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Abstract Accuracy-based arguments for conditionalization and probabilism
appear to have a significant advantage over their Dutch Book rivals. They
rely only on the plausible epistemic norm that one should try to decrease the
inaccuracy of one’s beliefs. Furthermore, conditionalization and probabilism
apparently follow from a wide range of measures of inaccuracy. However, we
argue that there is an under-appreciated diachronic constraint on measures of
inaccuracy which limits the measures from which one can prove conditionaliza-
tion, and none of the remaining measures allow one to prove probabilism. That
is, among the measures in the literature, there are some from which one can
prove conditionalization, others from which one can prove probabilism, but
none from which one can prove both. Hence at present, the accuracy-based
approach cannot underwrite both conditionalization and probabilism.

A central concern of epistemology is uncovering the rational constraints on
an agent’s credences, both at a time and over time. At a time, it is typically
maintained that an agent’s credences should conform to the probability ax-
ioms, and over time, it is often maintained that an agent’s credences should
conform to conditionalization. How could such norms be justified? The tra-
ditional approach is to show that if your credences violate these norms, then
there is a set of bets, each of which you consider fair, but which collectively
are such that if you accept them all you will lose money whatever happens.
Since you do not want to be a “money pump”, you should adopt coherent
credences and you should conditionalize. However, this Dutch book strategy
rests on controversial assumptions concerning prudential rationality and its
connection to epistemic rationality.
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The prudential elements may not be essential to the Dutch book approach
(Vineberg 2012). But even so, it would be better to be able to derive prob-
abilism and conditionalization from a basic norm that is clearly epistemic.1

A more recent approach seeks to do precisely that: to derive probabilism and
conditionalization from the intuitive epistemic norm that you should endeavor
to make your credences as accurate—as close to the truth—as possible. Draw-
ing on the work of Joyce (1998; 2009), Greaves and Wallace (2006) and Predd
et al. (2009), Pettigrew (2013) argues that the accuracy-based approach vindi-
cates both probabilism and conditionalization. We argue that this conclusion
is too strong: at present, the accuracy-based approach can at best vindicate
either conditionalization or probabilism, but not both.

Our argument turns on the features of various proposed measures of ac-
curacy. The accuracy-based approach is predicated on the assumption that
the accuracy of your credences can be measured. Pettigrew (2013, 905) argues
that it is a strength of the accuracy-based approach that conditionalization
and probabilism follow from a wide range of measures, so that it doesn’t mat-
ter which measure is used to assess the accuracy of an agent’s credences. Our
counter-argument is that of the measures in the literature, some vindicate con-
ditionalization, and some vindicate probabilism, but there is no measure from
which both conditionalization and probabilism can be derived.

In section 1 we briefly rehearse the accuracy based arguments for con-
ditionalization and probabilism. In section 2 we locate our critique of these
arguments among the existing literature. In section 3 we introduce a diachronic
constraint, Elimination, that (we argue) any accuracy measure must obey if it
is to ground conditionalization.2 In section 4 we present our main argument,
which goes as follows. Three well-known rules for measuring the accuracy of
an agent’s credences (Brier, log and spherical) allow the derivation of con-
ditionalization, but one of these (Brier) violates Elimination. The remaining
rules must be generalized if they are to be used to derive probabilism, but the
obvious generalizations all violate Elimination. Hence we conclude that none
of these popular rules can be used to prove both conditionalization and prob-
abilism (and if there is a synchronic analog of Elimination, then none of them
can be used to prove probabilism at all). In section 5 we respond to objec-
tions to Elimination. In section 6 we assess the prospects for finding some new
accuracy measure that could ground both conditionalization and probabilism.

1 Accuracy: the state of the art

First, let us briefly run through the arguments via which conditionalization
and probabilism are claimed to follow from considerations of accuracy, starting

1 Also, Dutch book arguments arguably rest on substantial assumptions about your cre-
dences in propositions and their negations (Hedden 2013).

2 We introduce the Elimination constraint in Fallis and Lewis (2016). The current pa-
per goes beyond our prior work in assessing the consequences of Elimination for proofs of
probabilism and conditionalization.
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with conditionalization. Suppose you have credences c(Xi) = bi; that is, you
have credences b = (b1, b2, . . . , bn) in propositions X = (X1, X2, . . . , Xn).
Suppose further that the propositions form a partition, i.e. they are exhaustive
and mutually exclusive, so that exactly one of them is true. The accuracy
approach takes it that your primary epistemic goal is having credences that
are as accurate as possible, where complete accuracy is a credence of 1 in the
true proposition and a credence of 0 in each of the false propositions. The
closer your credences are to complete accuracy, the better.

For this epistemic goal to make sense, we need a measure of closeness.
In what follows we will discuss several such measures, expressed as measures
of inaccuracy : Ii(b) is the inaccuracy of credences b when proposition Xi is
true. The larger Ii(b), the further your credences are from the truth; hence
your goal is to minimize the value of Ii(b). Obviously not just any function
of your credences makes for a reasonable inaccuracy measure. One constraint
that is usually considered essential is that any such measure must obey Strict
Propriety:

Strict Propriety: For any distinct probabilistic credences b and b′,
∑

i biIi(b) <∑
i biIi(b

′).

Strict Propriety says that the expected inaccuracy of your current credences
b is lower than the expected inaccuracy of any alternative credences b′ you
might adopt, where the expectation is calculated according to your current
credences. If it fails, then the injunction to minimize inaccuracy makes your
beliefs pathologically unstable: you can lower your expected inaccuracy by
shifting your credences, even in the absence of new evidence. Hence Strict
Propriety serves as a reasonable constraint on measures of inaccuracy.3

Even given this constraint, though, there is still an infinite variety of strictly
proper inaccuracy measures: Joyce (2009, 277) provides a general recipe for
constructing them. We return to consider the full variety of measures in section
6; for present purposes, it will suffice to consider a few prominent examples.
The most frequently cited measures in the literature are the Brier rule (or
quadratic rule), the log rule, and the spherical rule:

Simple Brier rule: Ii(b) = (1− bi)2 +
∑

j 6=i b
2
j .

Simple log rule: Ii(b) = − ln bi.

Simple spherical rule: Ii(b) = 1− bi/
√∑

j b
2
j .

They are all strictly proper. We call these rules simple to distinguish the ver-
sions applicable to a partition, defined here, from the versions applicable to a
Boolean algebra, defined later. By far the dominant measure in the literature
is the Brier rule: the Brier rule has been defended by epistemologists (Joyce
2009, 290; Leitgeb and Pettigrew 2010, 219; Pettigrew 2016, 67), and is fre-
quently cited as the prime example of an inaccuracy measure (Greaves and
Wallace 2006, 627; Pettigrew 2013, 899).

3 See Maher (1990, 112). However, as discussed in section 2, Blackwell and Drucker (2019)
challenge the reasonableness of Strict Propriety.
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Suppose you obtain new evidence E; how should you redistribute your
credence over the propositions X? According to conditionalization, your new
credences c′ should be your old credences conditional on E: c′(Xi) = c(Xi|E).
Can conditionalization be justified by appeal to accuracy? If your goal is to
minimize your inaccuracy, presumably the best you can do is to minimize your
expected inaccuracy given your prior credences b. Greaves and Wallace (2006)
prove that conditionalization minimizes expected inaccuracy for any measure
of inaccuracy Ii(b) satisfying Strict Propriety.

Now let us turn to the argument that your credences at a time should obey
the probability axioms. So far, we have been assuming that the propositions
we are interested in form a partition. But the probability axioms include con-
straints on your credences in disjunctions, and to model such constraints we
need to allow that more than one of the propositions you are considering can
be true. To that end, suppose that you have credences b = (b1, b2, . . . , bn)
in propositions X = (X1, X2, . . . , Xn), where the set of propositions forms a
Boolean algebra, i.e. it is closed under negation and disjunction. So now we can
no longer model a possible world simply as an index (picking out the unique
true proposition); instead, we need to label each proposition separately as ei-
ther true or false. That is, a possible world is specified by ω = (ω1, ω2, . . . ωn),
where ωi = 1 when Xi is true and ωi = 0 when Xi is false. The simple
Brier, simple log, and simple spherical rules can be generalized to a apply to
a Boolean algebra as follows:

Symmetric Brier rule: I(ω,b) =
∑

i (bi − ωi)
2
.

Symmetric log rule: I(ω,b) =
∑

i− ln |(1− ωi)− bi|.
Symmetric spherical rule: I(ω,b) =

∑
i 1− |(1−ωi)−bi|√

b2
i
+(1−bi)2

.

We call these versions symmetric to distinguish them from the simple versions,
and to draw attention to a certain property they have: they treat truth and
falsity symmetrically, in the sense that inaccuracy is always the same function
of the distance between each credence and the truth value of the correspond-
ing proposition, regardless of whether that proposition is true or false.4 This
property will be important later.

The general strategy for defending probabilism based on accuracy goes
as follows. Suppose that your current credences are incoherent—that is, they
violate the probability axioms. Then one can appeal to a measure of inaccu-
racy to show that there are coherent credences that dominate your current
credences—that are more accurate than your current credences whatever the
truth values of the propositions concerned. If your goal is to minimize inac-
curacy, this gives you a clear reason to avoid incoherent credences: there are
always coherent credences that are more accurate, whatever the world is like.

Predd et al. (2009) adopt this proof strategy. Their proof relies on two
assumptions. The first is Additivity:

4 There are many different notions of symmetry in the accuracy literature; this is the one
Joyce (2009, 274) calls “0/1-symmetry”.
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Additivity: I(ω,b) can be expressed as
∑

i s(ωi, bi), where s is a continuous
function of your credence in proposition Xi and its truth value.

Additivity states that the inaccuracy of your beliefs in a set of propositions is
just the sum of your inaccuracies in the propositions taken individually—that
is, s(ωi, bi) is the inaccuracy of your belief in proposition Xi, and I(ω,b) is
just the sum of these inaccuracies for all the propositions you are considering.
Note that it also contains the requirement that the inaccuracy measure should
be continuous. The symmetric Brier, log and spherical rules are obviously
additive, since each is expressed as a sum over propositions, and each uses a
continuous function.

The second assumption is Strict Propriety. For an additive inaccuracy mea-
sure, Strict Propriety can be expressed in terms of your inaccuracy function
for a single proposition s(bi, ωi) as follows:

Strict Propriety (for an additive measure): bis(x, 1)+(1−bi)s(x, 0) is uniquely
minimized at x = bi.

The symmetric Brier, log and spherical rules, like their simple counterparts,
are strictly proper. Predd et al. (2009) prove that any additive, strictly proper
inaccuracy measure entails probabilism—that is, for any incoherent set of cre-
dences b, there is a coherent set b∗ that is less inaccurate than b in every
possible world.

As Pettigrew (2013, 905) notes, Greaves and Wallace (2006) and Predd
et al. (2009) prove strong results. Any inaccuracy measure satisfying Strict
Propriety can be used to vindicate conditionalization, and Strict Propriety is
a constraint we would expect a reasonable inaccuracy measure to obey anyway.
Any inaccuracy measure satisfying Strict Propriety and Additivity can be used
to vindicate probabilism, and while Additivity is perhaps not forced on us in
the way that Strict Propriety appears to be, it is certainly intuitive.5 As we
have seen, there are several available measures satisfying Additivity and Strict
Propriety, so it initially looks like the accuracy-based program can justify both
probabilism and conditionalization based on minimal premises. Our purpose
in this paper is to argue that matters are not so straightforward. But first, let
us consider some prior critiques of the program, to establish that they don’t
make our argument otiose.

2 Critiques and caveats

The accuracy-based program has already come under attack from a number
of different directions. Carr (2017) argues that in cases where your credence in
a proposition affects its chance—for example, if your confidence that you can
perform a handstand affects the chance that you can perform a handstand—
conditionalization does not maximize expected accuracy. Talbot (2017) ar-
gues that the accuracy-based program entails the repugnant conclusion that

5 However, Additivity is not beyond question, as Marxen and Rothfus (2018, 317) point
out.
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minimally accurate credences in a large number of propositions are better
than highly accurate credences in a smaller number of propositions. Solving
this problem, he argues, requires a distinction between interesting and boring
propositions, but such a distinction threatens the accuracy-based argument for
probabilism. Blackwell and Drucker (2019) argue that Strict Propriety cannot
be motivated in general, and admits counterexamples: for example, if an agent
realizes that she has made a mistake in updating her credences in the past,
then Strict Propriety forbids her from correcting that mistake by unilaterally
shifting her credences in the absence of new evidence.6

We do not wish to dismiss these critiques; they are important challenges to
accuracy-based epistemology, at least if the goal of epistemology is to provide
a global account of the totality of an agent’s beliefs. However, their force can
be mitigated by focusing on a more modest epistemic project. Consider a par-
ticular epistemic inquiry, defined by a particular set of propositions in which
an agent is interested. By hypothesis, then, all of the propositions are inter-
esting, and Talbot’s worry does not arise. As long as the propositions do not
include any where credence affects chance, then Carr’s worry does not arise.
As long as the agent has not made a mistake concerning these propositions,
then Blackwell and Drucker’s worry does not arise. Most canonical epistemic
inquiries—a detective investigating who committed a crime, or a scientist in-
vestigating the behavior of part of the natural world—would seem to typically
fulfill these desiderata. And it is certainly a significant result if accuracy-based
considerations can vindicate probabilism and conditionalization in canonical
cases of this kind. These are the kinds of cases we will focus on.

Our contention, then, is that there is a flaw in the accuracy-based program
even if we restrict attention to the most favorable kind of case. In that sense,
our critique is more thoroughgoing than those of the authors just mentioned.
But in another sense, our aim is more conservative. Unlike these authors,
we do not argue that maximizing accuracy sometimes requires one to violate
a standard epistemic norm; we take probabilism and conditionalization for
granted, at least for canonical cases. Rather, we seek to show that some of
the measures of inaccuracy used to prove probabilism and conditionalization
entail epistemically problematic conclusions, and hence that the derivation
of probabilism and conditionalization within the accuracy-based program is
problematic.7 Our argument is based on an underappreciated constraint on
inaccuracy measures, introduced in the following section.

3 Elimination cases

The argument for conditionalization restricts inaccuracy measures to those
that are strictly proper. Note that Strict Propriety is only a condition on

6 We consider Oddie’s (2017) critique of the accuracy-based program in section 5.
7 Blackwell and Drucker (2019) engage in the both kinds of critique: they argue that

maximizing accuracy sometimes requires one to violate conditionalization, and that the
accuracy-based derivation of conditionalization is flawed.
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expected inaccuracy. But expected inaccuracy is calculated on the basis of the
actual inaccuracy that the measure in question ascribes to your credences in
the various possible worlds. Presumably there are a number of constraints
any such measure must obey if it is to measure actual epistemic inaccuracy
rather than something else. For example, if one of your credences shifts towards
the truth, while your other credences stay the same, then clearly your actual
inaccuracy should decrease. We wish to focus on one such constraint.

The constraint can be motivated by thinking about elimination cases. Sup-
pose you are considering a set of mutually exclusive and exhaustive propo-
sitions, and suppose that your credences are coherent and that you condi-
tionalize on evidence. You acquire some evidence that eliminates one false
proposition—your credence in it becomes zero—but is uninformative regarding
the other hypotheses—your credences in them remain in the same proportions.
How does this affect the accuracy of your credences?

It seems obvious that your beliefs have become more accurate. If you believe
that Tom, Dick or Harry might be the murderer (when in fact Tom did it),
and you eliminate Harry while learning nothing about Tom or Dick, then you
have made epistemic progress towards the truth, or at least away from falsity.
It is true that your credence in the false proposition “Dick did it” goes up,
but only by the same proportion that your credence in the true proposition
“Tom did it” goes up. Any purported measure of inaccuracy that denies this
epistemic progress must be mistaken.

We can codify the lesson of this example as a constraint on inaccuracy
measures:

Elimination: For coherent credences over a partition, if b assigns a zero cre-
dence to some false proposition to which b′ assigns a non-zero credence,
and credences in the remaining propositions stay in the same ratios, then
b is more accurate than b′.

Unfortunately, the simple Brier rule does not obey this constraint. Let X1

be “Tom did it”, X2 be “Dick did it”, and X3 be “Harry did it”, where un-
known to you X1 is true. Suppose that your initial credences in (X1, X2, X3)
are b = (1/7, 3/7, 3/7). Then according to the simple Brier rule, your initial
inaccuracy is 54/49 = 1.10. Now suppose you acquire some evidence that elim-
inates X3, but is uninformative regarding X1 and X2. That is, your credence
in X3 becomes 0 and your credences in X1 and X2 stay in the same propor-
tions, so that your final credences are b∗ = (1/4, 3/4, 0). Then according to
the simple Brier rule, your final inaccuracy is 18/16 = 1.13. That is, the Brier
rule erroneously says that the inaccuracy of your beliefs has gone up.

To press the point, suppose you initially consider a number of exhaustive
and mutually exclusive hypotheses, where your credence in the true hypothesis
is initially 1/3 of your credence in each of the false hypotheses. That is, your
credence in the true hypothesis is initially 1/(3N + 1) and your credence in
each of the false hypotheses is 3/(3N + 1), where N is the number of false
hypotheses. You acquire evidence that eliminates the false hypotheses one by
one until only the true hypothesis remains. Application of the simple Brier
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rule shows that your inaccuracy at each step of the elimination process is
9n(n + 1)/(3n + 1)2, where n is the number of false hypotheses that have
not yet been eliminated. As n decreases, your inaccuracy gradually increases
to a maximum at n = 1 (when two hypotheses remain), and then decreases
suddenly to zero at n = 0 (when only one hypothesis remains). Clearly you
are steadily converging on the truth, but according to the Brier rule, your
credences are becoming more inaccurate, except at the very last step. It is
true that at each step your expected inaccuracy goes down, but this is beside
the point. The question is whether the Brier rule is an adequate measure of
your actual inaccuracy, and this case suggests that it is not.

Indeed the strongest evidence for Elimination comes from scientific method-
ology. Elimination of false hypotheses is a large part of scientific epistemology
(Earman 1992, 163); some would say that it is the whole of scientific episte-
mology (Popper 1963, 51; Mayo 1996, 7). Presumably it is rare in any scientific
inquiry to eliminate every false alternative to a true hypothesis. So provided
that the true hypothesis starts off sufficiently implausible compared to the
false hypotheses, the above result shows that according to the simple Brier
rule, epistemic progress via the elimination of false hypotheses is impossible:
eliminating false hypotheses always makes your credences more inaccurate.
This strikes us as highly counterintuitive, although we recognize that intu-
itions about such cases might vary.

Perhaps, though, the appropriate moral here is that your initial credence in
each hypothesis should be the same; given this flat prior, the Brier rule entails
that eliminating false hypotheses always decreases your inaccuracy.8 But a flat
prior doesn’t solve the problem: suppose you get unlucky and encounter some
misleading evidence that decreases your credence in the true hypothesis, but
leaves your credence in the false hypotheses unchanged. Then according to the
simple Brier rule, this initial shift away from the truth precludes any future
epistemic progress. This seems unduly pessimistic. Rather, we take the moral
to be that Elimination is required by scientific epistemology, and hence that
measures like the simple Brier rule that violate it fail as measures of epistemic
accuracy, at least in diachronic contexts.

Another possible response to the argument from scientific methodology is
that it is consistent with good methodology to be misled occasionally. Cases
in which conditionalization lowers your expected inaccuracy but raises your
actual inaccuracy are certainly possible, even using a perfectly good measure of
inaccuracy. Suppose you are not sure whether a coin is fair or biased. If you toss
it five times, get five heads, and conditionalize on the results, your expected
inaccuracy for the partition {Fair coin, Heads bias, Tails bias} goes down
(according to any reasonable measure). Nevertheless, if the coin is actually
fair, your actual inaccuracy for this partition goes up. Perhaps the Tom-Dick-
Harry case and its (N + 1)-hypothesis generalization are simply cases like
this, in which a researcher following a perfectly good procedure ends up being
misled.

8 Pettigrew (2016) argues for a flat prior on accuracy-based grounds.
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Our response to this suggestion is that standard cases of misleading evi-
dence are unlike the Tom-Dick-Harry case in two important respects. First,
in the coin-toss case, a string of five heads gives you evidence concerning
the partition {Fair coin, Heads bias, Tails bias}, but not infallible evidence:
the probability of getting five heads in a row is highest if the coin is biased
towards heads, but it is non-zero whichever hypothesis is true. This is what
makes it possible for you to be misled: you can get five heads in a row, strongly
disconfirming a tails bias, even if the coin is biased towards tails. In the Tom-
Dick-Harry case, we can assume that the evidence in question is infallible, in
the sense that the evidence has probability 0 if Harry did it. Then it is not
possible to get misleading evidence in the same way as you can for coin-tossing:
there is no way to get evidence that disconfirms “Harry did it” when “Harry
did it” is true.

Second, we assume that the evidence in question is completely uninfor-
mative regarding “Tom did it” and “Dick did it”; perhaps the evidence has
probability 1 whichever of these hypotheses is true. Since the evidence does
not differentially confirm one over the other, it cannot thereby be mislead-
ing. Again, this is unlike the coin-toss case, in which five heads in a row also
provides evidence distinguishing the fair-coin and heads-bias hypotheses, and
hence can be misleading, e.g., if fair-coin is disconfirmed relative to heads-bias
when the coin is fair. We fail to see how the evidence as described can be
misleading in the Tom-Dick-Harry case; at least, the burden seems to be on
our opponents to explain the sense in which you are misled. We conclude that
elimination cases always decrease inaccuracy, and that any measure that does
not concur fails to measure the actual inaccuracy of your beliefs.

4 Measures of inaccuracy

We have argued that for a measure to genuinely measure the actual inaccuracy
of your beliefs, at least in contexts where comparison between inaccuracy at
distinct times is relevant, it should not be susceptible to elimination counterex-
amples. Clearly the derivation of conditionalization is one such context. So any
measure of inaccuracy that can serve as the basis of a proof of conditionaliza-
tion should obey Elimination. The simple Brier rule violates Elimination, and
hence cannot serve as the basis for a proof of conditionalization.9

Fortunately, though, there are alternative inaccuracy measures for parti-
tions we can appeal to. Both the simple log rule and the simple spherical
rule satisfy Elimination, and hence neither is susceptible to elimination coun-
terexamples.10 Hence each can plausibly be claimed to measure epistemic in-
accuracy in contexts where comparisons between accuracy at distinct times is

9 One might reasonably think that acceptable measures of accuracy should obey a stronger
principle than Elimination; see Fallis and Lewis (2016).
10 This is trivial for the log rule, and easily proven for the spherical rule. See Fallis and

Lewis (2016).



10 Peter J. Lewis & Don Fallis

relevant. Furthermore, each is strictly proper, and so each can be used to un-
derwrite conditionalization via the Greaves and Wallace argument strategy. So
there are some inaccuracy measures that vindicate conditionalization, but not
all strictly proper measures do so. In particular, the simple Brier rule cannot
be used to vindicate conditionalization.

But what about probabilism? There are two considerations to bear in mind
here: first that the proof of probabilism requires inaccuracy measures defined
over a Boolean algebra, and second that probabilism is a synchronic rather
than a diachronic constraint on credences. Regarding the first consideration,
when we generalize the inaccuracy measures to a Boolean algebra, we find
that all three rules—the symmetric Brier, log and spherical rules—are subject
to elimination counterexamples. For the symmetric Brier rule, the counterex-
ample is the same as before, since the symmetric Brier rule directly reduces
to the simple Brier rule when applied to a partition.11 That is, consider a
credence shift from b = (1/7, 3/7, 3/7) to b∗ = (1/4, 3/4, 0) when X1 is true.
According to the symmetric Brier rule, your initial inaccuracy is 1.10, and
your final inaccuracy is 1.13, so your inaccuracy goes up. And this example
works equally well against the symmetric spherical rule: according to this rule,
your initial inaccuracy is 1.24 and your final inaccuracy is 1.37, so your in-
accuracy goes up. This particular counterexample does not work against the
symmetric log rule, but a similar one does. Suppose your initial credences
are b = (1/13, 6/13, 6/13), and your final credences are b∗ = (1/7, 6/7, 0).
Then according to the symmetric log rule your initial inaccuracy is 3.80, and
your final inaccuracy is 3.89: your inaccuracy goes up. Hence the symmetric
measures appropriate to a Boolean algebra all violate Elimination.

However, the second consideration arguably suggests that the violation of
Elimination is irrelevant as far as the proof of probabilism goes. The Elimina-
tion principle is a substantive diachronic assumption: as we argued in section
3, Elimination gains its most direct support from thinking about epistemic
progress in science. A proof of probabilism can arguably proceed indepen-
dently of any specific claims about learning and epistemic progress.12 Hence
we can arguably accept measures of inaccuracy that violate Elimination to vin-
dicate probabilism. Note, however, that such a proof of probabilism is fragile:
if we adopt the more substantive diachronic assumptions suitable for deriving
conditionalization, including Elimination, then the symmetric measures are no

11 Strictly, applying these rules to a Boolean algebra requires including credences in the
negations ¬X1, ¬X2 and ¬X3, plus the tautology X1 ∨ X2 ∨ X3 and the contradiction
¬(X1 ∨ X2 ∨ X3). But for coherent credences the inaccuracies of the tautology and the
contradiction are zero, and for coherent credences and symmetric rules the inaccuracy of
¬Xi is the same as that of Xi. So the inaccuracy calculated over the entire Boolean algebra
is simply twice the inaccuracy over the partition (X1, X2, X3).
12 Note that Blackwell and Drucker (2019) argue that Strict Propriety is a substantive

epistemic assumption; certainly its typical justification is diachronic, as it appeals to the
irrationality of credence shifts in the absence of new evidence (Maher 1990, 112). If Blackwell
and Drucker are right, then probabilism cannot be proven without substantive epistemic
assumptions. If we are right about Elimination, then probabilism cannot be proven with
substantive epistemic assumptions.
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longer acceptable, and probabilism is no longer provable. Furthermore, Elim-
ination might also be interpreted as a synchronic constraint on credences, by
taking b and b′ to be two distinct sets of possible credences at a single time.
If this synchronic version of Elimination is plausible, then probabilism cannot
be proven at all, given the three main inaccuracy measures.

Let us sum up. The simple Brier rule cannot be used to prove conditional-
ization, but the simple log and spherical rules can. In the best-case scenario,
where Elimination is taken to be a purely diachronic constraint on credence
shifts, the symmetric Brier, log and spherical rules can be used to prove proba-
bilism, but none of them also underwrites conditionalization. In the worst-case
scenario, where Elimination is taken to be also applicable synchronically, none
of the rules we have considered can be used to prove probabilism. Either way,
we have found no measure that can be used to prove both conditionalization
and probabilism.

5 Elimination defended

We have argued that none of the prominent measures of inaccuracy allow
one to prove both probabilism and conditionalization. In discussion, the most
frequent response to this argument is to deny Elimination—to deny that elim-
ination cases are always epistemically positive. So let us spend some time
defending this claim. The positive case for Elimination was laid out in section
3. What of arguments against it?

It is tempting to think that it doesn’t matter whether a measure vio-
lates Elimination: as long as the measure is strictly proper, conditionalization
is guaranteed to minimize expected inaccuracy, and since you cannot know
whether you are reducing your actual inaccuracy, minimizing expected inac-
curacy is all you can hope to achieve. However, even if, from a first-person
point of view, elimination of a false hypothesis seems reasonable (because it
minimizes the expected value of your chosen measure), it is a separate question
whether, from a God’s-eye point of view, you have actually made an accuracy
improvement.13 Our contention is that measures of inaccuracy that violate
Elimination sometimes give the wrong answer to this God’s-eye question.

The fact that measures that violate Elimination sometimes give the wrong
answer to the God’s-eye question shows that such measures don’t measure in-
accuracy, and hence that you have no reason to adopt a policy of minimizing
the expected value of such measures. We do not dispute the Greaves and Wal-
lace proof—conditionalization minimizes expected inaccuracy for any strictly
proper inaccuracy measure. But not every strictly proper function of credences
is a measure of inaccuracy. Consider, for example, the following weighted Brier
rule:

Weighted Brier rule: I(ω,b) =
∑

i λi (bi − ωi)
2
,

13 Fallis (2002, 227) and Dunn (2018, 9) stress this point.
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where λ1 = 1 and λi 6=1 = 10−6. This weighted Brier score is strictly proper.
But it entails that only your credence in X1—say, the proposition that squirrels
eat nuts— makes a significant contribution to your overall inaccuracy, your
credences in all other propositions contributing only negligibly. This particular
proper scoring rule is not a good candidate for an inaccuracy measure; it
doesn’t measure your actual inaccuracy.14 So the fact that conditionalization
minimizes the expected value of this measure is irrelevant to what you should
do, epistemically speaking. Similarly, we argue that since the simple Brier rule
and the symmetric Brier, log and spherical rules violate Elimination, they don’t
measure inaccuracy. Hence there is no epistemic reason to try to minimize their
value, and they cannot ground conditionalization.

A different defense of measures that violate Elimination concerns prior cre-
dences. Note that cases in which the various rules violate Elimination are ones
where your prior credences are highly inaccurate. Perhaps violations of Elimi-
nation are to be expected given inaccurate prior credences, even for perfectly
good measures of inaccuracy. For example, one might think that condition-
alizing from highly inaccurate priors increases your inaccuracy because your
priors “aim” the credence shift resulting from conditionalization.15 This is cer-
tainly true for the simple Brier rule, as our examples show: if Tom did it, and
you conditionalize on the falsity of “Harry did it”, then more accurate priors
will result in a shift toward the truth, and less accurate priors will result in
a shift away from the truth. But is there any independent reason to think
that prior credences should affect the “aim” of conditionalization in this way?
As noted in section 3, the evidence that Harry didn’t do it is not, in itself,
misleading—so it is hard to see why it should mislead. And to assume that in-
accurate priors preclude making epistemic progress conflicts with assumptions
about scientific epistemology, as also explained in section 3.

Perhaps the idea is that when your initial credence in the true hypothesis is
sufficiently small, the large increase in credence in false hypotheses surely out-
weighs the small increase in credence in the true hypothesis. The Elimination
principle entails that a shift from (0.001, 0.4995, 0.4995) to (0.002, 0.998, 0)
when the first element is true is epistemically positive, but this might strike
one as absurd given that your credence in the truth shifts by a tiny amount
and your credence in a false hypothesis increases by almost 0.5. However, this
description of the credence shifts assumes that the appropriate comparison
is between the absolute values of the two credence shifts. Following Hacking
(1965, 70) and Sober (2008, 32–34), we prefer to think of credence as a mea-
sure of relative confidence, in which case the relevant comparison is between
the ratios by which the two credences have shifted.16 In this case, both cre-
dences increase by exactly the same factor (almost 2). We contend that this
is what it is for a shift to be epistemically neutral: this is what conditional-

14 Dunn (2018) argues that certain weighted Brier rules are good candidates for a com-
bined measure of inaccuracy and verisimilitude. But this measure is a hopeless measure of
inaccuracy alone.
15 We thank James Joyce for this suggestion.
16 See also Fallis and Lewis (2016, 582).
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ization produces when the evidence is entirely uninformative between the first
two elements. Since the change in credence in the third element is clearly an
epistemic improvement, the net result is epistemically positive.

Dunn (2018, 9) suggests that eliminating a false hypothesis might be mis-
leading by way of an analogy with categorical belief. Suppose you believe a
large number of false conditionals with the same true antecedent. Then learn-
ing that antecedent (i.e. eliminating its negation) can lead you to acquire a
large number of false beliefs, and hence can be misleading. However, this is not
a particularly close analogy to the cases we are interested in: we are interested
in cases where you adjust your credences in a fixed range of propositions,
whereas Dunn’s case involves the production of new categorical beliefs. We
could make the case more closely analogous, but then it is not clear that elim-
ination of a false hypothesis would be misleading. If you have high credence in
a large number of false conditionals with the same true antecedent, and you
learn that antecedent, then typically your credence in those conditionals will
go down.17

Oddie (2017, 19) and Dunn (2018, 10) argue that verisimilitude consid-
erations show that Elimination is false. Their basic point is that elimina-
tion of a false hypothesis can result in credence being shifted from a false
hypothesis that is close to the truth to a false hypothesis that is further
from the truth, resulting in overall credences that are further from the truth.
Dunn (2018, 10) provides a detailed counterexample to Elimination along
these lines. Suppose you are interested in propositions A, B and C, which
are not mutually exclusive or exhaustive, and hence do not form a parti-
tion. Nevertheless, we can form a partition out of appropriate compounds:
(ABC,ABC̄,AB̄C,AB̄C̄, ĀBC, ĀBC̄, ĀB̄C, ĀB̄C̄). Suppose thatABC is true,
and your initial credences in this partition are (0.0033, 0.0033, 0.0033, 0.19,
0.8, 0, 0, 0). If you conditionalize on the evidence that A is true, eliminating
the false proposition ĀBC, your new credences are (0.0167, 0.0167, 0.0167,
0.95, 0, 0, 0, 0). The first element in this partition is true, and the second,
third and fifth are close to the truth, as they differ from the true element
only in the truth value of one of the atomic components. Hence condition-
alization primarily involves increasing credence in a proposition far from the
truth (AB̄C̄) at the expense of credence in a proposition close to the truth
(ĀBC). This, Dunn writes, is “a bad trade” (2018, 11).

We do not dispute that verisimilitude can trump accuracy in this way: we
intend Elimination to apply only to accuracy measures, not to a combined mea-
sure of accuracy and verisimilitude (if such a thing is possible).18 Furthermore,

17 Suppose your initial credences in the partition (AB,AB̄, ĀB, ĀB̄) are (0.3, 0.1, 0.3, 0.3),
so your credence in A is 0.4, your credence in B is 0.6, and your credence in (A → B),
interpreted as a material conditional, is 0.9. If you learn A, your credences in the partition
become (0.75, 0.25, 0, 0), so your credence in A is 1, your credence in B is 0.75, and your
credence in (A → B) is 0.75. This does not look misleading: although your credence in
the false hypothesis B has increased a little, your credence in the true hypothesis A has
increased a lot, and your credence in the false conditional (A → B) has decreased.
18 Oddie (2017) argues against the possibility of a combined measure; Dunn (2018) and

Schoenfield (2019) argue in favor. We remain agnostic.



14 Peter J. Lewis & Don Fallis

it is sometimes hard to disentangle accuracy considerations from verisimilitude
considerations in evaluating a particular case. Nevertheless, there are cases in
which verisimilitude is beside the point, and in those cases it looks like Elim-
ination holds. The Tom-Dick-Harry example is one such case. The three ba-
sic hypotheses are (presumably) equally far from each other in verisimilitude
terms. If we include the rest of the Boolean algebra, the only other non-trivial
elements are the negations (Tom didn’t do it, Dick didn’t do it, Harry didn’t
do it), which again are presumably equally far from each other. Here verisimil-
itude is irrelevant, and Elimination is vindicated.

Dunn (2018, 20) has a second criticism of Elimination, one that is not
based on verisimilitude considerations. He points out that those elimination
cases that we take as counterexamples to the simple Brier rule (and the other
rules discussed in section 4) all have the feature that conditionalization con-
centrates your credence on fewer false hypotheses. Our counterexample to the
simple Brier rule involves a shift from (1/7, 3/7, 3/7) to (1/4, 3/4, 0) where
the first element is true; hence credence in the two false hypotheses is ini-
tially equally distributed, but most of it becomes concentrated on just one of
them. It is typically (although not universally) acknowledged that spreading
credence evenly over false hypotheses decreases inaccuracy, and concentrating
it increases inaccuracy. Hence Dunn (2018, 21) contends that (1/4, 3/4, 0) re-
ally is less accurate than (1/7, 3/7, 3/7) when the first element is true, just as
the simple Brier rule says, precisely because the credence in false hypotheses
is more concentrated.

Although the relevance of falsity distribution to accuracy is sometimes
contested, we do not wish to deny it here.19 That is, we accept for the sake
of argument that there are cases in which concentration of credence on fewer
false hypotheses leads to an increase in inaccuracy, namely cases in which this
concentration is not counterbalanced by any inaccuracy-decreasing shift.20 For
example, the shift from (1/7, 3/7, 3/7) to (1/7, 6/7, 0) when the first element
is true clearly increases inaccuracy. But in the counterexample to the simple
Brier rule, there is a counterbalancing factor, namely the increase in credence
in the true hypothesis. The question, in such cases, is where to draw the line
between shifts that increase overall inaccuracy and shifts that decrease it.

First, note that in order to vindicate the simple Brier rule, concentration
of credence on fewer false hypotheses must carry a lot of epistemic weight.
Consider a variant on Dunn’s (2018, 10) proposed counterexample to Elimi-
nation: your initial credences in the partition (ABC,ABC̄,AB̄C,AB̄C̄, ĀBC,
ĀBC̄, ĀB̄C, ĀB̄C̄) are (1/6, 1/2, 1/6, 1/6, 0, 0, 0, 0), and you conditionalize on
the information that C is false, resulting in credences (0, 3/4, 0, 1/4, 0, 0, 0, 0).
If AB̄C̄ is true, the Brier rule entails that your epistemic situation becomes

19 See Knab and Schoenfield (2015) for an argument that falsity distributions are irrelevant
to accuracy. Note that the simple log rule ignores falsity distributions: accuracy is a function
only of credence in the true hypothesis.
20 Cases in which your credence in the true hypothesis is zero are exceptions, as explained

shortly.
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worse.21 But you have eliminated a false hypothesis, which would seem to
make your epistemic situation better. Furthermore, your credence has shifted
from a hypothesis far from the truth (ABC) and a hypothesis close to the
truth (AB̄C) to a hypothesis equally close to the truth (ABC̄) and the truth
(AB̄C̄), so verisimiltude considerations also seem to make your epistemic situ-
ation better. The only factor that might make your epistemic situation worse
is the concentration of credence on the false hypothesis ABC̄. While such
concentration may well decrease accuracy, it is hard to see why it should be
accorded so much epistemic weight that it would overcome both elimination
and verisimilitude considerations.

In fact, we think there is a clear answer to the question of where to draw
the line between shifts that increase inaccuracy and shifts that decrease it.
For positive a and b, a credence shift from (a/(a+ 2b), b/(a+ 2b), b/(a+ 2b))
to (a/(a + 2b), 2b/(a + 2b), 0) when the first element is true clearly increases
inaccuracy, as it concentrates credence on one false hypothesis while leaving
credence in the true hypothesis unchanged. But a credence shift from (a/(a+
2b), b/(a + 2b), b/(a + 2b)) to (a/(a + b), b/(a + b), 0) when the first element
is true decreases inaccuracy, we claim, because it is an elimination case, and
scientific epistemology demands that elimination cases decrease inaccuracy.
At a = 0 these shifts coincide. Hence this must be the dividing line: the shift
from (0, 1/2, 1/2) to (0, 1, 0) when the first element is true must be neutral
regarding inaccuracy.22

Dunn (2018, 18) correctly notes that Elimination counts shifts like the lat-
ter as elimination cases, and hence as decreasing inaccuracy. Hence Elimination
needs a slight modification:

Elimination*: For coherent credences over a partition, if b assigns a zero cre-
dence to some false proposition to which b′ assigns a non-zero credence,
and credences in the remaining propositions stay in the same ratios, then
b is at least as accurate as b′, and b is more accurate unless the credence
in the true proposition is zero.

With this modification, Elimination* allows that concentrating credence on
fewer false hypotheses contributes to inaccuracy, and appropriately delimits

21 When the fourth element is true, the inaccuracy of (1/6, 1/2, 1/6, 1/6, 0, 0, 0, 0) is 1,
and the inaccuracy of (0, 3/4, 0, 1/4, 0, 0, 0, 0) is 9/8. Dunn (2018, 15) defends a weighted
Brier score to combine accuracy considerations with verisimilitude considerations; in cases
like this he suggests that most of the weight should fall on the atomic statements (A,B,C).
Initially, your credences in (A,B,C) are (1, 2/3, 1/3), yielding a Brier score of 5/9 = 80/144,
and after conditionalizing they are (1, 3/4, 0), yielding a Brier score of 9/16 = 81/144. So
whether you use a weighted or an unweighted Brier score, the score tells you that your
epistemic situation has become worse.
22 The simple spherical rule has this consequence. The consequence entails that the epis-

temic benefit of eliminating a false hypothesis scales with your credence in the truth, becom-
ing zero when your credence in the truth is zero. This seems quite intuitive. It also entails
that the epistemic cost of concentrating credence on fewer false hypotheses scales with your
credence in the truth, becoming zero when your credence in the truth is zero. This is less
intuitive, but seems unavoidable.
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the cases where this effect results in an overall increase in inaccuracy. We con-
clude that there are strong reasons to accept Elimination*, and no compelling
reason to abandon it.

6 The extent of the problem

If Elimination* is correct, then we have argued that none of the inaccuracy
measures in the literature can be used to prove both conditionalization and
probabilism. But could there be a measure from which both conditionalixation
and probabilism can be proved that has not been described yet? We cannot
rule that out. However, it is worth noting that any inaccuracy measure that
satisfies Additivity, Strict Propriety and a plausible symmetry principle is sub-
ject to elimination counterexamples, as we show in this section. The symmetry
in question is the one displayed by the symmetric Brier, log and spherical rules:
the inaccuracy measure treats truth the same as falsity, in the sense that inac-
curacy is always the same function of the distance between each credence and
the truth value of the corresponding proposition, regardless of whether that
proposition is true or false. For an additive inaccuracy measure, the symme-
try principle can be expressed in terms of the inaccuracy function for a single
proposition s(ωi, bi) as follows:23

Symmetry: s(ωi, bi) = s(|1− ωi| , |1− bi|).

It is certainly highly plausible that this is part of what it means for s to
measure the accuracy of your credences, and as discussed in section 1, the
typical Boolean algebra forms of the Brier rule, log rule and spherical rule all
satisfy it.

Let us see how Symmetry, together with Additivity and Strict Propriety,
lead to elimination counterexamples. Consider a single proposition Xi in which
your credence is bi = 1/2. According to Strict Propriety, the quantity 1

2s(1, x)+
1
2s(0, x) must be uniquely minimized at x = 1/2. In particular, the value of
this expression for x = 1/2 must be lower than its value for x = 1:

1
2s(1, 1/2) + 1

2s(0, 1/2) < 1
2s(1, 1) + 1

2s(0, 1),

and for x = 0:

1
2s(1, 1/2) + 1

2s(0, 1/2) < 1
2s(1, 0) + 1

2s(0, 0).

Adding these:

s(1, 1/2) + s(0, 1/2) < 1
2s(1, 1) + 1

2s(0, 1) + 1
2s(1, 0) + 1

2s(0, 0).

But by Symmetry, s(1, 1/2) = s(0, 1/2), s(1, 1) = s(0, 0) and s(0, 1) = s(1, 0).
Substituting:

2s(0, 1/2) < s(0, 1) + s(0, 0).

23 Joyce (2009, 274) calls this principle “0/1-symmetry”.
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Now consider your credences in three exhaustive and mutually exclusive
propositions X = (X1, X2, X3). Consider in particular the credence shift from
a = (0, 1/2, 1/2) to b = (0, 1, 0) for truth values ω = (1, 0, 0). By Additivity,
I(ω,a) = s(1, 0) + 2s(0, 1/2), and I(ω,b) = s(1, 0) + s(0, 1) + s(0, 0). So since
2s(0, 1/2) < s(0, 1) + s(0, 0) it follows that I(ω,a) < I(ω,b): your inaccuracy
goes up. But as argued in section 5, and codified in Elimination*, the shift from
a = (0, 1/2, 1/2) to b = (0, 1, 0) should leave your inaccuracy unchanged. Fur-
thermore, consider the credence assignments a′ = (δ/(2+δ), 1/(2+δ), 1/(2+δ))
and b′ = (δ/(1 + δ), 1/(1 + δ), 0). For small δ these are close to a and b, and
hence by the continuity clause of Additivity, the inaccuracy of a′ remains lower
than that of b′. But the transition from a′ to b′ is an elimination case, and now
your credence in the true proposition is non-zero, so according to Elimination*
your inaccuracy should go down.

So elimination counterexamples afflict any inaccuracy measure that satis-
fies Additivity, Strict Propriety and Symmetry. That is, any symmetric mea-
sure that satisfies the assumptions of Predd et al.’s proof of probabilism vi-
olates Elimination*, and hence cannot be used to prove conditionalization.
Symmetry is not a premise in the Predd argument, so it is possible that some
asymmetric measure might allow the derivation of both probabilism and condi-
tionalization. But we know of no such measure, and any such measure would
face the objection that Symmetry, too, seems like a plausible constraint on
inaccuracy measures.

7 Conclusion

Pettigrew notes that conditionalization and probabilism follow from a wide
range of measures of inaccuracy, and the implication is that it doesn’t much
matter which measure you pick. We have argued that, in the best-case sce-
nario in which Elimination* is taken to be a purely diachronic constraint on
credence shifts, there are measures that vindicate conditionalization, and there
are measures that vindicate probabilism, but nobody has yet identified a mea-
sure that vindicates both. In the worst-case scenario, in which Elimination* is
also applicable synchronically, none of the available measures can be used to
prove probabilism. Hence the accuracy-based approach does not, as yet, give
us the justification we might want for the two standard constraints on our
credences.24
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