such analysis was carried out by Fischbach [1980] who has determined the
Hamiltonian for a Dirac particle in Schwarzschild space. In the calculation he has used

isotropic coordinates which simplifies the form of expressions, therefore makes calculation

easier. He has got

H = fmc? (l—d>)+£p2+-§[3 ——}-CD P’ +-l—2g-p+ h ~g:aXp |.
2m 2 m mc*= = 2mc® = -
(2.19)
In this expression the momentum is substituted for —ihai, differential with respect to
Xy

isotropic coordinates, which should not have been done as will be explained in Chapter
3.9. A revised version of the above mentioned paper is published by Fischbach et al.
[1981], but the same mistake was made. I shall present the derivation of the Dirac
Hamiltonian in Cartesian coordinates in Chapter 4.1, and shall remark on how the

Hamiltonian in isotropic coordinates should be interpreted.
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Hehl and Ni [1990] have performed a similar calculation for particles in an

accelerated and rotating frame. They found the Dirac Hamiltonian:

H = ﬂmcz(l+%£-)+{;—1-pz +-2%£-gézé£—g-(g+§)+ 4'[::2 g-(gkg).
(2.20)

(with an error that the B8 was missing in the last term). Comparison of the resulting
Hamiltonians in case of acceleration (setting @ =0 in (2.20)) and under the effect of
gravity (modified (2.19)) furnishes a test for the equivalence principle, which will be
carried out in Chapter 4.4. We shall see there signs of the equivalence principle not holding
in the quantum domain.

Investigation of the Dirac equation in non-inertial frames was done by Chapman
and Leiter [1976]. The analysis is in general terms, and the Hamiltonian is not calculated.

Further studies involving the use of the Dirac equation in the Earth’s gravitational
field were carried out using the Kerr metric by Lalak er al. [1995] and Wajima et al.
[1997]. In these papers approximate forms of the Kerr metric are quoted, but the authors do
not give a proper definition of coordinates. Moreover, to the same order of approximation,
the expressions for the metric are found to be different (see Chapter 5). I shall therefore
present a complete derivation of the Dirac Hamiltonian in Kerr space in Chapter 5.2. Then

the Dirac Hamiltonian will be determined in Chapter 5.3.
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3. On the Dirac equation in Riemannian spaces

In this chapter it is explained how to write the Dirac equation in general Riemannian
spaces using Weyl’s tetrad formalism. This method is described in great detail, as are the
problems of using different coordinate sets and moving reference frames. Some illustrative

examples are provided here, some will be appended in Chapters 4 and 5.

3.1. Writing out the Dirac equation

The outcome of an experiment clearly depends on two things: on the space-time in which it
is examined, and on the setting of the actual experimental setup which may be for example
accelerating. Basically, given a metric, which carries all features of space-time, and
choosing a frame, given by the basis vectors, we should be able to derive all characteristic
quantities from this information. For example the Hamiltonian, i.e. the energy-function; to

find the Hamiltonian in case of spin-Y particles, the Dirac equation has to be solved.
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The way in which the general relativistic formalism of four-vectors and tensors on
the one hand, and the spinor wavefunctions of quantum mechanics on the other, could be
combined was not understood after the publication of general relativity. The relativistic
wave-equation of Dirac (describing spin 1/2 particles) was only consistent with special
relativity, but not with general relativity. The problem of compatibility was solved by
Weyl who applied tetrad-fields. A tetrad defines a frame of reference at each point of
space-time, a tangent space, which is locally inertial; in this frame space-time is
Minkowski. Thus at each point of space-time a local flat frame is defined and Dirac’s

equation is reconstructed. It reads
ihy*D, ¥ =m¥ (3.1)

In writing the Dirac equation all effort is made to find the covariant derivative:
1rv  x
D, =e, +§[y yelr,,.. (3.2)

From this we see immediately, what we are after: ¢,, ', I, ,: the basis vectors, spin

matrices and connection coefficients.

This method is described in books and papers [see for example Sexl and
Urbantke, 1983, Fischbach ef al., 1981 or Hehl and Ni, 1990] in certain special cases, but
there are still unanswered questions when this simple-looking formula is used. In this
chapter it will be illustrated what sort of problems turn up when different coordinates are

used, and the equivalence of different-looking Hamiltonians is shown.

27



Chapter 3: On the Dirac equation in Riemannian spaces

3.2. Coordinates

Coordinates are similar to some kind of “ruler”; we use them to determine the relative
position of events (usually measured from the origin of the reference frame). The most
frequently used coordinates are Cartesian, spherical polar and cylindrical polar coordinates.
The choice of the coordinate system, however, influences the way in which the final result
is written, in the same way that readings of a distance differ if rulers of centimetre or inch
gratings are used. The distance is the same, only the expression describing it differs with

the choice of coordinates. For example the momentum operator in spherical polars reads

)
[Arthurs, 1970) p=—if 2 +1 l(a%+°°2"’) 1 _a_] while the Cartesian

 or ror " rsin® de
(d 9 9

coordinate formis p=—ih R , .
(Oxc  dyc  Odzc

In this chapter we are going to use three sets of space coordinates, while the time
coordinate t is unchanged. These are

a, spherical polars r,8,¢
b, Cartesian coordinates x., y., 2.
¢, “isotropic” coordinates [Mgller, 1972] x,, y,, z,
The transformation relating Cartesian and spherical polar coordinates is:

Xc =r-sin®-cos@
Yc=r-sind-sing. 3.3)
Zc =r-cosd

The isotropic radial coordinate is

2
r=r, -(l+—2'—n;) G4
1
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where m is the Schwarzschild radius. The advantage of using isotropic coordinates is that
the Schwarzschild metric expressed in these coordinates takes a form when the spatial part

has a common factor [see also Weinberg, 1972, p. 181]:

2
ll_i]
2 4
ds® = Dl g — 142 | (dr? +r2d0” + r?sin® 6 do?) (3.5)
1+ 2 2
2r,

The definition of the isotropic Cartesian coordinates to first order in ® is

X, =Xc '(l_d’)

¥ =yc-(-D) with =" (3.6)
r

Z, =ZC '(1‘@)

It is known from the principle of general covariance that physics is independent of
the choice of coordinates, so in a sense we can feel free to choose any sort of coordinates
for our calculation. While this is true, we must be careful about interpreting the result in
these arbitrarily chosen coordinates, and this is what we are going to illustrate below. In
the words of Misner et al. [1973]: “The names given to coordinates have no intrinsic
significance. A coordinate transformation is perfectly permissible, and has no influence on
the physics or the mathematics of a relativistic problem. The only thing it affects is easy
communication between the investigator who adopts it and his colleagues.”

Choosing coordinates for any calculation always involves a trade-off; one set of
coordinates will have advantages and disadvantages compared with other sets. Because of
symmetry properties of the space the metric may look simple in one coordinate set, but the
form of the momentum operator may be very complex. Also it often happens that one
would like to compare Hamiltonians calculated in different spaces and frequently the
relevant calculations are done using different coordinates: we end up with Hamiltonians

expressed in different coordinates, and then the question arises how to compare them. For
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example, when the effects of gravitation and an accelerated frame are to be compared, we
have to write the Dirac equation in Schwarzschild space and in an accelerated Minkowski
space. The first calculation is undoubtedly of the simplest form using isotropic coordinates,
while in the latter case it is advantageous to use Cartesians. This problem is worked out in

detail in chapter 4.
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3.3. Frames

Reference frames (or bases) are different type of objects from coordinate systems. They
have a physical meaning and so cannot be chosen arbitrarily. They correspond to the room
in which the experiment is done. A reference frame can also be rotating or accelerating and
depending on this property the expression gained in the calculation will be different -
although the space itself is the same; as the outcome of the corresponding experiment will
differ when the setup is rotating or accelerating because of non-inertial effects. In Section
3.11 an example is given how the form of the Hamiltonian depends on the choice of the
basis and not on coordinates.

When changing to a moving frame, often a coordinate transformation is
performed. This coordinate transformation itself, however, does not correspond to a
moving frame! But when the basis vectors are read off from the metric, the most natural
one will be the one corresponding to the moving frame. It will be illustrated in Section 3.10
in case of a rotating frame.

We also make a distinction between a coordinate basis and an orthogonal basis of
1-forms. To make the difference clear, let us illustrate it with an example. The invariant

line element in spherical polars in Minkowski metric reads:

ds® =dt* —dr? - r*d9* —r*sin® 0 do*. 3.7
The choice
©°=dt, ©' =dr, ©* =do, @' =dp (3.8)

corresponds to a coordinate (holonomic) basis, while
@ =dt, ©' =dr, ©* =rd#, @ =rsindp (3.9)

corresponds to an orthonormal basis, since

ast=e%) - (') - (02) - (%) (3.10)
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and the orthonormality condition

@a rL )=n“ (3.1D)
or equivalently
(ea ’eﬁ) =Nap | (3.12)

are satisfied. The relationship between coordinate and orthonormal bases is given by the
tetrad (see Section 3.4).

For each calculation there is a choice of using coordinate or orthonormal bases. In
a coordinate basis reading off the basis vectors and 1-forms from the metric is obvious, but
finding the spin matrices is a non-trivial matter, whereas in an orthonormal basis finding
one-forms is difficult but the form of spin matrices simply coincides with the special

relativistic forms.
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3.4. Tetrad formalism

To make clear the distinction between quantities expressed in an orthonormal basis on the
one hand, and in a coordinate basis on the other, I shall use letters with hats to denote
orthonormal indices and plain letters for coordinate indices. The tetrad components make

the connection between orthonormal and coordinate 1-forms:
0% =h* dx* . (3.13)
From the duality condition (1.1) between the one-forms and the basis vectors, it
follows that the basis vectors are related to the differentials by the inverse tetrad
e, =h,%9, . (3.14)
The tetrad components are used to transform tensors between coordinate and

orthonormal form
K,=h,"K,and K, =h*_K,. (3.15)
A special case of the tensor transformation is the metric tensor. In coordinate basis

the metric is denoted by g"". From the definitions of orthonormal basis, (3.10)-(3.12), it
follows that in orthonormal basis the metric tensor is Minkowski g“"t = n"t. So changing
from coordinate to orthonormal basis gives

h*, 'y g% =n%. (3.16)

Tetrads can be also used to calculate the Dirac equation, as was done by Hehl and

Ni [1990]. The object of anholonomicity is expressed in terms of the tetrad components as
The Dirac spin matrices can also be given using orthonormal or coordinate bases.

They have to fulfil

bevr}=2% or §2.vi}=29%. (3.18)
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In the case of the orthonormal basis this relation is satisfied by the usual Dirac matrices:

r*=8,v' =pa', (3.19)
and in coordinate basis they can be expressed using the tetrad components,

Y* = h,*y* . (3.20)
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3.5. The connection coefficients

There are alternative methods to calculate the connection coefficients. In the case of no

torsion the connection coefficients are determined from the formula

G =%(gx/1,y + 8w — 8aux )"";‘(Cm = Cux _Cpxl) (3.21)
with

lec.es]=Ci”e,. (3.22)
When using a coordinate basis the basis vectors simply have the form of

e,=0d,. (3.23)

therefore they commute, and so the terms in the second bracket of (3.21) vanish. In this
case then, the connection coefficients can be derived from differentials of the metric.
On the other hand in an orthonormal basis the metric is constant

(g, =diag(l,-1,-1,-1)) so the first bracket in (3.21) vanishes and the connection

coefficients are determined from the structure constants C M" after lowering the third

indices:

1
o = E(CMV —Coit ~Cita ) 3.24)

The connection coefficients can also be determined using differential geometry. In
this formalism a duality exists between space and functions [see for example: Israel, 1979,
Flanders, 1989 or Ryder, 1998]. This may reduce the amount of calculations in certain

circumstances, however in my calculations I have found it easier to use the other methods.
In differential geometry one solves the Cartan-Maurer equations for the basis 1-forms 8*
do* +w*, A6" =0 (3.25)

and the metric compatibility condition

35



Chapter 3: On the Dirac equation in Riemannian spaces

dg,, =0,, +0,, (3.26)
to get the connection forms @, . Then the connection coefficients can be found from

o, =T*, 06%. (3.27)

As mentioned above, the tetrad components can also be used to calculate the

connection coefficients. I shall now show that expression (3.17) follows from the definition

(3.22). To see this, use the duality condition

(e0,©0°)=86; (3.28)
to give

Cd = (leere;] ©). (3.29)
Changing to a coordinate basis (3.29) reads

cf= (g d,.nf 0,] nf ax") =
=(hz 3, hf 0, -hf O, kgD, , hf dx") =
= (g @onf) s +nE nE D, 3, —nf (B, 1), —hf hE D, 0,, (330)

b dx") =
= (nt @, 1), -0 @, h2)0, . nP ax")

The duality relation (9, , dx’)=5/ then gives

Cl=h2(@, nl)ns—nf @, n)ni. (3.31)
Using

0 =3, ()= 3, (f 13) = @ nf) 1§ +1? B f) (332)
gives for (3.31)

Cl=-nghf @, nl)+ ntnz0,nt) (3.33)

which is (3.17). This has the opposite sign to the formula used by Hehl and Ni [1990].
To illustrate the different methods for calculating the connection coefficients

examples are included in Appendix 3.12.1.
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3.6. The epsilon symbol

Equation (3.2) contains commutators of gamma matrices. Evaluating these commutators
will lead to expressions involving the epsilon symbol. The totally antisymmetric Levi-
Civita tensor was introduced in quantum mechanics, with all indices in covariant position.
In GR, however, the (upper and lower) position of indices is also important because of the
summation convention and the fixed position of the free indices, so the &£ symbol needs to

take up covariant and contravariant indices. The expression

ib'.y'] =2, 1, ®0" (3.34)
(Equations Al5 & A22 of Itzykson and Zuber, 1980) looks improper having the free
indices (i,j) upstairs on the left hand side, and downstairs on the right hand side. To

eliminate this problem, I define € symbols with mixed indices, e.g. the above expression

would read
ily'.y'] = 26" 1, ®0*. (3.35)
For completeness I add that the other commutators have the form
be.r'l=2a". (3.36)
In this thesis I am using this convention. As in most of my calculations

orthonormal bases are used, lowering and raising indices is done by using the Minkowski

metric, so

e =n"n"e¢,,, (3.37)
therefore with a (+,—,~,~) metric

£ =1, %=1, e =-1. (3.38)

Please note that with my convention the sign of some identities are opposite to the special

relativistic case

e E'm = = () Mhn = N M) and &, €% =-25]. (339)

37



Chapter 3: On the Dirac equation in Riemannian spaces

Here 6, =diag(1,1,1,1) is the Kronecker delta, which appears only with one covariant

and one contravariant index. 7, =diag(l,—l,—l,—1) =n*" are the components of the

Minkowski metric with two covariant or two contravariant indices.
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3.7. Invariant volume element

We recall from quantum mechanics that the quantity with a physical meaning is the
expectation values of operators, which we expect to be invariant under change of
coordinates. When comparisons are being made, it is expectation values that have to be
compared.

From integral calculus it follows that under a general coordinate transformation

x’ — x the volume element d*x transforms according to

a'x =[] g, (3.40)
ox
where ax is the inverse of the Jacobian of the transformation x’ — x.
X

Applying the transformation rule to the determinant of the metric tensor gives

29

so in order to be able to form invariant integrals, we have to introduce a determinental

2
detg, (3.41)

factor

J—detg d'x (3.42)

for the invariant volume element [see Weinberg, 1972, Dirac, 1975 or Adler et al., 1965].

This implies that in a general curved space spatial integration has to be carried out using

[dx [-detg, ¥ @. (3.43)

Therefore we get that the Hamiltonian is Hermitian when the spatial integration is

carried out using the correct measure, i.e.,

(H) =[d’x [~detg, ¥* H® = (H*). (3.44)

39



Chapter 3: On the Dirac equation in Riemannian spaces

However, it is more convenient to absorb this factor into the wavefunction by
performing a transformation. The required transformation, according to Audretsch and

Schiifer [1978), is:

, —detg“v 4
w e | T |y (3.45)
800

Then the corresponding Hamiltonian
H =xHyx". (3.46)
is Hermitian when the integration is carried out in the usual (flat space) sense:

(H') = [dx ¥ H' @ = (H"). (3.47)
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3.8. Nonrelativistic limit

We are considering experiments in the laboratory, where we are always dealing with non-
relativistic events, therefore we must consider a proper non-relativistic limit for Dirac’s
theory. It is well known that in the non-relativistic limit, spin %2 particles are described by a
two-component wavefunction in the Pauli theory. The usual method of demonstrating that
the Dirac equation goes to the Pauli equation in the small momentum limit uses the fact
that two of the four components of the Dirac spinor becomes small [see for example Ryder,
Ch. 2.6].

One writes the four-spinor in the form of

y=? (3.48)
Y4
two two-spinors. Then with the Hamiltonian of the form
E O
H = 3.49
5 & (349

where E and 0 (referring to the “even” and “odd” parts) are each 2x2 matrices, the Dirac
equation

EY =HY (3.50)
can be written as two coupled equations:

Ep=Ep+0

¢ ¢ ~ (3.51)
Ex=0p -Ey

Using the Dirac representation y << ¢ in the non-relativistic limit we only keep

terms of mc? as the coefficient of y . Note here, that both E (the total energy) and E (the

even part of the Hamiltonian) usually contains an mc? restmass term. Then from the

second equation of (3.51) we get
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(0]
= 3.52
X = 2me 3.32)
Substituting into (3.52) the equation for ¢ gives
o)
Ep=Ep + O =Q. (3.53)
2mc
Thus the non-relativistic Hamiltonian gets the form
g
H=E+ . 3.54
2mc? (3:54)

However if one goes beyond the lowest order approximation, the above method
encounters several problems [Foldy and Wouthuysen, 1950]: in the presence of external
fields the Hamiltonian associated with the large components is found to be not Hermitian
and the components of the velocity operator do not commute. A systematic procedure
developed by Foldy and Wouthuysen (FW transformation), which is a canonical
transformation, decouples the Dirac equation into two two-component equations, and is
free from the above mentioned problems. What’s more, the transformation has very
interesting consequences, for example the transformed position operator corresponds to a
particle being spread out over a region of size of the Compton wavelength (rather than a
point particle as in the Dirac representation).

The reason why four components are needed to describe the state of particles is,
that the Dirac Hamiltonian contains odd operators. Essentially, the FW transformation
brings the Hamiltonian into a form in which the odd terms vanish. Considering a particle in

an external field, three successive FW transformations have to be applied for the odd

. . 3
terms to vanish in the nonrelativistic limit, i.e. keeping terms of order (kmenc energ%) .

Writing the Hamiltonian in the form H = Bmc® + O+E the result of applying these

transformations [Bjorken and Drell, 1964), is:
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- 2 mc* 8m [ ]
H = ﬂ(mc Tmc? 8 3c°] E- o [O [O E]] 0,0
(3.55)

in which equation* we can recognise the terms of (3.54).

* Please note here, that the notation of E here does not refer to the full even part of the Hamiltonian, as was
the case before in (3.54), but to the difference between the even part and mc?. This notation is kept for

historic reasons.
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3.9. Momentum operator in different coordinates

The form of the momentum operator in Cartesian coordinates is the well known expression

d d O
dxc "y Bz

p= —ih( ) On the other hand, its form in other coordinates is not this

straightforward. Fischbach et al. [1981] used the above mentioned isotropic coordinate set

d d )
ax,, ay,, az,

(3.6) and substituted P =—ih[ ), which is clearly not identical to the

differential operator with respect to the Cartesian coordinates. Therefore his Hamiltonian
should be interpreted differently.
Below I shall show how one can determine the form of the momentum operator in

an arbitrary set of coordinates. I use the sets x,,y,,z, and r,8,¢ as examples. For the

sake of simplicity I work only up to first order in ® in the case of isotropic coordinates.

To achieve the aim of writing the momentum in an arbitrarily chosen coordinate
set let us first have a look at the Dirac Hamiltonian in Minkowski space using Cartesian
coordinates

He =Bm+a-p, (3.56)

This formula suggests that writing the Dirac Hamiltonian in the chosen
coordinates will help to determine the form of the momentum operator. So in the following
I am going to write the Dirac equation in Minkowski space, using isotropic and spherical

polar coordinates.
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3.9.1. Isotropic coordinates

We have from (3.6)
x =x. 1-0) = x. =x,(1+®) = dx, = (1+P) dx, +dPx, (3.57)
and similarly for the y and z coordinates. Thus the Minkowski line element will become

ds® = dt* - (dxc2 +dy’ +dzc’) =
dr* - (1+20) [dx, +dy,* +dz,*) - (3.58)
-2 (1+®) (dx, d®x, +dy, dPy, +dz, dbz,)

Please note here, that although ® is the gravitational potential, (3.57) is only a
coordinate transformation and this metric still refers to flat space (we shall see that all of -
the connection coefficients are zero).

Neglecting terms in ®? as usual, and using

JP ad ad

db = — dx,+— dy,+— dz, = —g-dx (3.59)
ox, dy, 0z, -
with
P
=2 3.60
8u o (3.60)
gives

ds* = dt* - (1+20) (ax,* +dy,* +dg,*) +2(g-dx) (x, dx, +y, dy, +2, dz,)
3.61)

Note that from the definition of g it follows that as x. and x, are equal to zero

order, g . = g, to first order and also g, (5, 5?‘-1—] =8, (.-!c éi_c) to first order. Le.

the metric tensor reads

1 0 0 0
- 0 _(1+2¢—28x,xl) 8, Y1 t8y% 8521 +8;,% (3.62)
B Tlo  guyite,x ~(+20-2¢,y,) 8. +8,% '
0 g,z+8,x 8,118y, -(1+2¢-2gz,z,
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We now write the Dirac equation, using an orthonormal basis. The orthogonal

basis one forms will take the form
@' =drand O = (1+®) dx,' - g,' (x-dx) (3.63)

and the dual basis vectors are

e; =-;)—t and ¢ = (l—d>)-5§-,-+g,,(§-§;). (3.64)
f X

The orthogonality of the time components is trivial, and for the space components

we have

(@', e,) = <(1+<b)dx;', (l—¢)5g'7>+<(l+d>)dx;, g,(x* _a%)>_

(3.65)
-(g' g axt), -2
(¢ ae). 4012
which is to first order in ® gives
! dJ dJ d
(0 ) = s s (o 50 )) (5" 0. 3) -
=0,+g8,x8,-8'x,8; = (3.66)
= 6]
because g'is proportional tox’.
Calculating the commutators of the basis vectors gives
le;. e;]=0 (3.67)
d dJ
AR [(1 ¢)a,,(1 “’)ax] [(1 ~0) 2. g, SxT]*
(3.68)
y UI=P) — | =
+|: a Nk ( ) ax’]
~-9)| 2. (1-9)|5 +(1 o) | @-), __"T+
ox, ox;
(3.69)

+igf1_11f1=
oxt T axt | |ax!T %' T oxt
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9
=(1_(b)gli+(l—d))(—gj) ag +x* ak 8‘; +
ox} ox; ox* ox) (3.70)
+ axka_,aag,_ axka=
& ox; = ox* ox* ox] 8 ox] = ox*
- o ) v 9 _ o se 9
_g'a—x;j-+( gj)ax; +gj 61 axk gl 8] axk ) (3.71)
=0
We have from (3.21) and (3.22) that
Fdn =0. 3.72)

As promised above, the space is flat Minkowski space. The covariant derivatives then

reduce simply to the basis vectors,
1 1
D, = e,,+§[y‘, Y ]Fw = e (3.73)

and so the Dirac equation reads

ihg;w = (Bm-iha-e)'¥ (3.74)

H, = Pm-iha e (3.75)
We now compare our results in Cartesian and in isotropic coordinates. We use the

equality of the expectation values: (H.) = (H,), which gives:

Jdxc dyc doc @ Ho ¥ = [|fdetg, dx, dy, dz, ®* H, ¥ (3.76)
As explained in Chapter 3.7., the next step is to absorb the determinental factor:

detg, = (1+2<1>—2g,, x,)(l+2<l>—2gy’ y,)(l+2<l>—2gz’ )=
=1+6®-2(g, x,+g, v, +g, )= . @I
=1+4®

Then, according to (3.46)

47



Chapter 3: On the Dirac equation in Riemannian spaces

H] = (detg, V4 H, (detg, )% =

= H,+(etg, Vi [1,, (@etg, )%= (3.78)
= H,-ih(detg, Vs [1-®)a' 3, +a' g, (x-2) 1-9]
which gives up to first order in ®
H, = H, +ih[a'a,,,d>] =
= H,+iha'(~g,) = (3.79)
= H' - ihg .£
So the equality of the expectation values gives for the momentum
p=—ihe—ihg=
3.80
= i (1-@) 2 v g5, 22|+ g G50
dx, =\~ 9dx, ) =
which to first order in ® gives
. J . ,
p= -dt(l—(b)a——-zhgc (xc - p)+ing (3.81)
L4 x, 2 £ -2
or
(3.82)

., d ;
-ih— = (l+¢)£—§c (’_‘c'ﬁ)—lhg.
dx,

The main result of this section is the above expression for the momentum operator

aaa]

in isotropic coordinates, which is clearly not identical with p =—ih , ,
= dx, dy, dz
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3.9.2. Spherical polar coordinates

As above we begin by writing the line element in terms of the chosen coordinates.

Differentiating (3.3) and substituting into the Cartesian form of the line element gives:

ds® = dt? —(dxc2 +dy.’ +dzc2) =

. (3.83)
= dt* ~dr* -r* d9’ -r’sin’ 8 do’
Choosing
©°%=dr, @i =dr, ©% = rd8, ©° = rsinddp (3.84)
and
) ) 19 1 9
=—’ e_ =——’ =———’ —4 — 3.85
BT a ATy AT e O rsind de (3.85)
gives similarly to the previous case
L = Ty = Ty =7
Ly = —Tyy5 = -Tyy; = rsin’® (3.86)
Substituting into (3.1) gives after a rearrangement:
0 0y _
lhé?‘y -_— Hpalnr‘y -
= {Bm-ih| o' i+l +a? l_a_+cot0 +a’ 1 9 b 4
or r rodé 2r rsin @ dg
(3.87)

This exhibits the Hamiltonian in spherical polar coordinates. It is seen, for
example, that the radial component of the momentum operator is — ﬂ{ -:—+ l) This result
ror

can be gained using different methods {see Arthurs, 1970 or Dirac, 1974], too.
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3.10. Effect of rotation of the reference frame; Fermi-Walker transport

The space-time metric defines the background geometry in which we are working and to
describe a particular physical system we need also to specify a frame. Afterall, it is not the
space that might be moving but the frame, relative to the gyroscope. Rotation can be
intrinsically defined by using Fermi-Walker (FW) transport. For a non-rotating, non-
accelerating \./ector, the FW derivative is zero. The Dirac equation depends on both the
metric and the frame. The discussion of Hehl and Ni [1990] makes no mention of frames,
but we shall show below how to cast the problem in such a way that the roles of frames
and coordinate systems are kept distinct.

Let us consider a rotating reference frame in Minkowski space-time. Defining the
coordinates

Xc = xcos@t—ysinwt
Y = xsinwt+ ycoswt (3.88)
e =2

the line element becomes:

ds* = di* - (dx.? +dyc +dz.?) =
= di* —* (x* +y?)de? - (@x® +dy* +de?)+ . (3.89)
+2wydxdt—-2w xdydt

Please note that at this point we have the metric written in rotating coordinates, but it does
not mean that anything would be rotating. One reads off the most natural frame with the

orthonormal basis and dual vectors:

0%=dt, 0 =dx-wydt, ©* =dy+wxdr, % =dz (3.90)

d d d d
e = —+Wy—-0 x—

2 3
TA VY T Ta Ty Tk G20

and hopefully it will correspond to a rotating frame, which will be examined below.

It turns out that Dirac’s equation is then
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LAy
tho-¥ = H, ¥ (3.92)
= {pm+g-g-w(L,+Sz)}‘*’
with
. . d d h
__ ——in|x 2 -y 2| s =kg. 3.93
p=-ih¥y, L, th(x % ax) S, >° (3.93)

Details of this calculation is given in Appendix 3.12.2.

Although this space is flat, we got additional terms, proportional to the angular
velocity corresponding to non-inertial effects caused by the rotation of the frame. The spin-
rotation coupling term was predicted by Mashhoon [1988], and a corresponding expression
was found by Hehl and Ni [1990] as a special case of a=0.

To verify that the frame (3.91) is actually rotating one must calculate the Fermi-

Walker derivatives of the basis vectors [Straumann, 1991]. The relevant expression is

Vi ey =V, e5 (e e5)A, +(A,. €5)eo (3.94)
with

Vets =" (3.95)
being the covariant derivative of e, in the direction of e, ; eo is tangent to the worldline

and A, =V,_ ¢, is the acceleration; (', ) denotes scalar product of two covariant vectors.

In the case of (3.91) using results (3.157) one gets

A =Vye = ¢, T =0 (3.96)
Vo' e =Vye = e, = eI, = we, (3.97)
VIV e, =— we, (3.98)

which shows that the frame is not accelerating but is indeed rotating in the (1-2) plane.
As mentioned before, Hehl and Ni calculated the Dirac Hamiltonian in a rotating

and accelerating frame. In their paper [Hehl and Ni, 1990] a reference to a coordinate
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transformation is made, which is not the proper way of handling non-inertial frames. In the
following I am going to show that the basis they choose does really correspond to a

rotating and accelerated frame, using the notion of the FW derivatives. They chose for the

_ 1 AW
RETRAYN
cz

= (3.100)

basis

" 142X
C2
(3.101)
A
Too = ~Ties = '—gc—.;-

1+=2=

Now we check the motion of this frame

A, =V, ¢

€

= Fﬂ na en =
i
a
/c’ (3.102)

c? €

which corresponds to a frame being accelerated with acceleration a, and

Vo' e; = Ve —(e,,, e])A,O +(A,o, e])e,, =
(3.103)
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k

)

8/
ot /e, .

. e' =

2
C
k
L)
=€ /e
Jk C"

which corresponds to a frame rotating with angular velocity w, as claimed by the authors.

Please note that these relations hold only to first order in the acceleration and the

angular velocity of the frame.
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3.11. Dependence of the Hamiltonian on the choice of basis

Having the Minkowski metric in spherical polars, as in (3.83) the choice of basis one-
forms of (3.84) seemed fairly obvious, and the result we gained was what one would
expect from other references [Arthurs, 1970 or Dirac, 1974]. Below, an example is given
of what fesult one obtains if one chooses a less trivial, position dependent basis:

6° = ar

6' = sin B cosp dr+rcos®cose dd—rsindsingpde (3.105)

8% = sin Osin@ dr+rcos?sing do +rsincosp do
0° = cos®dr—rsin®dd

Then the basis vectors will be

e =2
° ot
. d 1 d . d
e; = sindcosp—+—cosPcosQ —————sinp——
or r 90 rsind d¢
3 1 3 (3.106)
. = sind —+ 0 —_
e; = sindsing o> rcos singp — 30 —> cosQ 3
J 1 d
= cos ———sind —
% or r 0
As these expressions correspond to o = dxc' and ¢, = 9 — it is trivial that they are

Xc
orthonormal, and all the connection coefficient components are zero. Therefore the
covariant differential operator will take the form of the basis vector, as in (3.73). So we get
for the Dirac equation

0=m¥+ihye¥=

) J 1 d 1 d
ih 9 inQ —
m¥ +ihf {(a:)“” (smocosw > +— cosﬂcosq) Y sing 3 ]+

(3.107)
+a (s1n0sm(pi+lcos0sm(pi+ 1 costp-a—)+

0 09 rsind 29
J 1 d
+a (cosﬂ;—:smﬂaﬂ]}‘l’
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which is different from (3.87). The coefficients of the o matrices correspond to the
components of the momentum in the directions of the basis vectors, and these are not the
unit polar vectors, so this is the reason why these components are different from the ones
given by (3.87).

The results of (3.87) can be derived from (3.107) using the method explained in

the book of Sexl and Urbantke [1983]. Introducing

7o =7°
ol . 1 . 2 3
¥ = sin®cos@py +sindsingy” +cosdy (3.108)
7% = cos® cospy' +cosPsingy? —sindy?
72 = —singpy' +cospy?
will give
¥ ¥ 19¥ 1 o¥
O=m¥+ih{f’— +7'— + 7 =——+ 7 — 3.109
f {y ot Y or Y r 00 Y rsin ¢ a¢} ( )

As f7*. 7'} = 2diag(1,-1,-1,-1) and §*, y*}= 2diag(1,~1,-1,-1)there must be a

transformation such that 7* = S y* S and this will imply ¥ = S'¥. So (3.107) will

give
0=mS" ‘P+thS"{y SS"a‘P+y'SS"'—a-‘£+
ot or
1{ 40P 95" &
+7285—| 8" —+—V¥ |+ 3.110
4 r[ 30 3o ] G.110)
1 40¥ 95 &
+y’S§——| 87—+ —
Y rsim?( Jdo J¢ )}
Multiplying by S gives
¥ 0¥ ,13¥ 1 a\P
0=m¥+ih a'—+a*—+a’
" 'ﬂ{a: o YT Tsmoap

(3.111)

-1 -1
+ oe2 1g 98 +a’ _l S (o) y
a0 rsind dg

and now it is only to prove that
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a'=a’*s —
L

and

-1
o? cot0=a3 .1 SGS
2 sin® d¢

are satisfied.
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3.12. Appendices

3.12.1. Appendix: Examples of calculating the connection coefficients

Below examples are given of the calculation of the connection coefficients using different
methods described in Chapter 3.5. The metric
ds* =dr* +r* do* + r*sin* 9 do*. (3.114)
is used, describing E’ in spherical polars.
The choice of a coordinate basis corresponds to
©'=dr, ©* = d, ©° =dyp (3.115)
and

e = -Q-, e, = —a-. e = —a— (3.116)

or a0 s 10

with the metric tensor components

1 0 0
g,=|0 r 0 (3.117)
0 0 r%sin’®
and
( \
1 0 0
g'=0 & o | (3.118)
r
1
0 0
k "ZSinzl,)
While an orthonormal basis would be
©' =dr, @ =r d#, ©% = rsin® do (3.119)
and

2 .1 2
99’ * rsind do

(3.120)

9 1
“ o Ty

57



Chapter 3: On the Dirac equation in Riemannian spaces

with the metric tensor components

1 00
g;=|0 10 (3.121)
0 01
and
1 00
g’=[0o 1 0 (3.122)
0 01
A The traditional method using equation (3.21)
A.l In coordinate basis
The non-zero derivatives of the metric components (3.117) are
821 =2r
g3, =2rsin’ 9 (3.123)

832 =2rsindrcosd.
Substituting these values into (3.21), and noting that in coordinate basis the

structure constants C,, vanish, gives for the non-zero connection coefficients:

r‘122=_r9 F212=r, Fn|=r N
[, =-rsin’®, Ty, =rsin*@®, I, =rsin’*d, (3.124)
[y =-rsin@cos® , Iy, =rsindcosd , I, =rsindcosd.

A.2 In orthonormal basis

In this case one has to find the non-vanishing commutators of the basis vectors. Using

(3.120) these are
1
le; e;] = —r—,s‘% : (3.125)

L 2
r?sin 0 0

leio 3] = - (3.126)
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and
_cos® 0
e., e.|=— 3.127
[ : ] lsin’® 3(0 ( )
The non-zero components of the structure constant C,, then turn out to be, using
(3.127)
3 3 1
oo X 1
3 3
Cyl=-Cy' =- 222, (3.130)
r

Lowering the third indices with the metric (3.121) makes no chémge to the values.
Then with (3.21), on noting that in case of an orthonormal basis the derivatives of the

metric tensor components vanish one gets

. 1

i =Ty =T,
1

Tig ==Tys =—7 (3.131)
cotd

Ly =—Tyy =~ "

Please note here, that the connection coefficients found in (3.124) and (3.131) are
different. This is because the connection is not a tensor, so it is not invariant, but depends
on the choice of the basis, too. Also one can observe, that when working in an orthonormal
basis, the connection coefficients are antisymmetric in the first two indices, and when
working in a coordinate basis, the connection coefficients are symmetric in the last two

indices.
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B With differential geometry

B.1 In coordinate basis

Using the metric compatibility condition (3.26) gives

and

lemma,

dg, =2w, =0,
dg,, =2m,, =2rdr , (3.132)
dg,, =2, =2rsin® 8 dr + 2r? sin ®cosB# do.

dg, =w, +w, =0 for i# j. (3.133)

Raising indices is done using the metric tensor, so

' =0
2 _ 1 1
W2 =—rdr=—dr (3.134)
r r
3 1 2 2. 1
[ =T—2-—(rsm Odr+r snnﬂcos0d0)=—dr+cot0dt9.
r®sin r

Now the Cartan-Maurer equations (3.25) give, as d@0* =0 from the Poincaré

w2 AdO+w0's Adp=0,

o Adr+—l-drAd0+w23Ad(p=0, (3.135)
r

) Adr+w*; Ad0+ldr/\d(p+cot0d19/\d¢p=0.
r

From the 2" equation of (3.135) one can deduce that

oh =%d0 , (3.136)

and from the 3™ equation

) =%d¢ and w’: =cotddp. (3.137)
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The rest of the non-zero connection 1-forms can be obtained from these via

lowering and raising indices and interchanging the indices using (3.133). Summarising the

results for the connection 1-forms:

w'1=0,w0'2=-rdd , w's=-rsin’ ddep ,

0 =Ldp , 0% L4 , 0% =—sinBcosBdp , (3.138)
r r

w* =—l-d(p , @2 =cotddp , ws =Lar +cotads.
r r

Finally, using equation (3.27) gives for the non-zero connection coefficients

Mp=-r, 'y =-l— , Ty ='l- R
r r
My =-rsin?d, ', =1, | Y =l, (3.139)
r r

Iy =-sindcos® , Mxn=cotd, N =cotd,

which is equivalent to (3.124) on lowering the first indices.

B.2 Using orthonormal basis

In this case all the derivatives of the metric tensor components vanish, so (3.26) gives

and

W;; =Wy =W;; = 0 (3.140)
Wy +wy, =0 for i#j. (3.141)
Now the Cartan-Maurer equations (3.25) give,

wii A rd19+wii Arsintdde=0,
drad®+ot Adr+ois Arsinddp=0, (3.142)
sin®drAdp +rcos®ddAdp+w’i ndr+w’s Ardd=0.

From the 2™ equation of (3.142) one can deduce that

i =do , (3.143)

and from the 3™ equation
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w3 =sin0dp and w’; =cosBdgp. (3.144)

The rest of the non-zero connection 1-forms can be obtained from these via
lowering and raising indices and interchanging the indices using (3.141). Summarising the
results for the connection 1-forms:

o'i=0* =0’ =0,

By — _ppde
wAz (DAI do , (3.145)
w's =-w’i =-sinddp ,

w? =-w’s = ~costdeg.

Finally, using equation (3.27) gives for the non-zero connection coefficients

My =-Tis =1,
r
i 3 1
Is=-TIi§=——, (3.146)
r
Iy =— iy =22
r

which is equivalent to (3.131) as lowering indices in orthonormal basis makes no change to

the value.

C Tetrad components

The tetrad transforming between bases (3.115) and (3.119) is

hiy=1, hla=r, h¥% = rsind (3.147)
and
1 1
R'=1, hl==, n’= i 3.148
! 2 r 3 rsin® ( )

The non-zero derivatives of the tetrad-components (3.147) are
dhi =1, 9,h% =sin® and 9,k % =rcosd . (3.149)

Using (3.17) gives for the structure constants
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3 3 5 5 1 1
—Cy' =Cpy" =h; ' by’ (az h? -9, hzz)= —1;1= - (3.150)
Cyd=Cyd=h k0, 1, —0, 1%,)=-1——sin = 3.151)
—Lsi Tl T A O30, T0, 3__rsinﬂsm—7’ 3.
5 3 3 3 1 cotd
_C523 =Ci§3=hiz h53(83 h’, -9, h33)= _—r:rsinﬂrCOSﬂ=_ ,» (3.152)

all the rest are zero. One can see that this is equivalent to (3.128)-(3.130).

3.12.2. Appendix: Details of the derivation of the Dirac Hamiltonian in Section 3.10

Again, in this calculation orthonormal basis will be used, with the traditional method
described in Appendix 3.12.1.A.

The non-vanishing commutators of the basis vectors (3.91) are

9 9 dJ
Lel=-loxl, Ll-0l 1
le;. ] [a)x > ax] vy (3.153)

and
le;, e,]1= —w;—x. (3.154)

The non-zero components of the structure constant are

3 )
Ci =—Cp =0 (3.155)
and
Cy' =—Cy; =-0. (3.156)

Lowering the third indices with the metric g,, = diag (+,—,-,—) introduces a minus sign to

the values of the above. Then with (3.21) one gets

Loz =—Tg =0,
Ty =Ty =0 , (3.157)
oo =Ty =@-
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The covariant derivatives then are

D; = e6+%[yi, yi]I‘m =

= 2+a) y-a—-wx-g——lic’w N
ot ox dy 2
and
d

D; = e =§. (3.159)
So the Dirac equation reads

m¥ ={ihﬁ%-&-ﬂga%_pg_gﬂhﬁm(y-%—x%)}‘P, (3.160)
which gives for the Hamiltonian

H =ﬂm—%o‘3w+ gg—ihu{y%—x%), (3.161)

as in (3.92).



4. Effect of a stationary gravitational source on Dirac particles*

In this chapter a study is performed of the effect of a stationary gravitational source on
spin-Y2 particles. In Section 4.1 the proper, general relativistic treatment is followed, i.e.
the particle is considered as being in a Schwarzschild field. In Section 4.2 the effect of an
accelerated frame in Minkowski space is investigated. After a review of the Equivalence
Principle in Section 4.3, the Hamiltonians found are being compared in Section 4.4
providing a test of the Equivalence Principle.

When the effect of gravity is mentioned, it is common to introduce the notation:

m_GMg

P =—= 3 4.1)
r rc
and
dd
= —— 4.2
8i ' 4.2)

* A condensed version of the material in this chapter has been published in Varji and Ryder, 1998
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where m is the Schwarzschild radius and r is the radius; » = ((x')2 +(x2)z +(x3 )2)% or

rr=-xx.

Nonrelativistically & corresponds to the gravitational potential, and g to the

gravitational acceleration. Then it follows that

and
g x =®. 4.4)
We can also see, that
2 2, x)=-s, @
with
dig, m X 8
B =By +375L 4.6)

Thus the derivative of the gravitational acceleration can not be neglected, the
gravitational field in a Schwarzschild space is non-uniform. This accounts for the tidal

effect.

4.1. Schwarzschild field

The Schwarzschild solution is most commonly referred to in spherical polar coordinates as

in Equation (2.3)
ds? = 1_2% c2dr? ____1__er —r? (dﬂ2 +sin’ @ d¢2) , (4.7)
rc? 1-2 GM ¢
rc?
i.e.
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GM 1
= diag|1-2 2, , rt, risin?®|. 4.8)
gpv 8 rcz l_ZGMQ

rc2

However in certain situations it is more convenient to work in Cartesian
coordinates. To obtain this form, a coordinate transformation
x* =(ct,r, 0, 9)> x™* = ot &', x*, x*) 4.9)

has to be performed with

3
0 = cos™ (—) (4.10)
r
2
¢ = tan™ (x_l)
x
. . , 9x* dxP
The metric tensor transforms according to g,, = Y EYad 8.p» hence to first
x x

order in @ the metric becomes:

ds* = (1-2®)cdt* -
—[(nzgc'—f)(dx')’ +(1+ 2-3-;;"—2)(dx=)’ +(1+2£:—fi](dx )’]—
_%[(glxz + 8le)d"ldx2+ (gzx3 + 83"2)‘1"2‘1*3 + (gsxl + glxs)dxsdxl]

(4.11)
with g, defined in (4.3).

The space defined by the metric (4.11) will be used to calculate the Dirac
Hamiltonian (2.18) following the same method as was used in Appendix 3.12.1.A.2. One

finds the orthogonal basis one-forms @* to be
o . . i
0% = (1-®)cdt and ©' = dx' + % (x-dx), 4.12)
and the dual tetrad vectors are given by
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. = +¢ — —— and @, = ———— | X —— ], .13

For details see Appendix 4.5.1.

The non-zero structure-constants (3.22) turn out to be

8
Coto = —Crg =7+

010 cz
4.14)
Cy = (e )
,';/;-'CT #8i 8 8l

and the connection coefficients, defined by (3.24) are

8

Las = ~Tia =_; ’

¢ 4.15)
Iy = (e )
o=z #8 — 88,

For details of the calculation, see Appendix 4.5.2.

It is then straightforward to write out the Dirac equation and find the Hamiltonian

H = (l—dl)ﬂ mc? +(l—¢)c(q-£)+%(g-§)—%(q-§k-£). (4.16)

Details of the calculation can be found in Appendix 4.5.3.

The expectation value of this Hamiltonian is
(H) = [ax' dx* dx® [~detg ¥* H'Y, 4.17)

where (det g) refers to the spatial part of the metric (4.11) and dx'dx?dx’is the Cartesian

volume element. Absorbing, as explained in Chapter 3.7, the determinental factor into the
wavefunction, we define ¥’ = (1+ %)‘P such that (4.17) simplifies to

(H) = [&’r¥" H'Y", (4.18)

with:

C e "o x‘“\l&\.\

68 LT



Chapter 4: Effect of a stationary gravitational source on Dirac particles

H = (1+?l)11(1-3) _
2 2 (4.19)

= (1-@)Bme* +(1-0)cla-p)-~(a-g)lx- ).

This is the Hamiltonian in the usual sense. In the following I shall drop the prime,
denoting this transformed Hamiltonian by H.
The proper non-relativistic limit will be obtained by applying three successive

Foldy-Wouthuysen transformations as described in Section 3.8. Equation (4.19) then gives:

0= c(g-_g)—%(g'.&)(@ﬁ)":,‘(Q’Q)('!'E) (4.20)

E = —finlg-x)
Hence
O = a'a'p,p,-a'p, (g,x'a* p, +a’'g,px*)-
(g,x’a"p, +a g,p,, *)a'p, 4.21)
= p’-2p- (g x)p- 2(2 +2ha (§Xp
and
[0E]=-la-p) mlg-x)| =
, (4.22)
= 2ﬂmd>(q-£)+thﬂm(q-§)
and
[Q[OED = la- p, 28mdla- p)+ inpmia - g)l =
4.23)
= —4pmp-® p+4hpmo -(gx p).
When the formulae
[(I), pi] = —ihg, , (4.24)
b, p.) = st (4.25)
[gj’pl] = 3 811 3:‘% ’ (4.26)
a'a’ = -g¥+ie!, o* (4.27)
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and

', 8] = 2a'B = -2pa’ (4.28)

are used.

. . 1 4 .
The term containing O' is of the order —; which is not of interest. Also, the term
m

[QO] vanishes, as the Hamiltonian is independent of time. Evaluating H to the desired

accuracy gives:

)& p)

4.29)
This is the main result of this Chapter, and expresses the Hamiltonian for a Dirac

H = Bmc’ -ﬂm(g +—P -E P'(&'L‘)B”

2mct =

particle in a Schwarzschild field." The table below shows the interpretation of these terms,
and the approximate orders of magnitude in case of a thermal neutron (de Broglie

wavelength of 2A and kinetic energy of 20meV).

term interpretation order of magmtude
Pmc? rest-mass energy 10°eV
-B m(& - x) redshift of rest-mass energy (verified by COW) 1eV
B, kinetic energy 10° eV
2m
B redshift of kinetic ener 107" eV
- —p. (& . E)P 8y
2mc
hp spin-orbit coupling 107 eV
+ o-(gx
2m CZ -_— @ E)
_ ﬂz (I_’ e p) square of radial component of momentum 107" eV
mc =

Table 4.1: Meaning and approximate order of the terms of the Hamiltonian.

* The result is quoted in this form for easy comparison with the Hamiltonian in an accelerated frame [Hehl

and Ni, 1990] in the next section. But for proper handling we note that

here_e-k-;)£=p,(é-g)pl+p2(£-£)p2+p3g-§)p3. All the other scalar products are e.g.

(é- 5) = g;x', product of a covariant and a contravariant component, and summed over the spatial indices.
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For the sake of comparison with other works I should like at this stage, however,
to make the following observation. We may, instead of the coordinates (4.10), introduce

isotropic coordinates (x;, y;, z7) with the definitions

X, = x'(l-q%)2 v W= x’(l—“%)2 7= x’(l—‘p%)z (4.30)

GM,
2 2 2
cz\/x, +y,'+z

coordinates it may be shown [Mgller, 1972] that the Schwarzschild metric (4.7) becomes

and @' = . Note that to first order ® = ®’. In terms of these

o/
ds® = (1+<1%)‘ (dx,’+dy,’+dz,2)- : A c’dr? 4.31)

1+ ‘I’%
which is exact to all orders in ®’.

In previous work on the Dirac equation in a Schwarzschild field, Fischbach et al.

{1981] assumed the form (4.31) for the metric with the momentum operator defined by

o 9 9 9 . . (9 d 0 ,
B:—;h(ax',ay',az'] in contrast with £=—lh(ax,,axz’ax3]' His

calculations yielded the Hamiltonian" [Equation 2.37b of Fischbach et al., 1981]
H, = (1—<1>)ﬂmc’—ih(1—2<1>)c(g-a,)—'—”-(g-g). (4.32)
M
In quantum mechanics momentum is defined by p = — ihai , differentiation with
- X

respect to the Cartesian coordinates. Using the results of Chapter 3.9.1 this means that in

Fischbach’s coordinates the momentum operator becomes

axl’ayl'azl dx

=L

p= —ih(l—(b)( 9 9 @ ]—ih_g_—ihg(x_,-—a——]. (4.33)
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The Hamiltonian (4.19) can be derived from (4.32) using the above form of the

momentum operator. Substituting the expression for — ihd, gives

= (1-®)B mc* +(l—d))cg-g—%(q-g)&-gﬁ%@g)—%(@'g)’
(4.34)

H, = 1-®)B mc* +(l—2<I>)cg-((l+<D)£—CL2§_(:£-£)+%§)—%(Q-g)=

which is equivalent to (4.19).
Performing three successive FW transformations to (4.34) gives [Equation 2.44 of

Fischbach et al., 1981]

H = Bmc? (l—<l>)+%p2 +%ﬂ(—-’?’;—p2 + ":i'z g'p+ 2"’;2 _-(gxg))
(4.35)
As far as the Dirac particle in a Schwarzschild field is concerned, our Hamiltonian
(4.29) differs from Fischbach’s (4.35), as it stands, in that (4.35) does not feature the last
term of (4.29); and the coefficients of the gravitational correction terms are also different.
But with redefining the momentum operator, one can see that the two expressions mean the

same.

* Please note here, that Fischbach's g is defined with the opposite sign (cf. Equation 2.29 of Fischbach et al.,
1981 and (4.2)). Here the sign of the ag is changed to opposite for correspondence with the convention
applied in this thesis.
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4.2, Accelerated frame in Minkowski space

The Equivalence Principle states the equality of the local effects of a gravitational field and
a uniformly accelerated frame. When a gravitational field is compared to a uniformly
accelerated frame, there is a trivial difference between the two effects, caused by the
differences in structure of the two: one has a source, the other does not. For this reason the
usual statement of the equivalence principle is restricted to small regions. Locality is a key
point here, because the gravitational field being central, i.e. having a source, is never
uniform, which results in tidal effects. A comparison of the Schwarzschild field and a
uniformly accelerated frame is to be made in Section 4.4, where all tidal terms are to be
neglected. Neglecting all tidal terms may be a case of throwing out the baby with the bath
water, as we do not know whether the existence of these neglected terms arises from the
fact that a curved space is considered, or because it is a central field.

Another possibility for the comparison of gravity and acceleration may be to
consider an accelerated frame where the acceleration-field has a similar structure to the
gravitational field, i.e. it is central, it has a “source”, too. Such an accelerated frame could
be produced if an electrically charged box was pulled by a fixed object with an opposite
charge, but negligible mass (to avoid gravitational effects). To describe such a situation the

Kerr-Newman space has to be considered. This situation can not be dealt with using the
method of Hehl and Ni, by changing the constant ato a, = — Lsx, in a rigid frame.
r

I would like to note here that there is no such thing as a homogeneous
gravitational field which is supposed to be identical with an accelerated frame. According
to my understanding of the Equivalence Principle, it is about the equivalence of a
gravitational field and an accelerated frame in a small region, i.e. up to a certain

approximation. This approximation is believed to be equivalent of neglecting tidal terms.
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Also, tests for the Equivalence Principle are aimed to determine the order of the

approximation up to what it is satisfied.
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4.3. The Equivalence Principle

Of all the principles at work in gravitation, none is more central than the equivalence principle.
It forms the foundation of General Relativity by stating that the effect of gravitational
acceleration by a massive object is the same as that of an oppositely directed mechanical
acceleration. “This assumption of exact physical equivalence makes it impossible for us to
speak of the absolute acceleration of the system of reference, just as the usual theory of
relativity forbids us to talk of the absolute velocity of a system; and it makes the equal falling

of all bodies in a gravitational field seem a matter of course.” [Einstein, 1911]

“Physics is simple only when viewed locally: that is Einstein’s great lesson”
[Misner et al., 1973, p. 19.]

The whole idea of the equivalence principle originates in the observation that all
bodies, regardless of their composition, fall under gravity in the same way. We may recall
Galileo’s alleged experiments at the leaning tower of Pisa. Experimental tests looking for a
discrepancy between the inertial and the gravitational masses, which would manifest itself
in causing different gravitational acceleration for objects A and B, and characterised by the

ratio:

a, —ag
= , 4.36
1 2 (aA ta, ) #.5)
have been sought for more than 300 years. Tests of this type was first recorded by Galileo

using inclined planes to dilute gravity. Pendulums were used by Newton in 1687 (he had
found that 7 <107) and by Bessel in 1832 (1 <2x107*). Torsion balances were used by

Edtvos and collaborators achieving the result of 7 <5x107 in 1922 followed by the

-12

experiments of Dicke in 1960s (1 <107'*). [see references of Vessot, 1984]
These tests confirmed the principle of equivalence to a very high accuracy,
showing that gravitational acceleration is almost certainly independent of composition.

However, with a nonzero experimental error involved, one cannot be sure that it is exactly
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true, and there is still a good reason for searching for an anomaly. This search has so far
been done by means of theoretical reasoning, because if there is any discrepancy it is too
small to be detected at the present level of experimental accuracy.

The above tests (of Galileo, Newton, et al.) all involved neutral matter, and a
natural question would be whether or not the equivalence principle would hold for
electrically charged objects. It was found by DeWitt and Brehme [1960] that a charged
particle in a gravitational field experiences a self-interaction force, but it does not do so in
an accelerated frame of reference. The authors claimed that the reason behind this is that a
charged particle carries with it an electromagnetic field, which is by no means local, and
therefore it “can not be considered as a local device”.

Working out the electrostatic potential of a point charge in Schwarzschild space
Léauté and Linet [1983] found that it is different from the potential resulting in an
accelerated frame which fact violates the equivalence principle. Besides DeWitt’s self-
force they discovered an additional force arising from the electric field induced by the
potential in Schwarzschild space. Piazzese and Rizzi [1991] examined the observability of
this discrepancy, and found that for a gravitational source of very large angular momentum
in a small neighbourhood of its “turning point” (where the reversal of the tidal force’s
direction takes place) this effect may be observable. This was the only case when they
found the EP failing. Otherwise, including the case of the Schwarzschild space, the effect
of the above mentioned discrepancy was found “quite unobservable” [Piazzese and Rizzi,
1991].

We should also note that spinning neutral particles deviate from geodetic motion
by terms involving the Riemann tensor explicitly, which is an expression of the fact that
spin is a nonlocal phenomenon [Papapetrou, 1951]. It may therefore be expected that terms

involving spin may violate the Equivalence Principle.
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According to the general theory of relativity, we must include as part of the mass
of an object, the binding energy holding it together. This includes the nuclear binding
energy, the energy from the electromagnetic forces holding the atom together, the
intermolecular forces holding solids together, and the gravitational energy that holds such
massive bodies as the Earth together. These very different forms of energy might
contribute to mass or with Einstein’s words [1906]: “the mass of a body is a measure of its
energy-content”. This is the basis of these very precise experimental tests with material
bodies of widely different composition. Tests of the equivalence principle involve the
question of how various forms of energy contribute to mass.

It is common to make a distinction between various forms of the EP. The EP is
called strong if it says that locally all laws of nature are the same in a gravitational field
and in an accelerated frame, i.e. locally the acceleration caused by gravity can be
transformed to zero for point particles provided there are no fields present other than
gravity. We call the EP weak if it concerns not all the laws of nature but only laws of
motion of freely falling particles (the experiments of Eotvis et al. and Dicke et al.
provided direct evidence for the weak and indirect for the strong EP). In other words it
leads to the universality of free fall. For a classical point-like particle it means that in the
absence of any interaction other than gravity, particles with the same prescribed velocity in
some point of space-time move along the same path irrespective of their mass. We may
also find that some books divide the strong EP into two: the very strong EP applies to all
phenomena, whereas the medium strong EP to all but gravitational phenomena

[Weinberg, 1972, Ch. 3.1 and Ciufolini and Wheeler, 1995].
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4.4. Conclusions on the Equivalence Principle

When the Equivalence Principle is tested, what is involved is essentially a comparison of
results in an accelerated Minkowski frame and a frame in Schwarzschild space. The

relevant metrics in spherical polars are, as in Equations (2.6) and (2.3)

ds? = (1+29-—f)c2d:’ ~ dr* —r* (@0 +sin® & do?) 4.37)
c
and
ds* = [1-2Me | 242 dr* —r* (@6* +sin? 6 do?), (4.38)
rc? GM,
1-2—
rc
respectively.

Considering these equations, one can see that there are already differences
between the two cases at the level of the metrics. For example, in Equation (4.37) only the

temporal part of the metric has a coefficient different form unity, whereas in Equation

(4.38) both g, and g,, depend on position. We can notice this difference, which seems to

be a fundamental one, but can not deduce any physical differences between the two cases.
One has to keep in mind that only invariant quantities carry physical information and a
metric is not such a thing. Even if we derive quantities from the metric, and they are found
to be different, one has to be careful about which observer measures the given quantity.
Below a comparison is made involving the Hamiltonian of a Dirac particle in the

two cases. In an accelerated frame the Hamiltonian has the form of

hB

mc?

H = ﬂmc’+ﬂm(e-£)+-2€—'p’+-—£—p-(g-£)g+4 g -(axp)@.39)

2mc? =
[results of Hehl and Ni, 1990 substituting @ =0].
Comparing (4.29) and (4.39), which equations describe the effect of gravitational

field and acceleration on spin Y2 particles, yields a test of the medium strong equivalence
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principle. Here we mean the usual view about an accelerated frame and a frame in
gravitational ficld being locally indistinguishable. Putting a=-g, into equation (4.39),
gives us that the flat-space energy-mass terms and their redshifted forms are the same in
the two cases. On the other hand in case of the higher order correction terms we do not get
agreement. Although both Hamiltonians contain a spin-orbit coupling term, which first
turned up as a result of Hehl and Ni’s calculation [1990], the coefficients of these are
different by a factor of 2.

Also, an additional term appears in our calculation in the gravitational case, which

has not been mentioned before, and is the same order of magnitude as the redshift to the
kinetic energy term. This term is proportional to (J£ E)z’ i.e. the radial component of
momentum squared, as xand g are both in the direction of the normal to the surface of the

Earth.
On neglecting all quantum corrections, the Hamiltonians (4.29) and (4.39) can be

rearranged. The fourth term in (4.29) can be written as

P pplea). (4.40)

2mc

which is of the form of a Darwin term [Bjorken and Drell, 1964]. Rewriting it in the form

—Z—ﬁ—-z-V2<I> -__F ~divgrad ® =
me 2"; 4.41)
= - div
2mc? g

makes it clear that this term vanishes in vacuum. Similarly, this can be applied to the fourth
term in (4.39), which Hehl and Ni [1990] called a redshift to the kinetic energy. Still

neglecting quantum corrections, the last term in (4.29) can be written as

"“'—ﬂz P p g' x! 4.42)
mc
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which is of the form of a second derivative of the potential, and therefore it represents a
tidal term, and hence curvature. A test of the equivalence principle, applying as it does
neglecting tidal terms, will ignore this term.

We conclude that the difference between the Hamiltonians in the cases of a
uniformly accelerated frame and a frame in a Schwarzschild space consists only of
quantum terms. The spin-orbit coupling term is breaking the EP. This term contains the
spin of the particle, thus this breakdown of the EP might be due to the non-locality of spin.
A possible physical interpretation of this violation is suggested by Lee, as follows. The
spin-orbit term is of the same form as the Thomas-precession:

Mo (ax p)=Bs-w; (4.43)
4mc =

with

(ex%) |

2mc

Wr = 4.44)

This term can be found in both Hamiltonians (4.29) and (4.39), and there is no other spin-
orbit term in the case of an accelerated frame. On the other hand, for the gravitational case,
there is an additional spin-orbit term, which has the same magnitude, and is due to a
“gravitational Ampere-law”. |

For completeness we must add, that although the comparison was made on the
level of Hamiltonians, the difference between the two cases will manifest itself at the level
of expectation values as well; this makes the statement physically meaningful. This follows
from the fact that both Hamiltonians are formulated for the same scalar product (4.18), i.e.
when integrating the different Hamiltonians over the same volume element the expectation
values of the Hamiltonians are going to be different, as well. This is now a statement about
observables and therefore offers a possibility to distinguish an accelerated frame from one

in a gravitational field by a measurement. Experimental verification of this might not be

80



Chapter 4: Effect of a stationary gravitational source on Dirac particles

too remote, as the use of atomic interferometers is capable of increasing the accuracy of the

COW experiments by a factor of 10'® [Adams et al., 1994].

The above reasoning holds in case of spin V2 particles only, as the use of the Dirac
equation has been crucial in obtaining our results. The Dirac equation is a first order wave-
equation, and such equations exist for particles of all spins except spin 0 [Weinberg, 1964].
It may be the case, then, that a similar problem with the equivalence principle holds for

particles of all non-zero spins; but that this problem disappears for spin 0 particles.
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4.5. Appendices

4.5.1. Appendix: Basis 1-forms and vectors in the calculation

To see that the basis 1-forms satisfy the criteria of an orthonormal basis, one has to check

if (3.10) is satisfied.

@) - ') -(0) - (0}) =(-®)ary - 3 (ax' +5'(x,ax’ )} (4.45)

i=1,2,3

gives after dropping terms of second and higher order in ®

(-20)ar* - 3 (@'} +2g'ax' (x, ax’ )=
i=1,2,3
=(1-2®)ar* - 2((dx')’ +2x'ax' (g, dx’)), 440
i=1,2,3
which after rearranging is equivalent to the metric (4.11).
The duality of the basis 1-forms and vectors can be checked using equation (3.28).
There is no mixing of the temporal and spatial 1-forms in the basis 1-forms, so only the
space-space duality has to be checked:
<e,,®}>= <a, -g,x*0,,dx’ + gjx,,,dx"'> =
=5/ +(2,, 8" x,dx") —(g,;x*d,,dx ') = (4.47)
=8+ g'x, 0" —g,x*"6]=68/.

4.5.2, Appendix: Finding the connection coefficients

The method described in Appendix 3.12.1.A.2 is followed. The commutators of the basis

vectors give, up to first order in &

[ea’ e,’] = l(l+d>)a,,a, _glxkak.|=

4.48
—[2.0,P, =g, @49

and
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I_e,., e]] = I.al -glxkak’aj —gjxlal] =

(4.49)
= [au - 81"'31]_ [glxkak ’aj] =
= —(aigj)xlal _gj(alx’bl +(ajgl)xkak + gl(a]xk ))k = (4.50)
= _8181 +glaj .
This gives for the structure constant:
0 0
Co =Cio =& (4.51)
C, =8tg, +6}g,. 4.52)
Lowering the third indices gives (4.14).
4.5.3. Appendix: Writing the Dirac equation
The covariant derivatives are
1[s :
) (4.53)
= (1+®p, +5ag
1
D; = 9, -g:x'0, +'8'[}"v7) %=
- 2y~ Lieh o' e, + g g)- a5
= 0, — 81X 0, 4l£ 10 88, %858/ 4.54)

= 0, —g,x'0, —%ie”,a'gifg, .
So the Dirac equation reads
m¥ =ihf { (t+o), +%g-§+a*(a, -g,x'9, —%ia",a'g]ig,)}‘l' ,(4.55)
which gives, using (3.38),
m¥ =ihp { (1+®)9, + -;-g .g+a*(0, - gkx'a,)—-%ZJ,:,a"'g, } ¥, (4.56)
Substituting p = —ihd and rearranging (4.56) gives for the Hamiltonian (4.16).
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“According to present plans the next gravitational project in space will be a measurement of
the frame-dragging effect predicted to result from the Earth’s rotation.” (Vessot, 1984)

Earth is a rotating massive body, therefore all terrestrial experiments are performed in the
field of a rotating gravitational source. Such a field is described by the Kerr metric. The
Kerr metric is quoted in a wide range of forms in various textbooks and papers. It should
be a simple matter to find the relation between these using coordinate transformations, but
in practice this is less straightforward. For example in d’Inverno’s book [1992] the
coordinate transformation from Boyer-Lindquist coordinates to Kerr coordinates is
wrongly quoted; the correct transformation is given in [Hawking and Ellis, 1974). (See
Appendix 5.5.1.)

In papers [Wajima et al., 1997 and Lalak et al., 1995] approximate forms of the
Kerr metric are quoted, but without a proper definition of coordinates. Up to the same

order the expressions for the metric are found to be different. Wajima et al. [1997] have

* A condensed version of the material in this chapter is to be submitted for publication [Varjii and Ryder, b]
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2
ds* = (c’ +204+22 +—2—G—1"I-‘1(x2 + y’))dt2 +

2 2.3
c c'r G.1)
4GMa 20
+—0273—(Xdy— de)dt—(l—c—z)(dxz +dy2 +de) ’
— GM . .
where the substitution ® = ——— was made and a is the angular momentum per unit
r
mass of the source; while Lalak et al. [1995] use
2
ds? = [c2 +2(I>-i-(b—2)dt2 —2:1—,f(xdy— ydx)dt -
c c’r 2 52)
_(1—2—?+ 2(12 ](dx2 +dy® +dz2) ,
c c
oo D 1r . -
substituting —- = 3 (The quantity ® is introduced here as the new parameter for
c r

easy comparison of the two metrics, because the authors expressed the metric using
different parameters: G and ry.) These metrics are clearly different, although the authors
claim to work up to the same order, using asymptotically static coordinates in both cases.

2GMa

The last term in the first parenthesis of (5.1), —
c’r

(x2 + y’)dt’, is not even correct
dimensionally. As the authors do not refer to the source where they have derived their

metrics, it is difficult to tell what the cause of disagreement is. Therefore I find it necessary

to present a complete derivation of the Dirac Hamiltonian in Kerr space working up to the

2
order of (ﬂ) and ( ﬂ;) This approximation should be used in the case of the Earth, as
r r

we have = =6-10"and2=~10". I also present the coresponding calculation in
r r

Schwarzschild space, and refer to the result of an accelerated frame, for comparison with
the Kerr case. Then I investigate the differences between these cases at different levels of

experimental accuracy. The effects should in fact be studied in a rotating frame, as the
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experiments are done on the Earth, so laboratories fixed to the Earth rotate relative to the
fixed stars. Even in the case of the Kerr metric a rotation of the frame should be performed
as the Kerr metric in its form (5.13) describes the gravitational field of a rotating massive
body, as viewed from a fixed point outside it.

To obtain the Dirac Hamiltonian we use the method described in Chapter 3.

Throughout this chapter c=1 convention is used.

5.1. Rotating frame in Schwarzschild space

The exact Schwarzschild metric in isotropic coordinates (p,8,¢9) with the relation

2
r= p(1+i”—) (5.3)

2r

reads [Mgller, 1972]

‘ 1~
ds® = (l+5m;) (dp2 +p%d0* + p*sin? 9 d(pz)— L —dt? (5.4)
2p
Changing to static isotropic Cartesian coordinates,
xs = psinfcosgp , y; = psin@sing , z; = pcos , 5.5)

we get

2
‘ | - l
ds? = | 14 2| (dng? +dyg? +deg?)-—2 L ap, (5.6)
I+—
2p
Because an observer on the Earth is rotating with the Earth, we must consider a

frame rotating relative to the fixed stars:

Xg = xcos@wt—ysinwt, ys; = xsinwt+ ycoswt, z5 =z, 6.7

86



Chapter 5: Effect of a rotating gravitational source on Dirac particles

which gives for the relevant order of approximation

2

2 2
ds® = (1+-2—"-'+3"’ )(abc2 +dy? +dz2)—(1—2—m+ 2m

p 2p P

+ 2w(1+27m](xdy —ydx)dt.

We identify the metric components:

8o = & —wl+2ﬂx = 1+2—m+—3m2
oo p |* 8 p 2p°

The tetrad components satisfying g,z = 7 hPa h’p are
(

. 2
W =|1-Z2+ 2|,
.\ P 2p

.
ho = 1+i"-]f‘,
P

\
( 2

htj = 1+£1-+_m2 5’],
. P 4p

with the inverse components:

2
] m m

p 2p°

b = —(1+ﬂ)f* .
p

. 2
h}l = l-'_n'+3m2 6[} .
p 4p

We shall have recourse to the following definitions below:

m b7 Lo0] xm

=—, g =T—TT ="~

@ = 0,0,0), f =(@xx)=(y-0x0)
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P

)dt2 +

2m 2m? 2m
==[l-—+—~|, 8u = 80 =—@|1+—1¥,
p p

(5.8)

5.9

(5.10)

(5.11)

(5.12)
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5.2. Rotating frame in Kerr space

The exact Kerr metric is [Stephani, 1990]

2
ds? = F.:[d%-i—dt?’)+(r2+a2)sin2 O do?—dt’ +

(5.13)
+ 2™ (3sin? 9dp-di) |,
with
T=r+a*cos’® and A =r’-2mr+a® . (5.14)
mY ma
Up to the order of (—) and (—2) one finds
r r
2
ds® = —(1-3'1)dt’ +(1+2—'”+ dm ]dr2 +7* (d6* +sin® 8 dp?)-
4 T (5.15)
—4:':‘1 rsin?ddedt.
The transformation to isotropic coordinates, with (5.3) leads to
2
ds® = - 1—2—m+zl2 dt* +
p p
2
{14 28,.3m Vo 4 p (262 +sin? 0 dg? ))- (5.16)
P 2p
_Ama i sin 0 dpadt.
Changing to static isotropic Cartesian coordinates using (5.5) gives
2
ds? = -[1-2m 2mz dt* +
p p
2m  3m? 2 2 2
+(1+7+ zpz)(dxs +dyg® +dzg?)- (5.17)
_4mza xs dys — ys dx;s dt.
p p

Transforming to an Earth-bound, rotating frame, as in (5.7) above, gives for the relevant

order of approximation
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2 2

2 2
ds® = —(1—2—’"+2"‘ ]dtz +(1+2—"‘+3"‘ ](dx2+dy2+dz2)+

2

p P p p (5.18)

6m

+ 2w(l+—](xdy - ydx)dt.
5p
In the above we have used the relationship
2 , 2 .,

=2 = Z—wp?, 5.19
a=or’ = Zap (5.19)

which holds for a spherical, rotating gravitational source.
The presence of the last term in (5.18) shows that the rotation of the gravitational
source and the effect of the rotation of the reference frame are different. The metric

components are then

= f1-2m, 2 = g0 =-of1+5"
8o P » 8u = 8o 5p Y,

p (5.20)
o = of145m [y 2m 3m®
8 = 8 =0 +5_p'x’g!i" +7’—+2p2 Ny
and hence the tetrad components are (calculated as before):
2
o =[1-24 | hlo = (142250,
p 2p
\ (5.21)
h‘e] = l+1“+ mz J'j ’
p 4p
and the inverse tetrad components:
m m? Im
h6° = (1+_p-+ﬁ , hﬁl = - l+-5-—‘-)- fl »
\ (5.22)
p 4p
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5.3. Dirac equation in the Earth’s field

We notice that the Kerr case (5.21) (5.22) and the Schwarzschild case (5.10) (5.11) differ
only in a factor of one of the tetrad components. Introducing a constant b for this factor we

can treat the two cases together:

. 2
Wo=|1-24+ mz ,
P 2p

(
ho = l+bﬂ) fi., (5.23)
\ p
( 2 )
h'; = l+ﬂ+ m2 5'.1,
\ 4p /
( 2 )
h' = 1+ 2+ 2|,
\ P 2P
' = -|1+bZ|f, (5.24)
p
m 3m?
hfj = (l—;+4p2]611 ’

with b =1 in case of a Schwarzschild space, and b = % in a Kerr space.

In this chapter the connection coefficients are calculated from the tetrad
components, using formulae (3.17) and (3.24). These give for the tetrad (5.23) and (5.24)
o= ~Tig = 1-®)sg, .

Tpo = %(l—b)(f‘ 8- J g,)+(l+b<b)£,,' o,
(5.25)

|
Gig = —They = E(I_b)(’;' 8;+f 8:) ,
3
Ffjf = (njk 8 —Nu 81)(1'5(1))
(for details see Appendix 5.5.2).
Then one writes the Dirac equation similarly to the previous cases to get the Dirac

Hamiltonian,
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H = (1 <I>+%<I>2)ﬁm—:h(l 20+2 22 )(_ -9)+
+ih(l—(1—b)<l>)(£-§ +12-(1—3<p)(g-§)— (5.26)
-2 0-b)a-(rxg)+ 3 1-(-0)0)(c 0).

The expressions of the basis vectors and covariant derivatives are given in Appendix 5.5.3.

The determinant of the spatial part of the metric tensor is
3 3
detg, (l+ 20+ 2<I>’) ' (5.27)

because the terms containing off-diagonal components are of second order in ®.
Absorbing the determinental factor into the wavefunction, and transforming the

Hamiltonian as described in Chapter 3.7 gives, after relabelling H' — H ,
H =(l—<l>+%<l>2)ﬂm :h(l 20 + = <1> )(_ -9)+
+ih(l—(l—b)<b)(£-§)- ih(l—%(b)((_x_- g)- (5.28)
_2 1 b)o (f_Xg 1-(1-b)®)(c- w)+—:h(£

As the above Hamiltonian still depends on the value of b we can see that the
effect of Kerr space is different from the effect of Schwarzschild space. However, to see
the differences caused in laboratory experiments, we have to take the non-relativistic limit.
The proper non-relativistic limit can be obtained by applying three successive Foldy-
Wouthuysen transformations as explained in Chapter 3.8. To calculate all these terms
would be difficult, but as we are only interested in the order at which the difference
between the two cases becomes manifest, it is sufficient to consider the leading terms. The

odd and even parts of the Hamiltonian are
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O= —ih(l—2d>+%¢2)Q-Q—ih(l—%¢)g-§

E-= -(1—-;—d>)d>ﬂm+ih(l—(l—b)¢)£-§+%ih_f_-§— (5.29)

-20-bg-(xg)+20-1-2)0)e-0).
The odd terms contain no b, so they are the same in the two cases. The difference

will come from the terms E—z—;%[q [QE]]. To the leading order we have for the
m’c

difference:

ih(l-b)® f 9. (5.30)

As only the leading order correction is of interest, one may use the approximate
expression

p=-ihd. (5.31)
Higher order corrections to the momentum can be obtained using the method described in

Chapter 3.9.

In case of a thermal neutron (kinetic energy of 20 meV), the momentum

p = 2mE,, = \/2x940Me%2x2meV = 19x10°¢V/ (5.32)

is of order p = 2x10° e% . Therefore the order of the difference term is

h(1-b)0f-9 = ®Zp = 6x10™ x107¥ x2x10°eV = 10 eV. (5.33)
- r
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5.4. Conclusion

When analysing terrestrial experiments it has to be taken into account that the Earth’s
gravitational effect is properly described by a rotating frame in Kerr space, which is a
rather difficult calculation. The effect can be approximated by using a rotating frame in
Schwarzschild space, or even a rotating accelerated frame. The question is, at different
levels of experimental accuracy, which approximation is sufficient. In this chapter the
comparison between a Kerr and a Schwarzschild field was carried out, and it was found
that the difference between the cases becomes apparent at energies of 107°eV. A
comparison between an accelerated frame and the Schwarzschild field was carried out in
Chapter 4 and it was found that the difference between the two is of the same order as the
redshift of the kinetic energy, that is 107" eV . This is the level of accuracy where the
differences between the gravitational effect and the effect of acceleration become distinct.
For comparison we note here that the gravitational term detected in the COW

experiment (redshift of the restmass term) is of the order of 1eV . Atomic interferometers

are expected to increase this accuracy by a factor of 10" so it is becoming clear that
further experimental developments will make it necessary to use general relativity in

analysing the behaviour of quantum systems.
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5.5. Appendices

5.5.1. Appendix: Comparing the Kerr and Boyer-Lindquist forms

Equation (19.27) of d’Inverno [1992] gives the Kerr metric in Boyer-Lindquist
coordinates:

ds?, = B (asin? 6dp-arf -2 (% +.a*)dp-aar) -
g p (5.34)

2

p 2 2 ;a2
- _art - pan? ,
AP

with (p,8,9) the standard polar coordinates, and
r’ = p*—a*cos’® and A =r’-2mr+a® . (5.35)
For the same metric in Kerr coordinates Equation (19.28) of the same reference
gives

ds: =df* —dx? -dy® -dz* -

2mr? - r a z, Y
—r‘—-‘-a_zz? (dt + PR (xdx+ ydy)+ pe g (yd.x xdy)+ -;'dZ)

(5.36)
and from equations (19.29) and (19.66) the transformation connecting the two cases,

x=rsin @#cos@ + asin ¥sin ¢
y =rsin #sin ¢ —asin #cos ¢
z=rcos?d (5.37)

df = dt+2" 4.
A

On substituting (5.37) and (5.35) into (5.36) one can see, that

2
ds} - ds, = -2sin’0adpdr-Z_sin’ @ dr*, (5.38)
r

On the other hand, Hawking and Ellis [1974] has the same form of the metrics as
d’Inverno (equations (5.29) and (5.30)), but the transformation connecting them are

different. They have
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x+iy = (r +ia)sin o-exp(ifd(p +%dr)
z=rcos?t (5.39)

rt+at

i=jm+

dr-r ,

which agrees with the last two equations of (5.37) but, instead of the first two there, this

transformation provides
x+iy = (r +ia)sin ®(cosa +isina) , (5.40)

with
a—¢+—a——arctan r_m
a2_m2 ,a2 _m2

instead of a =@ . The good news is, that substituting (5.39) and (5.35) into (5.36) gives

(5.41)

(5.34).

5.5.2. Appendix: Calculation of the connection coefficients

First the structure constants have to be calculated from the tetrad components, using the

formula (3.17). These give:

Céta = h'ahtﬁ(a ﬂhéa _aahéﬂ )=

0

= h'h;* (a,‘hﬁo —9,h’, )+ h'y (9,‘ W, -3 1, )= (5.42)
= '3, h% =
[roste e g pafienie) oo
= g,(1-®).

Cﬁrj = haahrp(a ﬂhJa —a,,h",, )=
= bl @17, —3gh, Je 't 0,01, —3,h7, )= (5.44)
= 1t O, )+ 't B, -9 7, )=
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= (1+q>+-;-<p=)(1—<1>+%¢2)8,*(a,(1+bd>)af)-

(5.45)

—(l+b¢)a‘(l—d>+%d>2)6,." 579, —6{a,)(1+<1>+i-q>2)=

= (a,(l+b(b)aj )+ a“stk (‘sf’gk '8{81 )=
= —bg,a’ —(l+b<l>)8, "w,. +alg, -8/d'g, (5.46)
= (1-b)g,a’ -(1+bd)e, "w,, .

Similarly
caf’ =0 (5.47)
and

¢t = (l—%¢)(5;g, -8tg,). (5.48)

Lowering the last indices and using (3.24) gives (5.25).

5.5.3. Appendix: Basis vectors and covariant derivatives

Using (5.24) gives

m mz
ey = (1+;+2p2]a, ~-(+bp®)f'0, ,

2
ei = l—ﬁ+3m2 a,-
p 4p

(5.49)

and the covariant derivatives turn out to be using (5.25)

D, = (1+¢+%¢2]30 -(1+b@)f’ 9, +%(1—d>)(q_-§_)-

it-9e (o) K000 0

D; = (1-¢+%¢z)a, +1-n) e, +(q'é)fk)+%i(l—%¢)(ema’g‘),
(5.50)
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6. General relativistic treatment of the COW experiment*

We may recall, from Chapter 2.1.1, the gravitational phase shift derivable from Newtonian

mechanics
Adye = Gy SINQ = m:;zmmo sina, 6.1)

and the Sagnac-shift:

A¢Sagnac = angnm: cosa = 7”';1% cos ol. cosQx . (6-2)

As was made clear above, the theory with which the experimental data has been
compared in the experiments is Newton’s theory of gravity. From a fundamental point of
view, however, this is somewhat unsatisfactory; the theoretical expression for the phase
shift should be derived from General Relativity. A step in this direction has been taken by
Anandan [1977], who gave a special relativistic discussion of the behaviour of neutrons in

a gravitational field. Anandan used the Klein-Gordon equation, simulating the gravitational
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and rotational effects of the Earth by passing to an accelerating and rotating frame of
reference. The discussion is special relativistic in the sense that the Klein-Gordon equation
is used; and it is consistent with general relativity since it makes use of the Equivalence
Principle. Crucially, however, the Klein-Gordon equation is not capable of exhibiting spin
effects, and the neutron is a spin ¥z particle. To find any gravitational spin effects, the
correct procedure is to write down the Dirac equation in a curved space.

Anandan found the following expression for the phase shift:

A9 = Ad,,,, +AQ,, =
_ gAm® Ak 2Q.Am HQ Ax’ (6.3)
'k c? h mc?

= wcos?, is the component of the

(x = —21”- is the wavenumber of the neutron, Q

angular velocity of the Earth normal to the interferometer surface). The first two phase
terms are caused by gravity and the second two by the rotation of the reference frame. The

first term in (6.3) is equivalent to (6.1) (Anandan assigns normal vector to the area, so

gA=gA sinad and Q,A = wcos?, Ajcosae¢ where « is the tilt angle of the

interferometer). The third term corresponds to (6.2), the Sagnac term . The other two terms
are too small to have been detected (yet).

It may be of interest to note that a completely classical derivation of the phase
shift has been given by Mannheim [1998). His calculation is based on the fact that particles
moving in a gravitational potential at higher paths have greater gravitational potential
energy and therefore a smaller kinetic energy, than particles on lower paths, and it

therefore takes them longer to arrive at the place of interference. Mannheim finds:

* A condensed version of the material in this chapter is accepted for publication at the American Journal of
Physics [Varji and Ryder, aJ.
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A¢ = gam (6.4)
hv
N . . P hx . .
which is equivalent to (6.1), on noting thatv = =, p = o and again gA = gA sinc.
m

In this chapter I present my calculation to obtain the formula for the phase shift
using general relativistic arguments. When this is done the calculated phase is almost, but

not exactly, the same as the one found by Anandan.

6.1. The Dirac Hamiltonian

As it has already been mentioned in Chapter 2.5, following the studies of Xia et al. [1989]
it became known that there are spin polarisation effects of spin Y2 particles in the Earth’s
gravitational field. Since here I also want to draw attention to spin effects, in particular the
Mashhoon spin-rotation coupling, the correct procedure is clearly to start with the Dirac
equation in the Schwarzschild field of the Earth, and then to take, in an appropriate
manner, its non-relativistic limit. It is my aim to show that in this limit we finish up with
terms like (6.1) and (6.2) above, as well as correction terms; and, in addition to these,

terms involving spin. It is clear, of course that in obtaining this result we shall work to

certain orders of approximation in the various “small” quantities in the theory, such as %

and @, the gravitational potential. Before proceeding, however, I should like to make an
explanatory remark about the procedure. Some of this have been explained above, but for
completeness I feel it helpful to repeat them here.

The gravitational field of the Earth is, strictly speaking, described by the Kerr
solution, which is the generalisation of the Schwarzschild solution to a rotating source. The

Kerr solution, as usually quoted, is given in a frame of reference which is not rotating; this
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can be envisaged as an asymptotically inertial frame, from which one “looks down” on the
rotating source. In the present problem, however, the interference apparatus is on the
surface of the Earth, which is rotating! The correct procedure is then to write the Kerr
solution, but in a rotating frame. The exact application of the Kerr solution to the Dirac
equation is, however, very complicated, and appropriate approximations have to be made;

and even then the resulting Hamiltonian is not in a very tractable form.

So much for the Kerr solution. The next best procedure is to consider the
Schwarzschild solution, again in a rotating frame of reference. The philosophy of this step
is that the contribution of the rotation of the Earth to its gravitational field may be ignored;
we need only retain the fact that, in whatever form we choose to represent the gravitational
field of the Earth, our observations are made in a rotating frame. The Dirac Hamiltonian
may be calculated in this case, to a suitable order of approximation, but this turns out also
not to be tractable enough to deal with. The essence of the intractability, here and above, is
that the form of the momentum operator as well as the integration measure, in curved
space, are not trivial (see Fischbach [1980] and Varji and Ryder [1998] or Chapter 3). To
enter into the details of these would cause unnecessary trouble, particularly in view of the
fact that the final result will be, by virtue of our approximations, unchanged. Finally, the

Equivalence Principle* may be appealed to, and the Dirac equation written down in

* “It may be worth remarking that the usual Equivalence Principle is considered to be that which

describes as equivalent the gravitational field of a non-rotating body, and an accelerating frame of reference.
Strictly speaking, in our view, it should be borne in mind that there are two types of non-inertial forces —
accelerations and rotations — and therefore there should be two Equivalence Principles, so that, taken
together, they would have the consequence that gravitational mass is equal to inertial mass both as measured

by acceleration and as measured by rotation. As usually presented in General Relativity, the Equivalence
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Minkowski space, but in an accelerating and rotating frame. This calculation was first
performed by Hehl and Ni [1990] and provides the most suitable form of the non-
relativistic Hamiltonian for our present purposes. It is important to remark once more that
to the order of approximation which concerns us [see the conclusions of Chapter 5], the
three calculations described above are equivalent, so we are perfectly justified in choosing

the approximation which gives the Hamiltonian which is easiest to work with.

The Dirac Hamiltonian found by Hehl and Ni [1990] is

H=pmc?|1+&2 +—ﬂ— 2+—lz- 22X, - (L+8)+ pa o-laxp). (6.5
ﬂmc( c2]2mp amE cz'p'_(_—) 4mc2—(g£) 63

This Hamiltonian enables us to find the phase shift, as will be explained in the next section.

Principle equates gravitational mass to inertial mass measured by acceleration, but it should be noted that the

Ettv8s experiment is actually concerned with rotations.” [L. H. Ryder]
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6.2. The phase shift

We write the total Dirac Hamiltonian in the form

H=Hg,, +H,_, (6.6)
where the indices refer to the free particle and non-inertial terms, respectively. The phase
shift is defined relative to the free particle situation, and is therefore caused by the second

term. Subtracting the free particle terms from (6.5) gives

L a-(g><£). 6.7)

1
Hnan-in = m(g'£)+ ) 4mc2 -

-p-(@x)p-w-(L+S)+
mc - -

The phase difference, to be measured in the experiment, is
A = -l-f H,,.. dt (6.8)
'h non-in ¢ ¢

We now consider the interferometer, consisting notionally of two paths. Because
the size of the wavepacket can be assumed to be much smaller than the macroscopic
dimension of the loop formed by the two alternate paths, we can apply the concept of a
classical trajectory. For simplicity consider a rectangular interferometer OABC, with the
beam split up at O, travelling along OAB and OCB, and finally interfering at B, as shown
in the diagram. Here R is the radius of the Earth, q is the acceleration due to gravity, and xo

and yy are the dimensions of the interferometer.

(x0' Y 0)

]
6 a %

Figure 6.1: The interferometer loop.
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We use the simple nonrelativistic relation
dx
§pde = fma-dt = mds. (6.9)

In addition we denote by T, and T the times taken for neutrons to travel along the lower
and higher horizontal sides x, , respectively; and by p; and p, the momentum along these
paths.

The first term in (6.7), which corresponds to a “redshift of the rest mass”, gives, in

its contribution to (6.8)

$@-x)dt = a-R(T, -T,)+a-y,(-T.) - (6.10)
The next term in (6.7), which corresponds to a redshift of the kinetic energy, gives:

fp-@-x)pdt = ma-Rx, (p, - p,)-ma- y,p,%, . 6.11)
The Sagnac term in (6.7) gives, in its contribution to (6.8)

fo-Ldt =2mp- 4, . (6.12)
The spin-rotation term can only be detected if the spin is flipped along one of the paths
[Mashhoon, 1988]; we then have

fo-sd = 2087, . (6.13)
The spin-orbit coupling term gives

fo-laxpldr = 2max,0 . (6.14)
Details of the integrations are given in Appendix 6.4.

Putting all these together the expression for the phase shift is

hAp = -§$H,,,, dt =

1
= "m_‘!'B(Tl —T2)+mg°_y_o_T2 - 2mc? (mﬂ'.@xo (Pl "Pz)"mg'hp2x°)_(6 15)

~2m- Ay~ 20 ST+

2max,0
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1
hAp = —ma-R(T, -T,)+ma-y,T, —?g-&o(p. - py)+

| " (6.16)
t57 8 YoPa%o -2mw - A, - 20 - ST, 2gT Pl .
It is useful to rewrite this after introducing the “gravitational potential”
o=-22 (6.17)
c
The expression for time T is
=0 Mm%, 6.18)
v 4 h

T,-T, = mry| ——— | = mry 22P2 =y, 22 (6.19)
P P PP, ) 23
2
Neglecting terms in (_A_p) , the phase difference then becomes
2

1 1
kAP = -mc’® ([, - T,) -~ (p, — p,)®x, +a- yo| mT;, + =5 po % |-
2 = 2c (6.20)

—2m@ - Ay ~20 - ST,,, +-;:—2ax°0'

1 m?c? mix 1
hAY = ——Apx,D|1+2 +a- vy —p.x, |-
¢ 2Ap 0 ( p22 ] = h[ p2 2C2 Pz 0

(6.21)
~2mw- Ay - 20+ 5T,,, +

a -2?ax00'.

The next step is to find an expression for Ap using general relativistic arguments.
In the literature [see for example Werner, 1994] an expression for Ap is found using a

Newtonian argument based on energy conservation, whereas below a general relativistic

derivation is presented, based on Dirac’s argument [Dirac, 1975]. Consider the metric

* Strictly speaking there is no gravitational potential in GR, what’s more here we are dealing with non-inertial
effects purely. This phrase is used for convenience.
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ds* = (1+ 29—'2-5-)(1:2 —dr® - r*(a8* +sin’ 8do?) (6.22)
c

which corresponds to an accelerating frame. Under radial free fall d@ = d¢ = 0, and we

have

2

1= (1+2ﬂ)i’ -, (6.23)
C

where dots denote differentiation with respect to proper time. Rearranging (6.23) gives

a-r (drY "
1= 1+27— % te. (6.24)

As a boundary condition we require that if a particle falls from r= p the starting velocity

be zero ﬂl = 0, therefore
datl,.,

R/
a .
@ [1+ 2% 2—‘3) . (6.25)
ds|,., c
In the standard way we can express the following quantity as a constant:
b
. a-
(1+2‘—‘—25)£‘- = b = const. = (1+2' 22] : (6.26)
c® Jds c
Hence
A -1
dt ap a-r
—=|14+2—= 1+2==| . 6.27
ds ( c? ) ( c? ) (627

Substituting this into (6.24) gives, after rearrangement
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2 ) 7\ ap)'
(ﬂ) =(1+2§?5- —(1+2£—2'-') (1+2“2£] =
dt ) c
ar

- 1+2=>=
= (1+2g -) 1- =
C

\ c” ) (6.28)

o

R

Up to 1* order in aand Ar this gives

2 . —
oe(2) -2t 29

This expression for v’ was found by assuming the boundary condition that v =0
at r=p. In our case, however, the particles travelling along the vertical arms of the
interferometer never have zero velocity. To find an expression for the velocity of a particle
in this situation, consider an object falling from an imaginary (higher) point, where its
velocity was zero. Let us use the notation of p, r; and r; for distances measured from the

centre of the Earth as indicated in Figure 6.2.

r Yo
interferometer loop

12 [Vgriv

v centre of
earth

Figure 6.2: Notations used in the calculation for the derivation of the momentum.
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The interferometer loop is positioned between coordinates r; and r;, and p is the
distance of a fictitious point from which a particle dropped with zero velocity gains a
velocity of vg by the time it reaches coordinate r;.

Using the notations in the above diagram and equation (6.29), and assuming that

p—rn,n—r,<<R we get

(Vo +dV)2 _V02= 2‘5?(9""2 _P'*‘”n) =

(6.30)
= 2-:7Ar = 2v,Av,
which gives
Av = 2Ar 631)
c® v,
and hence
2 2
Ap=maAr=maAr=maArA.. (6.32)

Vo Do h

This expression is the same as the one obtained using a Newtonian potential,
which is not surprising, considering a first order approximation was used; this is,
nevertheless, a gratifying result. In addition, of course, this method enables one to find a
higher order expression for Ap, if needed.

If the OABC interference loop is tilted about a horizontal angle by an angle «,
then

Ar = y,sinc. (6.33)
It is clear that the first term in (6.21) is second order in g. The second term, using the

relation
P -k, (6.34)
gives
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2 2
mx, 1 1 mc
a +——p,x, | = — p,xpa: +11, (6.35)
a }’o( . 2c° P2 o) 2c? P2Xpa )'o( E, )

which may be written as

2
2;:2 aAosina["I'; +1], (6.36)
k

where Ay is the area of the interferometer. This can be re-expressed as follows

hn . mc? hm . _2m  hm N
—Ac—zaAosma( E, +l)—TaAosma;?+-A—c-;aAosma—
hnm . . 2mA’  hm :
=TaAosma 5 +FaAosma= 6.37)
2
= 2’:2" aAollsina+%aAo sina .

Finally, putting equations (6.21) and (6.37) together, the phase shift (6.8) will take

the form

2
A¢ = 27;:n_2aAoA,sina+A” aAoSina—%mQ'ﬁ—%Q'QT‘lm +

ax,0. (6.38)

c? 2¢2
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6.3. Conclusion

Equation (6.38) gives the phase shift expected in neutron interference experiments in a

rotating frame in a gravitational field. The first and third terms in (6.38), representing the

acceleration effect and the Sagnac effect, have already been detected. The second term,

2 . .
which is V times the acceleration term, is beyond the accuracy of present
2c?

experiments.

The fourth, Mashhoon,

term,

should be detectable using atomic

interferometers in the near future [Audretsch and Limmerzahl, 1992a]. The final term,

originating in spin-orbit coupling, is, for thermal neutrons, approximately 10™° times the

Mashhoon term, so is surely a “next generation” effect. It is interesting to note that the first

three terms are proportional to the area of the interferometer, whereas the last two terms

are proportional to its linear dimension.

Audretsch er al | Anandan Werner [1994] Mannheim | Varji and

[1992b] [1977] [1998]) Ryder [a]
acceleration mA Am? g gAm 2mm?

—a gAam 2mm 25 ° bl
term hv e h? Mo hv r? ad
correction to v: mA 8Ak - - n
acceleration I;Wa P Y
Sagnac term 2m 20 - Am 2m - 2

—n-A —— - cos@ -

Bl n 7 Poc0s6, #2 A
Mashhoon term | 2 — - - 2
MQ"I =31,
v h

spin-orbit al - - - 1
coupling ?" 2% ax,o
other terms l—hn—R pja _ hw-Ac® | - - -

2hv 0@ mc?

h° GMS ,wA

AL ROaa g s® B 2p3

2hv mc”R

Table 6.1: COW phase shifts in the literature.

Table 6.1 shows a summary of the different contributions to the phase shift for the

COW experiment, as calculated by various authors. Using the formulae
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A= Asina ; A = wA;cosf, cosx ;

amr o Lok (6.39)
R hk ’
hc mA _ aAm®
V=—; a= ;
v: mA__ aAx '
2c? hv 2’
Lo 1
Ty = gl S = Eh_ (6.41)

relating the different notations used in various references, one can see that:

the leading order, acceleration, term is identical in all accounts.

the correction to the acceleration term is not shown in Werner’s and Mannheim’s accounts,
since they only worked to a lower order.

in the Sagnac term there is agreement where applicable, apart from a minus sign in
Audretsch’s case.

the Mashhoon term only appears in two accounts and they agree apart from the sign. In
Audretsch’s formula the angular momentum J includes orbital angular momentum and

is in units of Planck’s constant. This explains the missing factor A.

the two spin orbit coupling terms agree, since we may put J = —. Audretsch’s J,

N9

however, also includes an orbital contribution.

the two other terms in Audretsch’ depend on curvature, so we do not expect to get this type
of contribution, as we are working in Minkowski space. Anandan’s two extra terms,
which are not equivalent to Audretsch’s as they depend on the rotation of the source,

also do not appear anywhere else.
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6.4. Appendix: Evaluating the integrals

f(g-g)dt = za_'(l_“*i)d"“ié'(ﬂ*'xo +y)dt+
(_+x+yo)dt+fa (_+y

w'—.ﬂ

=.‘1'3(7]‘T2)+2'Y_o(‘T2)’ (6.42)
where we have used the fact that in the case of a vertical acceleration a-x=0.

f.ll'(a_-z)gdt = §(§-§)p2dt—ih§(g.£)dt =

= f(g-é)pzdt—ihmfg_'d§=

=§@ x)p*di=
=mf(a-x)pds =

A B
=mIp.a-(Ii+J_c)dx+mIpe-(Il+§£+z)dy+
[/ A

(6.43)

+msz§‘(E+£+_}l)dx+m?pg-(lg+z)dy=
(o

(6.44)
A
;[ Pha: B mIPz (—+y0) (645)
= ma- R x, (p, pz) ma: YoP2%o
fg Ldt=§g erdt=
= $(@xr)-pdr = (6.46)
= m§(wxr)-ds =
j‘.Qx(_+x dx+mex(_+xo+y)dy+
° (6.47)

+mIQx(Ig+§+&)dx+m‘fgx(Ig+z)dy=
B c
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= mwXR f ds+meXﬁ,_dy+mj'(_u_xhdx =
A B

= MWX Xy * Yo ~MDX Yo+ Xy = (6.48)
= 2mw-xq Xy, =
=2mw- A,

fo-sa = fa-sarsfo-su-f-o-sa-[-0-30 = w57, 649
o A o Cc

A B C B
= m(QXQ)-(Idg+Id§—f—d§—f—d§) = (6.50)
o A o C
s
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7. Conclusions, final remarks

For the most part, the thesis has been concerned with the possibility of describing
gravitational effects on spin-2 particles.

It is beyond any doubt that experiments carried out in our laboratories are affected
by the Earth’s gravity, still it is common practice to ignore this circumstance. It had been
believed that, because of the order of magnitude of the effect, gravity would not manifest
on the level of quantum experiments, until Colella, Overhauser and Werner proved the
opposite with their remarkable experiment. This experiment created a need for a theory
combining Quantum Mechanics and General Relativity. In this thesis a work has been
summarised concerning the consequences of using Weyl’s tetrad formalism to describe
gravitational effects on quantum systems.

Writing the Dirac equation in Riemannian spaces has been the topic of textbooks
and papers since 1980. Still I have not found anything in the literature of sufficiently
detailed coverage of this topic. I made an attempt in Chapter 3 to give a thorough

description of the problem, providing solutions to the questions I have not found being
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answered in the literature. I have touched subjects such as what is determined by the choice
of coordinates, and how the Hamiltonian depends on the choice of the frame. I have
summarised the various methods of finding the connection coefficients with examples in
the Appendix. I have also given a possible solution of dealing with the epsilon symbol and
a recipe of finding the form of the momentum operator in curved spaces.

The thesis proceeded in Chapter 4 to the application of the method described
previously, to give a description of the effect of stationary gravitational sources on spin-%2
particles. The Dirac Hamiltonian has been written in a Schwarzschild field and then
compared with the corresponding result in an accelerated Minkowski space.

Comparing the Hamiltonians describing the effects of gravitational field and
acceleration on spin %2 particles yields a test of the medium strong equivalence principle;
that is, the statement that physical effects in an accelerated frame and a gravitational field
are locally indistinguishable. The comparison gives us that the flat-space energy-mass
terms and their redshifted forms are the same in the two cases. On the other hand in the
case of the higher order correction terms we do not get agreement. Although both
Hamiltonians contain a spin-orbit coupling term the coefficients of these are different bya
factor of 2. Also, an additional term appears in our calculation in the gravitational case,

which has not been mentioned before, and is the same order of magnitude as the redshift to

the kinetic energy term. This term is proportional to (,g p)z , i.e. the radial component of
momentum, as xand g are both in the direction of the normal vector to the surface of the

Earth. On neglecting all quantum corrections, we see that the differences between the two
cases vanish; one term being in the form of a Darwin term that vanishes in vacuum, and the
other of the form of a second derivative of the potential, which therefore represents a tidal
term, and hence curvature. A test of the equivalence principle, applying as it does only to a

uniform gravitational field, will take no account of this term. We conclude that the
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difference between the Hamiltonians in the cases of a uniformly accelerated frame and a
frame in a Schwarzschild space consists only of quantum terms. This reasoning holds only
in the case of spin Y2 particles, as the use of the Dirac equation has been crucial in
obtaining the results. It may be the case, then, that a similar problem with the equivalence
principle holds for particles of all non-zero spins; but that this problem disappears for spin
0 particles.

Chapter 5 examined the effect of the Earth’s field on Dirac particles. When
analysing of terrestrial experiments it has to be taken into account that the Earth’s
gravitational effect is properly described by a rotating frame in Kerr space. The calculation
of this is rather difficult, but the effect can be approximated by using a rotating frame in
Schwarzschild space, or even a rotating accelerated frame. The question is, at different
levels of experimental accuracy, which approximation is appropriate. To decide about the
applicability of these three models when describing experimental results in Earth-based
laboratories, the Hamiltonians have been calculated and compared with each other. The
analysis showed that the difference between a Kerr and a Schwarzschild field becomes
apparent at energies of 107 eV. From the results of Chapter 4 we concluded that the

difference between an accelerated frame and the Schwarzschild field is of the same order

as of the redshift of the kinetic energy, that is 10™"' eV . For comparison we note here that
the gravitational term detected in the COW experiment (redshift of the restmass term) is of
the order of 1eV . Atomic interferometers are expected to increase this accuracy by a factor
of 10" so it is becoming clear that further e);perimental developments will make it
necessary to use general relativity in analysing the behaviour of quantum systems.

A reanalysis of the COW experiments was made in Chapter 6 and a General
Relativistic derivation of the phase shift was presented. The acceleration and the Sagnac

terms have already been detected. The Mashhoon term is expected to be detectable using
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atomic interferometers in the near future, but there are terms which are far beyond the
accuracy of present experiments. It is interesting to note that three of the terms in the
expression for the phase shift are proportional to the area of the interferometer, whereas the
other two terms are proportional to its linear dimension.

A further step in this study could be a study of torsion, and the effect it may have
on quantum systems. Due to Einstein it is said that mass curves space-time and in this way
gravitation takes on the aspect of a geometrical entity. In special relativity, however, mass
and spin have in common that they are two conserved quantities connected to space-time.
It would therefore be nice if spin also had a dynamical manifestation; this would be a
generalisation of GR and the idea of torsion. Theories of torsion have a long history, but
the attempts to verify it experimentally on the cosmological scale have not yet been
successful. The extension of the above exercise using the theory of torsion might suggest a
possible test for it in the quantum domain.

Another possibility of extending this study is to carry out the above calculations
up to higher order that would enable one to describe situations where the mass or the
angular velocity of the gravitating source is more substantial than in case of the Earth, such

as in rotating black holes, or at the Big Bang.
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8. Magyar nyelvii sszefoglalé

Disszertaciom gravitacios térben levd Y2-es spinii részecskék viselkedésének leirasaval
foglalkozik.

Nem kérdéses az a tény, hogy a laboratériumainkban végzett kisérletek mind a
Fold gravitici6s hatdsa alatt 4llnak, mégis 4ltaldnos gyakorlat ennek a koriilménynek
elhanyagoldsa. Sokdig lgy tartottdk, hogy ennek a hatisnak a nagysédgrendje miatt a
gravitici6 nem mutatkozik meg kvantum-kisérletek alkalméval, amig Colella, Overhauser
és Werner kisérletileg nem bizonyitotta ennek ellenkezdjét. A kisérlet sziikségessé tette
egy olyan modell kidolgozisit, mely egyesiti a kvantummechanika és az 4ltaldnos
relativitdselmélet ereedményeit. Ebben a disszertdci6ban Osszefoglalom a graviticids tér
kvantum-részecskékre kifejtett hatdsdnak témakorében végzett munkdmat.

A Dirac egyenlet gorbillt térben torténd felirasinak lehetGségét 1980 oOta
megjelent szamos kdnyv és cikk vizsgélja, de a lefrds még nem teljes. A disszertici6 3.
fejezetében a probléma részletes tirgyaldsit adom, megvizsgilva azokat a kérdéseket,

problémdkat, melyek munkdm sordn meriiltek fel. Olyan teriileteket érintek, mint a
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koordindtdk és a vonatkoztatdsi rendszer vilasztdsdnak hatdsa a Hamilton-fiiggvényre.
Osszefoglalom a Christoffel-szimb6lumok kiszdmitdsi médszereit, a fliggelékben
példédkkal illusztrdlva. A Levi-Civita szimb6lum gérblilt terek esetén valé alkalmazisit és
az impulzus operétor alakjdnak meghatérozését is targyalom.

A disszertéci6 4. fejezetében a kidolgozott eljirdst alkalmazom, hogy egy nyugvé
gravitdciés forrds Y2-es spinii részecskékre gyakorolt hatasat vizsgaljam. A Dirac egyenlet
Hamilton fiiggvényét meghatiroztam Schwarzschild téridében és az eredményt Ossze-
hasonlitottam egy Minkowski tériddben gyorsuld vonatkoztatasi rendszer esetén nyert
eredménnyel.

Osszehasonlftva a gravitdci6s térben illetve a gyorsulé vonatkoztatdsi rendszer
esetében kapott Hamilton-fliggvényeket az ekvivalencia-elv vizsgdlatat nyerhetjiik. Azt
lathatjuk, hogy a két esetben a nyugalmi és mozgési energia illetve a vords-eltolédott
megfeleldik megegyeznek, de magasabb rendben eltéréseket tapasztalunk. Mindkét
Hamilton-fuggvény tartalmaz egy spin-pilya csatoldst mutaté tagot, de egyiitthat6ik

kiilonbozoek. Ezen feliil a gravitacios esetben egy j tag is felbukkan, amely a mozgasi
energia voros-eltolodasi korrekcidjaval egyezé nagysagrendii. Ez a tag (Jg B)z -tel, vagyis

az impulzus sugérirdnyd komponensével arinyos. Amennyiben a két Hamilton-fiiggvény
Osszehasonlitdsat az ekvivalencia-elv tesztjének tekintjik, meg kell jegyezni, hogy a
graviticiés és tehetetlenségi hatdsok kozotti killonbség csak kvantum-korrekci6ként
jelentkezik. A szdmolds és a levont kovetkeztetések kizarélag %2 spinii részecskékre
érvényes, hiszen az eredmény a Dirac-egyenletbol adodik.

Az 5. fejezet a Fold Dirac-részecskékre kifejtett hatdsdval foglalkozik. Foldi
kisérletek elemzésekor forgd vonatkoztatasi rendszert kell tekinteni, Kerr téridoben. Ez a
szamolas elég bonyolult, ezért szokas a Fold hatasat Schwarzschild téridében tekintett

vagy olykor gyorsulé és forgé vonatkoztatisi rendszer esetén kapott eredménnyel
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kozeliteni. A kérdés csak az, hogy mely kisérleti pontossag esetén engedhetoek meg ezek a
kozelftések. Annak eldontésére, hogy mely modellt lehet alkalmazni, meghatdroztam és
Osszehasonlitottam a Hamilton-figgvényt a harom esetben. Az elemzés azt mutatta, hogy a
Kerr és a Schwarzschild téridd kozotti kilonbség 107" eV nagysagrendii energidk esetén
vilik megfigyelhet6vé. A 4. fejezetben azt a kovetkeztetést vontam le, hogy a gyorsuld

vonatkoztatési rendszer és a Schwarzschild téridd esetén kapott eredmény a mozgési

energia voroseltolodasaval megegyezd nagysagrendii, azaz 107" eV . Osszehasonlitds
kedvéért megjegyzem, hogy a COW kfsérletben kimutatott gravitdci6s hatds
nagységrendileg 1eV energidnak felel meg. Atomi-interferométerek alkalmazéisédval ennek
a kisérletnek az érzékenysége vérhatéan 10 nagysigrenddel javithaté, ami mér szilkkségessé
teszi egy nagyobb pontossigi, tehdt &ltaldnos relativitdselmélettel kompatibilis elmélet
kidolgozisit.

A COW Kkisérlet elemzését a 6. fejezetben mutatom be, ahol a kordbbiakban
meghatarozott Hamilton-fliggvénybdl altalanos relativitaselméleti megfontolasok utjan
hatdrozom meg a féazis-eltolédast. A gyorsuldsi és a Sagnac-tagot mir Kkisérletileg is
kimutattdk. A Mashhoon-tag varhatoan megfigyelhetdvé valik az atomi-interferométerek
haszn4latdval, de a tovibbi tagok messze a kisérletek érzékenységén tdl vannak. Erdekes
megjegyezni, hogy a fizis-eltol6d4s kifejezésében némely tag az interferométer terilletével,
mds tagok pedig annak linedris méretével ardnyosak.

Kutatdsom célja a foldi laboratériumi kisérletek vizsgilata volt. A csillag4szati
objektumok ko6zott a Fold a kis tomegii, kis perdiiletii bolygok csoportjaba tartozik. A
szamitasokban bevezetett kozelitéseket a Fold paraméterei alapjin végeztem, melynek
"gravitacios" hatasa viszonylag kicsi. Nagyobb tomegii, illetve nagyobb perdiiletii

objektumok leirasakor (pl. neutroncsillag, fekete lyuk) mas rendii kozelitések
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alkalmazhat6k, ami esetleg azt eredményezheti, hogy a tehetetlenségi és 4ltaldnos

relativitdselméleti hat4sok jobban eltérnek egymadstol.

Uj tudoményos eredmények

1. A szakirodalomban talalt téves interpretaciok késobbi elkeriilése érdekében kidolgoztam
egy cljardst, mellyel az impulzus operdtor gorbiilt téridében felvett alakja
meghatérozhatd. 1]

2. Egy nyugvé gravitdciés forrds hatdsit vizsgiltam ¥z-es spinii részecskék esetében, a
Dirac Hamilton fliggvényt felirva Schwarzschild téridében. A Fold terében mozgé termalis
neutron esetére megadtam a Hamilton fliggvényben fellelhetd tagok nagysagrendjét, és
azok interpreticidjat. [1]

3. Az eredmények alapjin az ekvivalencia-elv vizsgdlatat végeztem el, Usszehasonlftva a
gravit4ciés és nem-inercidlis hatdsokat ¥2-es spinti részecskék esetében. Azt talaltam, hogy

a két eset kozott kiilonbség mutathato ki, mely kvantummechanikai eredetii, és a spint

tartalmazza. Az ekvivalencia-elv sériilését mutaté tag nagysdgrendje 102 ev
nagysagrendii, jelen kisérleti technikakkal nem kimutathato. [1]

4. Foldi laboratériumi kisérletek esetében a Fold forgésa két szemponb6l befolydsolja az
eredményeket. Egyrészt egy forgd gravitacids forras korili téridd helyesen a Kerr-
metrikdval frhat6 le, méisrészt a Foldhoz rogzitett vonatkoztatdsi rendszerben nem-
inercidlis hatdsok lépnek fel. Meghatdroztam a Dirac Hamilton fiiggvény alakjit egy
Kerr téridében forgb vonatkoztatssi rendszerben. [2]

5. A Fold Y2-es spinii részecskékre gyakorolt hatfsdt hdrom esetben vizsgéltam: Kerr- és
Schwarzschild-téridoben forgé vonatkoztatasi rendszerben, illetve Minkowski téridoben

gyorsul6-forgé vonatkoztat4si rendszerben. Ezek Osszehasonlitdsa azt mutatja, hogy a

Kerr- és Schwarzschild-térid6é kozétti killonbség termalis neutronok esetében 107 ev
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energianil, a gyorsulé vonatkoztatisi rendszer és a Schwarzschild-térido hatasa kozotti

killonbség 107 ev energidnél jelentkezik. (1, 2]

6. A gravitici6 hatdsdnak kvantummechanikai megnyilvinuldsit bemutaté kisérletek
értékeléséhez a newtoni gravitacié modelljét hasznaltak. A kozeljovore tervezett pontosabb
kisérletek sziikségessé teszik magasabb rendii, altalanos relativitiselméleti hatasokat
figyelembe vevé modell kidolgozasat. Megadtam a graviticié dltal okozott fazistolds

dltaldnos relativitaselméleti levezetését. [3]
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Synopsis of the thesis

Synopsis of the thesis

Introduction
It is beyond any doubt that any experiment performed on the Earth is done under the effect
of gravity. Gravitation, one of the four basic interactions governing the structure and
behaviour of the world, has by far the smallest effect. The gravitational coupling is so
weak that the gravitational attraction between two protons is 10* times less than the
electric repulsion; an alternative comparison would show that the order of magnitude of the
gravitational term in the Hamiltonian is approximately 10’ times less than the rest mass
energy term when a particle in the Earth’s field is considered. For these reasons it is a
standard practice to ignore the effect of gravity in case of laboratory experiments or
equivalently, to apply the physical theory in flat, rather than in curved space. It sounds
even more plausible that this procedure is above all justifiable in the quantum regime:
whoever thought that gravitational effects would manifest themselves at the quantum

level?
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Contrary to the latter it is now more than twenty-five years since Colella,
Overhauser and Werner (COW) succeeded in performing an experiment which detected
gravitational effects in neutron interferometry, where the behaviour of neutrons were
simultaneously governed by gravity and quantum mechanics. The formula describing the
phase shift was the first to contain both Planck’s constant and gravitational acceleration.
By giving direct evidence of gravitational effects the COW experiment established a
demand for describing general relativistic effects on quantum systems, leading to a
conceptual problem when one tried to combine general relativity and quantum mechanics.

The COW phase shift was explained using Newtonian mechanics, and this was a
satisfactory approximation, within the order of the experimental error involved. Since
1975, however, new experiments have been suggested, which are expected to increase the
accuracy by a factor of 10'°, which will take us to the regime where relativistic corrections
become relevant.

The effect of Earth on quantum systems has been examined in a series of
experiments: it was demonstrated that neutrons are subject to gravitational acceleration.
The COW neutron interference experiment proved, that gravity and quantum mechanics
play an essential role, simultaneously. Non-inertial effects (caused by rotation and
acceleration of the setup) have also been studied experimentally. These experiments,
although involving atoms and neutrons, were not sensitive to spin effects, thus it was not
necessary to use the Dirac equation in analysing them. In the studies of Xia and Wu,
however, it was found that the spin polarisation of spin-Y2 particles in the Earth’s field is
also affected, therefore in the analysis of experiments involving elementary particles in the

Earth’s field the use of the Dirac equation is necessary.

Method of Investigation
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The aim of the thesis is to find a method of analysing the behaviour of spin-Y2 particles in
an Earth-bound laboratory, focusing on gravitational and non-inertial effects. The method
used is to find the Dirac Hamiltonian in various circumstances, modelling the effect of
Earth on elementary particles. These Hamiltonians are then being compared to give the
applicability of the models.

In the thesis it is explained how to write the Dirac equation in general Riemannian
spaces using Weyl’s tetrad formalism. This method is described in detail, as are the
problems of using different coordinate sets and moving reference frames, working out the
correct measure for spatial integration and the transformation for the proper non-relativistic
limit. Various methods of finding the connection coefficients are compared and

summarised.

Scientific Resuits

1. To avoid further misinterpretation of results, already found in the literature, a procedure
is given for finding the form of the momentum operator in coordinate representation
in curved spaces. (1}

2. The effect of a stationary gravitational source on a spin-¥2 particle is examined via
calculating the Dirac Hamiltonian in Schwarzschild space-time. Interpretation of the terms
in the Hamiltonian and their order of magnitude are given for a thermal neutron in the
Earth’s gravitational field. [1]

3. A test of the medium strong equivalence principle is gained by comparing the
Hamiltonians describing the effects of a gravitational field and an accelerated frame on
spin-Y2 particles. It is found that the difference between the Hamiltonians consists of

quantum terms only, including a spin term. The spin term showing the breakdown of the
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equivalance principle is of the order of 102 eV, not accessible for experiments, at
present. (1]

4. A proper analysis of terrestrial experiments takes into account the rotation of Earth in
two aspects. First, the space-time outside a rotating gravitational source is described by the
Kerr metric. Second, a laboratory on Earth is rotating relative to the fixed stars, causing
non-inertial effects. The Dirac Hamiltonian is derived for a particle in a rotating frame
in Kerr space-time. [2]

5. The Earth’s effect on spin-Y: particles were studied in three cases: rotating frames in
Kerr and Schwarzschild space-times and an accelerated frame in Minkowski space-time.

Comparison showed that (for a thermal neutron) the difference between rotating frames in

Kerr and Schwarzschild space-times becomes apparent at energies of 107 eV. The

difference between an accelerated frame in Minkowski space-time and a frame in

Schwarzschild field is of the order of 107!! eV, [1,2]

6. Experimental data has previously been compared with a model using Newton’s theory of
gravity. From a fundamental point of view, however, this is somewhat unsatisfactory.
Also, new experiments, already proposed, are expected to increase the accuracy such that a
higher order description is required. The theoretical expression for the phase shift is

therefore derived on a general relativistic basis. [3]

Final remarks
The research presented in the thesis is an attempt to apply the laws of quantum mechanics
and general relativity simultaneously for describing spin-Y2 particles; but as all models in
Physics it is by no means finished.

An obvious extension of this study would be to carry out the above calculations

up to higher orders that would enable one to describe situations where the mass or the
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angular velocity of the gravitating source is more substantial than in case of the Earth. This
could be applied to situations such as rotating black holes or the Big Bang.

As mass curves space-time in GR, it is suspected that spin (the other conserved
quantity connected to space-time) might also have a dynamical manifestation; this would
be a generalisation of GR and the idea of torsion. Theories of torsion have a long history,
but the attempts to verify it experimentally on the cosmological scale have not yet been
successful. The extension of fhe model including torsion might suggest a possible test for it

in the quantum domain.
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