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Short summary 

The title of the thesis is Width-type graph parameters. The paper deals 
with the cornerstone of a modern subject, Graph Minor Theorem (GMT), 
the tree- and path-width, and the possible generalizations of them. These 
graph parameters are related to some cops-and-robber games on graphs. 

The historical overview of the subject can be found in Chapter 1. We 
mention that any minor-closed class of graphs can be characterized by a 
finite list of so-called excluded minors. This fact is a consequence of the 
GMT (previously called Wagner's conjecture) proved by Robertson and Sey-
mour. The complete proof of the theorem itself is very long and difficult. A 
key concept of the proof is a minor-monotone graph parameter. This mea-
sures the tree-likeness of the graph in some sense, thus it is called tree-width. 

Kruskal's theorem says that the trees are well-quasi-ordered by the topo-
logical minor relation, hence by the minor relation too. Natural idea is to 
trace Wagner's conjecture back to Kruskal's theorem. Every graph can be 
considered as a tree-like structure. Tree-width measures the 'naturalness of 
this approach'. Trees itself have tree-width one. The main idea of one half in 
the more than 500 pages proof is to use induction on tree-width from here. 

However, tree-width and its variations are important today irrespectively 
of the above, and began a life of their own. 

In Chapter 2 we collected some necessary definitions, which will be used 
throughout the paper. Beside on that, it is also a 'warm-up' for the reader. 
We present some easy facts with easy proofs, which can help the reader to 
get aquinted to the concepts. 

The main chapters are arranged as follows: 
Chapter 3: Cops-and-robber games 
3.1 Cops-and-robber games on graphs 
3.2 Cops-and-robber games on directed graphs 
3.3 Monotonicity for directed graphs 
3.4 Directed path-width 
3.5 Blockages for directed graphs 



Chapter 4: Characterization of graphs with path-width two 
4.1 Basics 
4.2 PW2-safe operations 
4.3 Non-reducible graphs characterization theorem 
4.4 Path-width of the non-reducible graphs 
4.5 Partial tracks 
4.6 The structure of graphs with path-width two 
4.7 Recognition of graphs with path-width at most two 

Chapter 5: New minor-monotone graph parameters 
5.1 Arc-width of graphs 
5.2 Arc-width of the complete bipartite graph 
5.3 Arc-width of non-connected graphs; the mM parameter 
5.4 Excluded minor theorems for mM 

In Chapter 3, we present first the known results and methods related to 
cops-and-robber games on graphs. The importance of these games is that 
the arising minor-monotone graph parameters are equivalent to tree- and 
path-width. Moreover some proofs previously requiring many technical ideas 
became essentially simpler. In this chapter, we succeeded to generalize the 
known definitions and results on graphs to directed graphs. Among others 
we simplified the search of the cops in a game to monotone search. Also 
the equivalence of the arising cop-number and directed path-width is proven. 
Finally we could prove the non-existence of a blockage of order k if the 
directed path-width was less than k. In the undirected case the two claims 
are equivalent. We conjecture that the reverse implication does probably not 
hold for directed graphs. 

In the chapter we consider two classes of digraphs, which seems to be 
interesting regarding cops-and-robber games. We give explicitly the exact 
values of their parameters. Moreover we state a conjecture saying that one 
of the classes is extremal in some sense. 

Chapter 4 uses an equivalent definition of path-width. There are intervals 
of the real line assigned to the vertices of a graph. If two vertices are adjacent, 
then the corresponding intervals must intersect. (Not necessarily vice versa.) 
The width of a point is the number of intervals containing it. The width of 
such an interval-representation is the maximum width of the points. (Hence 
the maximum number of pairwise intersecting intervals.) The width of a 
graph is the minimum width of its interval-representations. This parameter is 
minor-monotone, and essentially equivalent to path-width. But this language 
allows us to prove some of the results in this chapter. 



The excluded minor characterization of the graphs with path-width two 
was one of the goals of this thesis. This was considered as a difficult question, 
and only computer-aided proof existed before. The paper achieved this result 
by other methods. Introducing certain operations, it considers the minimal 
graphs respect to an ordering finer than the minor relation. We had to 
prove that the introduced operations preserve path-width. Instead of the 110 
excluded minors, we describe the same class with 10 excluded non-reducible 
graphs. Also a linear-time recognition algorithm arose. 

In Chapter 5 another graph-representation turns up. Here the vertices 
correspond to the arcs of a base circle. The width of a point on the base 
circle is the number of arcs containing it. The width of an arc-representation 
is the maximum of the width of the points. The arc-width of a graph is 
then the minimum width of such an arc-representation. This parameter is 
minor-monotone as well. Hence it is possible to formulate some excluded 
minor theorems. 

Interesting and important is that in magnitude the arc-width of a given 
graph is between the path-width and its half. Equality holds e.g. for trees. 
The complete graphs realize the other end. 

One of the curiosities of the chapter is the exact determination of the 
arc-width of the complete bipartite graph. Also here it is necessary to give 
— in some sense — good constructions. 

Finally we present some of the possible excluded minor theorems. Impor-
tant is that also non-connected graphs can be excluded minors. Among the 
obstructions for a certain class, unexpectedly the Kuratowski graphs turn 
up. 

The results of Chapter 4 and 5 are partially joint with the supervisor. 

In the last part of the thesis those open problems are collected, which the 
author met in his research. A lot of our own questions can be found among 
these. 



Rövid összefoglaló 

A doktori disszertáció címe Szélesség típusú gráfparaméterek. A dolgozat 
egy modern téma, a Gráf Minor Tétel (GMT) sarokkövének számító foga-
lommal a fa- és út-szélességgel, valamint annak lehetséges általánosításaival 
foglalkozik. Ezen gráfparaméterek kapcsolatban állnak gráfokon értelmezett 
rabló-pandúr játékokkal. 

Az 1. fejezetben a téma történeti áttekintése található. Megemlítjük, 
hogy gráfok bármely minor-zárt osztálya karakterizálható úgynevezett kizárt 
minorok egy véges listájával. Ez a tény a Robertson és Seymour által bi-
zonyított GMT (korábban Wagner-sejtés) következménye. Maga a tétel tel-
jes bizonyítása nagyon hosszú és nehéz. A bizonyítás egyik kulcsfogalma egy 
minor-monoton gráfparaméter. Ez bizonyos értelemben a gráf faszerűségét 
méri, ezért is hívják fa-szélességnek. 

Kruskal tétele azt mondja ki, hogy a fák jól-kvázi-rendezettek a topoló-
gikus részgráf relációra nézve, így a minor relációra nézve is. Természetes 
ötlet az, hogy a Wagner sejtést vezessük vissza Kruskal tételére. Minden 
gráf felfogható egy faszerű struktúrának. A fa-szélesség azt méri, hogy ez 
a 'felfogás mennyire természetes'. A fák fa-szélessége 1. A több mint 500 
oldalas bizonyítás egyik felének alapötlete, hogy innen indulva teljes induk-
ciót alkalmazzunk a fa-szélesség szerint. 

A fa-szélesség és különböző változatai ma már ettől függetlenül is fonto-
sak, és önálló életet élnek. 

A 2. fejezetben a szükséges definíciókat gyűjtöttük össze, amelyeket a 
dolgozatban használunk. Ezen kívül ez egy 'bemelegítés' is az olvasónak. 
Néhány könnyű állítást mondunk itt ki könnyű bizonyításokkal, ami segíthet 
megszokni a fogalmakat. 

A fő fejezetek a következő képpen tagolódnak: 
3. Fejezet: Rabló-pandúr játékok 
3.1 Rabló-pandúr játékok gráfokon 
3.2 Rabló-pandúr játékok irányított gráfokon 
3.3 Monotonitás irányított gráfokra 
3.4 Irányított útszélesség 
3.5 Blokádok irányított gráfokban 

4. Fejezet: Ket tő út-szélességű gráfok karakterizációja 
4.1 Alapok 



4.2 PW2-biztos operációk 
4.3 Karakterizáció nem-redukálható gráfokkal 
4.4 A nem-redukálható gráfok út-szélessége 
4.5 Parciális sínek 
4.6 A kettő út-szélességű gráfok struktúrája 
4.7 A legfeljebb kettő út-szélességű gráfok felismerése 

5. Fejezet: Új minor-monoton gráfparaméterek 
5.1 Gráfok ív-szélessége 
5.2 A teljes páros gráf ív-szélessége 
5.3 Nem-összefüggő gráfok ív-szélessége; az mM paraméter 
5.4 Kizárt minoros tételek mM-re 

A 3. fejezetben először a gráfokra ismert rabló-pandúr játékokkal kapcso-
latos eredményeket és módszereket ismertetjük. Ezen játékok fontosságát az 
adja, hogy a származtatott minor-monoton gráfparaméterek ekvivalensek a 
fa- ill. út-szélességgel. Ezen felül több, korábban sok technikai ötletet igénylő 
bizonyítást lényegesen leegyszerűsített. A fejezetben a gráfokra ismert definí-
ciók és eredmények általánosítása sikerült irányított gráfokra. Többek között 
egyfajta játékban a pandúrok keresésének egyszerűsítése monoton kereséssé. 
Valamint ezen játékból származó pandúrszám ekvivalenciája az irányított út-
szélességgel is bizonyításra kerül. Végül sikerült bizonyítani, hogy legfeljebb 
k irányított út-szélességű gráfban nem lehet fc-nál nagyobb rendű blokád. 
Irányítatlan esetben a két állítás ekvivalens. Sejtésünk azonban az, hogy 
irányított gráfokra a fordított irány talán nem is igaz. 

A fejezetben két olyan irányított gráfosztályt is vizsgálunk, ami érdekes 
lehet a rabló-pandúr játékok szempontjából. Explixcit megadjuk a megfelelő 
paraméterek értékeit. Továbbá megfogalmazunk egy sejtést, ami azt állítja 
hogy az egyik osztály extremális bizonyos szempontból. 

A 4. fejezet az út-szélesség egy ekvivalens definícióját használja. Egy 
gráf csúcsainak a számegyenes bizonyos intervallumai felelnek meg. Ha két 
csúcs között van él, akkor a nekik megfelelő intervallumok metszik egymást. 
(Fordítva nem feltétlenül igaz.) Egy pont szélessége az őt tartalmazó in-
tervallumok száma. Egy ilyen intervallum-reprezentáció szélessége a pontok 
szélességének maximuma. (Azaz az egymást páronként metsző intervallumok 
maximális száma.) Egy gráf szélessége pedig a minimális szélességű reprezen-
táció szélessége. Ezen paraméter minor-monoton, és lényegében ekvivalens 
az út-szélességgel. Ez a nyelvezet teszi azonban lehetővé a fejezet bizonyos 
eredményeinek bizonyítását. 



A kettő út-szélességű gráfok kizárt minorokkal való karakterizációja volt 
a dolgozat egyik célja. Ez nehéz kérdésnek számított, és csak számítógéppel 
támogatott bizonyítása volt korábban. A dolgozat más módszerrel érte el az 
eredményt. Bizonyos operációk bevezetésével a minor relációnál finomabb 
rendezésben nézi a minimális gráfokat. A bevezetett operációkról bizonyítani 

T 
kellett, hogy megőrzik az út-szélességet. így 110 kizárt minor helyett 10 
kizárt nem-redukálható gráffal írjuk le ugyanazt az osztályt. Egy lineáris 
idejű felismerési algoritmus is adódott. 

Az 5. fejezetben a gráfok egy másik reprezentációja kerül elő. Itt a csúc-
soknak egy alapkör ívei felelnek meg. Az alapkör egy pontjának szélessége 
az őt tartalmazó ívek száma. Egy ív-reprezentáció szélessége a pontok szé-
lességének maximuma. Egy gráf ív-szélessége pedig a minimális szélességű 
ív-reprezentáció szélessége. Ezen paraméter is minor-monoton. így lehetőség 
nyílik pl. kizárt minoros tételek megfogalmazására. / 

Érdekes és fontos, hogy nagyságrendileg egy adott gráf ív-szélessége az 
út-szélessége és az út-szélesség fele közé esik. Fákra pl. egyenlőség áll fenn. 
A teljes gráfok pedig a másik végletet realizálják. 

A fejezet egyik különlegessége a teljes páros gráf ív-szélességének pontos 
meghatározása. Itt is szükség van bizonyos szempontból jó konstrukciók 
megadására is. 

Végül a lehetséges kizárt minoros tételek közül mutatunk be néhányat. 
Fontos hogy nem-összefüggő gráfok is szerepelnek itt kizárt minorként. Az 
egyik osztály akadályai között váratlanul felbukkanak a Kuratowski gráfok 
is. 

A 4-5. fejezetek eredményei részben a témavezetővel közösek. 

A disszertáció utolsó részében azon megoldatlan problémák kerülnek fel-
sorolásra, melyekkel a szerző kutatásai során találkozott. Ezek között nagy 
számban találhatók saját kérdések is. 
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Chapter 1 

History and introduction 

Kuratowski's theorem says, that a graph is planar iff it has no minor isomor-
phic to or K33. „This theorem gives a good characterization of planarity. 
There is a large collection of similar results in Graph Theory, called excluded 
minor theorems. Actually any minor-closed class of graphs can be character-
ized by a finite list of so called excluded minors. This fact is a consequence 
of the celebrated Graph Minor Theorem(GMT) of Robertson and Seymour 
[27]. The results of the Graph Minor project became known in the beginning 
of the 80's. The goal was to prove a theorem, often quoted as 'Wagner's 
Conjecture'. This states that a given infinite list of finite graphs always con-
tains two graphs s.t. one is minor of the other. With other words, the finite 
graphs are well-quasi-ordered by the minor relation. 

However, the proof of this single theorem is very involved. The project 
resulted in more than 20 deep and long papers. The above stated result 
seems to be completely proven in part XX. The sum of the length of the 
papers is certainly over 500 pages. But there are other results proven on the 
way to the main theorem. Until today 17 of the at least 20 papers have been 
published. This allows us to try to follow their ideas, and believe that the 
main result is true. A lot of special cases are already proven in the early 
papers (part 1,111-V). For example if one assumes that at least one graph 
is planar, then they are done after the fifth paper. One key-ingredient of 
the proof is a minor-monotone graph parameter. In some sense, it measures 
the tree-likeness of the graph, and it is called tree-width. Kruskal's theorem 
says that the trees are well-quasi-ordered by the topological minor relation. 
Hence the concept of tree-width is very natural. The idea is to trace Wagner's 
conjecture back to Kruskal's theorem through tree-width. However, tree-
width and its variations — we call them width-type parameters— began a 
life of their own too. 
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• 

We tried to write the paper in the following style. After the introduction 
of a new concept we always give some easy examples to make the under-
standing easier for the reader. We tried to give the proofs in more detail 
than in a journal paper. We attached lot of drawings, but even more can be 
necessary for a conscientious reader. We always tried to emphasize the clear 
heuristic of the proofs beside on the formalisms. 

* 

In Chapter 2 we collected some necessary definitions, which will be used 
throughout the paper. Beside on that, Chapter 2 is also a 'warm-up' for the 
reader. We present some easy facts with easy proofs, which can help the 
reader to get aquinted to the concepts. 

• 

Path-width is a variation of tree-width. This parameter is the most dis-
cussed one in our paper. The path-width is equivalent to a number arising 
from a kind of 'cops-and-robber' game. This approach is very nice. It can 
make the explicit determination of the path-width of graphs much easier. 
This aspect is discussed in Section 3.1. One important feature of such a 
game is monotonicity. 

Recently many attempts were made on generalizations of the above con-
cepts to directed graphs. The paper [2] is one of them, focusing on the 
cops-and-robber game point of view. In Section 3.2 we introduce several 
possible games on directed graphs. We show some of their properties, and 
the relations between them. The motivation is always the analogy to the 
undirected case. In one case we can prove a monotonicity result too. This 
result is described in Section 3.3. 

We also define directed path-width (dpw), first suggested by Reed, Sey-
mour and Thomas. We can associate a game to this parameter too. This 
approach is discussed in Section 3.4. 

The last attempt is the generalization of the results of [7]. Here we show 
that if dpw of D is at most k — 1, then there can not be an obstruction 
structure called blockage in D of order k. This is Section 3.5. 

• 

Minor-closed families of graphs naturally arise in graph theory. There are 
natural classes like outerplanar, series-parallel, planar, hnklessly embeddable 
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graphs. Any minor-monotone graph parameter (e.g. the genus, the tree-
width, the path-width, or the Colin de Verdiére number of the graphs) defines 
a sequence of minor closed families by limiting from above the value of the 
parameter by any natural number t. 

As we increase the value of t, the class grows and usually the number 
of excluded minors increases rapidly with t. So the determination of the 
excluded minors becomes harder and harder. The graphs with tree-width at 
most three requires four excluded minors [1]. D.P. Sanders in his Ph.D. thesis 
determined more than 75 minimal forbidden minors for tree-width at most 
four, but the list was still incomplete. Planar graphs require two excluded 
minors, nobody undertook the task of explicitly list the excluded minors 
for toroidal graphs. The class of graphs with path-width at most one require 
two excluded minors, N.G. Kinnersley in her Ph.D. thesis determined the 110 
minimal forbidden minors for path-width at most two. It is known [30], that 
the number of excluded tree minors for the class of graphs with path-width 
at most t grows superexponentially. 

It looks like that a very small limit on natural minor-monotone graph pa-
rameters creates classes with extreme complexity. This happens although the 
considered classes are important, since many NP-hard optimization problems 
can be solved for their members efficiently. Their recognition and represen-
tation problems are important. 

One of our goals is to exhibit that characterizations by excluded minors 
are very often not appropriate for certain classes. This task will be considered 
mainly in Chapter 4. We introduce new operations for the class of graphs 
with path-width at most two. (Most of the operations work in general.) 
Based on these operations, we can significantly reduce the number of excluded 
structures. 

The novelty of our approach is, that it gives a much better insight into 
the considered class, than an overwhelming list of more than 100 graphs. 
There is another point. In [15], Kinnersley and Langston wrote the following 
about finding the excluded minors for path-width two: "To assist in this 
heroic undertaking, massive computational power was used to verify that 
each obstruction represents a circuit that has no three-track layout, and 
to check that each proper minor of each obstruction represents a circuit 
that does have a three-track layout." Checking by computers proves the 
correctness of the result, but it does not give a good understanding of the 
considered theorem. Unlike this, we do not need computers to handle huge 
lists. Our operations do the job for us. On the list of Kinnersley and Langston 
many graphs look alike, the computer handles each of them independently. 
Our operations exhibit them as simple variations of some base graphs. 

Another reason for publishing a new proof for a forbidden minor charac-
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terization is that our proof is more systematic, and hence it leads to a linear 
algorithm for testing the property 'having path-width at most two'. 

• 

In Chapter 4 we represent the vertices of graphs with intervals on the real 
line. This lead us to path-width. In Chapter 5 we represent the vertices of a 
graph with arcs of a base circle. This is a very natural modification of path-
width, called arc-width. We describe some of its basic properties. These two 
measures are similar in some sense, but different in other cases. Interesting 
and important is that in magnitude the arc-width of a given graph is between 
the path-width and its half. Equality holds e.g. for trees. On the other hand 
the arc-width of Kn is roughly | and its path-width is n — 1. We also present 
a proof of the most attractive result in this field so far. Namely we determine 
the arc-width of the complete bipartite graph. 

k 

Throughout the paper we state some conjectures. But at the end we 
collect them together, and also add some open questions of other researchers. 

6 



Chapter 2 

Notations, definitions, and 
basic facts 

We only consider finite graphs. In most cases when we say graph, we mean a 
simple, connected, undirected graph. In our case it is very natural to do so. 
The vertex set of G is referred to as V(G), its edge set as E(G). IV^G)! = n 
denotes the number of vertices, uv G G is an edge of G with endvertices u 
and v. 

Let G be a graph and X is a set of vertices or edges. G\U is the 
graph that we obtain by deleting X. If U is a vertex set, G\u is the induced 
subgraph of G by U. E(U) is the set of edges incident to any element of U. 
Let F be a set of edges. V(F) is the set of vertices incident to at least one 
member of F. G\p is the graph induced by the edge set F, i.e. its vertex set 
is V(F) and its edges set is F. 

A graph H is a minor of a graph G, G >z H in notation, if H can be 
obtained from a subgraph of G by contracting edges. While contracting an 
edge multiple edges can arise. To keep the graph simple, we only keep one 
edge in those cases. A class of graphs is called minor-closed if for every graph 
G in the class, every minor of G is also a member of the class. A graph 
parameter is a graph property which is expressed by natural numbers. A 
graph parameter 7r is called minor-monotone if G t. H implies ir{G) > 7r (H). 

A path-decomposition of a graph G is a pair (P, W), where P is a path and 
W = (Wp : p G V(P)) is a family of subsets of V(G), satisfying 

(1) Upev(P) Wp = and every edge of G has both ends in some Wp, 
and 

(2) if p, p', p" G V(P) and p' lies on the path from p to p", then WPC\WP<> C 
Wp,. 

(the sets W{ are usually called bags) 
The width of a path-decomposition is max(| Wp\ — 1 : p G V(P)), and the 
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path-width of G (pw(G) in notation) is the minimum width over all path-
decompositions of G. The —1 in the definition of width is only by tradition. 
(In this way any path has path-width one.) Hence we use the notation 
pw*(G) for maxflWpl : p G V(P)), as well. 

There are several alternative definitions for path-width (see [20], [22], 
[32]). For us one is especially important. An interval representation of a 
graph G (or simply representation of G) is a function Q, that assigns closed 
intervals of the real fine I to the vertices of G, such that adjacent vertices 
correspond to intersecting intervals. We say that a point P of lis covered m 
times in a representation iff P is an element of exactly m intervals assigned to 
vertices. The width of the representation is the maximal m such that there 
exists a point which is covered m times. The path-width of the graph G is 
one less than the width of its minimal width representation. That is why we 
sometimes refer to pw(G) + 1 as pw*(G). A minimal width representation is 
also called optimal. 

We will use the above description as the definition of path-width. Let us 
show its equivalence to the original definition by Robertson and Seymour. 

Lemma 2.1 The following are equivalent: 

(i) pw(G) < k 

(ii) G is a subgraph of an interval graph H, which has maximum clique-
size at most k + 1 

(Hi) G has an interval representation with width at most k + 1. 

The equivalence of (ii) and (iii) is obvious. To prove (i) (iii), first we need 
a classical lemma: 

Lemma 2.2 (Gilmore and Hoffman 1964) [H] A graph G is an interval 
graph iff the maximal cliques of G can be linearly ordered C\,..., Ct s.t. if 
v eCi n Ci" and 1 < i < i' < i" < t, then v G Cy. 

Using this result, the equivalence in Lemma 2.1 is fairly easy to see. 

Lemma 2.3 pw(G) <k iff G is a subgraph of an interval graph H that has 
maximum clique-size k + 1. 

Proof: If H is given, the maximal cliques C\,..., Ct of H can play the role 
of the bags in the definition of a path-decomposition. Then by Lemma 2.2 
the crucial (2) of the definition is automatically satisfied. The maximum size 
of a bag will be k + 1, hence pw(G) < pw(H) < k. 
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If pw(G) < k, then every vertex v of G appears in consecutive bags, and 
the maximum size of a bag is k+1. Let us define an interval graph as follows. 
If v appears in bags W,, . . . , Wj, then let the interval [i,j] correspond to v. 
In this way we get an interval graph H with maximum clique-size k + 1. If 
uv G E(G), then u and v are in a common bag, Wj say. Hence j is in both 
intervals corresponding to u and v. Hence G is a subgraph of H. • 

A tree-decomposition of a graph G is a pair (T, W), where T is a tree and 
W — (Wt: t G V(T)) is a family of subsets of V{G), satisfying 

(1) UteV(T) Wt = V(G), and every edge of G has both ends in some WT, 
and 

(2) if t, f , t" G V(T) and f lies on the path from t to t", then Wt n Wt» C 
Wt,. 

The width of a tree-decomposition is max (|Wt| — 1 : t G V(T)), and tree-
width of G is the minimum width over all tree-decompositions of G. Trees 
themselves have tree-width one. This is the base of the traditional —1 in the 
definition of width. 

• 

A separation of a graph G is a triple (A, B,(vi, v 2 , . . . , u*;)) where A, B 
are subgraphs of G with A U B = G, E(A) D E(B) = 0, and V(A) D V{B) = 
{^i, i>2,..., Ufc}. We should think of a separation as representing G as a result 
of a gluing: we can obtain G from A by gluing to it a copy of B by identifying 
the corresponding vertices. 

Let a structure S be a pair (G(S), (ui,u2,..., Uj)), where G(S) is a 
graph, and ui,U2, ••• ,Uj are distinct vertices of G(S), called the vertices 
of attachment of S. A graph G has a structure S, if G has a separation 
(A, JB, (vi, u 2 , . . . , Vk)) where (B, (ui, . . . , Vk)) is isomorphic to S. 

A reduction R is a pair of structures, SR and TR, with the same sequence 
of vertices of attachment and |V(5fl)| > \V(TR)\. Let G be a graph which 
has the structure SR. Then we say that the reduction R can be performed 
on G. The result of the reduction is a graph H that can be obtained from a 
proper separation of G by replacing the side isomorphic to SR by TR. 

We need some relaxations of the formal definition above. A variation R 
is a pair of structures, SR and TR, with the same sequence of vertices of 
attachment and |V(Sr)| = |V(Tr)|. Sometimes we allow the performance of 
a reduction or a variation only in case the corresponding separation satisfies 
some additional requirements. (For example some degree conditions on the 
vertices of attachment, or containment of a cycle on the side of the separation 
that is not changed during the reduction or variation). We can call them 
conditional reduction, conditional variation. From now on we use the notion 
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of operation instead of the words reduction, variation, conditional reduction, 
conditional variations. 

For an operation R, define the following partial order: H <R G if there 
is a sequence of graphs H = Gi, G2,.. •, Gk = G such that for every i < k, 
Gi is obtained from G i+i by performing R. Naturally we can define <R if 
we have a set R of operations by H <R G if Gi <R Gi+1 for some Re R 
for each i. If A is a class of graphs, an operation R is A-monotone, if for all 
graphs G, H satisfying H <R G, if G e A then H e A. An operation R is 
A-safe if for all graphs G, H satisfying H <R G, G e A if and only if H e A. 

By saying a graph has or contains an operation R, we mean that the 
operation can be performed on it. A graph G is reducible if G has a reduction. 
R{G) abbreviates the result of a performance of R on G. 

* 

It is well-known, that "being identical or being on the same cycle" is an 
equivalence relation on the edges of a graph. Its equivalence classes span the 
so called blocks of the graph. The one element classes are the loops (what 
we do not have since we consider simple graphs) and the cut edges. 

• 

A rooted graph (G,r) is a graph G with a specific node r e V(G), that 
is called the root of G. 

We denote a directed edge by (u, v). This abbreviates that u is the tail 
and v is the head of the directed edge. If we have both (u, v) and (v, u) in a 
digraph G, then to simplify notation, we substitute them by an undirected 
edge uv. In this sense an undirected graph G can correspond to a directed 
graph, where every edge of G is replaced by two oppositely directed edges. 
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Chapter 3 

Cops-and-robber games 

3.1 Cops-and-robber games on graphs 
In this section we consider different type of cops-and-robber games. We 
describe their relation to the different width-type parameters. In some cases 
the very strong monotonicity condition hold. This makes life much easier. 
Especially if the graph has some symmetry. 

There are a number of variations of the game. The graph itself can be 
directed or undirected, the robber can be visible or invisible. (In this paper 
we restrict ourselves to finite graphs. The infinite case was also investigated 
in a number of papers.) 

Definition 3.1 Let G be a graph. There is a robber standing on a vertex 
of G. There are k cops willing to capture the robber. The robber can run at-
any time to another vertex along edges with great speed. The movement of 
the cops is only possible by helicopter, but they can fly to an arbitrary vertex. 
Let the robber be invisible for the cops. ( We can think that the surface is 
covered by forests.) So the cops cannot see the robber from the helicopter. The 
meaning of the great speed is as follows. When the robber see a helicopter 
approaching a vertex, he can still decide to run somewhere. However the 
robber cannot run through a vertex which is occupied by a cop. The cops can 
only capture the robber if they occupy all neighbors of the vertex where the 
robber is standing, and then with one extra cop they capture the robber. 

If there is a winning strategy for k cops, we say that 'there is a capture 
with k cops', or 'k cops can search the graph'. 

The goal is to decide how many cops are necessary to capture the robber. 
This minimum is denoted by cn(G). (cn stands for cop number, overline for 
the invisible case.) 
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The above statements can be formalized as follows. 
A position is a pair (X , R), where X is the set of vertices occupied by cops, 

and R is the set of vertices, where the robber could be. A game (capture) is 
a sequence of positions. We set (A"0, Ro) to an initial position. In a normal 
game Xq = 0, and Ro is the hole vertex set of G. In general at the start 
of step i, we have a position (Xi-\, Ri-i). The cop player chooses a new 
set Xi s.t. either X, C Xi-i or Xi-i C X{. Then the robber's place satisfy 
Ri-1 Q Ri or Ri C Ri_i respectively. More precisely when Xi-1 C Xi, then 
Ri = Ri-1 \ (Xi \ ATi_i). When Xi C Xi-i, then R, = {v : there is a path in 
V(G) \ V(Xi) from v to a vertex a, where a £ Ri-i}. If any time = 0, 
then the cop player won, moreover if < k for every i, then k cops are 
enough to capture the invisible robber. The minimal such k is called cn(G). 

L e m m a 3.2 cn(G) is a minor-monotone graph parameter. 

Proof : Let G' be a graph arising from G by an edge-deletion or edge-
contraction. If cn(G) < k, then we know that there is a search with at most 
k cops. Consider the same search for the vertices of G'. Formally in the case 
of a contraction, some vertices u,v £ G become a new vertex n £ G'. So 
whenever u £ X, or/and v £ Xi for some i, then put n £ Xi instead. This 
way we get a capture for G' with at most k cops. • 

Defini t ion 3.3 We say that a capture (game/search) is monotone, if the 
cops have not visited any vertex more than once. Formally if 0 = Xq C X\ C 
...CXn = V(G). 

R e m a r k 3.4 A graph G is called a caterpillar i f f it is a path with pendant 
edges attached to some of its vertices. 

L e m m a 3.5 Two cops can capture an invisible robber in a connected graph 
G i f f G is a caterpillar. Equivalently i f f G >£_ K^,Y\, where Y\ is the graph 
on Figure 3.1. 

Figure 3.1: 
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Proof: Proof: Assume P = vi,... ,vn is a longest path in G, and let 
Ni(vi) denote the 1-valent neighbors of V{. In step 0. put the first cop onto 
Ui, the second cop is now called free. In the beginning of step i, put the free 
cop to Uj+i, where Vi is the last occupied vertex of P; this cop is not free 
now, and call the other cop free instead. In step i., the free cop subsequently 
occupies all the vertices of Ni(vi+i). After doing this, step i. finishes. By 
this process the robber will be captured after step n — 1. 

The opposite direction is trivial, because and Y\ require at least three 
cops each. • 

Lemma 3.6 If G has path-width at most k — 1, then k cops can capture 
an invisible robber in G. In notation: pw(G) < k — 1(<=> pw*(G) < k) => 
m(G) < k 

Proof: Mimic the proof of the case, when G is a path and there are two 
cops. pw(G) < k — 1 means that every bag has size at most k (|Wi| < k), 
and we have k cops. Occupy the first bag with the cops. From the definition 
of path-decomposition it follows, that if we leave the cops in W\ n W2, and 
move the cops from Wi \ W2 to W2 \ Wi, then the robber cannot move back 
to Wi \ W2. If we iterate this process, finally the robber will be captured. • 

The opposite direction is proved by the following equivalence theorem. In 
this form it was published and proved by Bienstock et al. in [7]. We recall 
this without proof. Hence pw*(G) = cn(G). At the same time, the crucial 
implication (i) => (Hi) was also proved by Bienstock and Seymour in [6]. 
Their proof idea will be heavily used and followed in Section 3.3. 

Theorem 3.7 For a graph G and a positive integer k, the following are 
equivalent: 

(i) k cops are enough to capture the invisible robber, 

(ii) G has path-width at most k — 1, 

(Hi) there is a monotone capture with at most k cops. 

Monotonicity is very useful for us. Let us color by red the vertices which 
are reachable for the robber. Let the other vertices have blue color. In any 
step we can only move such a cop, whose vertex has only blue neighbors. 
Call such a cop, or a cop which is temporarily not in the game, free. If we 
want to decide whether k cops are enough, we have to do the following. In 
the beginning we have to occupy a vertex and all its neighbors. Then in any 
step we can move with the free cops. If we are stack (i.e. there is no free 
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cop available), and there are still red vertices, then k cops were not enough 
with this starting vertex. When the graph has not too many vertices, or it 
has a kind of symmetry, then we can check all starting points easily. By 
this checking we determined the path-width of the graph, which is usually a 
difficult problem. In Chapter 4 we consider the case with three cops. Already 
that one is a hard nut. 

• 

Modify the previous game — defined by Definition 3.1 — only at one 
condition. This small difference drastically changes the situation. 

Definition 3.8 Copy Definition 3.1 in mind, but assume the cops can see 
the robber all the time. The number of necessary cops to capture the robber 
is denoted by cn(G). 

Remark 3.9 Minor-monotonicity ofcn(G) can be proved similarly as it was 
done for cn{G). 

Lemma 3.10 Two cops can capture a visible robber in a connected graph G 
i f f G is a tree. Equivalently iff G has no K^-minor. 

Proof: If there is a cycle C in G, then is a minor of G. Trivially in 
Kz the robber can only be captured with three cops. Hence two cops cannot 
capture the robber in G, by the minor-monotonicity. 

If G is a tree, then we can define a sequence of cop-moves after which 
the robber is captured. Put one cop on a vertex v. See which component of 
G \ v contains the robber. Transport the second cop to the neighbor of v in 
that component. Iterate this process with exchanging the role of the cops. 
In a moment the robber will be forced to be on a leaf, and be captured in 
the next move. • 

The next statement formalizes the nice connection between tree-width 
and the cop-parameter cn. 

Lemma 3.11 If G has tree-width at most k — I, then k cops can capture a 
visible robber. Hence tw(G) < k — 1 implies cn(G) < k. 

Proof: Mimic the proof for trees. • 

The opposite direction can again be proved via an equivalence theorem. 
This is a result by Seymour and Thomas [29]. We recall it without proof. 
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Theorem 3.12 [29] Let G be a graph, and k be a positive integer. Then the 
following are equivalent: 

(i) k cops are enough to capture a visible robber 

(ii) k cops can monotonely capture a visible robber 

(Hi) G has tree-width at most k — 1 

Recently some of the above (well-studied) concepts were generalized to di-
rected graphs. We try now to analyze this effort in the next section from the 
cops-and-robber game point of view. 

3.2 Cops-and-robber games on directed graphs 
There are several possible ways to define cops-and-robber games on directed 
graphs. For us the most natural one is the following: 

Definition 3.13 Let a directed graph D be given. The robber can run along 
the directed edges in the indicated direction. The cops move by helicopters. 
Assume in this version, that the robber is invisible. The goal is to decide 
how many cops are necessary to capture the robber. Denote this minimum by 
cn*(D). (cn stands for cop number, overline for the invisible case, * indicates 
that the robber's move is not restricted like in Definition 3.19.) 

First we mention some basic properties of this new parameter. 

Lemma 3.14 One cop is enough to capture the invisible robber in D, iff D 
has no directed circuit as a subgraph, hence D is acyclic. 

Proof: Trivially the robber escapes from one cop on a directed circuit. 
Hence the condition is necessary. 

No directed circuit means that we can number the vertices in such a way, 
that any directed edge goes from a bigger number to a smaller one. Hence 
one cop travelling in decreasing order on the vertices captures the robber. • 

Lemma 3.15 (a) If Ad V(D), \A\ = k is a set of vertices s.t. V \ A 
has no directed circuit, then cn?(D) < k + 1 

(b) Let D be a directed circuit with at least two vertices. Then cn*(D) = 2 
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Proof: (a) Occupy the set A with k cops. V \ A is now a graph which 
can be searched with one cop by the previous lemma. Hence k + 1 cops are 
enough to capture the invisible robber in D. 

(b) One cop is not enough by the previous lemma. Two cops axe enough 
by part (a). • 

To be able to consider minor-monotonicity, one wishes to extend the 
minor operation to digraphs. This can be done in the natural way. Any edge 
can be deleted, any edge can be contracted. After the contraction of an edge, 
we delete the multiple edges. 

Definition 3.16 A directed graph D is a minor of a directed graph F, if D 
can be obtained from F by using edge-deletions and/or edge-contractions. 

We can now ask ourselves whether cn* is minor-monotone? This is clearly 
not. Take a directed circuit. Revert one edge. The graph obtained in this 
way requires only one cop. But if we contract the reverted edge, we got a 
directed circuit which needs two cops. Of course there axe more involved 
examples. In this situation there axe two ways to choose from. Either we 
introduce a different minor operation for which the cop-number is monotone. 
Or we keep the minor operation as it is natural, and consider this cop-number 
parameter however. We concentrate on the second variation. 

The notion of directed path-width came up in a-joint work of Bruce Reed, 
Paul Seymour and Robin Thomas: 

Definition 3.17 One can define a directed path-decomposition (dpd) as a 
sequence W\, W2,..Wk such that 

(i) the union ofWi is V(D), and 

(ii) ifi<j<k, then Wi fl Wk is a subset ofWj, and 

(Hi) an edge either has both endpoints in the same Wi or has its head 
in Wi and tail in Wj, where i < j. 

The width of a dpd is the maximum size of a Wi minus one. (The Wi's 
are called bags again.) The directed path-width (dpw) of a digraph D is the 
minimum width over all possible dpd's. 

dpw = min ( max(|Wi| - 1) J 
wi is a dpd vsis« / 

We can call dpw a generalization of path-width to directed graphs, more 
precisely the following is true: 
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Lemma 3.18 Let G be a graph, and let D be the graph obtained from G by 
replacing every edge by two directed edges in opposite directions. Then the 
path-width ofG is equal to the directed path-width of D. 

Proof: Assume first that a path-decomposition of G is given. Every edge 
of G is in some Wi by definition. Hence if we make the replacing to get D 
keeping the Wj's unchanged, we get a directed path-decomposition as well 
with the same width. 

Assume now that a dpd of D is given. Suppose there is a directed edge 
(u,v), u G Wi and v G Wj s.t. i < j. But also (v,u) is a directed edge by 
assumption, contradicting (iii) of Definition 3.17. Hence every directed edge 
is in some Wj, so the Wj's give a path-decompositiojn of G with the same 
width. • 

Analog to the undirected case, if dpw(D) <k — 1, then k cops are enough 
to capture an invisible robber in D. Hence dpw(D) < k — 1 implies cn*{D) < 
k. The opposite implication will be discussed in Section 3.3. 

The visible robber version can also be easily defined. The minimum 
number of necessary cops in that case is denoted by cn*(D). 

Let us consider another version of cops-and-robber games appearing in 
[14]. 

Definition 3.19 Let a directed graph D be given. The cops are either stand-
ing on a vertex or in a helicopter (temporarily removed from the game). The 
robber stands on a vertex of D, and can at any time with great speed run to 
another vertex in the same strong component of D\Z, where Z is the set 
of vertices occupied by the cops. In other words, the robber can only move 
from a to b, if there is also a cop-free directed path from b to a. The goal 
is to decide how many cops are necessary to capture the robber. Denote this 
minimum by cn(D) if the robber is visible, andcn(D) if the robber is invisible. 

In the aforementioned [14] only the visible case was considered. There are 
some trivial connections between the so far defined parameters, which we 
indicate on the next figure. 

Remark 3.20 
cn*{D) < 

VI 
cn(D) < 

These facts are easy to see, and these 
without any further references. 

cn*(D) 
VI 

m(D) 
inequalities will be used henceforth 
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In the study of cops-and-robber games on directed graphs, some special class 
of graphs turned out to be interesting. Let us discuss these examples: 

Defini t ion 3.21 [14] For k = 1 ,2 , . . . let Jk be the union of k directed 
circuits Ci, C2, • • •, Ck of length 2k, and 2k directed paths Pi, P 2 , . . •, Pk of 
length k resp. Qi, Q2,... ,Qk of length k. Here for i — 1,2,... k Ci has 
vertex set {tii.i, Uji2,• • •, u^k, vit\, v^2, • • •, vitk} (in order), Pi has vertex set 
{ui, 1, ui)2,.. •, uijk} (in order), and Q, has vertex set {u^i, uii2, • • •, A,fc} (in 
order). Thus Jk has a planar drawing, where the circuits are concentric, the 
P's are disjoint paths linking Ci to Ck, and the Q's are disjoint paths linking 
Ck to Ci. (See Figure 3.2.) 

Figure 3.2: The 'candidate' directed grid; case k = 3 

L e m m a 3.22 cn(Jk) = cn(Jk) = k 

Proof : It is enough to prove that k < cn(Jk) and cn(Jk) < k. 
If X C V(Jk) and \X\ < k, then there exist indices i,p,q such that 

Ci U Pp U Qq is disjoint from X. Let ¡3{X) be the strong component of Jk\X 
that includes Cj. It follows that (3 is well-defined. The winning tactic for the 
robber is to go the (3(X), when the cops are landing to X. Hence k < cn(Jk). 

Let us show now explicitly how k cops can capture the invisible robber 
(i.e. cn(Jfc) < k). 
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Land k — 1 cops onto Vkti, . •. ,v2li. Now the robber cannot move if he 
stayed in C2 U . . . U Ck- So we can search this part completely with the 
remaining one cop; simply by landing to each point, one after the other. After 
this process land the last cop to Now the robber must be somewhere 
in C\ \ u\t\. We can thereby lift the cop from Vk,\- There is no strongly 
connected piece including Ci \ u^i for the moment. So the robber cannot 
move. So the rest of the search is again landing the free cop onto each vertex 
o fCi \u i , i . • 

L e m m a 3.23 cn*(Jk) = cn?(Jk) = k + 1 

Proof: It is enough to prove that cn*(Jfc) < k + 1, and cn*(Jk) > k + 1. 
First we prove that k + 1 cops are enough to capture the invisible robber. 
Put k cops on Qi. Then the rest of the graph has no directed circuit. Hence 
one can search through Jk\Q 1 with one cop. 

Secondly we prove cn*(Jk) > k +1. Assume to the contrary that we have 
only k cops (the robber is visible). Then whenever there is a cop in the air 
(helicopter), there will be a cop-free directed circuit. That gives a winning 
strategy for the robber: "stay on the cop-free directed circuit". • 

Remark 3.24 (By an undirected edge of a directed graph, we mean two edges 
between the same two points, one edge in each direction.) If we take an 
undirected graph G, then cn(G) = cn*(G) and cn(G) = cn*(G). 

Definition 3.25 For k = 1,2, . . . let Ik be the union of k directed circuits 
Ci, C2,... ,Ck of length s, and s copies of the complete undirected graph on 
k vertices, Kk, K . . . , Kk, where Ci has vertex set {u^i, Uii2, • • •, and 
K3

k has vertex set {uij, u2j,. • •, Uk,j}. 

Lemma 3.26 Assume that s » k (s > 2k say). 

(i) cn*(Is
k) = cn*(Ii) = 2k 

(ii) cn(Ik) = cn(Ik) = k + 1 

Proof: First we show explicitly that cn(Iji) < k + 1. Put k cops onto the 
vertices of K\. Now the strongly connected components will be disjoint Kks. 
So the robber is in one of them. Our goal is to move the cops in such a way, 
that the robber cannot escape from that special component. Put the (fc+l)st 
cop onto 141,2. Lift now the cop from ui,i. Observe that the block structure 
did not change with these two moves. Hence the robber remained in the 
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Figure 3.3: 

same component. Put the free cop onto u2i2, then lift the cop from «2,1. We 
are basicly 'sliding' a cop along directed edges of the circuits. Continuing in 
this way we can search through the entire graph. So we capture the visible 
robber, hence also if he is invisible. 

There is a Kk in our graph, so clearly cn(If) > k. But even k cops do not 
suffice. Because the robber can stay in a Kk as long as we do not put one 
cop to each of its vertices. When we do so, the robber can move in the last 
moment to another - now cop-free - Kk- In this way, the robber can always 
escape. Hence cn(If) > cn(If) > k + 1. 

To see that cn*(/|) < 2k, one has to mimic the game on a directed circuit 
with 2 cops. 

Assume now that cn*(If) < 2k — 1, and we have only at most 2k — 1 
cops. Then however we place them on If., there will be a directed circuit, 
Cj say, which contains only one cop. (Call such a circuit good.) If this cop 
stands on Ujj, then the robber runs to UjiTn, s.t. m — i is minimal modulo s. 
The robber remains in his place until he is 'attacked'. Which means that a 
new (second) cop approaching the directed circuit Cj. In that moment the 
robber runs forward to a Kk, where he can move to the good circuit. In this 
way the robber escapes. (Here we used the fact s k.) • 

The above Lemmas prove that the different cop-parameters behave dif-
ferent. However we conjecture, that Lemma 3.26 is best possible in some 
sense. 

C o n j e c t u r e 3.27 cn*(D) < 2 (cn(D) - 1) and cn*(D) < 2(cn(D) - 1) 
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3.3 Monotonicity for directed graphs 
In this section we prove a monotone graph searching result for directed 
graphs. The main line of the proof is adopting a proof of Bienstock and 
Seymour, [6]. The difficulty here was to find the appropriate definitions for 
directed graphs. After that one has to check that the proofs go over nicely. 

Consider the game described in Definition 3.13. We would like to prove 
that if k cops can capture the invisible robber, then they can do it in a nice 
monotone way too. 

First we describe a slightly more general game. The robber is invisible 
in that case too. We will deduce the required result from the monotonicity 
of that game. In this part of the paper the word 'capture' will be only used 
for the cops' winning tactic in the sense of Definition 3.13. While the word 
'search' is restricted to the game described next. Hence a 'search' will clear 
all the edges, while a 'capture' clears all the vertices of a digraph. The 
connection between the two concepts is indicated in Remark 3.29. 

Definition 3.28 A mixed-search in a directed graph D is a sequence of pairs 

(Ao, Zo), • • •, (A n , Zn) 

(intuitively Zi is the set of vertices occupied by the cops immediately before 
the (i+l)st step, and Aj is the set of clear edges) such that 

(I) 0 < i < n, Ai C E(D), Zi C V(D), 

(II) 0 < i < n, any vertex which is a head of an edge in E(D) \ Aj and 

tail of an edge in Aj is in Zi, 

(III) A0 = 0, An = E(D), 

(IV) (List of possible moves) for 1 <i<n, either 

(a) (placing new cops) Zi D Zi-i, and Ai = Aj_i; or 
(b) (removing cops) Zi C Zi-i, and Aj is the set of edges e, s.t. 
every directed path containing an edge of E(D) \ Aj_i before e in 
order, has an internal vertex in Zi, and Aj C Aj_i, or 
(c) (node searching e) Zi = Zj_i and Aj C Aj_i U {e} for some 
edge e G E(D) \ Aj_i with both ends in Zj_i, or 
(d) (sliding) Zi = (Zj_i \ {it}) U {u} for some u G Zi-i and 
v G V{D) \ Zi-i and e = (v,u) G E(D), s.t. every other in-edge 
to u belongs to Ai, and Ai = Aj_i U {e}; or 

21 



(e) (clearing an edge with one cop) Zi = i, andAi = Aj_iU{e} 
for some edge e = (u, v) G \ A - i with head v in Zi-\ and 
every (possibly 0) edge with head u in Ai-i. 

If\Zi\ < k for 1 <i <n, then cnm(D) <k in notation. 

Remark 3.29 The list of possible moves is a very detailed description of 
what is going on. A move of a cop in the sense of Section 3.1 is now 'atom-
ized' into three moves. First (b), then (a), then (c). 

The game described in Definition 3.13 is a version of mixed-search, where 
(IV.d) is not allowed. Because after every landing of a cop, we can declare 
those edges clear, which has now both endpoints occupied (i.e. (IV.c)), or 
whose tail is a clear vertex and its head is occupied by a cop (i.e. (IV.e)). 
Hence ifcn?(D) < k, thenW,m(D) < k. 

The sets satisfy \Ai \ A_i| < 1. 

Definition 3.30 A mixed-search of D is called monotone, if every edge of 
D is cleared exactly once. This is the same as saying that the cleared edges 
form a monotone increasing set. 

Our goal is to show that the existence of a mixed-search of D with k cops 
implies a monotone mixed-search of D with the same number of cops. 

Definition 3.31 If X C E(D), let 3(X) be the set of those vertices which 
are the tail of an edge in X and also the head of an edge in E(D) \ X. Call 
these points dangerous. 

Lemma 3.32 satisfies the submodular inequality, i.e. 

|j(xny)| + K x u y ) | < | i ( x ) | + |i(y)| 

for any vertex sets X and Y. 

Proof: We have to prove that every dangerous vertex counted in the left-
hand side (LHS) with certain multiplicity is also counted at least as many 
times in the right-hand side (RHS). 

If v G 5(X fl y), then by definition there is an edge e with head v and 
not in X D y , and also an edge / with tail v and in X fl Y. Hence / G X, 
f G y , but e i X and/or e £ Y. 

If v G 5(X U y) , then with similar notation e X, e £ Y, and / G X 
and/or / G Y. 

Hence if a vertex v is counted on the LHS, then it is counted on the RHS 
too. 
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Moreover if v G 5(XnY) and v G i p f u r ) , then v G 5(X) and v G 

So if v is counted twice on the LHS, then it is counted twice on the RHS 
too. • 

Definition 3.33 A raid in D is a sequence (XQ,XI, .... XN) of subsets of 
E(D), s.t. XQ = 0, XN = E(D), and ^ \ X ^ ] < 1, for 1 < i < n (i.e. at 
most one new clear edge). 

The raid uses at most k cops if < k for 0 < i < n. 

Lemma 3.34 Ifcnm(D) < k, then there is a raid in D using at most k cops. 

Proof: Let (Ao, ZQ), ..., (AN, ZN) be a mixed-search in D with each \ZI\ < 
k. Then each 5(Ai) C Zi, hence each |5(Aj)| < k, and also \Ai \ < 1 by 
definition, so (A0 , . . . , AN) is a raid using at most k cops. • 

Definition 3.35 A raid is progressive if XQ C . . . C XN, and = 1 
(always a new clear edge). 

Lemma 3.36 Suppose there is a raid in D using at most k cops. Then there 
is a progressive raid in D using at most k cops. 

Proof: Choose a raid XQ C . . . C Xn with at most k cops s.t. 

(1) & o I W I is minimum, 

and subject to (1), 

(3) |X , \X ,_ i | = l, fo r i <j<n. 

For |Xj \ Xj.i| < 1, and if \Xj \ = 0, then Xj C Xj-1, and (JV0,..., 
Xj-1, Xj+i, . . . ,Xn) is a raid with at most k cops, contradicting (l)-(2). 

For otherwise ¡¿(A^-! U Xj)\ < k, hence (X0,... ,Xj-i,Xj-i U Xj,Xj+i, 
..., Xn) is a raid with at most k cops, contradicting (1). 

too. 

(2) £r=o is minimum. 

We are going to show that j C . . . C Xn is progressive. 

(4) ^ ( X i - i U X , ) ! > |5(Xj)|. 

(5) X j - i C Xj. 
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From the submodularity 

nx3)| + ux,)\ < 15(^-01 + 

From (4) it follows that n Xf)\ < |5pf3_x)|. Hence (X0,.. . ,X3-2, 
XJ^if)XJ,XJ,..., XN) is a raid with at most k cops. From (2) \XJ-i f lX^ > 
iJTy-ll C XJ. • 

Lemma 3.37 Let (XQ, X\,..., Xn) be a progressive raid with at most k cops, 
and for 1 < j < n let Xj \ Xj-i = Then there is a monotone mixed-
search of D using at most k cops, s.t. the edges of D are cleared in the order 
ex,..., en. 

Proof: We construct the monotone mixed-search inductively. Suppose that 
1 and we have cleared the edges ex,.. . , e3_x in order, in such a way 
that no other edges have been cleared yet. Let A be the set of all vertices 
v 6 V(D) s.t. every edge having v as its head is in Xj-i (these are the non-
dangerous vertices). Certainly each vertex in 6(Xj-i) is currently occupied 
by a cop. Remove all other cops. Since ej £ its head is not in A. Let 
N = {it, v} be the set of ends of e3-. 

If \N U <S(ATj_x)| < k, we may place new cop(s) on the ends of e3, and 
declare it cleared by (IV.c). 

So assume |JVU¿(Xj-x)| > k. W.m.a. v eN\6(XJ-x). 
If (u, v) = e3_x, then the tail u must be in A, and there is one free cop by 

the previous assumption. Hence e3_x can be declared clear by (IV.e) putting 
a cop on v. 

If (v, u) = e3_x, then e3_x is the only edge of E{D) \ Aj-i having u as the 
head. Hence e3_x can be declared clear by (IV.d). • 

Summarizing the previous lemmas, we get the monotonicity result. 

Lemma 3.38 If there is a mixed-search of D with at most k cops, then there 
is a monotone mixed-search of D with at most k cops. 

Proof: By Lemma 3.34 there is a raid in D with at most k cops. Then by 
Lemma 3.36 there is a progressive raid in D with at most k cops. Hence by 
Lemma 3.37 there is a monotone mixed-search in D with at most k cops as 
required. • 

We have shown the equivalence below: 

Theorem 3.39 For k > 1, the following are equivalent: 

24 



(i) there is a mixed-search in D with at most k cops, 

(ii) there is a raid in D with at most k cops, 

(Hi) there is a progressive raid in D with at most k cops, 

(iv) there is a monotone mixed-search in D with at most k cops. 

We would like to deduce another equivalence theorem from the above one, 
which includes directed path-width. First we need a Lemma which translates 
mixed-search's edge-monotonicity to 'vertex-monotonicity'. 

Lemma 3.40 If there exists a monotone (i.e. no edge is cleared twice) 
mixed-search of D without (IV. d) using at most k cops, then there also exists 
a monotone (i.e. where no vertex is revisited by the cops) capture in D with 
at most k cops. 

Proof: Consider all of these special monotone mixed-searches existing by 
the assumption. The cop-moves of these searches can be interpreted as a 
capture by Remark 3.29. From now on, consider only these captures. 

Assume to the contrary that in every such capture, there is a vertex v 
which is revisited. This is only satisfied if the following two conditions hold: 

(i) There was a cop on v, and he left v in step i. 

(ii) A cop returned to v in step j, where j > i. 

The first condition implies that after step i, there is some clear edge with 
head v, and the vertex v is not dangerous any more ( by the monotonicity of 
the mixed-search). 

The second condition implies that after step i there is still some non-
cleared edges with head v. Knowing this, (i) implies that there is no clear 
edge with tail v, and hence there must be some clear edges e\,..., et with 
head v. Any ei (I = 1, . . . , £) was either cleared by (IV.c) or (IV.e). 

Assume the clearing of e* = (u,v) was done according to (IV.c). By (i) 
the cop on v left in step i. Hence u is not dangerous after step i — 1. But then 
the clearing of (u, v) can be done after step i — 1 by (IV.e). So the original 
clearing can be omitted, and replaced by the mentioned clearing after step 
i - 1. 

Hence it is enough to consider the case (IV.e). The first condition implies 
that u is not dangerous, so the clearing of (u, v) can be postponed until step 
j. In this way, we proved, that the cop's return to v can be ignored by 
rearranging the moves. Iterating this process a monotone capture arises. • 
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3.4 Directed path-width 
After all of these preparations we can prove what we wanted. An equivalence 
showing that dpw corresponds to en*, so Definition 3.13 and 3.17 lead to 
the same thing. 

Theorem 3.41 For k > 1 the following are equivalent: 

(v) dpw(D) <k- 1, 

(vi) crZ*(D) < k, 

(vii) there is a monotone capture of an invisible robber in D with at 
most k cops (as defined in Lemma 3-4-0) 

We already mentioned in Remark 3.29 that ch*(D) < k is equivalent to a 
mixed-search with at most k cops without using (IV.d). Hence we keep the 
mixed-search language and always show that (IV.d) was not used. 
Proof: (v)=>(vi). By assumption there exists a dpd where the bags have 
size at most k. First the at most k cops occupy W\. Hence all the edges 
induced by Wi can be cleared by (IV.c). Then the cops on Wi \ W2 take 
off and fly to W2 \ Wx. Now the edges induced by W2 can be cleared by 
(IV.c). Continuing in this way, the only non-cleared edges will be of form 
(u,v), where u G Wi \ Wj and v G Wj \ Wi and i < j. These edges can be 
cleared either by (IV.e) or with two cops and (IV.c). We did not use (IV.d), 
hence this is a capture with at most k cops. 

(vi)=>(vii). If D is a directed graph, let Dd denote the directed graph, 
where every edge of D is duplicated. 

We claim that m*(D) = mm(Dd). First of all m*(D) > mm(Dd) is 
trivial. Also cn*(D) < cnm(Dd) is true since in any mixed-search of Dd the 
duplicated edges cannot be cleared by (IV.d). So every edge of Dd must be 
cleared by (IV.c) or (IV.e). 

By Theorem 3.39, we know that cnm(Dd) < k implies the existence of a 
monotone mixed-search M of Dd too. Hence by Lemma 3.40, M is actually a 
monotone capture in Dd too. It is easy to see that M also yields a monotone 
capture in D itself. 

(vii)=>(v). Assume there is a monotone capture with at most k cops in 
D. If we simulate the moving of the cops, every vertex is occupied precisely 
once. The cop-moves can be arranged in such a way, that in every move one 
cop takes off and he lands immediately. Let the set of vertices occupied by 
the cops after the ith move be called Wi. 

Ui Wi is a dpd with width at most k. 
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To see this, we have to show the required (i)-(iii) properties of the defi-
nition of a dpd. This is easy, so we can omit it. • 

3.5 Blockages for directed graphs 
The notion of a blockage was introduced by Bienstock et al. in [7] as obstruc-
tions for having small pw. In this section we try to generalize the concepts 
of [7] i.e. blockages. After the results of the previous section one can addi-
tionally ask whether dpw(D) < k — 1 implies the non-existence of a blockage 
of order k. As in the previous section the main task here was to define the 
concepts in the appropriate way for directed graphs. Then the proofs go 
the same way as in [7]. However one has to check the details behind the 
formalisms. In this section we use V as a shortening of V(D). 

First we define the attachment of a vertex set X C V. (The attachment 
includes the points occupied by the cops protecting the area X against the 
robber in V \ X.) 

Definition 3.42 Let X C V. 
att(X) = {xeX:B yeV\X s.t. (y, x) G E(D)}. 
a(X) = |attpO|. 

Another crucial notion is the complement. 

Definition 3.43 Xc = (V \ X) U att(X). 
Y is a complement of X if Xc C Y. 
X and Y are complementary if Xc C Y or/and Yc C X (at least one of 

them holds). 

Remark 3.44 ( X c ) c C X is not always true. 
If X and Y are complementary and \X Pi Yj < k, then a(X) < k or/and 

a(Y) < k. 

Definition 3.45 Let k > 0 be an integer. A blockage (in D, of order k) is 
a set B s.t. 

(i) each X G B is a subset ofV with a(X) < k, 

(ii) if X eB and Y C I and a(Y) < k, then Y G B, 

(in) if X\ and X2 are complementary and \Xi fl < k, then B 
contains exactly one of Xi,X2. 
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We call these the blockage axioms. 

Remark 3.46 Considering axiom (Hi), it can happen that a(Xi) < k but 
oi(X2) > k or vice versa. In such a case axiom (i) determines which one of 
Xi,X2 is the set in B. 

Lemma 3.47 Let B be a blockage of order k in D, let X G B, and letY CV 
with a(Y) < k and \(Y \ X) U att(X)\ < k. Then YeB. 

Proof: Since X, Xc are complementary, |X(~)XC\ = a(X) < k, and X G B, 
axiom (iii) implies that Xc $ B. att(XUY) C att(X) U (V\ X) = Xc, hence 
X U Y and Xc are complementary. | (X U Y) n Xc\ = |(y \ X) U att(X)| < k, 
hence axiom (iii) implies that X U Y G B. Now «(F) < k, hence YeB by 
axiom (ii). • 

We can now prove one implication regarding blockages and dpw. 

Lemma 3.48 (v) implies (viii). 

(v) dpw(D) <k- 1, 

(viii) there is no blockage of order k in D. 

Proof: Assume to the contrary that there is a blockage B of order k in 
D. By assumption dpw(D) < k. Let (W\,..., Wm) be a dpd, where each 
|Wi| < k. Since 0 and V are complementary and 0 C V, it follows from 
axioms (ii) and (iii) that 0 G B. Prom Lemma 3.47 Wi G B too. For 
1 < i < k, let Xi := W\ U . . . U Wi} and choose i maximum with Xi G B. 
Now i m, because V £ B. Moreover, att(Xi) C W i+i by the definition of 
dpd. So \(Xi+1\Xi)UaU(Xi)\ < \Wi+1\ < k. By Lemma 3.47 Xi+1 G B, 
contrary to the maximality of i. • 

The converse implication seems to be false for the author, but we could 
not find a counterexample. If this is the case, then there is no 'nice' way to 
describe why the cops can not succeed, as it was possible in the undirected 
case. 
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Chapter 4 

Characterization of graphs with 
path-width two 

In this Chapter we present a proof of the next 
Theorem: The following statements are equivalent: 

(i) G is a partial track; 

(ii) G has path-width at most two; 

(iii) G has no minor listed in the Appendix. 

This is basicly a consequence of the reductions described in Section 4.2, 
and the fact that the ten non-reducible graphs have path-width four, see 
Section 4.12. 

4.1 Basics 
Let us first repeat the definitions: 

Definition 4.1 A path-decomposition of a graph G is a pair (P,W), where 
P is a path and W = (Wp : p e V(P)) is a family of subsets of V{G), 
satisfying 

(1) UpeV(P) Wp = V(G), and every edge of G has both ends in some 
Wp, and 

(2) ifp,p',p" € V(P) andp' lies on the path from p to p", then Wv fl 
Wp„ C Wp,. 

29 



(Let us call the Wi's simply bags.) 
The width of a path-decomposition is max(|Wp| — 1 : p E V(P)), and the 
path-width of G (pw(G) in notation) is the minimum width of all path-
decompositions ofG. 

Lemma 4.2 If H is a minor ofG, then the path-width of H is at most the 
path-width of G. 

Proof: All we have to show is that the decomposition can be modified 
without increasing the width, when we delete or contract an edge. For any 
edge e, the decomposition of G is proper for G \ e too. Assume we contract 
an edge e = xy, and call the new vertex u. If we had a decomposition of G, 
then instead of x and y, put u into every bag, where x and/or y were present. 
This is clearly a proper decomposition of G/e • 

Remark 4.3 pw(Kn) = n — 1. 

Trees can have arbitrarily large path-width. To see this, let Tk denote the 
symmetric, ternary tree of height k. More exactly Tk has one specified vertex 
r of degree 3, all other vertices (except the leaves) have degree 4, and all leaves 
have distance k from r. 

Lemma 4.4 pw(Tk) > k. 

Proof: Observe first that from part (2) of the definition the next claims 
follow: 
Every vertex v E G appears in consecutive bags. Moreover the similar state-
ment holds for a connected subgraph: The vertices of a connected subgraph 
appear in consecutive bags. Built upon these previous remarks, we can prove 
the following: 

If a graph G has a vertex v s.t. G \ v has at least three connected 
components of path-width k or more, then pw(G) > k + 1. 

Let Hi, H2, HZ be the above mentioned three connected components. 
W.m.a. that pw(Hi) = k,(i = 1,2,3) otherwise we are done. Let V{ E Hi be 
the respective neighbors of v in G. Suppose to the contrary that pw(G) < k, 
and G has a path-decomposition (P, W) of width < k. pw(Hi) = k, so 
there must be a bag W^, which only contains vertices from Hi, ( i = 1,2,3). 
W.m.a. ji < j2 < jz- G \ H2 = H'2 is a connected subgraph of G. So by the 
previous remark the vertices of H'2 should appear in consecutive bags. But 
this is false by Wh n V(H'2) / 0, Wj2 n V(H'2) = 0, Wj3 n V{H'2) / 0. Thus 
pw(G) > k + 1. 
Now the statement of the Lemma is a trivial application. • 
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There is another thing which can make path-width big. Namely a big 
grid-minor. This fact somehow means that the graph is 'highly' connected. 

Definition 4.5 Consider the graph on {1 , . . . , n}2 with the edge set 

This graph is called the n x n grid and denoted Jn. (Clearly the adjacency 
graph of an n x n chess-board.) 

Lemma 4.6 The nxn grid has path-width n. 

Proof: First we prove that pw(Jn) < n. Take the sets (1, . . . , n + 1); 
(2, . . . , n + 2) etc. (n2 — n , . . . , n2). It is easy to see that this is a path-
decomposition with width n. 

Now we prove that tw(Jn) > n, hence also pw(Jn) > n. More precisely, 
using Theorem 3.12, it is enough to prove that n cops are not enough to 
capture the visible robber in Jn . To see this, we describe a tactic (algorithm) 
for the robber. Using that he will never be captured. Before doing that, we 
make some comments. W.m.a. that in a general stage of the game either 
one cop takes off, or one cop lands. So we have to give a good tactic for 
the robber, which reacts on these movements. As we already remarked in 
the Definition 3.1, the cops can only capture the robber if they occupy all 
neighbors of the vertex where the robber is standing, and then with one extra 
cop they capture the robber. We will show that the robber can always stand 
on a vertex, which has at least one cop-free neighbor. Hence the robber can 
not be captured. 

(1) If there are less than n cops on Jn, then there is a cop-free row, 
and a cop-free column. The intersection of these two objects is called 
a castle. There can be several castles at the same time of course, and 
there can exist a castle even if there are n cops on Jn. The robber's 
main tactic is: 'Go to a castle if there is any.' 

(2) If there is a cop (not the nth one) approaching to the row (column) 
where the robber is, the robber can run away in the last moment to 
another castle. 

(3) Assume the nth cop lands, and after his landing there would be no 
castle. If the cop attacks the robber's vertex, then the robber should 
move to a neighboring vertex. If the cop lands somewhere else, then 
the robber can stay where he is. In any case it is guaranteed that the 
robber's vertex has at least one cop-free neighbor. 
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By the previous remarks, with this tactic the robber escapes. • 

The excluded minor characterization of graphs with small path-width is 
easy only for the value one. The value two is handled in the rest of this 
Chapter. 

Lemma 4.7 pw(G) < 1 i f f G has neither K3 nor Y\ as a minor. This is 
equivalent to being a caterpillar graph. 

Figure 4.1: The excluded minors for path-width one 

4.2 PW2-safe opera t ions 
Let PW2 denote the set of all simple graphs with path-width at most two. 
We will discuss PW2-monotone and PW 2-safe operations. Some of them are 
well-known (for example taking minors), some of them are implicit in other 
works (compare Lemma 4.9, Lemma 4.10 and Lemma 4.11 with [4]), some 
of them are new. For sake of completeness we list all of them with proof. 
Our proofs are different from the previous results (and perhaps simpler), and 
provide a unified approach to these operations. 

First we start with some simple observations on representations. 
Let X denote the set of all closed intervals of the real line. Let (f>: V(G) —> 

X be a representation of G. Let f(v) = [Z(u),r(u)], i.e. l(v),r(v) simply 
denotes the left, resp. right endpoint of the closed interval (¡>{y) representing 
the vertex v. If / is a closed interval, then 1(1) and r(I) denotes the left, 
resp. right endpoint of I. The real line introduce a "new language". We can 
refer to the left side of a point or interval on our line. We can write P < Q 
or P < I iff P is on the left-hand side of point Q or interval I (i.e. P < 1(1)). 
Similarly for two intervals, I\ < h means that r(R) < 1(h)- is the point 
on the right of P, distance e from it. Q is between P and R iff P < Q < R 
or P > Q > R. [P] is the interval that contains only one point, P. 

Observat ion 4.8 (i) Kn has essentially one representation: the represent-
ing intervals are n intervals with non-empty intersection. Hence the minimal 
width of the representations is n. 
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(ii) If G is connected, then for any representation, the union of the repre-
senting intervals is an interval (i.e. connected). 
(Hi) Assume there is a representation of a graph G. If there is a point p on 
the real line, s.t. r(x) = p (resp. l(x) — p) for some vertex x, and the width 
at p is k, then for appropriately chosen small positive e, the width at any 
point of the open interval (p,p + e) (resp. (p — e,p)), is at most k — 1. 

The importance of (iii) is that it gives us some 'space' to deform a represen-
tation without increasing the width. 

In a series of Lemmas we prove the main features of the operations. Un-
fortunately the formal proofs are hard to read. We advise the reader to have 
paper and pencil in hand, so every detail can be drawn up and be visualized. 
Operation 1: 0\ = Deletion of an edge or isolated vertex. It preserves path-
width at most two, so it is a PW2-monotone reduction. 
Operation 2: 02 = Contraction of an edge. It preserves path-width at most 
two, so it is a PW2-monotone reduction. 
Operation 3: Let O3 be the variation defined as follows. Let S3 = x, a, b, y 
be a path of length three. The attachments are x and y (the two endvertices 
of the path). Let T3 be a star with three branches (a claw) with vertices 
x,a',b',y, where deg(a') = deg(x) = deg(y) = 1 and degib') = 3. The 
attachments are x and y (two leaves of the star). Then 03(G) = (G\S ,3)UT3. 
(See Figure 4.2, where the attachments are drawn as full circles.) 

L e m m a 4.9 O3 is a PW2-safe variation, i.e. pw{G) < 2 if and only if 
J>w(pz(G)) < 2 

Proof : Let g be an optimal representation of G. Then let g' be the following 
representation of 03(G). It is identical with g on V(03(G)) \ {a',b'} = 

a' 

Figure 4.2: O3 variation 
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V(G) \ {a, b}, g'(b') = g(a) U g(b) and g'(a') = g(a) fl g(b). The width of g' 
is at most as much as the width of g. 

Let now if be an optimal representation of 03(G). Since the degree of a' is 
one, we can assume that if (a') is an interval of one point: l(a') = r(a') = P. 
(This assumption is not vital for us, but it makes the picture behind the 
proof simpler.) 

The natural way to modify if (without increasing the width) obtaining 
a representation 1/ of G is the following. Define if'(a) = [l(b'),P], if'(b) = 
[P, r(b')] and leave the intervals assigned by if in other cases (or do the same 
except exchanging the image of a and b). If none of these modifications works, 
then if(x) and if(y) are on the same (open) side of P. We can assume that 
P < if(x),if(y), and l(x) < l(y). if(a')r\if(b') / 0 and if(y)Oif(b') / 0, hence 
P,l(y) £ if(b'), which implies [P,l(y)] C if(b'), and l(y) has width at least 
three. By Lemma 4.8(iii) if remains optimal by setting i fW) — [Kv) ~ £l-
This variation of if brings us to the case when the first (naive) approach 
works. This proves the claim. • 

Operation 4: Instead of a formal description, let Figure 4.3 define operation 
0 4 . (Do not forget that the full circles denote the attachments.) 

Figure 4.3: O4 reduction 

L e m m a 4.10 O4 is a PW2-safe reduction, i.e. pw(G) <2 if and only if 
pw(0A{G)) < 2. 

Proof : Again name the vertices participating in the reduction as shown in 
Figure 4.3. (F(0 4 (G)) = V(G) \ {au a2, a3, bu b2, b3} U {a, 5}.) 

First let if be an optimal representation of 0 4 (G) . We can assume that 
1(a) = r(a) = 1(b) = r(b) = P £ if(x), i.e. if (a) = if(b), a single point P . 
Then a small neighborhood of P is such, that only if(x), if (a) and if(b) covers 
it. We can through away if (a) and if(b) and define if'(ai) = ip'(b\) = P — e, 
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ip'(a2) = ip'(b2) = P, ip'(a3) = ip'(h) = P + e. For any other vertex of G, 
its representing interval will be the same as in i f . This way we obtained a 
representation if' of G with width at most three. 

Now let g be an optimal representation of G. If one of g{a\) fl gfbf), 
g(a2) fl g(b2) and g(a3) fl g(b3) intersects g(x), then there will be a point 
P of g{x) that is covered three times by the intervals playing roles in the 
reduction. This point can represent a and b. Leaving the representing in-
tervals of other vertices of 04(G) (i.e. elements of V(0/i(G)) \ {a,b,c} = 

\ a2, U3,61, b2, b3, x}) as in g, we obtain a desirable representation. 
If none of £?(ai)ri£>(£>i), g{a2)r)g(b2) and £?(a3)np(63) intersects g(x), then 

at least two of the intersections (w.m.a. that g(a 1) H g(bi) and g{a2) fl g{b2)) 
will be located on the same side (w.m.a. that on the left-hand side) of g(x). 
That implies that l(x) will be covered by g(x), g(a 1) and g(a2). That means 
that l(x) can play the role of P, and the previous argument works. This 
proves the claim. • 

Operation 5: Instead of a formal description, let Figure 4.4 define operation 
O5. We stress that there is an important condition: we can perform 0 5 only 
when the degree of x is at least three. 

Figure 4.4: 0 5 reduction 

L e m m a 4.11 O5 is a PW2-safe reduction, i.e. pw(G) < 2 if and only if 
MOs(G)) < 2. 

Proof : Again name the vertices participating in the reduction as shown in 
Figure 4.4. (P(0 5(G)) = V{G) \ {a1: a2, bu b2, y} U {a, b}.) 

An optimal representation of 0${G) can be transformed to a width three 
representation of G as in Lemma 4.10. 

Now we take an optimal representation g of G. As in the previous proof, 
the only problem happens if neither I\ = ¿?(ai) D g{b\) nor I2 = g(a2) n g{b2) 

35 



intersects g(x). Hence Ji, J2 and g(x) are pairwise disjoint. We can also 
assume that = g(a\) U g(b{) and /2 = p(a2) U gibf) does not intersect. 
(Otherwise g would also represent G + e — where e is an edge between the 
sets {ai,6i} and {a2,62} — which clearly contains 05(G) as a minor.) We 
consider two cases. 
1st case: I\ and /2 are on the same side of g(x), say p < / 2 < g(x). Then /2 

separates I\ from g(x), hence g(y) must contain /2 . Let P be any point of J2. 
We can define g', a representation of Os(G) (without increasing the width of 
g) as g'(a) = g'(b) = [P], g'(x) — g(x) U g(y) and all the other vertices has 
its representing intervals as in g. 
2nd case: g(x) separates I\ and J2, say I\ < g(x) < /2 . We are easily done 
if £>(ai) and p(a2) intersects g(y) over g(x). Hence w.m.a. that g(x) C g(y). 
There are at least two neighbors of x different from y, n and N say. Hence 
g(n) g(x). So one endpoint of g(n), l(n) <E g(x) say). Then we can 
take g'(x) = g(x) U g(y) and g'(a) = g'(b) = [¿(n) — s] and leave all the other 
representing intervals as in g. The constructed g' is a representation of 05(G) 
having width at most three, if the width of g did not exceed three. • 

For a moment we stop the flow of Lemmas for exhibiting the strength of 
our operations. In [30], the minimal acyclic forbidden minors (i.e. excluded 
trees) for path-width at most two were determined. The ten trees "look 
very similar". The last two operations can be used to reduce the excluded 
trees to one fundamental graph, D3. Actually more can be said. Ten other 
graphs (altogether 20 out of the 110 excluded minors) are reducible to P3. 
Figure 4.5 exhibits an example. 

Figure 4.5: 20 excluded minors are reducible to D3 

Operation 6: Instead of a formal description, let Figure 4.6 define operation 
OQ. We point out that this is a conditional operation, i.e. we assume that 
the exchange of two structures can be done under certain assumption on the 
unchanged part: x must be contained in a cycle with a chord vw. 
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Figure 4.6: 0 6 reduction 

L e m m a 4.12 06 is a PW2-safe reduction, i.e. pw(G) < 2 if and only if 
pw(0e{G)) < 2. 

Proof : Again name the vertices participating in the reduction as shown in 
Figure 4.6. (P(0 6 (G)) = V{G) \ {a1; a2) bu b2, } U {a, b}.) 

An optimal representation of 0&(G) can be transformed to a width three 
representation of G as in Lemma 4.10. 

Now we take an optimal representation g of G. As in the proof of 
Lemma 4.11 the only problem happens if neither £?(ai)ng(&i) nor g(a2)r\g(b2) 
intersects g(x), and g(x) separates £>(ai) np(A) and g(a2) (1 g(b2), say £?(ai)fl 
g(bi) < g(x) < g(a2) fl g(b2). We are also done if g(ai) fl g(a2) D g(x) y 0. 
(both g(ai) and g(a2) must intersect g(x)). Hence we can assume that 
l(x) < r(a\) < l(a2) < r(x). Specially l(x) and r(x) are covered twice by 
the intervals corresponding to the vertices of So6, the structure exchanged 
during the application of OQ. 

Now we consider the remaining part of G. It contains a cycle C going 
through x, and having a vw chord. We partition G into four arcs (one of 
them consists of only one vertex, x), according to the Figure 4.7. For each 
arc we take the union of the intervals assigned to its vertices. Let g(x), A, I2 

and A be the corresponding intervals (A = U „ e A W - These four intervals 
cannot be pairwise intersecting (our representation has width at most three). 
The only possibility is that g(x) and A are disjoint. Since the symmetry of 
our argument so far, we can assume that A < q ( x ) - A and A intersect both 
A and g(x), hence they cover l(x). This contradicts that l(x) is covered by 
at most three intervals. This contradiction proves the claim. • 

Operation 7: Instead of a formal description, let Figure 4.8 define operation 
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Figure 4.7: Four-arc partition 

O7. There is an important condition: the operation can be performed only 
when the degrees of x and y are at least three. 

Figure 4.8: 07 reduction 

L e m m a 4.13 O7 is a PW2-safe reduction, i.e. pw(G) <2 if and only if 
pw(07(G))< 2. 

Proof : Again name the vertices participating in the reduction as shown in 
Figure 4.8. {V(06(G)) = V(G) \ {z, a, 6} U {a', 6'}.) 

An optimal representation if of 0&{G) can be transformed to a width 
three representation of G as follows. if(x) fl if(b') 0 and if(y) f) if (a1) ^ 0 
would mean that if(x), if(y), if (a') and if(b') are pairwise intersecting, that 
contradicts our assumption on the width of i f . So w.m.a. that if(x)C\if(b') = 
0, moreover if(x) < if(b'). Hence if{a!) and ip(y) both contains r(x) and 
l{b'). W.m.a. that l{b') = r{b') = P is covered by if(a'), ip(b') and ip(y). 
So by throwing away ip(a') and ip(b') we have "room" around P to define a 
representation of G: ip'(z) = [I{a'), P], if'(a) = [P - e,P + e], and if'(b) = 
[ P + e]. 
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Now we take an optimal representation g of G. If g(x) and g(y) are 
intersecting, then g is a representation of (G\b) + xy. 0 3 can be applied on 
this graph to obtain 07(G) and we are done. 

Henceforth we assume that g(x) and g(y) are disjoint, and g(x) < g(y). 
If g(b) intersects g(x) or g(y) (let us assume that g(b) fl g(x) 0), then we 
can easily obtain a representation of 07(G) by g'(x) = g(x), g'(a) = g(b), 
g'(b) = g(a), g'(y) — g(y) U g(z), and of course taking all other representing 
intervals from g. So from now on g(b), g(x) and g(y) are pairwise intersecting. 
We consider two cases. 
1st case: g(b) is between g(x) and g(y). g(z) intersects both g(x) and g(y), 
hence g(b) C [r(x], l(y)] C g(z). g(a) intersects g(b), hence there is a point P 
that is covered by g(z), g(a) and g(b). Let g'(x) — [l(x), P], g'(y) = [P, r(x)], 
g'(a') = [P — s, P + e], g'(b') = [P + e], and all other representing intervals 
are from g. This is a desired representation of 07(G). 
2nd case: g(b) is an outside (we can assume that outside right) among g(x), 
g(y) and g(b). As before, we have (r(x),l(y)] C g(z). Now we use that y has 
two neighbors different from 2. Since l(y) is already covered by g(z) and g(y), 
at least one of the neighbors of y (n say) is such that l(n) e g(y) \ g(z). For 
suitable small e the interval [l(n) — e, l(n)) is covered only by g(x)Ug(a)Ug(b) 
and g(y)- This allows us to define g' similarly as in the first case. • 

Operation 8: Instead of a formal description, let Figure 4.9 define operation 

L e m m a 4.14 Og is a PW2-safe reduction, i.e. pw(G) <2 if and only if 
pw(Os(G)) < 2. Again there is a condition: we can perform Og only when 
the degree of x is at least three. 

Proof : Og can be simulated by an application of O3 followed by an appli-
cation of 0 7 and an edge deletion. So one direction of our claim follows from 
Lemma 4.9 and Lemma 4.13. 

O g . 

Figure 4.9: Og reduction 
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The other direction is also easy. If 0$(G) is given by an optimal repre-
sentation (for notations see Figure 4.9), we can add a single neighbor (with 
degree one) to y' and still have a graph with a representation of width two. 
Indeed one of the three neighbors of y' has a representing interval with an 
extreme point inside the representing interval of y'. Just "next to" this ex-
treme point we have enough room to represent the new neighbor. After this 
again we need to refer the reader to Lemma 4.13 and Lemma 4.9 to complete 
the proof. • 

4.3 Non-reducible graphs characterization the-
orem 

Some excluded minor theorems have the following structure: 'A graph G has 
property P iff G has no H-minor, where H is from the list L.' This type of 
characterization for the PW2-property was given in [15] (for an alternative 
solution see [3]). There are 110 excluded minors. We substitute this list with 
10 minimal excluded graphs respect to <R, where 1Z = {Oi, . . . ,Os}. One 
major point is that the appropriate theorem for path-width two is not the 
excluded minor theorem, but the one we present. 

Theorem 4.15 The following statements are equivalent 

(i) G has path width at most two, 

(ii) G is not reducible to any of the graphs listed on Figure 4-10. 

The (ii)^-(i) can be done based on [15]. If one checks — and the authors 
did — that all the 110 excluded minors can be reduced to one of the graphs 
on our list, then it will be proven that any graph satisfying (ii) can not have 
any minor from the 110 list of Kinnersley and Langston. So their theorem 
implies (i). The formal description of this argument would be too long. But 
we ask the reader to take a look at [15] 's list. In a moment one can easily 
see several reductions. In most cases it is straightforward what one can do, 
what should be done. We give an example (See Figure 4.11) exhibiting a 
reduction of one of the "complicated" excluded minors to one of our graphs. 

The (i)=>(ii) implication easily follows if one sees that all graphs on our 
list has path-width more than two. This can be shown by brute force com-
putation (as it was done in [15] in the case of 110 graphs) or one can refer 
to [15] again (one should believe their computation). In the next section we 
prove it by hand. 
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Figure 4.10: Non-reducible graphs 

4.4 Path-width of the non-reducible graphs 
The 110 excluded minors can be reduced to the ten fundamental graphs on 
Figure 4.10. These graphs are non-reducible in the sense, that they do not 
contain any reduction. However some of the ten graphs has the variation O3. 
In such case, here we just picked out one of the variated graphs. 

We prove that the ten non-reducible graphs have path-width at least three 
by proving that any representation of them has width at least four. As we 
mentioned earlier, this gives that all the 110 excluded minors of [15] have 
path-width at least three. 

L e m m a 4.16 Any representation of K^ has width at least four. 

Proof : Observation 4.8. 

L e m m a 4.17 Any representation of F2 has width at least four. 

Proof : Let g be any representation of F2. Let A\, A2 and A3 be the three 
two-element sets as in Figure 4.12. Let A = W.m.a. that A's 
(z = 1,2,3) are pairwise disjoint (otherwise the width of g is at least four). 
By symmetry assume that A < I2 < I3. Then p(ai) U g(a) U g(a3) and 
g(bi) U g(b) U g(b3) covers I2 (that is covered by g(a2) and g(b2) too). Hence 
the width of the representation is at least four in this case too. • 
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Figure 4.11: Reduction of an excluded minor 

L e m m a 4.18 Let Ai C V(G), i = 1,2,3 such that 
(i) \Ai C\Aj\ < 2, j £ {1,2,3} 
(ii) any representation of G\Ai has width at least three 
(Hi) G\Ai (i — 1,2,3) is connected. 
Then any representation of G has width at least four. 

Proof : Let g be any representation of G. This contains representations of 
the graphs spanned by A\ A2 and A3. By our assumption, there are intervals 
i i , h and I3 such that /, (i — 1, 2, 3) is covered by three intervals representing 
three vertices from A,. Since two 4, 's have at most two common elements, 
a non-empty intersection among the I f s would mean width at least four. 
Hence we can assume that the If s are pairwise disjoint intervals, moreover 
that I\ < p < I3. Let the union of the intervals assigned to the vertices of 
the connected G \ A2 be I. I Pi I\ ^ 0 and I fl I3 0. Hence I covers I2 

proving that the width is at least four. • 

L e m m a 4.19 Any representation of the graphs F3, T\, T2, S, D3 has 
width at least four. 

Proof : Figure 4.12 marks the sets Ai, A2, A3 showing that the previous 
Lemma is applicable. • 
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Figure 4.12: Non-reducible graphs 

L e m m a 4.20 Any representation of E has width at least four. 

Proof : Let g be a representation of E. A and the Bfs (i = 1,2,3,4,5) 
are cliques in E (see Figure 4.12, hence the intervals assigned to the vertices 
in each set are pairwise intersecting. Let I = nu6Ap(u) and A — r\veBig{v) 
(i = 1,2,3,4,5). These intervals must be pairwise disjoint, otherwise the 
width is at least four. 

Assume that A < I. The two independent edges between A and B\ 
implies that each point of [r(/i), Z(/)] is covered by at least two intervals 
assigned to vertices of A\J Bx. Hence if the width is fewer than four, there is 
no E between I and I\. Similar argument is true for /2. Hence I\ < I < /2 . 
Furthermore there are no other A in the interval [/(A),r(/2)], i.e. A, J4 and 

43 



1$ falls into two categories: left from I\ and right from I2. One of these 
categories, say the former, contains two of these intervals. We can assume 
that two intervals from I3, /4 and /5 are on the left side of I\. Let B3 
be the vertex set we obtain by adding the only neighbor of B3 to it. Let 
J3 = J3 covers I3 and I. The same can be said for indices 4 and 
5. This proves that I\ will be covered four times. • 

Lemma 4.21 Any representation of U has width at least four. 

Proof: Let Q be a representation of U. Alt A2, the BJ s (i = 1,2,3,4) and 
C are cliques in U, hence the intervals assigned to the vertices of each set 
are pairwise intersecting. Let L = f L ^ ^ u ) (i = 1,2) and Ji = 
(i = 1,2,3,4) and I = r\,ec£>(iO- We can assume that these intervals are 
pairwise disjoint. 

First we consider the order of J\, I\ and I2. As in the previous proof, 
we can assume that J\ < I\ < I2 and there are no other Ji s in the interval 
[l(Ji),r(I2)]. As before, one can show, that J2 ^ I2 (hence I2 < J\). Further-
more J3 and J4 cannot be on the left side of J\. So J2 < J\ < I\ < I2 < (J3 
and J4) in some order (*). 

Now we take a look at I. U\C spans a connected subgraph of U, hence all 
the IJs and JJs axe on the same side of I. this leaves two possible positions 
for I in (*): first or last. Both possibilities implies width four, proving our 
claim. • 

4.5 Partial tracks 
First we describe a wide class of graphs with path-width at most two. 

Definition 4.22 A graph G is called track graph (or shortly a track) i f f it can 
be represented in the following way. Let P and Q be two vertex disjoint paths. 
Their vertex sets are V(P) = { p\,p2, • • • ,pi } and V(Q) = { qx, q2,..., qk } 
(the indices reflect the order of vertices along the path). The graph G contains 
a disjoint copy of P and Q, and some connections between them. We allow 
two types of connections. First we can have edges connecting a vertex of P 
to a vertex of Q. The Piqj edge is called ij-chord. Second we allow paths 
of length two connecting P and Q. We call these paths long chords. A long 
chord has three nodes, a p^ a middle node m and a qj. In this case we say 
that our long chord has type ij, it is a long ij-chord. We assume that for 
different long chords the middle nodes are different. We assume that if ij 
and i'j' occur as types of chords or long chords, then (i — i')(j — j') > 0, 
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i.e. the chords and long chords are not crossing. So G is a track graph if its 
vertex set is the disjoint union ofV(P), V(Q) and M, and its edge set is 
the disjoint union of E(P), E(Q) and the edges of non-crossing chords, long 
chords (the last two types are called middle edges). 

Remark 4.23 A track graph (and hence any subgraph of a track graph) has 
path-width at most two. 

Proof: Since in a track the chords are non-crossing, we can plan a simul-
taneous, synchronized discrete walk along the two sides such that 

• in each move, on one of the sides, the walk advances to the next vertex 
on the corresponding path, 

• for each ij, that is a type of a chord or a long chord, at some point of 
the walk, Pi and qj are simultaneously visited. 

After having this walk, one can easily define a sequence of pairs and triplets, 
proving the upper bound on the path-width: We code the walk by writing 
down (in order) the pairs of nodes describing the configurations of the walk 
(the two nodes visited at the same time), and the triplets describing the 
moves (the node that is not advancing, the old position of the advancing 
node and its new position). If a configuration reached the two endvertices 
of a long chord, then we add the triplets of the vertices on the long chord 
to our list. (One could also formulate the above walk in the language of a 
cops-and-robber game described in Section 3.1. Then the advance on a side 
would mean that a cop is standing on a vertex Xi, and a new cop is landing 
on Xi+i. Now the cop on Xi is free, and he can fly away.) • 

Definition 4.24 G is called a partial track graph iff it is a subgraph of a 
track graph. 

Theorem 4.25 The following claims are equivalent: 
(i) G is a partial track; 
(ii) G has path-width at most two; 
(Hi) G has no minor listed in the Appendix. 

We have seen the implication (i) => (ii). (ii) =>• (Hi) easily follows from 
the fact that each graph among our excluded minors has path-width at least 
three. This tedious work was done in Section 4.2 and Section 4.4, by in-
troducing a few operations preserving the property 'having path-width more 
than two'. The most complicated part of the proof is (in) =>• (i). This will 
be presented in the next section. 
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4.6 The s t ruc ture of graphs with path-width two 
Let G be a connected graph, and C a cycle of it. The bridges of C (in G) are 
G\E{N), where N runs through the vertex sets of the components of G—V(C), 
and the edges connecting two nodes of C (the chords of C). The legs of a 
bridge B are the common vertices of B and C. The set of legs are denoted by 
L(B). Let { ai, a2 } and { b\, b2 } be two-element subsets of V(C). The two 
pairs are crossing iff they are disjoint, and along the cycle, the "a vertices" 
alternate with the "b vertices". Let U and V be subsets of V(C). We say 
that U and V are crossing, if there are two nodes of U and two nodes of V 
such that the two pairs are crossing. Two bridges are crossing iff their set of 
legs are crossing. A bridge is simple iff it is a path (and hence its legs are 
the endvertices of the path). 

First we describe the forbidden minors for 2-connected partial tracks. The 
list of the forbidden graphs is on Figure 4.13. F\ — iF4 

L e m m a 4.26 The following statements are equivalent: 

(a) G is a 2-connected track graph; 

(b) G is a 2-connected partial track graph; 

(c) G is 2-connected and has no F\, F2 or F^ as a minor. 

Proof : (a)=£-(b) is obvious. 
(b)=^(c) is easy. 
To see (c)=t>(a), let us assume that G is a 2-connected graph without the 

excluded minors. Let C be the longest cycle of G. W.m.a. that G does 
not have two crossing bridges, otherwise it would contain a JT4 minor. If a 
bridge has two non-leg vertices, then there is path of length more than three 
connecting two vertices of C. Since C is the maximal length cycle, our graph 
G must contain F2 as a minor. So we can conclude that all the bridges are 

Figure 4.13: 2-connected forbidden minors 
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chords, or they have one inner node (and since there is no K4 minor, that 
inner node is adjacent to two vertices of C). Specially all the bridges are 
simple. 

Each chord (long chord) determines two arcs of C. Let H\ and H2 be two 
chords (or long chords) of C determining different arc-pairs of C. Since we 
have no K4 minor one is able to choose Ai (one of the arcs belonging to Hi) 
and A2 (one of the arcs belonging to H2) such that they have no common 
inner nodes, and this choice is unique. 

If C has no two chords with different arc-pairs then the claim is obvious. 
Otherwise we call an H chord (or long chord) side chord iff for every other 
chord H', the arcs assigned to H by the previous paragraph are the same. 
We call this arc the side arc of H. Otherwise we call H a middle chord. If 
we have three different side arcs, then we have F3 as a minor. 

Assume there are at most two (in this case there must be exactly two) 
side arcs. Then their complement on C consists of two paths, and G is a 
track graph based on these two paths. • 

* 

From now on, we will assume that our graph G does not have any minor 
from our excluded list (see Appendix). Very often we do not need all excluded 
minors, sometimes we emphasize this by pointing out which excluded minors 
we need for a specific claim. 

Remark 4.27 The graphs with path-width one are the caterpillars, see 
Lemma 4• 7. There are two excluded minors for this class of graphs, K3 
and Ti. If we take three disjoint copies of any of these two, and join them 
to a new vertex, then we get an excluded minor for path-width two. (This 
operation was called Y-decomposition in [30].) There are 20 non-isomorphic 
graphs of this type. Let us call them YI — Y2Q. 

If we have a block of a graph G, then it is just a cut-edge, a cycle without 
chord, or a cycle (we call it base cycle) with two disjoint arcs (we call them 
sides), and non-crossing chords and/or long chords connecting the two sides. 
To make the two sides unique, we assume that they are minimal, i.e. their 
endpoints have an incident chord or long chord. One or both of the arcs can 
be extreme i.e. it is just one node. The inner nodes of the long chords are 
called middle nodes. 

It would be good to call the two arcs of C connecting the two sides as 
end-arcs. Unfortunately sometimes this notion is ambiguous (as the notion 
of base cycle too). If the end-arc has length one or two, and its endpoints 
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are connected by a chord or long chord, then we can modify the base cycle 
of B by exchanging this chord with the corresponding end-arc. So at the 
new look of B the old chord is the new end-arc, and the old end-arc now 
is "just" a chord or long chord. To overcome this problem, we consider the 
two pairs of end-vertices of sides (they might coincide, this is the case when 
both sides are extreme), and for each pair, consider the chords, long chords 
and (current) end-arc belonging to it. All of these items are paths. (See 
Figure 4.14.) 

First assume that the two pairs are different (i.e. at least one of the sides 
are not extreme). Consider the chords, long chords, the arc of the chosen 
base cycle connecting them. If one of them has length more than two, then 
it is a well-defined end-arc belonging to the pair. If none of them has length 
more than two, then all of these paths are considered as potential end-arcs. 
If the two pairs are not different, and there are two paths among the collected 
ones with length more than two, then they are the well-defined end-arcs. If 
just one path has length more than two, then it is a well-defined end-arc, 
and all the other paths are potential end-arcs. If there is no path with length 
more than two, then all the paths are potential end-arcs. 

Let B be a block of G. The attachments of B are the subgraphs G\e(n), 
where N runs through the vertex sets of the components of G\ V(B). Since 
B is a block, each attachment has exactly one node from B. We call this 
node the root of the attachment. The union of the attachments having a 
common root is called a bucket. The root of a bucket is the common root of 
its attachments. 

We will classify the attachments and buckets in the following way. An 
attachment is complex iff it has Ai, A2, A3 or A4 as a rooted minor (minor 
with a root inherited from the initial rooted graph). See Figure 4.15. 

A bucket is wild iff it contains A2, A$ or Aß as a rooted minor. See 
Figure 4.16. (Hence any bucket with a complex attachment is wild.) 

A bucket is hard, iff it has A2 or A 7 as a rooted minor. See Figure 4.17. 
(Hence each wild bucket is hard at the same time.) 

Figure 4.14: A block with no well defined end-arcs 
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Figure 4.15: Complex attachments 

0 0 

Figure 4.16: Wild buckets 

A bucket is foldable iff it is hard but not wild. An attachment is im-
portant iff it has As as a minor, i.e. it has at least two non-root vertices. 
An attachment is tame, if it is not important, i.e. it has a non-root node 
connecting by one edge to the root. 

This classification can be extended to a classification of the vertices of 
the base cycle C of B. 

A vertex on C is empty, if it is not a root of any attachment. A vertex v 
is important, if there is an important attachment with root v. I.e. a vertex 
v is not important, if all the attachments with root v are not important. A 
vertex is hard, (resp. wild, complex) if it has a hard, (resp. wild, complex) 
bucket rooted at it. 

Now in a sequence of claims we establish the major properties of the 
attachments and buckets of a cycle in a subgraph of a track. 

Quest ion 4.28 Let us assume that G does not have F I , F 2 , F 3 , G \ , G 2 and 
G3 as a minor. Let B be one of the blocks of G which is not an edge or a 
chordless cycle. 

(i) If none of the end-arcs of B is not well-defined, and we have two sets 
of paths as potential end-arcs (i.e. at least one of the sides is not extremal), 
then both sets have at most one path in it with nonempty inner node. 
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Figure 4.17: Hard buckets ( A and A7) and an important attachment (A8) 

(ii) If none of the end-arcs is not well-defined, and we have one (two coin-
ciding) set of paths as potential end-arcs, then the set has at most two paths 
in it with nonempty inner node. 

(Hi) If one of the end-arcs is not well-defined (we have a set of paths as 
potential end-arcs), then the set have at most one path in it with nonempty 
inner node. 

Proof : The falsity of the claim immediately implies a minor from {G\,G2, 

After this claim we can redefine the notion of end-arc. If among the 
possible end-arcs there are any with nonempty inner node, then we call them 
the end-arc. If some of the end-arcs is still undetermined (there is a set of 
possible end-arcs, all of them have empty inner nodes), then we can choose 
an arbitrary one and call it the end-arc. Of course this has an effect on the 
notion of middle nodes and base cycle. The inner nodes of the so far possible 
end-arcs, which were not chosen to be an end-arc, are called middle nodes 
from now on. 

Quest ion 4.29 Let us assume that G does not have F\ — F3, G\ — G3 and 
H as a minor. Let B he one of the blocks of G, which is not an edge or a 
chordless cycle. 

(i) The middle nodes are empty. 

(ii) The inner nodes of the sides are simple. 

Proof : (i) If a middle node comes from a potential end-arc, then this middle 
node is definitely empty (otherwise it would have been declared to be an end-
arc, and then not considered as a middle node). If it does not come from a 
potential end-arc, and it has nonempty middle node, then it would have G\, 
G2 or G3 as a minor. 

G3}. • 
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(ii) Let v be an inner node of one of the sides. Let us assume that v is 
not simple. Then G has F7 as a minor. • 

So we know, that all the important nodes of a block are on the end-arcs. 
Our first goals are to show that after excluding the necessary minors, the 

following hold: 

• (Gl)o In a cycle block B, the sides, end-arcs and their buckets and 
attachments can be defined such a way, that the important nodes are 
among the endvertices of the end-arcs, and there is at most one hard 
bucket on each end-arc. (In order to have a unified notation (see the 
claim (Gl)), we call the sides extended sides, and the end-arcs reduced 
end-arcs) 

• (Gl) In a non-edge block B, the sides can be extended (this way we 
obtain the notions extended sides, left and right reduced end-arcs), 
and their buckets, attachments can be defined such a way, that the 
important nodes are among the end-vertices of the reduced end-arcs, 
and there is at most one hard bucket on each reduced end-arc. 

• (G2) An arc is called short iff it has length one, or length two with an 
empty node in the middle. Otherwise an arc will be called long. The 
reduced end-arcs are short. 

• (G3) Each reduced end-arc contains at most one complex attachment. 

There is one important point what we would like to stress: Even the 
reduced end-arcs can share an endpoint (i.e. even an extended side can be 
extreme). If the shared endpoint has attachment(s), then we have the free-
dom to classify these attachments as left or right. This freedom complicates 
the matter quite considerably. 

Question 4.30 Let us assume that G does not have Fs or any of the graphs 
h ~ as a minor. (See Figure j-18, where W (resp. H) means any wild 
(resp. hard) attachment.) Let B be one of the blocks of G, which is not an 
edge, hence it has a base cycle C. 
(i) There are at most four important nodes in B. 
(ii) There are at most two wild nodes on C. 
(Hi) If there are four important nodes, then there are at most two hard nodes. 

Proof: (i) Five or more important nodes on the base cycle would result an 
Ii minor. 
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Figure 4.18: New excluded minors 

(ii) At least three wild nodes in B would result a minor from J5 — 
(iii) At least four important nodes, and three or more wild nodes in B, 

would result a minor from I2 — I U 

To establish our goals, first we handle the case when the block in question 
is just a cycle C. 

First we prove (Gl)o- Let us assume that C has four important nodes, 
and two of them are hard. Then there are two possibilities to match the four 
important nodes by possible sides. One of them must work. If we have fewer 
than two hard nodes, then the definition of extended sides is easier: both 
matchings work. Let us assume that we have three important nodes. In the 
case when there are at most two hard nodes, we can do the same as before. 
If there are three hard nodes, then at least one of them is not wild, hence it 
is foldable. Then make it to be an extremal side, and partition its bucket, 
s.t. both the left and right end-arc would get a non-hard bucket. This can 
be easily done. 

(Gl) does not apply for the case we consider. 
To see (G2), we consider the important nodes on our cycle. The excluded 

Ji guarantees that there are at most four important nodes. First assume that 
there are three important nodes. They determine three arcs on our cycle. 

• The excluded L\ — L\0 guarantee, that there is no important node s.t. 
the two arcs meeting there are long, and the other two important nodes 
are hard. 

• The excluded Ln — Lis guarantee, that there is no foldable node s.t. 
one of the arcs incident to it is long, and the other two important nodes 
are wild. 

The excluded L17 — L22 guarantee, that there are no two foldable nodes 
s.t. the arc determined by them is long, and the third important node 
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is wild. 

The three properties above guarantee (G2). If we have fewer than three 
important nodes, then (G2) is obvious. If we have exactly four of them, then 
the analysis is easier than the above one, without needing any new excluded 
minor. 

The excluded minors Y\—Y20 ensures us, that we do not have two complex 
attachments in a reduced end-arc. 

The case when the block is a cycle with a chord (or long chord) is very 
similar. We just list the situations that must be excluded (and the reason 
for the exclusion), in order to be able to obtain (Gl), (G2) and (G3). 

The Mi — M3 excluded minors guarantee, that among the inner nodes 
of an end-arc, there are no two hard nodes. If among the inner nodes of an 
end-arc, there are two important ones, then the endvertices of the chord can 
not be both complex. This is guaranteed by N\, N2 and O6- If there is a hard 
inner node in one of the end-arcs, then both end-vertices of the chord can not 
be wild. This is guaranteed by 0 \ — OQ, and I\ — /14. If both end-arcs has 
a hard inner node, then none of the end-vertices of the chord can be wild. 
This is guaranteed by Pi — P3 and fy — I u . This is enough to see that (Gl) 
is true. (G2) is guaranteed by the excluded minors Ri, R2, Si — S4, Ti — T4, 
Ui,U2, and Vi-V-a. The checking of (G3) is not much different from the case 
of no chord. 

The case when there are two chords with disjoint pair of end-vertices is 
even easier. In some sense, then ail vertices of the end-arcs can be considered 
as inner nodes, and the excluded minors for the case of one chord is more 
than enough to guarantee (Gl), (G2) and (G3). 

In the case when there are at least two chords, no two of them having 
disjoint pair of end-vertices, require additional case analysis. We let the 
reader go through Wx — W3, Xi — Xg to check that these forbidden minors 
imply the truth of (Gl), (G2) and (G3). 

• 

If v is a vertex such that each edge incident to v is a cut-edge, then we 
think of G as (Gi, n ) , (G2, r2),..., (Gfc, r^) rooted graphs are glued together 
by connecting ri,r2,... ,rk to a common neighbor v. We think about the 
rooted graphs (Gi, rp as buckets of v. The Yi~Y2o excluded minors guarantee 
that at most two buckets are complex. 

* 

Now we are ready to complete the implication (Hi) (i). Take any 
block with a cycle, and start a walk on the blocks (the block of the next 
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step is always a block which shares a cut-point with the previous block) in 
the following manner. If there is a complex attachment, then follow that 
"direction". This walk connects some blocks in a path-like manner. The 
walk covers all the blocks with a cycle. The uncovered parts are very much 
controlled by the fact, that these attachments cannot be complex, and (G2) 
strictly describe their position. We have a global picture of G, and this 
picture shows that G is a partial track. 
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4.7 Recognition of graphs with path-width 
at most two 

Now we sketch a linear time algorithm for deciding whether a given graph has 
path-width at most two. If the input graph has path-width greater than two, 
then the algorithm outputs a minor from our excluded list. The algorithm 
follows our proof of the excluded minor characterization. 

First we determine the blocks of the graph. For a linear time algorithm 
doing so, see [31]. For each block, we check whether it has path-width at 
most two. This is durable by executing the following steps. First we detect 
all maximal paths such that each inner node of them has degree two. We 
group these paths according to their endvertices. For each pair of vertices 
we substitute the corresponding paths by a single edge connecting the two 
points. After this, the resulting graph must be a cycle (or in an extreme case 
a singleton of an edge) with a triangulation by diagonals such that no three 
triangles having two edges from the base cycle. If this is the case, then we 
are able to discover the sides and end-arcs, and check the desired properties. 
A linear time implementation of these steps is straightforward. 

Now we start to investigate how these blocks axe connected to each other. 
We build an auxiliary bipartite graph. Its nodes are the blocks, and the cut-
vertices (those vertices which belong to more than one blocks) of G. A 
cut-vertex is connected to a block iff it belongs to it. It is well-known that 
the obtained graph has no cycle. Since we can assume that our input graph 
is connected, our auxiliary graph is a tree. For each block we decide whether 
it is an edge or it contains a cycle. This part of the algorithm can be easily 
implemented in linear time (again see [31]). 

For each block with a cycle and a chord (or long chord), we check that all 
the middle nodes are empty, and the side nodes are simple. Any deviation 
gives us a minor from the forbidden list. Now we investigate the important 
nodes. We classify them as complex, wild, hard, foldable. If there is a 
cycle in the corresponding bucket, then the node is complex. If not, then 
the corresponding bucket is involved only at one block, and even a naive 
implementation gives a linear algorithm. 

To check (Gl)o, (Gl), (G2) and (G3) is straightforward. Any deviation 
gives us a minor from the excluded list. 

For each vertex with only cut-edges incident to it, one can easily charac-
terize the corresponding buckets, as we did it for blocks with cycles. If there 
are at least three complex buckets, then we have a minor from Y\ — Y20. 

Otherwise we are able to execute the walk at the end of the proof, and 
we obtain that the input graph is a partial track, its path-width is at most 
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two. 
We obtained the following theorem. 

Theorem 4.31 There is a linear time algorithm for recognizing graphs with 
path-width at most two. 
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Chapter 5 

New minor-monotone graph 
parameters 

5.1 Arc-width of graphs 
As we mentioned in the Introduction, any minor-closed class of graphs can 
be characterized by excluded minors. The theorems in Chapter 4 used the 
language of interval representations. That is why the following modification 
arises so naturally, we will indeed define a minor-monotone graph parameter. 
So if we bound this from above by one or two, we can get similar theorems 
as for path-width in Chapter 4. 

Definition 5.1 We might assign an arc of a base circle to each vertex of 
a graph such that adjacent vertices correspond to intersecting arcs. This is 
called an arc-representation of the graph. The width (in a representation) of 
a point p of the base circle is the number of arcs containing p. The width of 
an arc-representation is the maximum width of the points of the base circle. 
(This is not the maximum number of pairwise intersecting arcs, as it was for 
the intervals.) The arc-width of a graph G is the minimal possible width of 
such arc-representations, aw{G) in notation. 

In a more formal way we use the following notations. Take the unit 
circle, which has points with coordinates (cos x, sin x) where x E [0, 27t). The 
correspondence between the points of the unit circle and the central angles 
is a bijection. So henceforth we will refer to a point with its central angle. 
In this way, let us denote the clockwise arc on the unit circle from x i to x2 
as arc(xi,x2). 

Since the union of two arcs is an arc (we consider the whole circle as an 
arc), one can easily prove the minor-monotonicity of the newly introduced 
graph parameter. 
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Lemma 5.2 Arc-width is minor-monotone. 

Proof: Assume we have a graph G with a given arc-representation Q. 
(i) Deletion of an edge: After deleting an edge e, we can take the same 

representation for the graph G \ e. While the width remains the same. 
(ii) Contraction of an edge: Let xy = e be the contracted edge, and let 

u be the new vertex corresponding to the old x and y. Let g(x) and g(y) be 
the representing arcs of x and y. If we set g(u) := g(x) U g(y), delete g(x) 
and g(y), and leave all the other representing arcs unchanged, then we get 
an arc-representation of G/e without increasing the width. • 

Definition 5.3 We say that an arc-representation g of G is a (u, w)-rep-
resentation iff u = wmin(g) and IV — IV-max (g), where wm{n and wmax de-
notes the minimum and maximum width of the representation respectively. 
Wmax(o) > wmin(g)} moreover equality cannot hold. Let us call this minimum-
maximum pair wW(g). Consider the natural order, so wW(g) < wW(g') iff 
Wmaxis) < Wmaxig') or wmax(g) = wmax(g') and wmin(g) < wmin(g'). Finally 
mM(G) := mingwW(g), where g is an arc-representation of G. mM is a 
minimum-maximum pair as well, and is a graph parameter. We consider the 
natural order on this parameter. Namely (ui,w\) < (u2) w2) iff W\ < w2 or 
W\ = w2 and u\ < u2. 

Arc-width is a natural modification of path-width. There is a quantitative 
connection, not just a formal one. The next lemma shows that the two 
measures are within a 2-factor. By tradition pw is one less than the maximum 
width in an optimal interval representation. But the maximum width is the 
natural parameter for us. By this reason let us use the following notation: 
pw* = pw + 1. 

Lemma 5.4 Let g be an arc-representation ofG. Then 

(i) pw*(G) < wmax(g) + wmin(g) 

(ii) \\(pu>*(G) + 1)] < aw(G) < pw*(G) 

Proof: (i) Let i := wmin(g), j := wmax(g). The minimal width is i in g. So 
there is point x of the base circle where the width is i. Cut the base circle at 
x to get a line. Delete the i arcs we cut. Replace each of them by an interval, 
which includes all non-cut arcs, which became now intervals. In this way we 
get an interval representation with width i + j. 

(ii) The second inequality is trivial. The first one follows from (i). Because 
pw*(G) < Wmax (g) + Wmin(g) and Wmax (g) > Wmin(g), hence \(pw*(G)) < 
Wfnax (g) for any g. So we obtain \(pw*(G)) < aw(G). • 
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Lemma 5.5 aw(T) = pw*(T) where T is a tree. (The same statement holds 
for any graph which has no cycle.) 

Proof: We prove by induction that from any arc-representation of T, we 
can construct an interval-representation of T with the following properties: 

• Every point p of the base circle has an image point p' on the real line 
s.t. this correspondence is continuous. 

• The width of p' is at most the width of p for any point p of the base 

Let us call such an interval-representation 'good'. 
If T is a single vertex, then we are easily done. 
Assume now that the statement is true for any tree with at most k — 1 

vertices. Consider a tree T with k vertices. Delete a leaf v of T getting 
a graph V with k — 1 vertices. Let u be the only neighbor of v. Let g 
be an arbitrary arc-representation of T. g induces an arc-representation 
g\x' of T'. It does not make any confusion if we write g(T') instead of 
Q\T' (Tr). Any arc-representation of V implies a good interval-representation 
of T" by assumption. Hence g induces a good interval-representation g* on 
T'. Consider the arc g(u) representing the vertex u of T'. g(u) induces an 
interval g*(u) representing u in g*. Adding the vertex v (and the edge vu) 
to T' is represented by an arc g(v) intersecting g(u). g* was a good interval-
representation, hence If g*(v) intersects g*(u), then we get a good extension 
of g* to the whole T. 

This finishes the inductive argument. • 

Lemma 5.6 aw(Kn) = [§] + 1 

Proof: Let V(KN) = {vi,.. . First we prove the upper bound by 
construction. 

Consider the following arc which is slightly bigger than a half-circle: 

Let <f denote the clockwise rotation with and 4>k that the rotation is 
repeated k times. Let g(vi) = (jfai. Then consider {p(ui),..., p(un)}. Clearly 
any two arcs in this set intersect, so g is an arc-representation of Kn. 

To see the lower bound, we refer to Lemma 5.4. • 

circle. 

where c = — + 1 
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5.2 Arc-width of the complete bipartite graph 
Lemma 5.18 (see later) made us also curious about the bipartite graphs. First 
we give two easy constructions, showing the possible feature of this case. 

Lemma 5.7 mM(KSjS) < (s - l ,s) . 

Proof: Let the two color-classes of Ks,s be {xi , . . . , xs} and {t/i,... .ys}. 
Consider the following arc-representation of KSiS: 

ai = arc e, ( s - 2 ) y + 

i, ( 2 n \ b\ = arc I e, —— el 

Let (j) denote the clockwise rotation with and 4>k that the rotation is 
repeated k times. Let gfa) = (fiai, and gfa) = ftbi. Clearly g(xi) fl g(yj) ^ 
0, so g is an arc-representation of Ks s. The width of the points of the base 
circle is easy to count: 

width ± e j = s, width(x) = s — 1 otherwise. • 

Lemma 5.8 mM(Ks,s) < (s/2,s) if s is even. 

Proof: Take four arcs, say xi,x2,yi,y2 s.t. x* fl yj ^ 0, Xi fl x2 = 0, and 
2/i Cj/2 = 0- For the moment this is an arc-representation of K2,2 with color-
classes {xi,x2} and {yi,y2}. If we multiply all of these arcs s/2 times, then 
we get a proper representation of Ks,s with xi,x2 and all of their multiples 
as one color-class. • 

Combining these two ideas, we get the following slightly more general 
result. 

Lemma 5.9 mM(Ks,s) < ( ( l — i ) • s, s), where p is a prime factor of s. 

Proof: Consider the following arc-representation of Ks,s: Partition both 
color-classes into p equal groups. Let every group be represented by an arc 
with multiplicity A Let the arcs corresponding to one color-class be disjoint, 
and let the other color-class behave like in the first construction. Namely they 
intersect every but two endpoint of the arcs representing the other color-class. 
This gives the result as before. • 

Clearly pw*(Ks,s) < s + 1, see Figure 5.1. Hence the following is just a 
trivial observation: 
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Figure 5.1: 

Lemma 5.10 aw(KSjt) < min(s + 1 ,t + 1). 

In the case s = t the previously given constructions are also best possible: 

Lemma 5.11 aw(KSiS) = s. 

Proof: We have to prove wmax(g(KSiS)) > s for all arc-representations g 
of KSiS. Let the two color-classes — P and K — be called red and blue. 
F := : v G P}\ this is a system not necessarily a set. We call the 
elements of F red arcs. Fix a direction of the base circle, clockwise say. 
Every arc I G T has a left endpoint and a right endpoint in this direction. 
Let the set of left resp. right endpoints of the arcs in F be denoted by L and 

1. W.m.a. the 2s endpoints to be different. Because this can be reached 
with a small movement of the endpoints. 

2. W.m.a. fl/gjr/ = 0. If this would be false, then the width is already 
at least s, so we are done. 

3. W.m.a that if I # J G F, then I <£ J. 
If there would be two arcs I C J, then the endpoints satisfy: l( J) < 1(1) < 

r(I) < r(J). Let now I' := (l(J),r(I)) and J' := (1(1),r(J)). Then clearly 
the width did not change, and now I <jt J. Also if any arc A intersects I (and 
hence J), then A intersects both I' and J' because r(I) G I' and 1(1) G J'. 
So we still have a representation of Ks>s. 

It is easy to see that 3 is satisfied after a finite number of this kind of 
modifications. Because the length of the longer arc after the change is strictly 
less than the length of the longer arc before, and the possible length of the 
arcs are determined by the possible 2s endpoints (hence finite). 

4. For every arc I G F consider a candidate complementary arc I' which 
is defined as follows: 1(1') := r(I), and r(I') := l(J), where J G F is the 
arc s.t. if V intersects J, then / ' intersects every arc of F. In this way we 
defined a set system of arcs, call it F' = {/' : I G F}. The above described 
I — I' correspondence is a bijection. Moreover the 2s different endpoints of 
the arcs of F' are exactly the same as the endpoints of the arcs of F. Let us 
prove this. Clearly the left endpoints of the arcs in F' are different. Hence 
we only have to show that two right endpoints cannot coincide. Assume 

R. 
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that 1(10 < l(I'2) and r(/[) = r(I'2)- Then by 3 and the definition of V2, 
r(I2) > 1(10- But this contradicts the definition of 

5. Consider all the arcs in T or in T ' as disjoint arcs. Then glue them 
together at the common endpoints. Then this 'snake' covers the base circle 
'exactly's — 1 times. More precisely the width of the system of these 2s arcs 
is s — 1 everywhere, except at the endpoints of the arcs, where the width is 
s. To see this, consider a point, 1(1) say, I E T. Cut the base circle at 1(1) 
to get the non-negative real line with 1(1) = 0, and the natural < relation. 
1(1) E J' if r(I) < r(J). 1(1) E J if 1(1) < r(J) < r(I). And of course for 
every J E T, J •=/=• / , exactly one case occur. 

Consider now an arc-representation of KSiS, where the red vertices are 
represented by the elements of P . Then we can assume that the blue vertices 
are represented by arcs from T'. 'A priori' they could be 'bigger', but in any 
case an arc J representing a blue vertex must contain a J' E T' as a sub-
arc. So in this sense we can contract the 'blue' arcs into arcs from JF'. Of 
course here we can get an arc with multiplicity greater than one, and some 
elements of T ' with multiplicity zero. And this is the point. Henceforth the 
arc-representation of KSiS is considered as the arcs of T with multiplicity one, 
and the arcs of T' with non-negative multiplicities. 

6. The points of L and R divide the base circle into 2s open arcs. Let 
us call them elementary arcs. We can look at the width over an elementary 
arc, e say. There are some arcs representing red vertices which contain e. 
Moreover there are some candidate arcs A\,..., Ak of T' containing e. There 
are associated multiplicities to these arcs, respectively p(A\),... ,p(Ak) say. 
Assume there are q red arcs containing e. Let T'e denote the set of blue arcs 
containing e. From 5 we know that g + l ^ l = s—1. If q+Y^AzF^ f(A) > s—1, 
then we are done. Otherwise we get the following inequality: 

£ KA) < \K\ 
AeFi 

So the number on the right-hand side is the number of terms on the left-hand 
side. 

7. For every elementary arc e, we define its successor e* as follows. Cut 
in mind the base circle at r(e). Consider the first axe Ie E T, which is 
completely after r(e). (Observe that 'first' is well-defined. Because if an arc 
starts first, it also has to end first by 3.) There is an elementary arc beginning 
at r(Ie). That is defined to be e*. Formally l(e*) := minier:r(e)$ir(I). 

Let us define a directed graph D. The elementary arcs are the vertices of 
D, and the edges are of form (e, e*). More precisely we define the edges to 
be geometric objects, namely (e, e*) is the arc of the base circle (in clockwise 
order) from the middle of e to the middle of e*. 
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8. Every elementary arc has out-degree one in D, hence there is a directed 
circuit C in D. 

9. The edges of C (glued together as in 5) cover the base circle homoge-
neously t times. By this we mean the following: If we consider an arbitrary 
point p of the base circle, then there exist exactly t edges going over p. 

Let I ' £ T ' be the first arc which is completely after p. Every edge / 
over p has a tail e s.t. e is an elementary arc disjoint from I'. This is a 
consequence of the definition in 7. Also vice versa. If an edge / G D is 
not over p, then the tail e of / is an elementary arc which intersects I'. We 
can interpret this result in another way too. Namely, whenever we take an 
arbitrary arc I' G T', then the number of elementary arcs intersecting V is 
a constant positive number, c say. 

10. Consider now the inequalities of 6 only for the vertices of C. Let 
= {ei> • • • > ep}- Sum up all of these inequalities: 

£ m < \K\ 

£ tii) < i n . I 

£ £ til) < £ m 
eec / eec 

By 9 the left-hand side is cJ2rer ti^')- Hence by 6, the right-hand side 
is c • s. We obtained the following: 

c is positive, so simplification gives: 

£ tin < a 
Per 

But we know that here equality holds. This is only possible if equality 
hold everywhere in the above inequalities. Hence the width of the representa-
tion over an elementary arc e G C is exactly s — 1. But then at the endpoint 
of an elementary arc the width is at least s. • 

Comparing the results of Lemma 5.6 and Lemma 5.11, one can see that 
Ks>s has much less edges than K2s, but its arc-width is almost the same. 
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Hence it is very natural to ask how many edges can be deleted from Kn 
without decreasing the arc-width? 

Another natural question is to determine the least possible minimal width, 
when the arc-width of the representation of KStS is s. 

5.3 Arc-width of non-connected graphs; the 
mM parameter 

In the excluded minor theorems for arc-width some disconnected excluded 
minors arise. 

Remark 5.12 Let G be the disjoint union of two graphs Gi and G2. In 
notation G = G\ U G2. Then the following hold: 

max{aiü(Gi),aiü(G2)} < aw(G) < aw(G\) + aw(G2) 

It is natural and necessary to study the arc-width of the union of complete 
graphs. 

Lemma 5.13 aw(Ks U Kt) = . 
Hence also aw(KsUKs) = s = pw*(KsU Ks) (i.e. we cannot do 'better' with 
arcs than with intervals). 

Proof: Consider a representation q of Ks U Kt. Q induces a (iii,u;i)-
representation of Ks, and a (u2, u/2 ̂ representation of Kt, where ui + wi > s, 
and u2+w2 > t by Lemma 5.4. Then aw(KsUKt) > max(ui+u;2, u2+wi) > 
(m+ii;2)+(u2+ l̂) s+t 

2 — 2 
A representation satisfying the equality can be easily constructed. • 
Clearly G has path-width at most k is the same as G has a (0, k + 1) 

arc-representation. 
However now we have a minor-monotone graph parameter, so by the 

Graph Minor Theorem we can make some excluded minor theorems. 

5.4 Excluded minor theorems for mM 
mM(G) = mmwW^g), where g is an arc-representation of G. 

mM is a minimum-maximum pair, and is a graph parameter. 
We can easily see that if G is a minor of H, then mM(G) < mM(H). 

Lemma 5.14 mM is a minor-monotone graph parameter. 
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Proof: Same as Lemma 5.2. • 

If a graph G has an (i, ^-representation, we denote this fact by G £ (i,j)-
Let us call the class of excluded minors for mM = ( i , j ) by obs{i,j). Hence 
for any graph G £ obs{i,j), G £ ( i , j ) , and for any minor H of G, H £ (i,j). 

So far the easiest non-trivial 'width-type' question was to ask the excluded 
minors for pwl. Now we have immediately two questions instead: obs(0, 2) = 
? and obs( 1,2) =? 

Lemma 5.15 
o6s(0, 2) = K3, YI, where Y\ is the graph shown in Figure 3.1. 
obs( 1,2) = Yi, K3UK2, K f , where Kf arises from K4 with one edge deleted. 

Proof: o6s(0, 2) = obs(pw 1), hence the first claim is well-known. See also 
Lemma 4.7. 

The graphs in obs( 1,2) are not representable in (1,2), but all of their 
minors do. The interesting fact here is that K3 is in (1,2), see Figure 5.2. 
Every other minor is easy to check. 

What remaining is to prove that all graphs having no minor from the list 
is in fact representable in (1, 2). 

Let G be such a graph. If G is a tree, then the excluded Y"i-minor ensures 
us that G is a caterpillar, and we are done by Lemma 5.5. So assume that 
G has a cycle C. If there would be a cycle with a chord, then we find a Kf 
minor. So C is chordless. Consider a vertex v £ C. Clearly v cannot be 
adjacent to more than one vertex of C. Can we have two adjacent vertices 
vi £ C and v2 £ CI No, because that gives us a A3 U K2 minor. So G must 
be a chordless cycle with some "hairs". More precisely if we contract C in G 
to a single point, we get a star. These graphs are clearly (1, 2)-representable. 
Because a cycle is in (1,2), and the remaining vertices can be added as points 
of the circle, where the width was one. • 

Figure 5.2: 
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Remark 5.16 obs(0,3) = obs(jpw2). About this see Chapter 4-

By looking at any graph G in obs(0,3), we can observe that mM(G) = (0,4) 
or mM(G) = (1,3). We don't see a direct proof of this, a very wild conjecture 
would be the following: If G G obs(0, k), then either mM(G) = (0, k + 1) or 
mM(G) = (1 ,fc). 

Lemma 5.17 If G G obs(0,3), H G o&s(0,2), and G is (1,3)-representable, 
then GUH G o&s(l,3). 

Proof: H G obs( 0,2) means that either H G (0,3) or He (1,2). 
If H G (0,3), then there is a point p of the base circle where the width 

is three. Cut the base circle at p, because a (1,3)-representation of G U H 
cannot have other arcs including p. In this way we get the real line, and G 
should be represented by intervals. But G G obs(pw2), hence G U H is not 
(1,3)-representable. 

If H G (1,2), then the width is at least one at every point of the base 
circle. G i (0,3) implies G £ (1,2). Hence G U H £ (1,3). 

Assume that G U H is not minor-minimal in o&s(l, 3). If an edge of H 
is deleted or contracted getting a graph H', then H' is (0,2)-representable. 
Hence G U H' is (1,3)-representable. If an edge of G is deleted or contracted 
getting a graph G', then G' is (0,3)-representable. Hence G' U H is (0,3)-
representable too. These contradictions prove the claim. • 

Alright, but what kind of connected graphs are there in obs( 1,3)? 
We know that any star-composition of three disjoint (not necessarily differ-
ent) graphs of of>s(0,2) yields a graph, which is in obs(0,3), and all minors 
of these graphs are in (0,3) (see [30]). Particularly in (1,3) too. So these 
graphs are in o6s(l, 3) too. 
But the nice thing is the following: 

Lemma 5.18 K$ and K2,z is in obs( 1,3). 

Proof: Because of symmetry it is easy to check that all minors of these two 
graphs are in (1,3). 

That K5 is not in (1,3) is a consequence of Lemma 5.4. 
Consider now Kz,z- Assume this is in (1,3). Let v be the vertex which 

produces the minimal width one. This means that K3,z \ v = K2,z must be 
represented in (0,3). This is possible essentially only in one way. Namely 
there are three disjoint intervals, a, 6, c say, corresponding to one color-class, 
and the other two intervals, x, y say, intersect each of a, b, c. Now the inter-
val corresponding to v must intersect a, b, c, which causes width four. This 
contradiction completes the proof. • 
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So the (1,3)-representable graphs form a subclass of planar graphs. 
Proper subclass, because we saw that even some trees are not (1,3)-represent-
able. 
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Chapter 6 

Open questions 

In this Chapter we collect some problems which we think to be interesting. 
Some of them axe really the 'results' of our research in some sense. A few 
axe around for a while. While some questions axe possibly nonsense. We try 
to motivate them, and describe what is already known. 

Conjecture 6.1 If you color the edges of the finite graphs with finitely many 
colors, then GMT remains true. 

Here the minor relation is refined s.t. the colors must match. This is 
said to be a consequence of a graph minor theorem for hypergraphs with 
labelled edges. But it would be nice to have a proof based on the GMT and 
a standard coloring trick. 

• 

Conjecture 6.2 If a graph G has minimum degree k + 1, then G has a 
k-connected minor. 

The natural setting is of course to ask if minimum degree k implies a 
fc-connected minor or not. This question is completely answered. For k < 4 
it is true. But there is a counter-construction for k > 5 as follows. Take two 
copies of Kk minus a perfect matching. Connect every vertex to an extra 
vertex v. The resulting graph has minimum degree k, but has no Afc-minor. 

So one should think of the +1 as +C, where c is a constant we would like 
to minimize. 

Question 6.3 What are the minor-minimal 5-connected graphs? 
What are the minor-minimal graphs with minimum degree 5 ? 
If we replace the number 5 with 3 or 4 the two classes coincide. But they 

axe really different for k > 5. See e.g. [12] for some details. 
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• 

Conjecture 6.4 cn(D) < 2cn*(D), where cn(D) is the cop-number for di-
rected graphs in Definition 3.19, and cn*(D) is the cop-number in Defini-
tion 3.13. 

This is motivated in Section 3.2. 

Conjecture 6.5 Define a 'non-trivial'minor-monotone graph-parameter for 
directed graphs. 

This is a hard question. 

Conjecture 6.6 See [14]- For every integer k there is an integer N s.t. 
every directed graph D with cn(D) > N has a minor isomorphic to Jk-

Conversely we know that cn(Jk) = k by Lemma 3.22. So a 'big' Jk implies 
'big' cn parameter. 

T.Johnson seems to have a proof if additionally D is planar. His proof is 
said to be technical, and a more natural proof is wanted. 

* 

Conjecture 6.7 See [15]. Among the excluded minors for pwk the trees 
have the most vertices. 

This seems to be very plausible. Even an inductive argument or so should 
work. But we do not see a proof of this. 

Conjecture 6.8 The 3-connected excluded minors for pw3 are: W, O, 
Q, Kt,z 
Here W = the Wagner graph, O = edge-graph of the octahedron, Q = 
A Y ( 0 ) , PA = the cube or 4-prism, K$t3 = complete bipartite graph on 3 
vertices, plus an edge. See Figure 6.1. 

The following was proved in [12]. 

Lemma 6.9 Every 4-connected graph has K5 or 0 as a minor. 

Moreover the condition 4-connected can be relaxed to minimum degree > 
4. So we only need to worry about those 3-connected graphs, which have 
minimum degree three. 
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* 

The next two open questions are from Section 5.2. There is no strong 
reason to conjecture the answer, so we state them as questions. 

Question 6.10 How many edges can be deleted from Kn resp. Ks s without 
decreasing the arc-width? 

This kind of questions are very natural in graph theory. Hopefully this is 
not a difficult one. 

Conjecture 6.11 Determine the least possible minimal width m of an arc-
representation of K9t„ when the arc-width is s. 

There is a costruction in Lemma 5.9, showing that m < ( l — s> where 
p is the smallest prime factor of s. We wonder if this is best possible. 
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