
Bohmian	Philosophy	of	Mind?	
	
Peter	J.	Lewis	
Dartmouth	College	
Peter.J.Lewis@dartmouth.edu	
	
1.	Introduction	
Bohm’s	theory	is	in	many	ways	an	attractive	solution	to	the	measurement	problem	in	quantum	
mechanics.	It	provides	an	intuitive	explanation	for	the	distinctive	quantum	phenomena	of	
interference	and	entanglement	without	the	need	for	any	problematic	“collapse”	of	the	wave	
function.	But	it	faces	several	serious	difficulties.	First,	the	dynamical	law	via	which	the	wave	
function	“pushes	around”	the	Bohmian	particles	is	explicitly	non-local,	against	the	spirit	of	
special	relativity	(Bell	1987,	115).	Second,	the	Bohmian	particles	can	be	seen	as	redundant	in	
the	context	of	an	Everettian	solution	to	the	measurement	problem	(Brown	and	Wallace	2005).	
And	third,	the	Bohmian	solution	to	the	measurement	problem	apparently	depends	on	an	
implausible	and	problematic	account	of	mental	awareness	(Stone	1994;	Brown	and	Wallace	
2005).	
	 I	do	not	wish	to	minimize	the	significance	of	the	first	two	difficulties;	they	are	serious	
threats	to	the	tenability	of	Bohm’s	theory.	But	the	third	difficulty,	I	think,	rests	on	a	confusion	
concerning	the	way	in	which	Bohmian	particles	encode	the	outcomes	of	measurements.	In	
particular,	my	concern	here	is	to	respond	to	the	accusations	of	Stone	(1994)	and	Brown	and	
Wallace	(2005)	that	Bohm’s	theory	requires	a	mysterious	kind	of	direct	awareness	of	the	
positions	of	the	Bohmian	particles	in	our	brains,	and	also	to	the	claim	of	Brown	and	Wallace	
(2005)	that	such	direct	awareness	threatens	the	quantum	no-signaling	theorem.	
	
2.	The	case	against	Bohm	
The	background	to	the	critique	I	wish	to	discuss	is	an	influential	discussion	of	Bohm’s	theory	by	
Dürr,	Goldstein	and	Zanghì	(1992).	Dürr	et	al.	derive	a	result	they	call	“absolute	uncertainty”,	
which	says	that	“the	quantum	equilibrium	hypothesis	r	=	|y|2	conveys	the	most	detailed	
knowledge	possible	concerning	the	present	configuration	of	a	subsystem	(of	which	the	
“observer”	or	“knower”	is	not	a	part)”	(1992,	882).	The	Bohmian	particle	configuration	is	always	
precisely	defined,	so	it	might	seem	that	it	should	be	possible	to	find	out	what	that	particle	
configuration	is.	Dürr	et	al.’s	“absolute	uncertainty”	result	apparently	says	that	we	can’t	find	
out:	“no	devices	whatsoever,	based	on	any	present	or	future	technology,	will	provide	us	with	
the	corresponding	knowledge.	In	a	Bohmian	universe	such	knowledge	is	absolutely	
unattainable!”	(1992,	882).	The	best	we	can	do	is	to	assign	a	probability	distribution	r	to	the	
possible	particle	configurations	given	by	the	squared	wave	function	amplitude	|y|2.	
	 Dürr	et	al.	intend	this	result	as	a	defense,	not	a	criticism,	of	Bohm’s	theory.	Indeed,	it	is	
central	to	the	empirical	adequacy	of	Bohm’s	theory	that	the	probability	distribution	over	
particle	configurations	is	|y|2,	in	accordance	with	the	Born	rule.	Nevertheless,	the	“absolute	
unattainability”	of	knowledge	of	the	particle	configuration	is	the	source	of	a	recurring	objection	
to	Bohm’s	theory.	
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	 The	original	source	of	the	objection	is	Stone	(1994).	Stone	argues	that	the	Bohmian	
particle	configuration	contains	no	information.	In	a	sense,	of	course,	the	Bohmian	particle	
configuration	certainly	does	contain	information,	namely	the	precise	values	of	three	
coordinates	for	each	particle	in	the	system.	But	if	we	take	“information”	to	mean	“accessible	
information”,	then	arguably	the	Dürr	et	al.	result	entails	that	the	Bohmian	particle	
configuration	contains	no	information	over	and	above	the	wave	function	distribution,	since	that	
result	seems	to	imply	that	we	can’t	find	out	the	particle	configuration	with	any	greater	accuracy	
than	|y|2.	Hence	Stone	concludes	that	“we	will	never	have	an	empirical	way	to	decide	between	
the	many	competing	stories	about	the	Bohm	trajectories”	(1994,	264).	Since	learning	that	one	
among	the	many	possible	Bohm	trajectories	is	actual	is	central	to	the	Bohmian	solution	to	the	
measurement	problem,	Stone	concludes	that	Bohm’s	theory	fails	to	solve	the	measurement	
problem.	
	 It	is	worth	noting,	though,	that	Dürr	et	al.’s	result	includes	the	caveat	that	the	observer	
is	not	part	of	the	system.	In	a	footnote,	they	expand	on	this	exception:	“There	is	one	situation	
where	we	may,	in	fact,	know	more	about	configurations	than	what	is	conveyed	by	the	quantum	
equilibrium	hypothesis	r	=	|y|2:	when	we	ourselves	are	part	of	the	system!”	(1992,	903).	Stone	
takes	this	to	mean	that	“while	detailed	knowledge	of	the	configurational	states	of	external	
systems	is	forever	unattainable	to	us,	we	can	nevertheless	have	knowledge	of	(perhaps	we	
should	say	‘have	our	knowledge	in’)	the	configuration	of	our	own	particles”	(1994,	264).	Here	
we	get	the	first	inkling	of	the	suggestion	that	Bohm’s	theory	requires	a	distinctive	account	of	
mental	awareness—that	direct	awareness	of	the	particle	configuration	in	our	own	brains	can	
bypass	the	prohibition	on	knowing	the	particle	configuration,	and	hence	provide	a	route	via	
which	Bohm’s	theory	can	solve	the	measurement	problem.	
	 Stone	immediately	objects	to	this	suggestion:	“What	physical	model	of	brain	processes	
can	possibly	underlie	this	statement?	Suppose	I	consider	a	single	neuron	of	my	brain	as	“the	
system”	and	the	rest	of	my	brain	as	part	of	the	“environment”.	Since	the	“environment”	does	
not	contain	information	about	the	“system”	configuration	(beyond	what	is	available	from	its	
wave	function),	whatever	knowledge	this	neuron	may	have	stored	up	in	the	configuration	of	its	
particles	is	“absolutely	unattainable”	to	the	rest	of	my	brain!”	(1994,	264).	That	is,	Dürr	et	al.’s	
result	entails	that	any	“direct	awareness”	of	the	particle	configuration	by	one	part	of	my	brain	
would	be	completely	inaccessible	by	the	rest	of	my	brain.	Stone	is	surely	right	to	think	that	any	
such	hermetically	sealed	“awareness”	couldn’t	in	principle	fulfill	the	functions	of	genuine	
awareness	in	guiding	belief	and	action.	
	 So	with	or	without	the	proposed	exception	for	direct	awareness,	Stone	concludes	that	
Bohm’s	theory	is	incapable	of	solving	the	measurement	problem.	But	is	this	criticism	correct?	
Maudlin	takes	issue	with	Stone’s	attack,	arguing	that	“the	obvious	answer	to	his	complaint	is	
that	no	one	ever	showed	that	in	Bohm's	theory	particle	positions	cannot	store	information	
about	other	particle	positions,	only	that	at	the	beginning	of	a	measurement	the	positions	of	
particles	in	the	environment	store	no	more	information	about	the	particles	in	the	measured	
system	than	is	reflected	in	the	effective	wave	function	(1995,	481).	That	is,	Maudlin	accuses	
Stone	of	misinterpreting	Dürr	et	al.’s	result,	reading	a	prohibition	on	finding	out	the	particle	
position	prior	to	a	measurement	as	an	absolute	prohibition.	
	 How,	then,	does	Maudlin	think	that	we	can	find	out	the	position	of	a	Bohmian	particle?	
Simply	by	correlating	its	position	to	the	positions	of	other	Bohmian	particles:	“If	we	want	to	



know	more,	we	couple	the	system	to	a	measuring	device	which	correlates	the	positions	of	
particles	in	the	measured	system	to	those	in	the	measuring	system”	(1995,	483).	And	how	do	
	we	find	out	the	positions	of	those	particles?	“If	we	want	to	know	what	happened	to	the	
measuring	device	(e.g.,	which	way	the	pointer	went),	we	look	at	it,	thereby	correlating	positions	
of	particles	in	our	brains	with	the	pointer	position”	(1995,	483).	Hence	we	gain	information	
about	the	Bohmian	particle	configuration:	“If	getting	the	state	of	our	brain	correlated	with	
previously	unknown	external	conditions	is	not	getting	information	about	the	world,	then	
nothing	is”	(1995,	483).	
	 Maudlin	concludes	that	“Bohm's	theory	solves	the	measurement	problem	completely	
and	without	remainder”	(1995,	483).	But	not	everyone	is	convinced.	After	all,	Maudlin’s	
solution	to	Stone’s	worry	about	the	accessibility	of	particle	positions	is	to	insist	that	we	can	
know	them	via	other	particle	positions;	but	if	particle	positions	in	general	are	inaccessible,	this	
is	no	help.	Perhaps,	then,	it	is	the	particle	positions	in	our	brains	that	are	doing	the	work	here	in	
giving	us	access.	
	 This	is	how	Brown	and	Wallace	interpret	Maudlin:	“Maudlin	seems	to	be	taking	it	for	
granted	that	our	conscious	perceptions	supervene	directly	and	exclusively	on	the	configuration	
of	(some	subset)	of	the	corpuscles	associated	with	our	brain”	(2005,	534).	But	why	think	that	
we	are	directly	aware	of	the	configuration	of	particles	in	some	part	of	our	brain?	After	all,	this	
seems	to	lead	us	right	back	Stone’s	concerns	that	such	“awareness”	would	be	inaccessible	to	
the	rest	of	our	brain.	Furthermore,	it	seems	to	involve	us	in	“the	assumption	that	consciousness	
is	some	sort	of	bare	physical	property	(like,	say,	charge),”	which	“makes	consciousness	
completely	divorced	from	any	assumptions	rooted	in	the	study	of	the	brain”	(2005,	536).	
Finally,	“a	violation	of	the	no-signaling	theorem	is	possible	in	principle	were	we	to	‘know’	the	
configuration	of	corpuscles	in	our	brain	with	a	greater	level	of	accuracy	than	that	defined	by	the	
wave	function”	(2005,	535).	
	 In	sum,	then,	the	gist	of	the	critique	of	Bohm’s	theory	is	this:	Bohmian	particle	positions,	
which	are	key	to	solving	the	measurement	problem,	are	in	general	unknowable.	In	fact,	the	only	
way	we	might	know	them	is	via	direct	awareness	in	our	brains.	But	this	is	a	heterodox	and	
highly	implausible	account	of	the	nature	of	awareness,	and	what’s	more,	it	threatens	the	no-
signaling	theorem,	which	is	important	for	the	reconciliation	of	quantum	mechanics	and	special	
relativity.	
	
3.	How	to	send	a	superluminal	signal	
Let	us	consider	the	last	point	more	carefully.	Why	would	knowing	the	Bohmian	particle	
configuration	allow	one	to	send	a	superluminal	signal,	and	why	does	it	matter?	Consider	two	
spin-1/2	particles	in	the	entangled	state	2-1/2(|↑⟩A	|↓⟩B	−	|↓⟩A	|↑⟩B).	Suppose	that	Alice	takes	
particle	A	and	Bob	takes	particle	B,	and	they	perform	spin	measurements	on	their	respective	
particles	at	space-like	separated	locations.	As	Bell	(1987,	14)	showed,	the	results	of	their	
measurements	will	exhibit	correlations	that	can’t	be	explained	by	positing	local,	intrinsic	
properties	of	the	individual	particles.	It	seems	that	quantum	entanglement	involves	us	in	some	
kind	of	non-locality	or	non-separability	or	holism—some	kind	of	“direct	link”	between	the	two	
particles,	no	matter	how	far	apart	they	are.	

Nevertheless,	it	can	be	shown	that	according	to	standard	quantum	mechanics,	there	is	
nothing	that	Alice	can	do	to	her	particle	that	could	be	used	to	send	a	signal	to	Bob.	This	is	



important	because	it	suggests	the	possibility	of	a	peaceful	coexistence	of	quantum	mechanics	
and	special	relativity:	while	a	“direct	link”	between	space-like	separated	events	may	be	in	
tension	with	the	spirit	of	special	relativity,	there	is	arguably	no	outright	violation	of	special	
relativity	absent	a	superluminal	signal.	

Insofar	as	Bohm’s	theory	is	empirically	equivalent	to	standard	quantum	mechanics,	the	
no-signaling	theorem	is	retained.	So	as	long	as	Alice	can	know	no	more	about	her	particle	than	
is	given	by	the	Born	rule,	then	she	cannot	send	a	signal	to	Bob.	But	suppose	that	Alice	can	know	
the	location	of	her	particle	in	its	wave	packet	with	greater	precision	than	|y|2:	then	she	can	
send	a	signal.	

To	see	how	this	is	possible,	consider	how	the	state	of	the	system	evolves	as	Alice	and	
Bob	make	their	measurements.	The	easiest	way	for	each	of	them	to	measure	the	spin	of	their	
particle	is	to	pass	it	through	an	inhomogeneous	magnetic	field	oriented	along	some	chosen	
axis,	and	then	run	it	into	a	fluorescent	screen	that	lights	up	at	the	point	of	contact.	If	Alice	and	
Bob	orient	their	magnets	in	the	same	direction—say	along	the	z-axis—the	measurements	can	
be	represented	as	in	Fig.	1.	For	a	two-particle	system,	the	wave	function	inhabits	a	six-
dimensional	configuration	space,	but	for	picturability,	we	can	focus	on	the	z-coordinate	of	
Alice’s	particle,	plotted	vertically,	and	the	z-coordinate	of	Bob’s	particle,	plotted	horizontally.	
The	circle	represents	the	region	of	configuration	space	in	which	the	wave	function	amplitude	is	
large,	and	the	point	represents	the	positions	of	the	two	Bohmian	particles.	
	 Consider	a	frame	of	reference	in	which	Alice’s	measurement	occurs	first.	As	her	wave	
packet	passes	through	the	magnetic	field,	it	splits	into	two	components	based	on	its	spin—a	
spin-up	wave	packet	displaced	upwards,	and	a	spin-down	wave	packet	displaced	downwards.	
The	Bohmian	particle	follows	one	of	the	components,	depending	on	its	initial	position:	if	it	is	
above	the	midpoint	of	the	initial	wave	packet	in	Alice’s	z-coordinate,	it	moves	upwards,	and	
otherwise	it	moves	downwards.1	

Now	Bob	passes	his	wave	packet	though	a	magnetic	field.	Given	the	entangled	nature	of	
the	original	state,	the	wave	packet	that	is	spin-up	for	Alice’s	particle	is	spin-down	for	Bob’s	
particle,	and	vice	versa.	Hence	there	is	no	further	splitting	of	the	wave	packets	in	configuration	
space:	the	packet	that	was	deflected	upwards	in	Alice’s	z-coordinate	is	deflected	downwards	in	
Bob’s	z-coordinate,	and	vice	versa.	The	Bohmian	particle	is	carried	along	with	the	packet	it	
occupies.	Hence	if	Alice’s	particle	is	above	the	midpoint	in	the	initial	wave	packet,	as	shown	in	
Fig.	1,	then	Alice	gets	the	result	“spin-up”	for	her	measurement	and	Bob	gets	the	result	“spin-
down”.	

Fig.	2	shows	what	happens	if	Alice	rotates	her	measuring	device	by	180°.	Now	the	spin-
up	component	of	Alice’s	wave	packet	is	displaced	downwards,	and	the	spin-down	component	is	
displaced	upwards.	But	as	before,	if	the	Bohmian	particle	is	above	the	midpoint	of	the	initial	
wave	packet	in	Alice’s	z-coordinate,	it	moves	upwards,	and	otherwise	it	moves	downwards.2	
																																																								
1	For	a	single	particle,	this	is	because	otherwise	Bohmian	trajectories	starting	below	the	
midpoint	and	above	the	midpoint	would	intersect	each	other,	and	intersecting	trajectories	are	
prohibited	in	a	deterministic	theory.	For	two	particles	in	a	six-dimensional	configuration	space,	
there	is	no	danger	of	the	trajectories	intersecting,	but	the	additional	degrees	of	freedom	
corresponding	to	Bob’s	particle	are	irrelevant	to	the	motion	of	Alice’s	particle.	
2	By	the	same	argument	as	before.	



When	Bob	passes	his	wave	packet	through	the	magnetic	field,	the	packet	that	was	deflected	
upwards	in	Alice’s	z-coordinate	is	deflected	downwards	in	Bob’s	z-coordinate,	and	vice	versa,	
and	the	Bohmian	particle	goes	with	it.	Hence	if	Alice’s	particle	is	above	the	midpoint	in	the	
initial	wave	packet,	as	shown	in	Fig.	2,	then	Alice	gets	the	result	“spin-down”	for	her	
measurement	and	Bob	gets	the	result	“spin-up”.	

Note	that	for	the	same	initial	state	(wave	packet	plus	Bohmian	particle	position),	the	
results	of	the	measurements	depend	on	the	orientation	of	Alice’s	measuring	device.	One	way	
up,	Alice	gets	“spin-up”	and	Bob	gets	“spin-down”.	The	other	way	up,	Alice	gets	“spin-down”	
and	Bob	gets	“spin-up”.	This	is	an	illustration	of	the	contextuality	of	spin	in	Bohm’s	theory:	the	
result	of	a	spin	measurement	depends	on	how	that	spin	is	measured.	But	if	Alice	can	locate	her	
particle	with	greater	accuracy	than	|y|2,	it	also	provides	a	way	for	Alice	to	send	a	superluminal	
signal	to	Bob.	All	she	needs	to	do	is	to	observe	whether	her	particle	is	above	or	below	the	
midpoint	of	her	wave	packet.	If	it	is	above	the	midpoint,	then	to	send	the	signal	“spin-up”	to	
Bob	she	rotates	her	measuring	device,	and	to	send	“spin-down”	she	leaves	it	as	it	is.	If	her	
particle	is	below	the	midpoint,	she	reverses	this	strategy.	

Perhaps,	though,	Alice	is	only	directly	aware	of	the	positions	of	particles	in	her	own	
brain.	Even	so,	if	it	can	be	arranged	that	Alice’s	particle	in	the	above	experiment	is	embedded	in	
her	brain	in	the	relevant	way,	then	she	can	use	her	direct	awareness	of	the	position	of	this	
particle	to	send	a	signal	to	Bob.	That	is,	it	looks	like	Brown	and	Wallace	are	correct	that	direct	
awareness	of	the	positions	of	the	Bohmian	particles	threatens	the	no-signaling	theorem,	and	
hence	the	possibility	of	peaceful	coexistence	of	quantum	mechanics	and	special	relativity.	

	
4.	Awareness	as	a	red	herring	
Stone	(1994,	264)	and	Brown	and	Wallace	(2005,	534)	each	complain	that	making	direct	
awareness	exceptional	in	this	way—allowing	that	one	can	be	directly	aware	of	the	position	of	a	
Bohmian	particle	even	though	no	other	physical	process	can	locate	a	Bohmian	particle	with	
greater	accuracy	than	|y|2—threatens	standard	assumptions	about	the	nature	of	mind.	If	
minds	are	physically	instantiated,	how	can	they	operate	in	ways	that	other	physical	systems	
cannot?	In	particular,	how	can	a	particle	embedded	in	Alice’s	brain	be	used	to	send	a	
superluminal	signal,	when	a	similar	set-up	outside	her	brain	cannot?	It	all	looks	decidedly	
spooky.	
	 However,	I	think	all	this	talk	about	what	Alice	is	directly	aware	of	is	a	distraction.	There	
is	a	perfectly	straightforward	sense	in	which	the	positions	of	Bohmian	particles	encode	
accessible	information	about	the	outcomes	of	measurements,	contra	Stone.	And	the	ability	to	
access	this	information	wouldn’t	give	a	system	(or	a	person)	the	ability	to	send	a	superluminal	
signal,	contra	Brown	and	Wallace.	
	 Let’s	start	with	the	first	point:	Bohmian	particles	encode	accessible	information.	As	
mentioned	previously,	there	is	a	trivial	sense	in	which	the	Bohmian	particle	configuration	
contains	information	that	is	not	contained	in	the	wave	function.	Consider	the	initial	position	of	
the	Bohmian	particle	in	Fig.	1.	The	wave	function	is	entirely	symmetric	around	the	midpoint	of	
Alice	and	Bob’s	z-coordinates,	but	the	particle	configuration	breaks	the	symmetry.	
Furthermore,	the	particle	configuration	is	predictive	of	the	result	of	the	spin	measurement:	if	
Alice’s	particle	is	above	the	midpoint	in	her	z-coordinate,	Alice	gets	spin-up	and	Bob	gets	spin-
down,	whereas	if	the	particle	is	below	the	midpoint,	Alice	gets	spin-down	and	Bob	gets	spin-up.	



Finally,	at	the	end	of	the	measurement,	the	particle	configuration	is	perfectly	indicative	of—one	
might	even	say	constitutive	of—the	outcome.	
	 Hence	there	is	an	obvious	sense	in	which	the	particle	configuration	contains	information	
about	measurement	outcomes,	information	that	is	accessible	via	measurements.	Why	think	
otherwise?	There	are	a	number	of	concerns	one	might	have.	First,	the	above	story	depends	on	
Alice	performing	her	measurement	before	Bob,	but	given	that	the	measurement	locations	are	
space-like	separated,	there	is	(according	to	special	relativity)	no	fact	about	which	measurement	
is	performed	first.	This	is	an	entirely	reasonable	criticism	of	Bohm’s	theory:	the	dynamics	of	the	
theory	are	explicitly	non-local,	and	require	an	absolute	standard	of	simultaneity	in	order	to	be	
well-defined.	But	given	that	this	prerequisite	of	the	Bohmian	dynamics	is	satisfied,	it	makes	
sense	to	say	that	Alice’s	measurement	occurs	first.	
	 Second,	the	above	story	is	relative	to	an	orientation	of	Alice’s	measuring	device:	if	she	
rotates	her	device	by	180°,	the	particle	configuration	contains	different	information	about	the	
measurement	outcomes.	This	is	an	expression	of	the	well-known	contextuality	of	properties	
other	than	position	in	Bohm’s	theory:	spin	is	not	an	intrinsic	property	of	a	particle,	but	is	
defined	only	relative	to	a	measurement	context.	Even	so,	granted	this	contextuality,	the	
particle	configuration	contains	accessible	information	about	the	(contextually	defined)	spin	
properties	of	the	particles.	
	 Finally,	and	most	importantly	for	present	concerns,	it	might	be	objected	that	the	above	
story	begs	the	question,	in	that	it	assumes	that	the	particle	configuration	at	the	end	of	the	
measurement—the	one	I	said	was	constitutive	of	the	outcome—is	accessible.	Doesn’t	the	Dürr	
et	al.	“absolute	uncertainty”	result	show	that	knowledge	of	the	particle	configuration	is	
“absolutely	unattainable”?		I	could	spin	out	the	story	further,	but	the	objection	would	recur.	If	
the	particles	are	detected	by	running	them	into	a	fluorescent	screen,	then	the	position	of	the	
measured	spin-1/2	particle	is	reflected	in	the	positions	of	the	electrons	in	the	excited	atoms	at	
the	impact	point.	If	the	light	from	the	excited	atoms	is	detected,	then	the	positions	of	the	
particles	in	the	display	of	the	photon	detector	reflect	the	position	of	the	measured	spin-1/2	
particle.	At	each	stage,	the	position	(and	hence	the	spin)	of	our	original	Bohmian	particle	
becomes	correlated	with	the	positions	of	more	and	more	Bohmian	particles	in	the	
environment.	But	if	the	positions	of	Bohmian	particles	are	in	general	inaccessible,	how	does	this	
help?	
	 The	answer,	I	think,	is	to	appeal	to	functionalism.	The	spin	of	the	original	particle	is	
correlated	with	the	positions	of	the	particles	in	the	photon	detector.	The	positions	of	those	
particles	can	in	turn	be	used	to	control	further	physical	systems	in	any	way	whatsoever.	That	is,	
the	Bohmian	particles	in	the	photon	detector	can	access	the	spin	of	the	original	particle	on	any	
reasonable	functional	characterization	of	what	it	takes	to	access	an	aspect	of	the	physical	
world.		

This	is	essentially	Maudlin’s	(1995,	483)	answer.	But	Maudlin	(unintentionally)	muddies	
the	water	by	spinning	out	the	story	in	terms	of	a	correlation	with	particles	in	an	observer’s	
brain.	This	in	turn	leads	Brown	and	Wallace	(2005,	534)	to	conclude	that	Maudlin	is	appealing	
to	some	special	account	of	direct	awareness.	But	as	I	hope	to	have	shown	here,	there	is	no	
need	to	mention	either	brains	or	awareness:	any	system	can	in	principle	access	the	spin	of	the	
particle	and	use	it	to	control	other	systems.	



The	appeal	to	functionalism	is	this	context	is	something	of	a	double-edged	sword,	
however.	The	main	argument	of	Brown	and	Wallace	(2005)	is	that	the	wave	function	can	
perform	all	the	functions	that	the	Bohmian	particle	configuration	can	perform,	and	hence	that	
the	Bohmian	particles	are	redundant.	The	difference,	of	course,	is	that	the	Bohmian	particle	
configuration	picks	out	one	result	of	the	spin	measurement,	whereas	the	wave	function	is	
symmetric	between	all	possible	results.	But	provided	that	an	Everettian	or	many-worlds	
solution	to	the	measurement	problem	is	tenable,	the	Bohmian	particle	configuration	arguably	
adds	nothing.	

As	I	mentioned	earlier,	I	do	not	mean	to	dismiss	this	redundancy	argument.	If	there	is	a	
response,	it	is	that	the	Everettian	solution	to	the	measurement	problem	might	not	be	tenable	
(Callender	2010).	But	for	present	purposes,	my	point	is	that,	setting	aside	considerations	of	
redundancy	and	of	non-locality,	there	is	no	additional	problem	concerning	the	accessibility	of	
the	Bohmian	particles.	

What	of	Dürr	et	al.’s	“absolute	uncertainty”	result,	then?	The	key	here,	as	Maudlin	
correctly	notes,	is	that	when	Dürr	et	al.	say	that	we	can’t	know	the	particle	configuration	with	
greater	precision	than	r	=	|y|2,	the	y	in	question	is	the	effective	wave	function.	The	effective	
wave	function	is	the	component	of	the	wave	function	that	is	relevant	to	our	concerns,	given	
what	we	know.	And	in	the	context	of	Bohm’s	theory,	the	effective	wave	function	is	the	
component	of	the	wave	function	that	is	relevant	to	our	concerns,	given	what	we	know	of	the	
Bohmian	particle	configuration.	
	 Consider	again	Alice’s	spin	measurement.	According	to	Bohm’s	theory,	the	wave	
function	never	collapses,	so	the	quantum	state	of	the	world	will	be	very	complicated	indeed.	
But	given	the	effects	of	decoherence,	that	state	will	naturally	decompose	into	a	number	of	
branches,	most	of	which	are	irrelevant	to	the	behavior	of	the	branch	containing	the	Bohmian	
particles.	If	the	experiment	has	been	set	up	correctly,	the	branch	containing	the	Bohmian	
particles	will	take	the	form	of	the	entangled	wave	packet	we	have	been	studying.	This	is	the	
effective	wave	function	at	the	beginning	of	the	measurement.	Dürr	et	al.’s	result	entails	that	at	
the	beginning	of	the	measurement,	Alice	knows	no	more	about	the	Bohmian	particle	
configuration	than	that	it	has	a	probability	distribution	given	by	the	absolute	square	of	this	
effective	wave	function.	
	 But	what	about	at	the	end	of	the	measurement?	Here	again	Maudlin	inadvertently	
muddies	the	waters	by	stressing	that	Dürr	et	al.’s	result	applies	to	Alice	at	the	beginning	of	the	
measurement,	perhaps	implying	to	some	readers	that	at	the	end	of	the	measurement	we		
can	know	the	particle	configuration	with	more	accuracy	than	given	by	the	square	of	the	
effective	wave	function.	Indeed,	he	adds	that	“if	we	want	to	know	more,	we	couple	the	system	
to	a	measuring	device…	If	we	want	to	know	what	happened	to	the	measuring	device	(e.g.,	
which	way	the	pointer	went),	we	look	at	it,	thereby	correlating	positions	of	particles	in	our	
brains	with	the	pointer	position”	(1995,	483).	This	might	inadvertently	suggest	that	particles	in	
our	brains	have	a	special	role	in	allowing	us	to	know	more	than	the	square	of	the	effective	wave	
function.	
	 Of	course,	it	is	entirely	correct	to	say	that	at	the	end	of	the	measurement	we	know	
more	than	at	the	beginning.	But	the	crucial	point	is	that	Dürr	et	al.’s	result	applies	equally	at	the	
end	of	the	measurement—it’s	just	that	the	effective	wave	function	has	changed.	When	Alice	
learns	that	the	result	of	her	measurement	is	spin-up,	she	learns	that	the	Bohmian	particle	is	not	



associated	with	the	spin-down	wave	packet,	and	hence	that	she	can	ignore	it.	That	is,	the	
effective	wave	function	changes	from	the	entire	entangled	state	to	just	one	term	in	this	state.	
	 Does	she	know	more	than	is	given	by	the	squared	wave	amplitude	of	this	remaining	
term	in	the	wave	function?	Well,	maybe—it	depends	on	the	accuracy	of	the	measurement	via	
which	she	locates	the	particle.	Perhaps	she	performs	a	very	rough	position	measurement	that	
only	distinguishes	the	spin-up	term	from	the	spin-down	term,	and	nothing	more;	in	that	case,	
the	post-measurement	effective	wave	function	is	just	the	spin-up	term.	Or	perhaps	the	position	
measurement	is	more	accurate;	in	that	case	the	post-measurement	effective	wave	function	is	
more	tightly	localized.	The	point	is	that	no	measurement	is	completely	accurate,	and	however	
tightly	localized	the	final	effective	wave	function	turns	out	to	be,	Alice’s	knowledge	of	the	
position	of	the	Bohmian	particle	will	be	distributed	according	to	the	square	of	this	effective	
wave	function.	
	 So	Dürr	et	al.’s	result	applies	both	before	and	after	a	measurement,	and	in	no	way	
precludes	finding	out	about	the	Bohmian	particle	configuration.	Seen	in	this	way,	the	result	
might	look	trivial:	the	post-measurement	effective	wave	function	reflects	what	you	know	of	the	
Bohmian	particle	configuration,	so	by	definition	you	can’t	know	the	configuration	with	greater	
accuracy!	But	it	is	nevertheless	an	important	result:	it	shows	that	Bohm’s	theory	is	consistent.	
The	wave	function	plays	a	peculiar	dual	role	in	Bohm’s	theory:	a	dynamical	role	in	pushing	the	
particles	around,	and	an	epistemic	role	in	reflecting	our	knowledge	of	the	particle	
configuration.	It	is	important	that	these	roles	always	coincide,	and	Dürr	et	al.’s	result	shows	
that	they	do:	the	relevant	part	of	the	wave	function,	dynamically	speaking,	is	always	also	the	
part	over	which	your	knowledge	of	the	particle	configuration	is	distributed	according	to	r	=	
|y|2.	
	 Nevertheless,	Dürr	et	al.	let	their	rhetoric	get	away	with	them.	Knowledge	of	the	
Bohmian	particle	configuration	is	not	“absolutely	unattainable”—in	fact,	knowledge	of	the	
particle	configuration	is	easily	attainable	by	a	simple	position	measurement.	Perhaps	what	they	
mean	is	that	no	measurement	is	perfectly	accurate,	so	one	can	never	know	the	Bohmian	
particle	configuration	with	perfect	precision.	But	this	is	hardly	a	surprise;	it	is	equally	true	of	the	
classical	particle	configuration.	
	 Similarly,	Dürr	et	al.	are	mistaken	in	suggesting	that	there	is	an	exception	to	their	result	
for	knowledge	of	the	particles	in	your	own	brain.	As	Stone	correctly	points	out,	in	order	to	
count	as	knowledge,	such	self-awareness	needs	to	be	accessible	by	other	parts	of	your	brain,	
and	any	physical	account	of	this	process	will	be	subject	to	Dürr	et	al.’s	result.	Whatever	you	find	
out	about	the	configuration	of	Bohmian	particles	in	your	own	brain	via	such	a	process,	you	will	
never	attain	perfect	precision,	and	your	probability	distribution	over	the	possible	particle	
configurations	will	be	given	by	the	squared	amplitude	of	the	effective	wave	function—the	wave	
function	given	what	you	have	found	out.	
	 The	lack	of	an	exception	is	good	news	for	Bohm’s	theory,	in	that	it	avoids	the	criticisms	
of	Stone	and	of	Brown	and	Wallace	directed	at	the	exception.	Bohm’s	theory	does	not	need	any	
special	account	of	awareness	of	your	own	brain	state.	Nevertheless,	you	can	find	out	about	the	
Bohmian	particle	configuration,	both	inside	and	outside	your	brain,	to	any	practicable	degree	of	
accuracy.	What,	then,	of	Brown	and	Wallace’s	further	contention	that	such	knowledge	would	
allow	one	to	send	a	superluminal	signal?	
	



5.	No	signaling	
Consider	again	what	Alice	needs	to	do	to	send	a	superluminal	signal.	She	needs	to	find	out	the	
position	of	the	Bohmian	particle	relative	to	her	wave	packet,	and	set	her	measuring	device	
accordingly.	As	detailed	above,	it	is	perfectly	possible	for	her	to	find	out	whether	the	Bohmian	
particle	is	above	or	below	the	midpoint	of	the	wave	packet:	she	simply	needs	to	perform	the	
relevant	measurement.	The	relevant	measurement	in	this	case	is	to	pass	the	wave	packet	
through	a	magnetic	field	and	then	to	detect	whether	the	particle	moves	up	or	down.	If	it	moves	
up,	she	now	knows	that	it	was	above	the	midpoint.	
	 But	of	course	by	this	stage	it	is	too	late	to	set	her	measuring	device	according	to	the	
initial	position	of	the	particle:	she	has	already	measured	her	particle,	and	in	doing	so,	has	
moved	it	from	its	initial	position.	In	other	words,	in	order	to	send	a	superluminal	signal,	Alice	
would	have	to	act	on	the	particle	position	before	she	has	accessed	that	position.	Trivially,	Alice	
can’t	do	that,	even	though	she	can	perfectly	well	find	out	the	position	of	her	particle	to	any	
practicable	degree	of	accuracy.	Her	ability	to	find	out	the	Bohmian	particle	configuration	does	
not	allow	her	to	send	a	superluminal	signal.	
	
6.	Conclusion	
Stone	contends	that	Bohm’s	theory	doesn’t	solve	the	measurement	problem,	because	Dürr	et	
al.’s	result	means	that	you	can	never	find	out	the	Bohmian	particle	configuration,	except	
perhaps	via	some	implausible	direct	awareness	of	your	own	brain	state.	Stone’s	argument	rests	
on	a	mistaken	reading	of	Dürr	et	al.’s	result,	albeit	one	that	is	suggested	by	some	of	Dürr	et	al.’s	
rhetoric.	Maudlin	correctly	identifies	Stone’s	error,	but	continues	to	suggest	(perhaps	
inadvertently)	that	there	is	some	special	role	for	awareness	of	your	own	brain	state	in	finding	
out	the	particle	configuration.	I	hope	to	have	shown	here	that	there	is	no	special	problem	in	
finding	out	the	Bohmian	particle	configuration,	and	that	acquiring	such	information	neither	
conflicts	with	Dürr	et	al.’s	result,	nor	requires	any	special	role	for	direct	awareness	of	your	own	
brain	state.	Finally,	finding	out	the	Bohmian	particle	configuration	does	not	allow	you	to	send	a	
superluminal	signal,	as	Brown	and	Wallace	contend.	In	short,	Bohm’s	theory	provides	a	
perfectly	straightforward	solution	to	the	measurement	problem,	and	one	that	does	not	require	
any	special	account	of	mental	awareness.	
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Fig.	1	Spin	measurements	on	entangled	particles	
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Fig	2	Alice	rotates	her	measuring	device	
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