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ABSTRACT
Chemical reaction networks offer a natural nonlinear generalization of linear Markov jump processes on a finite state-space. In this paper,
we analyze the dynamical large deviations of such models, starting from their microscopic version, the chemical master equation. By taking
a large-volume limit, we show that those systems can be described by a path integral formalism over a Lagrangian functional of concen-
trations and chemical fluxes. This Lagrangian is dual to a Hamiltonian, whose trajectories correspond to the most likely evolution of the
system given its boundary conditions. The same can be done for a system biased on time-averaged concentrations and currents, yielding
a biased Hamiltonian whose trajectories are optimal paths conditioned on those observables. The appropriate boundary conditions turn
out to be mixed so that, in the long time limit, those trajectories converge to well-defined attractors. We are then able to identify the
largest value that the Hamiltonian takes over those attractors with the scaled cumulant generating function of our observables, providing
a nonlinear equivalent to the well-known Donsker-Varadhan formula for jump processes. On that basis, we prove that chemical reaction
networks that are deterministically multistable generically undergo first-order dynamical phase transitions in the vicinity of zero bias. We
illustrate that fact through a simple bistable model called the Schlögl model, as well as multistable and unstable generalizations of it, and we
make a few surprising observations regarding the stability of deterministic fixed points and the breaking of ergodicity in the large-volume
limit.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5111110., s

I. INTRODUCTION

The fundamental question of statistical physics is whether it is
possible to describe a microscopic model, with many components
and relatively simple rules, using only a small set of mesoscopic
variables and to determine the emerging laws of the system at that
scale. A good but rather trivial example of this can be found in
the behavior of independent random walkers (particles) on a lattice:
although the time-evolution of the complete probability distribution
of configurations is relatively complicated, one can write a much
simpler equation for the distribution of the local average density of
particles, under an appropriate rescaling of time and space.1 That
equation takes the form of a Langevin equation, with a drift and
a diffusion that are both linear in the density, and a noise whose
variance is linear as well. The resulting process is called a linear
stochastic diffusion and is said to be hydrodynamic in the sense

that the behavior of the local density is autonomous (i.e., does not
depend on higher moments of the density), by analogy with fluid
mechanics.

A nonlinear generalization of this is found in the macroscopic
fluctuation theory (MFT2), which deals with interacting particles
close to equilibrium: in essence, if mesoscopic portions of the system
get asymptotically close to equilibrium as the size of the system is
increased, then the local density of particles obeys a Langevin equa-
tion similar to the one mentioned above but with nonlinear drift,
diffusion, and noise variance.

The appropriate language to tackle such questions is that of
large deviations,3,4 for the same reason that an equilibrium system
is characterized by its free energy. Indeed, the process equivalence
that we invoke when stating such results is a logarithmic one:5 the
logarithm of the probability distribution of the mesoscopic time-
dependent density profiles of our system, rescaled by the appropriate
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parameter (volume or total number of particles), converges in the
limit of that parameter going to infinity to the rescaled logarithm
of the probability distribution of the corresponding Langevin equa-
tion. The argument of the exponential distribution is then generally
called the action, and for a Markovian process, it takes the form of
a time integral over a functional of states (position and density) and
fluxes (velocity and currents) called the Lagrangian or the level 2.5
large deviation function.6 The resulting probability density of tra-
jectories is then a path-integral in time, amenable to all standard
techniques from quantum path integrals.7 In the case of diffusions,
or of single particles subject to a Gaussian noise with small vari-
ance (known as the Freidlin-Wentzell theory of large deviations8),
that Lagrangian is a quadratic function of the fluxes, and the gen-
eral structure of those processes has been the focus of many studies
in recent years.9–12 Much effort has also been put toward obtaining
them as continuous limits of discrete lattice gas models, through
the aforementioned MFT2 or equivalently the so-called additivity
principle.13,14

From those path integrals, one can obtain in principle the
probability of any less detailed observable, such as, for instance,
any time average of densities or fluxes, by finding the trajectories
that most likely realize specific values of those observables. This
can be performed either by minimizing the action under a con-
straint or equivalently by introducing a Lagrange multiplier and
computing the scaled cumulant generating function (SCGF) of the
observable instead.9 Obtaining the SCGF of a time-averaged observ-
able, as well as the optimal trajectory extremizing the Lagrangian,
gives important information on the way that the system can sus-
tain unlikely fluctuations of said observables, potentially leading
to strategies to enhance said fluctuations (e.g., to boost the effi-
ciency of a machine15,16) or suppress them (e.g., to prevent catas-
trophic events17). This SCGF is in essence a free energy of the
system with a virtual forcelike parameter conjugated to the cur-
rent, similar to a virtual magnetic field being added to the Ising
model to study its phase transitions. However, unlike for equilib-
rium statistical physics, adding this extra parameter to the path
probabilities of the original process does not result in another pro-
cess with different forces but rather in what is called a biased pro-
cess,18 which is not a true stochastic process (it does not conserve
probability, for instance) except in very special cases.19 Despite
this conceptual difference from equilibrium free energies, dynam-
ical cumulant generating functions are quite useful to compute
large deviation functions in practice, as we shall demonstrate
later.

The computation of SCGFs, both analytically and numerically,
has been covered by many studies. It is particularly important in
the context of transport models (or interacting lattice gases), where
the fluctuations of the flow of carriers are central to the physics
of the system, especially when far from equilibrium.20 As regards
analytical computations, the systems considered are usually one-
dimensional, as they are more likely to be solvable, and include
models close to equilibrium, as the symmetric simple exclusion pro-
cess with periodic21 and open boundary conditions22,23 or on an
infinite line,24,25 the weakly asymmetric simple exclusion process,26

the KMP model,27 and the zero-range process with periodic28 or
open boundary conditions,29 as well as those same models driven
far from equilibrium such as the asymmetric simple exclusion pro-
cess with periodic30–33 and open boundary conditions34–36 or on an

infinite line,37,38 with some studies focusing on the probability of
extremely unlikely currents.39–41 Numerical methods have also been
devised to compute those unlikely probabilities, which are not easily
accessible through standard stochastic algorithms due to the expo-
nentially large sample they would require. Those focus on much
of the same models and include numerical minimization of the
Lagrangian for diffusions,42 density matrix renormalization group
(DMRG) techniques,43,44 and cloning algorithms which provide a
dynamical equivalent of importance sampling and have proven very
efficient.45–49

A particularly interesting feature of some such systems is so-
called dynamical phase transitions, which are qualitative changes
in the way a system typically produces and maintains atypical val-
ues of certain observables. Many such transitions are known in the
context of interacting lattice gases or diffusions.14,50–54 For instance,
for many driven one-dimensional models with hard-core interac-
tions, which exhibit a nonvanishing current of particles in their
stationary state, it is known that positive and negative fluctuations
of that current are qualitatively different:41,55,56 in order to pro-
duce a current lower than usual, the system had to better pro-
duce localized blockages (leading to inhomogeneous product states),
whereas to produce a current larger than usual, it needs to micro-
scopically order the particles everywhere (leading to homogeneous
correlated states,57 sometimes called hyperuniform58). The probabil-
ity cost of those two types of events is also qualitatively different,
which can be seen either as a change in analyticity in the large devi-
ation function of the current or equivalently in the SCGF. Other
examples involve simple diffusions59 and kinetically constrained
models.60

The topic of macroscopic fluctuations is well-established and
well-studied for systems which are rescaled to a continuous-space
process, but they make no less sense in situations with an intrin-
sically discrete geometry. A simple Markov jump process on a
finite state-space, for instance, can be interpreted as the evolu-
tion equation for the typical density distribution of a large num-
ber of independent random walkers, and the probability distribu-
tion of that density in the limit of many walkers can be described
through the large deviation formalism.61 The resulting process is lin-
ear in the density as for diffusions due to the independence of its
components.

In this paper, we consider a specific class of interacting jump
processes, which provide a natural nonlinear generalization of
Markov jump processes, namely, chemical reaction networks. Their
deterministic versions are the well-known chemical rate equation
systems,62 which are structurally equivalent to a jump process where
the probabilities are replaced by monomials of concentrations (the
so-called mass-action kinetics). Their behavior can however be much
more complex than their linear counterpart: whereas an irreducible
Markov jump process on a finite state-space has a single steady
state in the stationary limit, a chemical system can exhibit mul-
tistability,63 limit cycles,64 or even strange attractors.65 It should
be noted that this nonlinearity does not come from interactions
between the particles, as it would in interacting diffusions, for
instance, Ref. 66, but is of an entropic nature due to the reac-
tions requiring all reactants to be at the same place. Beside their
usefulness as nonlinear versions of jump processes, chemical net-
work models have self-evident applications in chemistry, with much
recent interest specifically in biochemistry, where the stochastics
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and energetics of mesoscopic random systems out of equilibrium
have direct consequences on the way living cells function.67–70 Many
models of populations (e.g., of microbes) have also been studied with
the same formalism.71

The study of stochastic chemical systems is by no means a
recent topic, with roots dating back to the 1960s.72 Early works,
which focused on solving simple models of elementary reactions
with few molecules,73 contained the essential ingredients of what
would later be called the chemical master equation,74 which is now
well-established as a physically reasonable microscopic model for
well-mixed chemical systems.75 In this formalism, chemical reac-
tion networks are a linear Markov jump process on a composition
space (usually NN , where N is the number of chemical species)
and have been extensively studied as such.76–79 An intriguing prop-
erty of those systems is the apparent paradox between the unique
microscopic fixed point of the dynamics and the potentially numer-
ous attractors that should emerge in the macroscopic limit, which
can be understood as a breaking of ergodicity80 due to the emer-
gence of different time scales in those systems,81–83 with a struc-
ture very similar to that of equilibrium phase transitions84,85 and
with kinetic properties that can be accessed through a Hamiltonian
formalism.86

The large deviations of these models, as well as other types of
population dynamics, have been a growing subject of interest in the
past decade from various communities,85,87–94 though to our knowl-
edge a full theory of their dynamical fluctuations and rare event
probabilities is still missing.

In the present work, we describe the large deviation behavior
of generic chemical reaction networks, starting from the chemical
master equation74 which describes their microscopic dynamics. This
paper aims at being pedagogical and self-contained, and therefore
contains many formulae and derivations that are not entirely neces-
sary for practical computations of, say, large deviation functions of
time-averaged currents. The reader mainly interested in such con-
crete matters is advised to first refer to Sec. VI, which provides a
summary of the relevant formulae and results.

In Sec. II, we introduce those models, along with a few impor-
tant concepts to analyze them, and we define the mesoscopic vari-
ables that will be relevant in the large-volume limit.

In Sec. III, we take the said large-volume limit and show that the
dynamics of those systems can be described through a path integral
with a Lagrangian that can be computed explicitly. That path integral
is dominated by a trajectory solving an Euler-Lagrange equation or
equivalently Hamilton’s equations for an appropriate Hamiltonian.
This will be done in several different ways, depending on whether
one takes the time-derivative of the density or all the separate chem-
ical currents as a flux variable in the Lagrangian and on whether one
puts a bias on some observables through a Lagrange multiplier. A
connection will also be made between our approach and the Doi-
Peliti formalism.95,96 This section is meant as a pedagogical overview
of the Lagrangian/Hamiltonian formalism for large-volume stochas-
tic processes and is detailed accordingly. As such, it contains many
results that are likely not original, although we have been unable
to find references to some of them in the literature (such as for
the detailed formalism of Sec. III B). The focus is however put on
the biased version of Sec. III C, which we do believe to be new
in its most general form, although notable results already exist for
biases specifically on densities and dynamical activity (see Refs. 85

and 97 and more recently Ref. 98). Readers familiar with these con-
cepts can safely skip this section or simply skim it for notations. The
proofs relating to these results are provided in the Appendix, and
a practical summary for the computation of long time large devia-
tion functions, focused on only the necessary formulae, is given in
Sec. VI.

Section IV contains the main original results of this work: we
apply said formalism to compute the scaled cumulant generating
(SCGF) function of currents and densities of our models, which is
the Legendre transform of the large deviation function of station-
ary currents and densities. We show that it can be expressed in
terms of the maximal value of the biased Hamiltonian defined in
Sec. II among those it takes on its critical manifolds, which general-
izes the result by Donsker and Varadhan mentioned earlier.99–102 We
then show that systems whose deterministic equations have several
attractors (i.e., that are multistable) generically undergo first-order
dynamical phase transitions around small values of the dynamical
biases. This is proven when those attractors are fixed points and
conjectured for higher-dimensional attractors.

In Sec. V, we illustrate this last result by exhibiting a few of
those dynamical phase transitions in variants of a simple bistable sys-
tem called the Schlögl model.63 We remark that, surprisingly, even
unstable fixed points of the deterministic dynamics can become sta-
ble under bias and that the ergodicity of the microscopic process,
broken by the large-volume limit, is usually restored. We also show
that, in some cases where the deterministic chemical equations have
stable or unstable regimes depending on their initial condition, a bias
can turn the whole system unstable.

In Sec. VI, we give a hands-on summary of how one may com-
pute large deviation functions of dynamical observables in a chemi-
cal reaction network, meant as a quick reference or a minimal guide
to readers who may wish to skip the details of the derivations.

Finally, we conclude with a few interesting open questions on
the topic.

II. DEFINITION OF THE MICROSCOPIC PROCESS
AND OBSERVABLES

We will be looking at the standard chemical master equation
with mass-action kinetics.62 Section II contains many definitions
and notations that are specific to chemical reaction models, and that
will be essential to understand some of the upcoming computations
and results. For that reason, we provide a simple illustrative example
in Sec. II D, where all those objects are made explicit. The nonspe-
cialist reader is encouraged to refer to that example as they read to
get a clearer picture of their meaning and properties.

A. Definition of the process
Our system contains chemical constituents (or particles), with

N different species Ax, x ∈ [[0, N[[, and a microscopic state n of
the system is given by the number of (indistinguishable) particles
of each species, which we will write as nx (we will treat n as a vec-
tor with components nx). We assume that the system, of volume
V, is well mixed and has no spatial dimension. The system evolves
through chemical reactions where a certain set of particles (reac-
tants) is destroyed and replaced by another set (products), with
a certain rate at Poisson-distributed times. This defines a Markov
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jump process on the state-space NN (possibly on a subset of it if all
states are not connected dynamically due to conservation laws; see
Sec. IV C).

In order to define the process in a convenient way, we will
not differentiate reactants and products (as reactions will often be
reversible), and we will call all sets of particles occurring on either
side of our reactions as complexes. A complex γ is defined by a set of
non-negative integers νγx called stoichiometric coefficients, giving the
number of particles of species Ax entering in complex γ, which we
sort into the stoichiometric vectors νγ = {νγx}. The standard nota-
tion for the reaction destroying complex γ and creating complex γ′
is then

∑

x
νγxAx → ∑

x
νγ
′

x Ax. (1)

The rate at which this reaction is occurring from state n will be writ-
ten as Wγ′ γ(n), taking the system from {nx} to {nx − νγx + νγ

′

x }. It will
be convenient to define the difference between those states to be a
generalized divergence,

∇γ′γ = νγ − νγ
′

, (2)

which is a matrix acting on functions of reactions (i.e., edges of
the graph of connected complexes, i.e., ordered pairs of complexes),
whose columns are differences of stoichiometric vectors, and which
yields a variation of particle number. Its action on a test function λγ′ γ
is given by

(∇λ)x =∑
γ′γ
(νγx − ν

γ′
x )λγ′γ. (3)

Note that this operator∇ can be factorized as∇ = νd, where d is the
standard discrete divergence on the graph of complexes (also called
the incidence matrix): dγ′γ = δγ − δγ′ , acting on reactions and yield-
ing an antisymmetric function on the vertices of that graph (i.e., on
complexes), and where ν is the matrix containing all the stoichiomet-
ric coefficients, acting on complexes and yielding particle numbers.
We will only need this factorization in Sec. II C when considering
conservation laws.

Moreover, the conjugate of this divergence defines a natural
gradient from functions f of the species x to antisymmetric functions
of the reactions,

(∇f )γ′γ =∑
x
(νγ

′

x − ν
γ
x)fx. (4)

We use the same notation ∇ as for the divergence, by analogy with
the usual continuous case. However, this should not create any
ambiguity, as the left and right spaces are different. We can then
perform integrations by parts on functions of reactions: for two arbi-
trary test functions f x and λγ′ γ dependent on species and reactions,
respectively, we have

f∇ ⋅ λ = −λ ⋅ ∇f . (5)

We can now write the chemical master equation with rates
Wγ′ γ(n), for a probability distribution P(n),

dtP(n) =∑
γ′ ,γ

Wγ′γ(n +∇γ′ ,γ)P(n +∇γ′ ,γ) −Wγ′γ(n)P(n), (6)

which we can also write algebraically in the bra-ket notation as
dt|P⟩ = W|P⟩, with the Markov matrix W,

W = ∑
γ′ ,γ,n

Wγ′γ(n) ∣n −∇γ′ ,γ⟩⟨n∣ −Wγ′γ(n) ∣n⟩⟨n∣. (7)

A common and natural choice for Wγ′ γ(n) is the so-called mass
action prescription, where the dependence in n simply comes from
the combinatorial number of ways to choose the reactants, i.e., the
product of (nx

νγx
) over γ. since νγx! is fixed, we may absorb it into the

constant prefactor. Moreover, we will later need the prefactor to
scale with the volume V with a specific exponent for V large, so for
the sake of convenience we will write that term explicitly already. We
get

Wγ′γ(n) = kγ′γ∏
x

[nx]!
[nx − νγx]!

V1−∑x ν
γ
x , (8)

where kγ′ γ is called the kinetic constant of the reaction and is
independent of n and of V.

Our aim will be to describe the fluctuations of such models
around its typical behavior in the V → ∞ limit. The order of V
in each rate has been chosen so that the rates W(n) be all linear
in V in the large volume limit, which corresponds to a so-called
hyperbolic scaling (also known as ballistic scaling). We will see in
Sec. III B 2 that this scaling is compatible with the standard deter-
ministic mass-action chemical equation systems.62

B. Time-additive dynamical observables
When taking the large volume limit, we will reduce the num-

ber of dynamical observables in our system: we will not be inter-
ested in the complete probability distribution of n and in the com-
plete set of microscopic reactions dependent on the starting state
n at every instant but only in the typical concentration of parti-
cles and total chemical currents integrated over an appropriate time
window.

Let us therefore consider a single realization n(τ) of the micro-
scopic process described above, and let us take a mesoscopic time
step δt, which for now is simply a positive real constant. We can
then define the empirical concentration ρx of species X as

ρx(t) V δt = ∫
t+δt

t
nx(τ)dτ (9)

and the empirical chemical currents λγ′ γ as

λγ′γ(t) V δt = wγ′γ ≡ #[γ→ γ′]
t,t+δt

, (10)

where the last term simply means the number of times reaction
γ → γ′ happens between t and t + δt, regardless of the state. Those
observables are called time-additive because they obey Chasles rela-
tion in time on any history of the system. As a consequence, they
are typically linear with respect to the observation time (hence the
factors δt assumed in the left-hand sides).

Given those definitions, one can check that those quantities are
related in the following way:

dtρx =∑
γ,γ′
(νγ

′

x − ν
γ
x)λγ′γ, which we write as dtρ = −∇ ⋅ λ. (11)

This is the continuity equation of our chemical system, and it is
verified individually by each microscopic realization.
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C. A caveat on conserved quantities
An interesting feature of chemical reaction networks is that

they may have many nontrivial conserved quantities, i.e., specific lin-
ear combinations of concentrations that are left unchanged by the
dynamics. For instance, if our system of chemical reactions involves
benzene cycles with various functional groups, but none of the reac-
tions actually destroys or creates a cycle, then the total number
of benzene cycles is conserved (those unbreakable units are often
called moieties). Other cases might not be so easily interpretable but
can be characterized systematically by looking at algebraic proper-
ties of the process.103,104 Those conservation laws are crucial fea-
tures of chemical networks with interesting consequences on their
behavior.105

Formally, looking at the continuity equation (11), we see that it
involves the operator ∇ which might not be invertible, for instance,
if it is not of full rank, which always happens if there are more species
than reactions. For any vector cx annihilated by the gradient (i.e., in
the left kernel of∇), the quantity cρ is conserved,

dtcρ = −c∇ ⋅ λ = λ ⋅ ∇c = 0. (12)

We call this equation a conservation law, and we will use the same
term to designate the vector c itself.

The effect of this is that the microscopic state-space of the sys-
tem is split into many ergodic components, each corresponding to
one set of values of all conserved quantities. This also means that
the variable ρ̇ is potentially of lower dimension than the number of
species, which means that one has to be careful when taking Leg-
endre transforms with respect to it, as we will very often do. In the
present work, we will dismiss this issue by implicitly defining ρ on

a reduced state space orthogonal to the conserved quantities, i.e., one
single ergodic component. In such a space, the matrix∇ is invertible
on the concentration side (i.e., to the right for the gradient and to the
left for the divergence). We will however have to address the issue
in Sec. IV C when considering initial conditions that span several
ergodic components.

D. Example
In this section, we give a simple example in order to make all the

previous definitions and notations more concrete, which can serve as
a quick reference for the reader whenever in doubt.

Let us consider a system with N = 5 species {A, B, C, D, E} and
the following set of reactions:

A + 2B→ A + 3C with rate k21,
A + 3C → A + 2B with rate k12,

2B→ 3C with rate k43,
3C → 7D + E with rate k54,

7D + E → 2B with rate k35.

The second reaction is the reverse of the first one, and the other three
form a nonreversible cycle. We define the complexes γ ∈ [[1, 5]] as
the left-hand side of those reactions: 1 = (A + 2B), 2 = (A + 3C),
3 = (2B), 4 = (3C), 5 = (7D + E). The kinetic constants of the reactions
are defined such that kγ′ γ is the rate of destroying complex γ to create
complex γ′.

The stoichiometry matrix ν, adjacency matrix d, and chemical
divergence∇ are given by

ν =

1 2 3 4 5
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

1 1 0 0 0 a
2 0 2 0 0 b
0 3 0 3 0 c
0 0 0 0 7 d
0 0 0 0 1 e

, d =

21 12 43 54 35
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+1 −1 0 0 0 1
−1 +1 0 0 0 2
0 0 +1 0 −1 3
0 0 −1 +1 0 4
0 0 0 −1 +1 5

, ∇ =

21 12 43 54 35
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

0 0 0 0 0 a
2 −2 2 0 −2 b
−3 3 −3 3 0 c
0 0 0 −7 7 d
0 0 0 −1 1 e

(13)

with ∇ = νd. Each column of ν corresponds to the composition
of one of the complexes, with rows indicating the number of par-
ticles of each species (labeled by the corresponding lower-case let-
ter). Each column of d indicates, for a given reaction, which is the
reactant complex (+1) and the product complex (−1), and we have
spit the matrix into blocks to emphasize the fact that it is block-
diagonal due to the fact that the network of complexes has two con-
nected components (sometimes called linkage classes). The columns
of ∇ give, for each reaction, the net change in number of each
species.

The mean-field chemical rate equations governing the evo-
lution of the concentration in a large well-mixed system are
then

dtρa = 0, (14)

dtρb = −2 k21 ρaρ2
b + 2 k12 ρaρ3

c − 2 k43 ρ2
b + 2 k35 ρ7

dρe, (15)

dtρc = 3 k21 ρaρ2
b − 3 k12 ρaρ3

c + 3 k43 ρ2
b − 3 k54 ρ3

c , (16)

dtρd = 7 k54 ρ3
c − 7 k35 ρ7

dρe, (17)

dtρe = k54 ρ3
c − k35 ρ7

dρe. (18)

This can be written as dtρ = −∇⋅(kρν), where (kρν) is the vector of
average chemical currents for each reaction,

(kρν) = [ k21 ρaρ2
b , k12 ρaρ3

c , k43 ρ2
b , k54 ρ3

c , k35 ρ7
dρe ]. (19)
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This system has three conserved quantities, all of which can be
easily found in this case by examining the reactions:

● The number of A is constant: the only reactions involving it
(21 and 12) do not change that number. This is visible on the
first row of∇. The corresponding vector is c1

= [1, 0, 0, 0, 0].
It is such that c1ν is in the left kernel of d, i.e., c1νd = 0 but
c1ν ≠ 0.

● Given that D and E only appear together in complex 5, they
always get created and destroyed together (with the appro-
priate multiplicities) so that ρd − 7ρe is constant, which is
clear from the rate equations. The corresponding vector is
c2
= [0, 0, 0, 1,−7], which is in the left kernel of ν, i.e.,

c2ν = 0.
● The last conserved quantity involves all the reactions: note

that the first two can convert 2B into 3C and back, with
A acting as a catalyst, and that the other three reactions
also turn 2B into 3C but also 7D + E. This means that the
total number of groups of 2B or 3C or 7D + E is con-
served. We can choose one representative from each group
(one out of every pair of B, every trio of C, and every
E), leading to the conserved quantity ρb/2 + ρc/3 + ρe,
with a vector c3

= [0, 3, 2, 0, 6] renormalized to have inte-
ger entries. As in the first case, we have c3νd = 0 but
c3ν ≠ 0.

Those vectors are not uniquely defined as they can be combined
together: this constitutes a somewhat arbitrary basis of the left ker-
nel of ∇. Note that those conservation laws are relevant for the
study of statistical processes in general, not only in the context
of chemical reactions, and that they are not always as obvious as
here.103

E. Aside: Long-time large deviations
We will be interested in the distribution of additive observables

in the limit of a large volume and small time step, but let us first
examine a different case.

Let us consider for a moment a finite volume V and a single
time step δt = t which is large with respect to the relaxation time of
the system. It is not guaranteed in general that the said relaxation
time be well defined due to the possibility of the state-space being
infinite, but we will assume that it is (which we can guarantee if the
system has a certain type of conservation law but which is gener-
ally true if P(n) is mostly contained in a compact at all times62). Let
us also assume that our initial distribution has support in only one
connected (ergodic) component of the state space.

In this context, let us examine the probability distributions
Pt(λ, ρ) of chemical currents and concentrations averaged over a sin-
gle long time step. Given that this is a time-averaged additive observ-
able in a Markov jump process on a finite state space (or a well-
controlled infinite one), we know the following:4 the aforementioned
distribution follows a large deviation principle with a scale t, i.e., we
can define a so-called long-time large deviation function g(λ, ρ) such
that

lim
t→∞
[−

1
t

ln(Pt(λ, ρ))] = g(λ, ρ), (20)

which we write as Pt(λ, ρ) ≍ e−tg (λ ,ρ). The function g is, by construc-
tion, positive convex and vanishes only at the stationary value of the
currents λ and concentrations ρ. Moreover, we can define the Leg-
endre transform E(s, h) of g(λ, ρ), with a variable sγ′γ conjugate to
λγ′ γ and hx conjugate to ρx,

E(s, h)=s ⋅λ + hρ − g(λ, ρ) with sγ′γ =∂λγ′γg(λ, ρ) and hx =∂ρx g(λ, ρ),

(21)

which is also the scaled cumulant generating function (SCGF) of λ
and ρ,

⟨et(s⋅λ+hρ)
⟩ = etE(s,h), (22)

where ⟨⋅⟩ represents an average over realizations, starting from any
initial condition (which does not matter in the long-time limit).
It is a classical result from the Donsker-Varadhan theory of large
deviations99–102 that the function E(s, h) is also the unique largest
eigenvalue of a deformed Markov matrix Ws,h, where the nondiago-
nal entries carry an extra exponential weight esγ′ ,γ and the diagonal
entries have an extra linear term∑xhxρx,

Ws,h = ∑
γ′ ,γ,n

eVsγ′ ,γWγ′γ(n) ∣n −∇γ′ ,γ⟩⟨n∣ −Wγ′γ(n) ∣n⟩⟨n∣

+∑
x,n

hxnx ∣n⟩⟨n∣. (23)

As demonstrated in the Appendix, this biased Markov matrix
Ws,h is useful even if the observation time t is small: the role of its
largest eigenvalue is lost, but it can still be used as a generator of the
biased dynamics which produces the cumulant generating function
E(s, h) in the long-time limit [which in that case will be the same as
in (22) up to a factor V].

Finally, note that in the case where the initial distribution spans
several ergodic components α of the state-space, the term with the
largest eigenvalues Eα(s, h) and a nonzero initial probability will
exponentially dominate the others. This can lead to first-order phase
transitions with respect to s or h, as those eigenvalues are allowed to
cross.

III. DYNAMICAL LARGE DEVIATION FORMALISM
In this section, we take the limits V → ∞ and δt → 0 on

our microscopic process and describe the exponential rate func-
tions (Lagrangians) of the probability distributions of the observ-
ables defined in Sec. II B, as well as their Legendre transforms
(Hamiltonians), and obtain equations for the corresponding min-
imization problems. The proof of the large-volume limit is pro-
vided in the Appendix, where we see that it is also essential that,
in the limit, Vδt → ∞. All of the following derivations also apply
to population models with more complex rates (i.e., if kγ′ γ depends
on n), except for those of Sec. IV C which rely on mass-action
kinetics.

We will look at three versions of the formalism: one where the
flux-type variable of the Lagrangian is the time-derivative of the con-
centration (standard), one where we keep track of every individual
chemical current (detailed), and one where we constrain the dynam-
ics on a certain time-averaged value of the concentrations and cur-
rents (biased). The first one describes the probability of any history
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of the concentration with minimal observables but cannot generally
be written explicitly, whereas the second has more detail than neces-
sary but is always explicit. They are both useful in constructing the
third, which is what we need ultimately in order to have access to
the scaled cumulant generating functions of chemical currents and
concentrations.

In each subsection, we will derive the appropriate large volume
large deviation rate function (Lagrangian) and the corresponding
cumulant generating function for fluxes (Hamiltonian) and derive
the equations of motion that solve the corresponding extremization
problems (i.e., that describe the typical behavior of the system) along
with the appropriate boundary conditions.

A. Standard formalism
We first describe the standard large deviation formalism for

large volume Markov processes, sometimes called the WKB formal-
ism87,91,92 although in this case the low-noise property is proven
rather than assumed.

Let us consider the integrated transition rate of our microscopic
process, for a finite runtime t, between an initial state ni and a final
state nf ,

Pt[nf ∣ni] = ⟨nf ∣e
tW
∣ni⟩. (24)

If we now observe the process over K mesoscopic time steps δt,
corresponding to a total time t = Kδt, the probability that it is in state
nk at time kδt is given by

Pt[{nk}] =
K

∏

k=1
Pδt[nk∣nk−1]. (25)

Note that here, the index k corresponds to the time step rather than a
chemical species, and every nk is a full composition vector. The total
transition rate between n0 and nK can then be decomposed over all
possible paths,

Pt[nK ∣n0] =
K−1

∑

k=1

∞

∑

nk=0
Pt[{nk}] =

K−1

∑

k=1

∞

∑

nk=0

K

∏

k=1
Pδt[nk∣nk−1]. (26)

1. Standard Lagrangian
For an appropriate scaling of time and volume such that

Vδt → ∞, we expect each mesoscopic transition rate Pδ t[nk|nk−1]
to have a large deviation form with a rate which we will call the
Lagrangian of the process. More precisely, let us define

L(ρ̇, ρ) = − lim
Vδt→∞

[
1

Vδt
ln(Pδt[Vρ + Vδtρ̇∣Vρ])]. (27)

Equation (26) can then be rewritten, in the limit V → ∞, δt → 0,
Vδt →∞, K →∞, Kδt = cst, as a path integral,

Pt[ρt ∣ρ0] ≍ ∫ exp[−V ∫
t

τ=0
L(ρ̇(τ), ρ(τ))dτ]D[ρ]. (28)

Note that this scaling is significantly different from that used in
Sec. II E, in that the concentrations ρ, and in particular, the initial
and final states, are also scaled in the limit. This means that, even
though the number of transitions occurring in a step δt is of order

Vδt → ∞, which is enough to guarantee the exponential scaling of
the mesoscopic rates (cf. the Appendix), the relaxation time of the
system becomes of order V, and the system does not have time to
reach its stationary state.

The last ingredient missing from the picture is the boundary
conditions. The previous expression is appropriate when starting
and ending at fixed concentrations ρ0 and ρt , but we may want
instead to start from a certain initial distribution and trace over the
final state with a certain cost function. Those boundary conditions
have a crucial impact on the long-time behavior of our systems, as we
will see in Sec. IV B. Let us therefore consider an initial distribution
P0(ρ) and a final cost Ot(ρ) of the form

P0(ρ) ≍ e−VU(ρ) and Ot(ρ) ≍ e−Vθ(ρ), (29)

where U and θ are non-negative functions that vanish at one point
at least (this can be guaranteed by normalizing them appropriately).
Given that we are interested only in the exponential scaling of prob-
abilities, we do not need to worry about the prefactors, but note that
these expressions do include cases where P0 and Ot do not scale
exponentially with V : if the scaling is subexponential, then U = 0 or
θ = 0, and if the scaling is superexponential, they should be replaced
by theta functions centered at their maxima.

Once those terms have been taken into account, the path
integral representation of the process becomes

⟨Ot⟩P0 ≍∫ exp[−V(∫
t

τ=0
L(ρ̇(τ), ρ(τ))dτ+ U(ρ0)+θ(ρt))]D[ρ].

(30)

2. Equations of motion
Considering that Eq. (30) is a sum over exponentials with a

large exponent, the terms dominating the path integral correspond
to the trajectories which minimize the rate of the exponential (or
action). By taking a functional derivative of the action, we find the
deterministic equations of motion describing the typical behavior of
our system.

The differentiation of the action with respect to ρτ at every time
τ gives

∫

t

τ=0
(∂ρL δρτ + ∂ρ̇L δρ̇τ)dτ + ∂ρU(ρ0)δρ0 + ∂ρθ(ρt)δρt = 0. (31)

An integration by parts of the second term yields

∫

t

τ=0
(∂ρL −

d
dt
∂ρ̇L)δρτ dτ + [∂ρ̇L δρτ]t0

+∂ρU(ρ0)δρ0 + ∂ρθ(ρt)δρt = 0. (32)

Canceling the integrated term will yield the standard Euler-Lagrange
equation,

∂ρL −
d
dt
∂ρ̇L = 0, (33)

and the boundary terms fix the boundary conditions,

∂ρ̇L(ρ0, ρ̇0) = ∂ρU(ρ0) and ∂ρ̇L(ρt , ρ̇t) = −∂ρθ(ρt). (34)
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3. Standard Hamiltonian and Hamilton’s equations
Let us start once more from Eq. (26), and let us define a

rescaled cumulant generating function (i.e., a log-Laplace transform)
of Pδ t[n|ni] with respect to n − ni, with a parameter f x conjugate to
nx, which we call the standard Hamiltonian,

H( f , ni) =
1

Vδt
ln(∑

n
e(n−ni)f

⟨n∣eδtW
∣ni⟩). (35)

Since the difference in state only depends on the integrated chemical
currents through the continuity equation, this generating function
can be rewritten as

H( f , ni) =
1

Vδt
ln(∑

n
⟨n∣eδtW∇f ,0

∣ni⟩), (36)

with the biased generator Wσ ,h defined in Sec. II E taken at hx = 0
and σγ′ γ =∇γ′ γf = (νγ′ − νγ)f.

In the large volume and small time step limit, with ni = Vρ, this
expression simply becomes

H( f , ρ) =∑
γ,γ′

kγ′γρν
γ

(e(ν
γ′
−νγ)f

− 1), (37)

where ρν
γ
= ∏ ρν

γ
x

x , as detailed in the Appendix. Moreover, the
Laplace transform becomes a Legendre transform, which means that
the Hamiltonian is related to the Lagrangian through

H( f , ρ) = f ρ̇ −L(ρ̇, ρ) with f = ∂ρ̇L, (38)

hence its name. Note that H is explicit even though L is not in
general.

The Euler-Lagrange equations can be recast in terms of the
Hamiltonian. Let us consider Eq. (33), with f = ∂ρ̇L. The Euler-
Lagrange equation becomes

∂ρL =
d
dt
∂ρ̇L = ḟ . (39)

Considering H = f ρ̇ − L so that ∂ρL = −∂ρH and ρ̇ = ∂f H,
the Euler-Lagrange equation simply becomes one of the standard
Hamilton equations,

ḟ = −∂ρH with ρ̇ = ∂f H. (40)

The boundary conditions simply translate to

f0 = ∂ρU(ρ0) and ft = −∂ρθ(ρt), (41)

which are implicit equations that define a manifold in phase space
at each time. Let us also remark that the value of H is conserved by
that dynamics,

Ḣ = ρ̇ ∂ρH + ḟ ∂f H = 0. (42)

Note that, in contrast with mechanical or quantum Hamiltoni-
ans, the “momentum” f does not correspond to a physical observ-
able and cannot be interpreted as a velocity. Instead, it represents
the effective potential of the force that the noise provides to the
system.

4. Two-field picture
In the specific case of mass-action kinetics, we can transform

the standard Hamiltonian H to a form closer to the famous Doi-
Peliti action,87,95,96 sometimes called Liouville functional,106 which
will be convenient for certain computations below.

Let us define two new variables (fields) ψx = e−fxρx and ϕx = e fx

such that ρx = ϕxψx and f x = ln(ϕx), which is to say that
{ϕ, ψ}→ { f, ρ} is a Cole-Hopf transform. In terms of those variables,
the Hamiltonian (37) becomes

H(ϕx,ψx) =∑
γ,γ′

kγ′γψν
γ

(ϕν
γ′

− ϕν
γ

) = ⟨ϕν∣K∣ψν⟩, (43)

where ψν and ϕν are vectors in the space of complexes and K is
the Markov matrix containing the kinetic rates k. Moreover, using
Eq. (40), the dynamics of those two variables is given by

ϕ̇x = ϕx ḟx = −ϕx∑
γ,γ′

νγx
ρx

kγ′γρν
γ

(e(ν
γ′
−νγ)f

− 1)

= −∑

γ,γ′

νγx
ψx

kγ′γψν
γ

(ϕν
γ′

− ϕν
γ

)

= −∂ψx H, (44)

ψ̇x =
ρ̇x

ϕx
− ψx ḟx =

1
ϕx
∑

γ,γ′
kγ′γρν

γ

(νγ
′

x − ν
γ
x)e
(νγ
′

−νγ)f

+ψx∑
γ,γ′

νγx
ρx

kγ′γρν
γ

(e(ν
γ′
−νγ)f

− 1)

=
1
ϕx
∑

γ,γ′
kγ′γψν

γ

(νγ
′

x ϕ
νγ
′

− νγxϕ
νγ
)

= ∂ϕx H, (45)

which is to say that they obey the Hamilton equations with the
appropriate Hamiltonian. The change of variables between { f, ρ}
and {ϕ, ψ} is therefore canonical. The corresponding boundary
conditions become

ϕ0 = exp[ψ−1
0 ∂ϕU(ϕ0ψ0)] and ϕt = exp[−ψ−1

t ∂ϕθ(ϕtψt)]. (46)

The usefulness of these so-called two-field variables {ϕ, ψ}, as
opposed to the density-phase variables { f, ρ}, is twofold. First, we
may in certain cases use the algebraic structure of Eq. (43) to get
information on the stationary states of the system;107 for instance, if
K is nonreducible, and under certain conditions on ν, we may use
the Perron-Frobenius theorem on K to deduce that the process has
a single stable fixed point. This is very specific to mass-action kinet-
ics, as otherwise the Hamiltonian would not be a bilinear form of the
complex weights {ψν, ϕν}, although the change of variables would be
canonical regardless. Second, this formalism turns out to be more
appropriate for certain types of boundary conditions, as we will see
in Sec. IV C.

Note that, unlike the standard Doi-Peliti formalism, all vari-
ables here are real-valued, although it makes no practical difference
when dealing with the corresponding path integrals. Moreover, in
the very special case where the chemical process is linear (i.e., each
complex is made of a single element of a unique species), which
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is essentially a Markov jump process, Eqs. (44) and (45) become
decoupled, and the second one yields the master equation for that
process.

B. Detailed formalism
In practice, the Lagrangian L(ρ̇, ρ) is in general difficult to

compute explicitly due to the potentially large number of trajecto-
ries resulting in the same ρ̇. We will see in Sec. V that this can still
be achieved for systems with a single chemical species,108,109 but in
general there is a more appropriate approach: rather than only keep-
ing track of the variation of concentrations, we can differentiate the
mesoscopic transition rates depending on the rate of each individual
reaction. This corresponds to the so-called 2.5 level of large devi-
ations,6 where the highest possible mesoscopic detail is kept from
microscopic trajectories. Several examples of the Lagrangians and
Hamiltonians thus produced can be found in Ref. 110 in a different
context.

Define P̂δt[wγ′γ∣ni] to be the probability, from ni, to perform
wγ′ γ times reaction γ→ γ′ during a time δt. This rate is such that

Pδt[nf ∣ni] =∑
γ′ ,γ
∑

wγ′γ

P̂δt[wγ′γ∣ni] I(∇ ⋅ w = nf − ni), (47)

where I is the indicator function (i.e., a Kronecker delta), used for
typographic convenience.

1. Detailed Lagrangian
This new decomposition allows us to define a new large devi-

ation function, which we will call the detailed Lagrangian of our
process,

L(λ, ρ) = −
1

Vδt
ln(P̂δt[Vδtλ∣Vρ]). (48)

Equation (26) can be rewritten as a new path integral, with the
indicator function becoming a continuous delta function,

Pt[ρt ∣ρ0] ≍ ∫
ρ0

exp[−V ∫
t

τ=0
L(λ(τ), ρ(τ))dt] δ(ρ̇ +∇ ⋅ λ)D[λ],

(49)

and including the boundary conditions yields

⟨Ot⟩P0 ≍ ∫ exp[−V(∫
t

τ=0
L(λ(τ), ρ(τ))dτ + U(ρ0) + θ(ρt))]

× δ(ρ̇ +∇ ⋅ λ)D[λ]. (50)

The advantage of this approach is that, unlike L, the detailed
Lagrangian L can always be computed explicitly, as shown in the
Appendix. In the case of mass-action kinetics, we find

L(λ, ρ) =∑
γ,γ′

λγ′γ ln(λγ′γ/kγ′γρν
γ

) − λγ′γ + kγ′γρν
γ

, (51)

and we should note that the method can be as easily applied to dif-
ferent models and dynamics as long as the criteria detailed in the
Appendix are met. This is the first important result of this paper.
Notice the similarity with the long-time large deviation function of

currents and densities in a Markov jump process,61 which is due to
the fact that transition events have Poissonian distributions in both
cases, as is demonstrated in the Appendix. In that respect, the large
volume limit of chemical reaction networks is a natural nonlinear
version of Markov jump processes, in the same way that interacting
diffusions, as described by the macroscopic fluctuation theory,2 are
a natural nonlinear version of Fokker-Planck equations. It should
be noted that the interactions at the origin of the nonlinearity are,
in our case, of an entropic nature: the chemical components are
not subject to any interaction potential, but the fact that reactions
only occur under some geometrical constraints (namely, the pres-
ence of all reactants at the same place) produces that nonlinearity.
It was brought to our attention that a similar result can be found in
Ref. 111 in a case where the transitions are limited to the exchange
of a single particle.

The standard Lagrangian (27) can then be obtained through the
contraction formula

L(ρ̇, ρ) = min
ρ̇=−∇⋅λ

L(λ, ρ). (52)

2. Equations of motion
Deriving the equations of motion for the detailed Lagrangian

L requires more care, as we have to take the conservation relation
into account. This is done by introducing a Lagrange multiplier ξx(t)
conjugate to the conserved quantity (ρ̇ + ∇ ⋅ λ)x(t) so that ρ and λ
become independent variables. The bulk minimization of the path
integral yields three independent parts

δ[L + ξ(ρ̇ +∇ ⋅ λ)] = [∂ρL δρ + ξ δρ̇] + [∂λL ⋅ δλ + ξ∇ ⋅ δλ]
+ [ρ̇ +∇ ⋅ λ]δξ = 0. (53)

Each part has to vanish on its own. We can do an integration by parts
on time in the first term and on space in the second using Eq. (5),
which gives two equations in addition to the conservation of matter
from the third term,

∂ρL = ξ̇ and ∂λL = ∇ξ. (54)

Combining the two yields, the detailed Euler-Lagrange equation

∇∂ρL −
d
dt
∂λL = 0. (55)

Moreover, the boundary terms from the partial integration of f δρ̇,
combined with the differentials of U0 and θt , yield the boundary
conditions

ξ0 = ∂ρU(ρ0) and ξt = −∂ρθ(ρt) (56)

so that

∂λL(λ0, ρ0) = ∇∂ρU(ρ0) and ∂λL(λt , ρt) = −∇∂ρθ(ρt). (57)

Note the similarity with the standard Hamiltonian boundary con-
ditions (41). However, in this case, ξ is not the variable of the
Hamiltonian, as we will see in Sec. III B.

Those equations of motion must be verified by the typical tra-
jectories of the system, in particular, if we start from a certain con-
centration ρ0 and simply trace over the final concentration by tak-
ing θt = 0. Since we have an explicit expression for L, we could
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inject it in (55), but that is not necessary: we know that L is positive
by construction and cancels only at

λγ′γ = kγ′γρν
γ

. (58)

This, combined with the conservation equation, yields the standard
system of coupled first order differential equations describing the
evolution of a dilute well-mixed chemical solution with mass-action
kinetics,

ρ̇x =∑
γ,γ′
(νγ

′

x − ν
γ
x)kγ′γρ

νγ . (59)

Moreover, since this solution gives a value for ρ̇ that only depends on
ρ, this is also the solution of Eq. (33). This proves that, as expected
(and even required for consistency), the most likely evolution of the
chemical master equation in the large volume limit is given by the
deterministic mass-action rate equations.

3. Detailed Hamiltonian and Hamilton’s
detailed equations

As with the Lagrangian, we can also define a detailed Hamilto-
nian, starting from Eq. (47) and introducing a variable σγ′ γ conju-
gate to wγ′ γ,

H(σ, n) =
1

Vδt
ln
⎛

⎝
∑

γ′ ,γ
eσγ′γwγ′γ P̂δt[wγ′γ∣ni]

⎞

⎠

, (60)

which, as above, can be rewritten as

H(σ, n) =
1

Vδt
ln(∑

n
⟨n∣eδtWσ,0

∣ni⟩), (61)

which we recognize as a generalization of the standard Hamiltonian,
where the virtual forces are not necessarily of the gradient form.
We use here the letter σ instead of s for the variable conjugate to
λ, in order to avoid confusion later when we introduce both a bias
and a conjugation on λ simultaneously. Even though those variables
occupy the same place in the definition of the Hamiltonians, they
represent different physical objects.

In the large volume and small time step limit, with ni = Vρ and
w = Vδtλ, this expression simply becomes

H(σ, ρ) =∑
γ,γ′

kγ′γρν
γ
(eσγ′γ − 1), (62)

and we can check that H is indeed the Legendre transform of L,

H(σ, ρ) = σ ⋅ λ − L(λ, ρ) with σγ′γ = ∂λγ′γL. (63)

The equivalent of the contraction formula (52) for Hamiltoni-
ans is a simple reduction of variables,

H( f , ρ) = H(∇f , ρ), (64)

which is one reason to favor Hamiltonians over Lagrangians for
explicit computations.

Note that this contraction is compatible with the continuity
equation ρ̇ = −∇ ⋅ λ as setting σ =∇f leads to

σ ⋅ λ = −f∇ ⋅ λ = f ρ̇, (65)

which is to say that the Legendre scalar σ⋅λ is conserved through its
contraction to f ρ̇.

Starting from Eq. (55), and defining σ = ∂λL, we find

∇∂ρL =
d
dt
∂λL = σ̇. (66)

Defining H = σ⋅λ − L so that ∂ρL = −∂ρH and ρ̇ = −∇ ⋅ ∂σH, we get
the detailed Hamilton equations,

σ̇ = −∇∂ρH with ρ̇ = −∇ ⋅ ∂σH. (67)

The boundary conditions become

σ0 = ∇∂ρU(ρ0) and σt = −∇∂ρθ(ρt). (68)

The value of H is also a constant of motion

Ḣ = ρ̇ ∂ρH + σ̇ ∂σH = −(∇ ⋅ ∂σH)∂ρH − (∇∂ρH)∂σH = 0 (69)

through the integration by parts of one of the terms.
All of the equations of this section simply reduce to those for

the standard Hamiltonian by setting σ = ∇f, which is compatible
with the boundary conditions. σ can be interpreted as the random
force produced by the noise.

C. Biased formalism
The aim of this work is ultimately to describe the large devi-

ations of our systems when conditioned on certain values of the
currents λ and densities ρ. This can be formally achieved by con-
straining all the equations of Sec. III B 3 on the time-average of those
observables. However, as we saw in Sec. II E, it can be preferable in
practice to look at generating functions instead. The procedure of
adding biases to the microscopic process to define those generating
functions is quite standard,5 but the outcome in terms of a biased
process at the mesoscopic level (i.e., in terms of the hydrodynamic
variables ρ and λ) and the properties of its dynamics are nontrivial.
We will investigate some of those properties in Sec. IV, but first we
should describe the formalism itself.

1. Detailed biased dynamics
As shown in the Appendix, the generating function of the

cumulants of those observables can be obtained by replacing W by
Ws,h, as defined in Eq. (23), in every term of Eq. (26). This sim-
ply leads to an equation of the exact same form as (50) but with L
replaced by a new biased Lagrangian

Ls,h(λ, ρ) = L(λ, ρ) − s ⋅ λ − hρ, (70)

i.e.,

⟨OtetV(s⋅λ+hρ)
⟩P0

≍∫ exp[−V (∫
t

τ=0
Ls,h(λ(τ), ρ(τ))dτ + U(ρ0) + θ(ρt))]

× δ(ρ̇ +∇⋅λ)D[λ]. (71)

The detailed Euler-Lagrange equation (55) still applies directly
to the biased Lagrangian Ls,h, from the same calculations. Those
equations can be recast in terms of the detailed Lagrangian L as
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∂ρL = ξ̇ + h and ∂λL = ∇ξ + s. (72)

Combining the two, for s constant in time, yields the biased Euler-
Lagrange equation,

∇∂ρL −
d
dt
∂λL = ∇h. (73)

Note that the dependence on s is not apparent from this equation
but can be seen in the boundary conditions,

∂λLs,h(λ0, ρ0) = ∇∂ρU(ρ0) and ∂λLs,h(λt , ρt) = −∇∂ρθ(ρt), (74)

which become, in terms of L,

∂λL(λ0, ρ0) = s +∇∂ρU(ρ0) and ∂λL(λt , ρt) = s −∇∂ρθ(ρt). (75)

Defining the biased Hamiltonian is straightforward, as biasing
the microscopic dynamics W is an associative operation: (Ws,h)σ,0
= Ws+σ,h. Through the computations shown in the Appendix, we
find

Hs,h(σ, ρ) = H(σ + s, ρ) + hρ, (76)

which we can check to be the Legendre transform of Ls,h,

Hs,h(σ, ρ) = σ ⋅ λ − Ls,h(λ, ρ) with σγ′γ = ∂λγ′γLs,h. (77)

The Hamilton equations for Hs,h are the same as those for the
detailed Hamiltonian and can be recast as

σ̇ = −∇∂ρH(σ + s, ρ) −∇h with ρ̇ = −∇ ⋅ ∂σH(σ + s, ρ) (78)

with the same boundary conditions

σ0 = ∇∂ρU(ρ0) and σt = −∇∂ρθ(ρt). (79)

The value of Hs,h is a constant of motion for the same reason as
before. Note that, in the case where h = 0, the value of H is also
constant.

2. Contraction of the currents and two-field picture
We saw earlier that the detailed Lagrangian has the advantage

of being explicit, which the standard Lagrangian usually is not. It has
however a serious disadvantage in practice: the set of currents λ is of
much higher dimension than the set of velocities ρ̇. This also applies
to the conjugate quantities f and σ, although all Hamiltonians are
in fact explicit, which makes H preferable to H. The latter is useful
in defining the biased Hamiltonian Hs,h, but for the same reason, it
makes sense to define a contracted biased Hamiltonian Hs,h( f , ρ)
with fewer variables. Note that it is possible to define Hs,h directly
from the microscopic dynamics, without going through Hs,h, as is
done in Ref. 85 in the case of a bias on densities and dynamical
activity (see, in particular, the Appendix).

Let us formally define a contracted biased Lagrangian Ls,h by
contraction of Ls,h,

Ls,h(ρ̇, ρ) = min
ρ̇=−∇⋅λ

Ls,h(λ, ρ). (80)

This cannot be written explicitly in general, but this leads to the
following contraction of the Hamiltonians

Hs,h( f , ρ) = Hs,h(∇f , ρ) = H(s +∇f , ρ) + hρ (81)

so that

Hs,h( f , ρ) =∑
γ,γ′

kγ′γρν
γ

(e(ν
γ′
−νγ)f +sγ′γ

− 1) +∑
x

hxρx. (82)

Note that this contraction is compatible with the previous Hamil-
ton equations by setting σ =∇f and removing∇ (remember that, as
stated in Sec. II C, we are implicitly working in a space where ∇ is
invertible on the concentration side), which simply yields

ḟ =−∂ρH(∇f + s, ρ) − h=−∂ρHs,h with ρ̇=∂f H(∇f +s, ρ)=∂f Hs,h

(83)

with boundary conditions

f0 = ∂ρU(ρ0) and ft = −∂ρθ(ρt). (84)

As always, the value of this Hamiltonian is constant along the
solutions of those equations.

As in Sec. III A 4, we can define ψx = e−fxρx and ϕx = e fx such
that the Hamiltonian becomes

Hs,h(ϕx,ψx) =∑
γ,γ′

kγ′γψν
γ

(esγ′γϕν
γ′

− ϕν
γ

) +∑
x

hxϕxψx

= ⟨ϕν∣Ks∣ψν⟩ + ⟨ϕ∣h∣ψ⟩, (85)

where Ks is the biased Markov matrix containing the kinetic rates k.
Through the same calculations as before, we can check the Hamilton
equations for those variables,

ϕ̇x = −∂ψx Hs,h and ψ̇x = ∂ϕx Hs,h, (86)

with boundary conditions

ϕ0 = exp[ψ−1
0 ∂ϕU(ϕ0ψ0)] and ϕt = exp[−ψ−1

t ∂ϕθ(ϕtψt)]. (87)

Here again, for a linear process, Eqs. (86) decouple and can
be identified as the Feynman-Kač equations for the time-dependent
generating functions of cumulants of our observables.7,112 The vec-
tors ϕ and ψ solving the equations are then the left and right eigen-
vectors of the biased Markov matrix of the corresponding Markov
jump process. The two-field picture is the standard formalism in
that case: the equations on { f, ρ} are still coupled and therefore more
complicated.

IV. STATIONARY LARGE DEVIATIONS
AND DYNAMICAL PHASE TRANSITIONS

Now that the formalism has been set up, we can examine what
happens in the long-time limit in order to obtain the SCGF E(s, h),
as defined in Sec. II E but with a term V factored out,

⟨etV(s⋅λ+hρ)
⟩

P0
∼ etVE(s,h) for t →∞, (88)

without having to solve the microscopic eigenvalue problem, which
is potentially infinite-dimensional.

As we saw in Sec. III C, this expression is a special case of the
path integral (71) with θt = 0, which we may write in terms of Ls,h
instead, and is dominated by the term solving the corresponding
Euler-Lagrange equations. The value of the dominating term is then
given by
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⟨etV(s⋅λ+hρ)
⟩

P0
∼ exp[−V (∫

t

τ=0
Ls,h(ρ̇(τ), ρ(τ))dτ + U(ρ0))]

(89)

along the solution. Rewriting this in terms of the Hamiltonian, we
get

⟨etV(s⋅λ+hρ)
⟩

P0
∼ exp[V (∫

t

τ=0
(Hs,h( f (τ), ρ(τ)) − f ρ̇)dτ −U(ρ0))]

(90)

along the solution of the Hamilton equations {ρ⋆(τ), f ⋆(τ)}. If the
solution is not unique, the one which gives the largest value of the
argument of the exponential dominates.

We saw that the value of Hs,h is conserved along this solution
so that it comes out of the time integral. Moreover, the term U(ρ0)
is not extensive in time so that it is negligible in the long time limit,
although it does appear implicitly through f ⋆ and ρ⋆ which depend
on it. We are left with the kinetic term

K( f ⋆, ρ⋆) = ∫
t

τ=0
f ⋆ρ̇⋆ dτ, (91)

which may or may not be extensive in time. Assuming that it is not
(which we will show to be true if all attractors of the deterministic
dynamics are fixed points, in Sec. IV B), we finally get

⟨etV(s⋅λ+hρ)
⟩

P0
∼ exp[tVHs,h( f ⋆, ρ⋆)]. (92)

This means that, for systems with only fixed points, the SCGF
E(s, h) is equal to the largest value of the biased Hamiltonian Hs,h
along solutions of the Hamilton equations. In cases where the kinetic
term is extensive in time (e.g., along a limit cycle), it must be
included in the maximization.

In the rest of this section, we will describe general features
of those solutions including their attractors and the consequences
of choosing different initial conditions. We will then show that
multistable systems (i.e., that have more than one attractor) gener-
ically undergo a first-order dynamical phase transition when the
bias crosses 0. This will be proven rigorously when all the attrac-
tors are fixed points and left as a conjecture for more complex
cases.

A. Boundary conditions
The choice of boundary conditions can be a determining fac-

tor in how the system under consideration fluctuates. Since we
are mostly interested in the SCGF defined above, we will restrict
ourselves to a flat final condition, i.e.,

θ(ρt) = 0 so that ft = 0 or ϕt = 1 (93)

depending on which are the appropriate variables.
Let us remark that the case of a fixed final condition ρt is

also of special interest, as it allows us to define the quasipoten-
tial of the process10,113 and gives access to its stationary measure.
Moreover, if both initial and final conditions are set to be densi-
ties of fixed points or other critical manifolds of the dynamics, the
optimal path connecting them is called an instanton and is of par-
ticular importance to estimate transition times between stationary

states of multistable systems114,115 or extinction times for metastable
populations.109,116

For the initial condition, one possibility is to start from a
fixed concentration ρi. In this case, the initial condition for the
Hamiltonian trajectory is simply

ρ0 = ρi or ϕ0 =
ρi

ψ0
(94)

and the density-phase variables { f, ρ} are more appropriate, as they
make the initial condition explicit.

Another popular choice is to start from a multi-Poisson distri-
bution with average ρ,

P0(ρ) =∏
x

(Vρx)
Vρx

[Vρx]!
e−V ρx so that U(ρ) =∑

x
ρx ln(

ρx

ρx
) − ρx + ρx,

(95)

which is to say that U is a relative entropy between ρ and a reference
ρ. In this case, the initial conditions become

( f0)x = ln(
ρx

ρx
) or (ψ0)x = ρx (96)

in which case the two-field variables {ϕ, ψ} become preferable.

B. Density-phase picture and global Hamiltonian
attractors

Let us first examine the behavior of long-time trajectories in the
density-phase picture,

ḟ = −∂ρHs,h and ρ̇ = ∂f Hs,h (97)

with the boundary conditions

ρ0 = ρi and ft = 0. (98)

A first important remark that has to be made is that the dynam-
ics is Hamiltonian, i.e., the volume of any subset of phase-space
is conserved by the dynamics. If our boundary conditions were
all at the initial or final time, that would mean that trajectories
cannot converge, i.e., that no stable attractor exists, because that
would require a contraction of phase-space during convergence. In
other terms, all critical manifolds (fixed points, critical cycles, or
stranger critical manifolds) of a Hamiltonian dynamics have either
marginal or mixed stability (i.e., as many stable directions as unsta-
ble ones) and cannot be attractors if one starts from a complete
initial condition (f i, ρi).

However, in our case, we have by construction mixed bound-
ary conditions: half of the boundary conditions are at the initial time
and the other half at the final time. This allows trajectories to con-
verge toward a critical manifold of the Hamiltonian as long as the
initial condition crosses its stable manifold and the final condition
crosses its unstable manifold. We will say that the critical manifold
is dynamically connected to the boundary conditions, and we will
use this term in general to mean that there exists a trajectory (hete-
rocline) from one manifold to another. These types of problems are
sometimes called two-point Hamiltonian problems in the context of
optimal control,117 although there usually both boundary conditions
are for the density.
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To illustrate this point, let us consider an extremely simple
model with one biased reaction,

∅→ A with rate a and bias s, (99)
A→ ∅ with rate b and bias − s. (100)

The corresponding Hamiltonian is

H( f , ρ) = a(e f +s
− 1) + bρ(e−f−s

− 1) (101)

with fixed point { f = −s, ρ = a/b}. The stable manifold of this fixed
point is f = −s, which intersects with any initial condition ρi. The
unstable manifold is ρ = ef +sa/b, which intersects with the final
condition f = 0.

In Fig. 1, on the left, we illustrate how the trajectory solving the
Hamilton equations with those boundary conditions converges to
the fixed point at long times, from blue to green to red. The initial
condition is the vertical purple dashed line, the final condition is the
horizontal orange dashed line, the fixed point is marked in bright
green (at a density value ρ⋆), and its stable and unstable manifolds
are marked in thick black lines. Note that the time that each trajec-
tory takes is not a simple function of its length in phase-space, but
the only way to produce a long trajectory is to get closer to the fixed
point, where the velocities vanish. As a result, the bulk of the tra-
jectory converges to the fixed point, with only finite-time boundary
layers connecting it to both boundary conditions. This convergence
is guaranteed purely by the boundary conditions, and the critical
point can be rightly called an attractor. The plots below show the
evolution of ρ(t) for those same trajectories, with the gray one rep-
resenting the asymptotic limit for infinite time (where the middle
horizontal section should in fact be infinitely long). Each trajec-
tory shows a plateau at a value that converges to ρ⋆, of increasing
length, and two boundary layers whose shapes also converge and are
bounded between ρi and the maximal value ρm that ρ takes on the
unstable manifold when f = 0.

Similarly, we can illustrate the case of an unstable fixed point,
which occurs when the initial condition never crosses the stable

manifold or the final condition never crosses the unstable manifold,
which we can obtain by flipping the directions of all trajectories in
the previous case (i.e., by inverting time). In that case, the long-time
trajectories diverge to infinity in some direction. As we see in the fig-
ure below, on the right, if the unstable manifolds of the fixed point
(red circle) are parallel to the final condition (horizontal orange
dashed line), the trajectory for long times will diverge in that direc-
tion. In the figure below, we represent once again the evolution of
ρ(t). In this case, there is no plateau of increasing length, and ρ is not
bounded but diverges upwards. Note however that this case is partic-
ularly unlikely to occur globally (i.e., without another stable attractor
to catch the trajectory) and requires very specific symmetries of the
Hamiltonian, as those manifolds have to be exactly parallel to the
corresponding boundary condition. We will see an example of this
in Sec. V C.

We may remark that, while close to a fixed point, the kinetic
term of Eq. (90) vanishes because ρ̇ ∼ 0, which justifies the assump-
tion that it is negligible. Whether it remains true for more complex
attractors remains to be determined.

Given these considerations, we may state the main result of
this paper: the SCGF E(s, h) is equal to the largest value that the
biased Hamiltonian Hs,h takes at attractors of the mixed-boundary
condition problem, defined as the critical manifolds that are dynam-
ically connected to the boundary conditions, if they exist. In case
the kinetic term (91) does not vanish at all those attractors, its aver-
age value should be added to the value of the Hamiltonian. The
consequences of this are left for future investigation.

C. Conserved quantities in the two-field picture
We mentioned in Sec. II C that chemical systems may have con-

servation laws: starting from a certain concentration ρ, the dynamics
may only span a subset of phase-space (i.e., one of many ergodic
components). This is not an issue in the density-phase picture, as the
solution is simply to restrict the definition space of ρ to the ergodic
component containing the initial condition. This is not so in the
two-field picture.

FIG. 1. Top: sketch of Hamiltonian tra-
jectories close to a fixed point, for
increasing runtimes (blue to green to
red). Bottom: evolution of ρ(t) for the
same trajectories. Left: the fixed point is
stable. Right: the fixed point is unstable.
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Let us assume that the system we are considering has several
conserved quantities C α

= cαρ such that

dtC
α
= dtc

αρ = −cα∇ ⋅ λ = 0 (102)

in the Lagrange frame. Let us also place ourselves in the full space of
concentrations ρx, in anticipation of the fact that we will start from
an initial condition that spans all space.

In the Hamiltonian frame, this has several consequences. First
of all, using Eq. (78), the previous equation expectedly becomes

c
αρ̇ = −cα∇ ⋅ ∂σHs,h(σ, ρ) = 0 with σ = ∇f . (103)

Moreover, when going from (78) to (83), we can no longer sim-
ply invert ∇, but we have to instead consider an arbitrary inte-
gration constant which is a linear combination of the conservation
laws cα,

∇ḟ = −∇∂ρHs,h(∇f , ρ) ⇒ ḟ = −∂ρHs,h(∇f , ρ) + Aαc
α, (104)

where the coefficients Aα are entirely unconstrained and can even
depend on f, ρ, or t. Both of those statements boil down to the fact
that the Hamiltonian

Hs,h( f , ρ) = Hs,h(∇f , ρ) (105)

is invariant under f → f + cα for every α. Note that this is a gauge
transformation and not a canonical change of variables: the equation
of motion for ḟ explicitly depends on Aα.

This underdetermination of the equations of motion is not
actually an issue in the density-phase picture since we may simply
use ∇f instead of f to determine the existence of attractors. Doing
the same in the two-field picture would be particularly cumbersome
since the variable f has been split between ϕ and ψ. We may how-
ever solve the issue in a different way in the case where we expect
our dominant attractors (those with the highest value of the Hamil-
tonian) to be fixed points. Assume that we know the stationary val-
ues ρ⋆ and ∇f ⋆ of ρ and ∇f for a specific value of the conserved
quantities {Cα

}. We then have

∇ḟ ⋆ = −∇∂ρHs,h(∇f ⋆, ρ⋆) = 0, (106)

which means that ∂ρHs,h(∇f , ρ) is a linear combination of the con-
servation laws cα. We can therefore choose Aα uniquely for each
choice of Cα such that

Aαc
α
= ∂ρHs,h(∇f ⋆, ρ⋆). (107)

This, in turn, implies that

ḟ = −∂ρHs,h(∇f , ρ) + Aαc
α
= 0 when ρ = ρ⋆ , ∇f = ∇f ⋆, (108)

which means that any compatible value of { f, ρ} is a fixed point. If
we now consider that we span all possible values of C α, every corre-
sponding Aα and resulting stationary value of Hs,h is accessible, and
the dominant one is the largest one, as a function of Aα.

The final step is to translate those equations in the two-field
picture. Since the only difference is in ḟ, considering the derivation
in Sec. III A 4, we simply get

ψ̇x = ∂ϕx Hs,h − Aαc
α
xψx = 0 and ϕ̇x = −

1
ψx

∂ϕx Hs,h + Aαc
α
xϕx = 0.

(109)

In conclusion, we arrive at a second formulation of our main
result, in the case where all attractors are fixed points: the SCGF
E(s, h) is equal to the largest value that the biased Hamiltonian Hs,h
takes at solutions of

1
ψx

∂ϕx Hs,h =
1
ϕx

∂ψx Hs,h = −Aαc
α, (110)

where the factors Aα are unknowns of the equations.
Note that once more, in the special case of a linear chemical

network, where every complex is a different species (or a different
conformation of a single molecule) and where the only conserved
quantity is the total mass (i.e., c = 1), those equations translate
precisely as eigenvalue equations for Ks ,h, and we recover the well-
known result by Donsker and Varadhan99–102 mentioned in Sec. II E,
of which this result is therefore a generalization.

In order to illustrate this rather formal result, let us look at a
simple example. Consider the reversible reaction B↔ 2C with rates
k21 for the forward reaction and k12 for the backward reaction. This
system as one conservation law c = [2, 1], i.e., C0

= 2ρb + ρc is con-
stant in time and is simple enough that we know it has a unique fixed
point for any bias.

The biased Hamiltonian for that system is given by

Hs,h( f , ρ) = k21 ρb(e
2fc−fb+s21

− 1) + k12 ρ2
c(e

fb−2fc+s12
− 1)

+ hb ρb + hc ρc. (111)

This Hamiltonian is invariant under any shift of f by a vector
[2X, X] for any real number X, which is straightforward to check.

We then define the two-field variables ψx = ρxe−fx and ϕx = e fx

and write the two-field version of the Hamiltonian,

Hs,h(ϕ,ψ) = k21 ψb(ϕ
2
c es21

− ϕb) + k12 ψ2
c (ϕb es12

− ϕ2
c)

+ hb ψbϕb + hc ψcϕc. (112)

The fixed point solution to Hamilton’s equations must then verify
(110),

k21(ϕ2
c/ϕb es21

− 1) + hb = 2X = k12 es12 ψ2
c /ψb − k21 + hb,

2k12 ψc(ϕb/ϕc es12
− ϕc) + hc = X = 2ϕc(k21 es21 ψb/ψc − k12 ψc) + hc.

(113)

From the first equation, we find that

k21 es21 ϕ2
c/ϕb = k12 es12 ψ2

c /ψb = 2X − hb + k21, (114)

which we can plug into the second to get
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ϕcψc =
X − hc

2k12
(

k21es12+s21

2X − hb + k21
− 1)

−1

and subsequently ϕbψb =
k12k21es12+s21

(2X − hb + k21)2 ϕ
2
cψ

2
c , (115)

which, put together, allows us to compute the value of Hs,h in terms of X,

(X − hc)(2X(X − hc)(2X − hb + k21) − (2X − hb + k21 − k21es12+s21
)(2X(X − hc) + (X + hc)(2X − hb + k21)))

4k21(2X − hb + k21 − k21es12+s21)2 .

At this stage, we can either fix the value of X by choosing a
value for C 0

= 2ρb + ρc, thus yielding the microcanonical value of
E(s, h) on a given sector of the conserved quantity, or maximize
Hs,h with respect to X and deduce the optimal value of C 0 from it,
which yields the canonical value of E(s, h). In both cases, the aver-
age values of ρ and λ can be computed through the first derivatives of
E(s, h).

Note that all values of X are not necessarily accessible: some
might correspond to negative values of ρ and are therefore unphys-
ical. Moreover, for certain values of h and s, the optimal densities
might end up on the boundaries of the system (ρx = 0 for some x)
or at infinity. These are consequences of the Legendre transforms
we have performed, and it is important to remember that the phys-
ical variables that we fix are ρ and λ, not h and s, which are merely
computational tools.

D. Generic dynamical phase transitions
for multistable systems

One of the interesting features of this last result is the following:
if the dynamics has several fixed points with different values of the
Hamiltonian, whenever the two largest values cross each other due
to variation of the parameters s and h, the system undergoes a first
order dynamical phase transition. In this section, we will see that
this scenario is almost guaranteed in systems where the deterministic
(unbiased) dynamics has several fixed points.

We recall the expression of the contracted biased Hamiltonian,

Hs,h( f , ρ) =∑
γ,γ′

kγ′γρν
γ

(e(ν
γ′
−νγ)f +sγ′γ

− 1) +∑
x

hxρx (116)

with dynamics

ḟ = −∂ρHs,h and ρ̇ = ∂f Hs,h (117)

and boundary conditions

ρ0 = ρi and ft = 0. (118)

The unbiased version s = h = 0 takes a particularly simple form:
it is straightforward to check that ḟ = 0 whenever f = 0, which implies
that f = 0 along any solution due to the final condition. The equation
on ρ then becomes

ρ̇x = ∂f H0,0(0, ρ) =∑
γ,γ′
(νγ

′

x − ν
γ
x)kγ′γρ

νγ , (119)

which is the usual deterministic mass-action dynamics.

Consider the case where this equation admits several fixed
points ρ̇(0)i = 0. The value of the unbiased Hamiltonian is 0 along the
whole f = 0 space, which means it is 0 at each of those fixed points,
and since they are the only ones dynamically connected to the final
condition, they are all potential convergence points, depending on
the initial condition.

We now turn on the bias, with a global infinitesimal variable ε,
and we look for the positions of the new fixed points to first nonzero
order in ε,

ρi(ε) ∼ ρ(0)i + ερ(1)i +
ε2

2
ρ(2)i +⋯, (120)

fi(ε) ∼ 0 + εf (1)i +
ε2

2
f (2)i +⋯, (121)

Hε( f , ρ) ∼H0,0( f , ρ) + εH (1)
( f , ρ) +

ε2

2
H (2)

( f , ρ) +⋯. (122)

Equations (117) give us, to the first order (order zero trivially
vanishes),

ρ̇(1)i = ∂f H
(1)
(0, ρ(0)i ) + ∂2

f H0,0(0, ρ(0)i )f
(1)
i

+ ∂ρ∂f H0,0(0, ρ(0)i )ρ
(1)
i = 0, (123)

ḟ (1)i = −∂ρH
(1)
(0, ρ(0)i ) − ∂f ∂ρH0,0(0, ρ(0)i )f

(1)
i

−∂2
ρH0,0(0, ρ(0)i )ρ

(1)
i = 0, (124)

which is a linear equation on {f (1)i , ρ(1)i } that always has a solution
if the Wronskian Wi = ∂2H0,0(0, ρ(0)i ) (i.e., the matrix of second
derivatives) is invertible, which is generally the case

⎡
⎢
⎢
⎢
⎢
⎣

f (1)i

ρ(1)i

⎤
⎥
⎥
⎥
⎥
⎦

= −W−1
i ⋅

⎡
⎢
⎢
⎢
⎢
⎣

∂f H
(1)
(0, ρ(0)i )

∂ρH
(1)
(0, ρ(0)i )

⎤
⎥
⎥
⎥
⎥
⎦

. (125)

The new value of the Hamiltonian is then

Hε( fi, ρi) ∼H0,0(0, ρ(0)i ) + ε(∂f H0,0(0, ρ(0)i )f
(1)
i

+∂ρH0,0(0, ρ(0)i )ρ
(1)
i + H (1)

(0, ρ(0)i )), (126)

which is to say

Hε( f , ρ) ∼ εH (1)
(0, ρ(0)i ). (127)

This expression does not depend on the specific values of {f (1)i , ρ(1)i }

but only on their existence and the value of the perturbation at
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the original fixed point. This should come as no surprise to any-
one familiar with perturbation theory for eigenvalues and eigen-
states of matrices: the first order in perturbation of the eigenval-
ues only depend on the value of the perturbation in the original
eigenstates.

For generic values of biases, the value of that perturbation will
be different at every fixed point, which means that they all become
dynamically disconnected (since all trajectories conserve the value
of the Hamiltonian). Moreover, the fixed point where that value
is highest will generically depend on the direction of the pertur-
bation, which means that the dominant attractor of our dynamics
will jump from one fixed point to another when crossing ε = 0.
This allows us to conclude that multistable chemical systems gener-
ically undergo first-order dynamical phase transitions at zero bias.
We will see examples of this in simple cases in Sec. V. In particular,
we will exhibit examples where the dominant stable fixed points of
the biased dynamics are unstable fixed points in the unbiased system,
which get stabilized by fluctuations.

Note that this result requires H (1)
(0, ρ) to not be independent

of ρ, which is the case for most nontrivial biases. Moreover, the argu-
ment above can just as easily be made for more complex attractors,
such as limit cycles. However, the possible contribution of the kinetic
term (91) in the extremization problem makes it less clear that which
attractor will dominate for small biases. We therefore leave this case
as a conjecture for the time being.

V. A FEW EXAMPLES OF DYNAMICAL PHASE
TRANSITIONS

In this section, we illustrate our results with various examples
of dynamical phase transition that we may observe in multistable
stochastic chemical reaction networks. We will consider the Schlögl
model,63 which is one of the simplest bistable chemical models, as
well as variants of it with different numbers of fixed points, and we
will see how those fixed points undergo phase transitions as we vary
the bias. Two surprising observations will be made: fluctuations can
restore broken ergodicity in the large volume limit and can stabilize
unstable fixed points of the deterministic dynamics.

Even though all previous formulae apply to both density and
current biases, we will only consider the latter, i.e., we take h = 0, for
the sake of simplicity. An example of a dynamical phase transition
involving a density bias can be found in Ref. 98.

A. Schlögl model
In the Schlögl model, two reversible chemical reactions can

occur, with the following kinetic rates:

∅→ A with rate k0 and bias s0,
A→ ∅ with rate k1 and bias s1,

2A→ 3A with rate k2 and bias s2,
3A→ 2A with rate k3 and bias s3.

The biased Hamiltonian of the model is given by

Hs,0( f , ρ) = k0(e f +s0
− 1) + k1ρ(e−f +s1

− 1)

+ k2ρ2
(e f +s2

− 1) + k3ρ3
(e−f +s3

− 1), (128)

and the deterministic equation is

ρ̇ = ∂f H0,0( f , ρ) = k0 − k1ρ + k2ρ2
− k3ρ3. (129)

We start from a fixed initial condition ρ0.
For an appropriate choice of rates (e.g., k0 = 0.7, k1 = 2, k2 = 0.9,

and k3 = 0.1), this equation can have three fixed points, of which the
middle one is unstable and the others are stable. In Fig. 2, we rep-
resent the Hamiltonian trajectories for the unbiased system, where
the stable fixed points are represented in green and the unstable one
is represented in red. The sign of the Hamiltonian is indicated in
each region, as a reference for the following deformations, in order
to identify the critical point with the highest value of H. Note that,
in this context, the whole dynamics takes place on the f = 0 line due
to the final condition and that the notion of stability of fixed points
is therefore different from the fluctuating case. Also note that the
stable fixed point that will be reached depends on the initial condi-
tion, which is due to the breaking of ergodicity in the large-volume
limit.80,85

We now turn on the bias, for example, by conditioning on the
current of the reaction∅↔ A alone: s0 = −s1 = s and s2 = s3 = 0. The
new trajectories are shown on the following figure, depending on the
sign of s.

We represent in Fig. 3 the fixed point with the highest value of
the Hamiltonian in green. As we see, it jumps from right to left when
s crosses 0, and in both cases, this fixed point is unique regardless of
the initial condition, as the other two are exponentially subdomi-
nant. This can be easily understood when looking at the value of the
perturbation at first order in s across the f = 0 line,

sH (1)
(0, ρ) = k0s0 + k1ρs1 + k2ρ2s2 + k3ρ3s3 = s(k0 − k1ρ), (130)

which is increasing if s < 0 and decreasing if s > 0, consistently with
which fixed point is favored.

FIG. 2. Hamiltonian trajectories of the unbiased bistable Schlögl model. The critical
manifolds H = 0 are represented in black, and the arrows indicate the direction
of the flow. The two stable fixed points are represented in green, and the unsta-
ble one is represented in red. We indicate the sign of the Hamiltonian in each
region.
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FIG. 3. Hamiltonian trajectories of the
biased bistable Schlögl model. The crit-
ical manifolds are represented in black,
and the arrows indicate the direction of
the flow. The dominant fixed points are
represented in green. A dynamical phase
transition can be seen around zero bias,
where the dominant fixed point jumps
from right to left.

In Fig. 4, on the left, we plot the values of H at all three fixed
points as a function of s. Those values are obtained by first expressing
f ⋆(ρ) analytically using one of Hamilton’s equations, plugging the
result into the second and then computing ρ⋆ numerically.

The red curve corresponds to the lowest density, the blue one to
the highest, and the green one to the central fixed point. As we see,
for a positive s, the blue curve is the highest, i.e., the rightmost point
is dominant, whereas for a slightly negative s, the red curve (leftmost
point) is dominant. The SCGF E(s) is obtained by keeping the maxi-
mum of all three curves and has a nonanalyticity at s = 0. In the right
figure, we draw the resulting long-time large deviation function g(λ)
obtained by computing numerically the Legendre transform of E(s).
We see that it exhibits a horizontal plateau, approximately between
λ = 0.2 (as visible on the inset) and λ = 12, which is an expected
signature of a first-order phase transition at s = 0 (the slope of the
plateau is consistent with the value of s). The sharp increase in slope
for λ < 0 is due to the fluctuation relation and is smooth, as can be
seen in the inset, so that there is no phase transition at λ = 0 even
though the figure might suggest it.

A surprising observation is that, on both sides of the transition,
the ergodicity of the microscopic system, lost in the large-volume
limit, is restored: any initial condition leads to the same fixed point
as its stable manifold spans all density-space.

In light of Eq. (130), we may wonder if it is possible to favor
the central fixed point instead. It is indeed the case as it is quite easy
to engineer a bias which makes the perturbation maximal around
that value of ρ. Consider, for instance, s0 = −4s, s1 = 3s, s2 = −s, and
s3 = 0 for s small and positive. The resulting trajectories are sketched
in Fig. 5.

The conclusion may seem quite counterintuitive: there is no
fundamental difference between stable and unstable deterministic
attractors when looking at biased trajectories, and fluctuations can
stabilize unstable stationary states, just as an extra external driving
can.118

B. Generalized Schlögl model
It is straightforward to generalize the previous case to one with

any number of fixed points, by considering reactions of any order,

nA→ (n + 1)A with rate k+
n and bias s+

n ,

nA→ (n − 1)A with rate k−n and bias s−n

and choosing the rates such that the deterministic equation

ρ̇ =
nmax

∑

n=nmin

(k+
n − k−n )ρ

n (131)

has the desired number of fixed points. Any of the fixed points can
then become dominant under the appropriate perturbation,

sH (1)
(0, ρ) =

nmax

∑

n=nmin

(k+
ns+

n + k−n s−n )ρ
n. (132)

Note that as long as the lowest reaction is creative (k−nmin = 0)
and the highest one is destructive (k+

nmax = 0), the first and last fixed
points will be stable in the deterministic case. This also implies that
the nonzero solution of H0,0( f , ρ) = 0 spans the whole f -space: we
have

FIG. 4. Left: value of the Hamiltonian at
each fixed point. Right: Legendre trans-
form of the dominant value of H.
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FIG. 5. Hamiltonian trajectories of the bistable Schlögl model with a bias favoring
the unstable fixed point. Surprisingly, that fixed point becomes stable and dominant
for the biased dynamics.

H0,0( f , ρ) =
nmax

∑

n=nmin

(e f
− 1)k+

nρ
n + (e−f

− 1)k−n ρ
n

= (e f
− 1)

nmax

∑

n=nmin

(k+
n − e−f k−n )ρ

n, (133)

which cancels at f = 0 or at

f ⋆(ρ) = ln(∑n k−n ρn

∑n k+
nρn ) (134)

such that

f ⋆(ρ→ 0)→ −∞ and f ⋆(ρ→∞)→ +∞. (135)

This, in turn, implies that there will always be at least one fixed point
dynamically connected to the boundary conditions. In the following
example, we see what may happen when this is not the case.

C. Runaway Schlögl model
As a final example, we consider a variant of the Schlögl model

whose deterministic dynamics is not always stable: the so-called

FIG. 7. The trajectories of the biased runaway Schlögl model depend heavily on
the final condition for f. The green trajectory converges to the stable fixed point,
whereas the red trajectories diverge.

runaway Schlögl model.108 It is obtained by taking k3 = 0 in the
Schlögl model so that the stability condition mentioned above is
not true anymore: the highest-order reaction is creative, and any
initial condition larger than the largest fixed point will diverge to
infinity.

Let us now consider a bias s0 = s + m, s1 = −s − m, and s2 = m.
This lets us effectively change the final condition through m and
favor one or the other fixed point through s. In Fig. 6, we draw the
Hamiltonian trajectories of the model for m = 0 and s < 0, s = 0,
and s > 0.

Once again, we find a first-order dynamical phase transi-
tion between the two fixed points, one of them being origi-
nally unstable. Moreover, we see that in all cases, the unsta-
ble manifolds of the fixed points cannot reach beyond a certain
value f max of f. If we set m to be above that critical value, the
fixed point becomes dynamically disconnected from the bound-
ary conditions, and the system becomes unstable. This is shown
in Fig. 7, where the initial condition is shown in purple (ver-
tical dashed line) and the final conditions are shown in orange
(horizontal dashed lines, for two different values of m). For a final

FIG. 6. Hamiltonian trajectories of the
biased runaway Schlögl model. A first-
order dynamical phase transition occurs
between the two fixed points around zero
bias.
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condition below the dominant fixed point, there is a stable trajec-
tory converging to it, shown in green. However, for a final condition
above f max, the only trajectories that have the right length are those
shown in red and diverge as time grows. If the final condition is
between those two regions, both types of trajectories exist, and it
is unclear which dominates, as the red trajectories have a diverging
value of the Hamiltonian but a nonzero kinetic term f ρ̇.

This example gives us yet another type of dynamical phase
transitions that can be found in some stochastic chemical net-
works, specifically ones that are deterministically unstable. A similar
phase transition was observed in Ref. 119 in an Ornstein-Uhlenbeck
process.

VI. PRACTICAL SUMMARY OF FORMULAE
AND RESULTS

In this final section, we give a practical overview of our results to
serve as a minimal reference for computing large deviation functions
of time-averaged dynamical observables.

Let us consider a well-mixed chemical system in a volume V,
with mass-action kinetics, species Ax with concentrations ρx, and
elementary reactions between chemical complexes γ with stoichio-
metric coefficients νγx. The kinetic rate of reaction γ→ γ′ is given by
kγ′ γ so that its complete mass-action rate is kγ′γρν

γ
. We define a fluc-

tuating chemical current λγ′ γ of which this mass-action rate is the
typical value.

We are interested in the probability of observing, over a long
time span t, an atypical average value of a certain linear combination
of chemical concentrations and currents a (which can be a vector),
defined as

a =∑
γ,γ′

sγ′γ λγ′γ +∑
x

hxρx. (136)

This probability obeys a large deviation principle Pt(a) = e−tVg (a)

with a large deviation function g(a). We will need to define its Leg-
endre transform E(μ) = μa − g(a) with a implicitly defined through
μ = g′(a), which is called the scaled cumulant generating function
of a.

In order to compute g(a), we first need to define the biased
Hamiltonian Hμ, with momenta variables f x,

Hμ( f , ρ) =∑
γ,γ′

kγ′γρν
γ

(e(ν
γ′
−νγ)f +μsγ′γ

− 1) + μ∑
x

hxρx. (137)

Note that, to make all expressions simpler, we only have one global
biasing variable μ ∈ R instead of the full vector {s, h}, which are here
treated as constants.

This Hamiltonian is associated with Hamilton’s equations

ḟ = −∂ρHμ with ρ̇ = ∂f Hμ (138)

with a final condition f (t) = 0. The initial condition depends on the
distribution from which the initial state of the system is drawn, but
we will assume that it is fixed: ρ(0) = ρ0.

We now need to determine the critical manifolds of Hμ.
Assuming they are all fixed points (we leave the more complex cases
for future works), we need to find all solutions to ∂ρHμ = 0 and

∂f Hμ = 0, which we will denote by {f ⋆i , ρ⋆i }. In some particularly
simple cases, these equations can be solved analytically, although in
general we would have to rely on numerics. A few points are worth
noting here:

● The dynamical system which we have to solve is Hamilto-
nian, which implies that the sum of all Lyapunov coefficients
at any fixed point is 0, i.e., they are all of mixed or marginal
stability. This means that, in terms of the dynamical equa-
tions (138), they are never attractors and cannot be reached
by simply following those equations numerically.

● That being said, the fixed points of (138) are also the fixed
points of the (unphysical) equations obtained by flipping the
sign of any subset of those equations (of which there are
twice the number K of chemical species). Except in patho-
logical cases, it is possible, for each fixed point ( f ⋆i , ρ⋆i ), to
find a set of signs {θx, εx} ∈ {−1, 1}2K for which that point
is an attractor of the ad-hoc equations ḟ = −θ∂ρHμ and
ρ̇ = ε∂f Hμ. To give an example, consider the Hamiltonian
H( f , ρ) = a(e f +s

− 1) + bρ(e−f−s
− 1) used in Sec. IV B.

Hamilton’s equations

ρ̇ = a e f +s
− bρ e−f−s and ḟ = −bρ(e−f−s

− 1) (139)

have a hyperbolic fixed point at ρ = a/b and f = −s, but the
equations

ρ̇ = a e f +s
− bρ e−f−s and ḟ = +bρ(e−f−s

− 1), (140)

obtained by flipping the sign of ḟ, have a stable fixed point
at the same place. This fixed point can then be attained
by following those new equations numerically from appro-
priate initial conditions. In many cases, and in general for
small values of μ, the appropriate signs will be θx = −1 and
εx = 1.

● Another way to find those fixed points is to consider that,
for any fixed value of ρ, Hμ( f , ρ) is a convex function of f,
which has a single minimum f ⋆(ρ). This can be found ana-
lytically or numerically as a function of ρ and injected back
into ∂ρHμ = 0, making it easier to solve in its turn.

Once we have obtained the fixed points, the value of E(μ) is
simply given by the maximum of Hμ at those points, as long as the
original chemical system is stable for all initial conditions (which is
always the case if all reactions are reversible),

E(μ) = max
i
[Hμ( f ⋆i , ρ⋆i )]. (141)

Note that the position of the corresponding fixed point will usually
be continuous by parts: if the dominant fixed point is nondegener-
ate, it will be followed as μ varies, until it becomes degenerate with
another one, at which point the second one may become dominant.
This is essentially identical to ground-state eigenvalue crossing in
quantum systems and is a generic phenomenology for first-order
phase transitions.

Finally, the function E(μ) can then be turned into g(a) through
a numerical Legendre transform, yielding the desired probability
distribution.
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VII. CONCLUSION
We have proven that, in the limit of large volumes, a chemi-

cal master equation for a well-mixed chemical reaction network can
be described through a large-deviation path integral over a hydro-
dynamic Lagrangian. We have derived that Lagrangian explicitly
from the microscopic dynamics by keeping track of every individ-
ual chemical current. We have then derived the equations that the
minimizer of the said path integral should verify, either through
Euler-Lagrange equations or through the definition of an appro-
priate Hamiltonian and the corresponding Hamilton equations. We
have shown that this formalism extends naturally to the case where
the dynamics is biased with respect to time-additive observables and
that the scaled cumulant generating function of those observables
can be expressed in terms of the largest value that the biased Hamil-
tonian takes over all solutions at fixed time. Through a Cole-Hopf
transform, we find a second set of canonical coordinates which,
in the specific case of mass-action dynamics, leads to the Doi-
Peliti Hamiltonian and is appropriate for dealing with conserved
quantities.

The boundary conditions for those equations, which turn out
to be split between the initial and final coordinates, are of crucial
importance, as they allow the solutions to converge to global attrac-
tors even though the dynamics is Hamiltonian. The aforementioned
cumulant generating function can then be identified as the maxi-
mal value the Hamiltonian takes across those attractors, provided
that the kinetic term of the action is negligible. This generalizes a
well-known result by Donsker and Varadhan relating the cumulant
generating function of a Markov process to the largest eigenvalue of
the corresponding biased Markov matrix.99–102 Furthermore, in the
case where the deterministic chemical reaction network has several
fixed points, we have shown that, under bias, the system generi-
cally undergoes first-order dynamical phase transitions around zero
bias, which we have illustrated through variants of the Schlögl
model. Finally, we have shown an example of a dynamical phase
transition where the system becomes unstable on one side of the
transition.

Here are a few important takeaways from both our abstract
results and illustrative examples:

● tracking more is easier: the detailed Lagrangian, which
keeps track of all individual chemical currents, is explicit,
whereas the standard Lagrangian is usually not;

● slicing with precision is crucial: taking a time step δt small
enough to vanish but large enough that V δt diverges is
essential to obtain the correct Lagrangians;

● boundary conditions make all the difference: a Hamil-
tonian dynamics with a full initial condition cannot have
attractors, but one with mixed boundary conditions often
does;

● stability is relative: a fixed point which is unstable in the
deterministic dynamics of a system may become stable
under even an infinitesimal bias; and

● what is broken can be fixed: a system with microscopic
ergodicity, broken due to some scaling limit, might well see
it restored when constrained in certain ways.

There are many problems still open on the topic of large devi-
ations of population models. Chief amongst them is the case of

systems with attractors such as limit cycles—which are quite impor-
tant in the context of biochemistry120—or even strange attractors,
for which very little is known on the large-deviation scale, beyond
some numerical results on entropy production.121 In Ref. 116, the
probability of extinction in a model with a cycle and a fixed point at
zero population was estimated, by finding the instanton connecting
the cycle to the fixed point through a Hamiltonian formalism. Per-
haps similar methods can be applied for models biased on currents
or densities, although even the shape of the biased attractors is yet to
be determined.

Additionally, the issue of finding those attractors numerically
is a particularly challenging one due to their systematically mixed
stability. We have outlined a few ideas to remedy this in Sec. VI, but
devising and testing actual algorithms is still an open problem as far
as we know.

We have also avoided the case of systems sitting at the
critical point of a stationary phase transition, where any bias
might force the system into one phase or the other. The Schlögl
model is simple enough to treat numerically at its critical point,
but whether those critical points are special in terms of which
dynamical phase transitions can occur under bias remains to be
seen.

A crucial concept in chemical networks, which is only indi-
rectly relevant to this work, is that of deficiency:122 in essence, it
is the number of conservation laws that is not visible immediately
on the network of complexes. That number has important conse-
quences on the types of stationary states that one may observe.62 If
it is 0, for instance, it is known that the system has exactly one stable
fixed point and no other attractor.107 It would be interesting to deter-
mine the consequences of deficiency in the context of dynamical
large deviations.

We have mentioned the delicate case of dynamics which comes
close to the boundaries of concentration space, where the number
of individuals of one or more species comes back down to a micro-
scopic scale. Those systems can be treated as so-called hybrid models,
where part of the dynamics is approximated through a large devia-
tion formalism and the rest is kept as a Markov jump process.123,124

This would apply, for instance, to systems with a small number of
enzymes which go through various conformations.125 A few results
exist as regards the large deviations of such systems,126 but as far as
we know, the probability distributions of time-averaged observables
have not been tackled so far.

Finally, one may naturally wonder how the structure and
phenomenology of those models would be affected if one adds
spatial coordinates and lets the chemicals diffuse, as in reaction-
diffusion models.127 It is known that, for instance, in certain sim-
ple 1-species models with an active/inactive stationary transition
(i.e., where, depending on a rate constant, the system has a fixed
point at a nonzero/zero density), the position of the transition is
strongly affected by the dimension of the diffusion space, to the
point where special nonperturbative renormalization techniques128

are required to account for it properly in D ≥ 3.129,130 Whether
anything similar occurs for multistable models, and how this inter-
acts with dynamical biases and phase transitions, shall be a very
interesting question for a future work. We might also ask similar
questions for systems that exhibit instabilities, leading to Turing
patterns.131,132
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APPENDIX: COMPUTATION OF THE CHEMICAL
LAGRANGIANS AND HAMILTONIANS

In this appendix, we will compute explicitly the microscopic
transition probabilities of our chemical networks, with or without
bias, in the limit of a large volume and a short time step: V → ∞,
δt → 0. This will be done by exploiting the fact that, in those limits,
all separate reactions essentially commute.

Consider the microscopic chemical Markov matrix

W = ∑
γ′ ,γ,n

Wγ′γ(n) ∣n −∇γ′ ,γ⟩⟨n∣ −Wγ′γ(n) ∣n⟩⟨n∣. (A1)

The transition probability from ni to nf during time δt is

Pδt[nf ∣ni] = ⟨nf ∣e
δtW
∣ni⟩. (A2)

Moreover, the generating function of exponential moments of the
observables λ and ρ defined in Sec. II B between those states and
during that time, with respective conjugate variables s and h, is given
by4,36

⟨eδt(s⋅λ+hρ)
⟩

nf

ni
= ⟨nf ∣e

δtWs,h
∣ni⟩, (A3)

where the Markov matrix has been replaced by its biased version

Ws,h = ∑
γ′ ,γ,n

esγ′γWγ′γ(n) ∣n −∇γ′ ,γ⟩⟨n∣ −Wγ′γ(n) ∣n⟩⟨n∣

+∑
x,n

hxnx ∣n⟩⟨n∣. (A4)

The effect of this biasing on the probability of each trajectory is to
multiply it by esγ′γ for each occurrence of a reaction γ→ γ′ regardless
of the starting composition n, thus generating the moments of λ, and
by e∫hn(τ )dτ which generates moments of ρ.

We will now simplify this expression in the limit of a large
volume V, in the case of mass-action kinetics,

Wγ′γ(n) = kγ′γ∏
x

[nx]!
[nx − νγx]!

V1−∑x ν
γ
x , (A5)

by showing that all individual reaction operators

Aγ′γ
s =∑

n
esγ′γWγ′γ(n) ∣n −∇γ′ ,γ⟩⟨n∣ (A6)

as well as the corresponding escape rates

Bγ′γ
= −∑

n
Wγ′γ(n) ∣n⟩⟨n∣ (A7)

and the concentration-counting operator

Bh =∑
x,n

hxnx ∣n⟩⟨n∣ (A8)

all commute on the large deviation scale for short times, as long as
each particle number n is of order V.

Let us first consider A1 = Aγ′γ
s , A2 = Aμ′μ

s , and B = Bγ′γ and
compute their commutator,

A2A1 − A1A2 =∑
n

esγ′γ+sμ′μ
(Wμ′μ(n −∇γ′ ,γ)Wγ′γ(n)

−Wγ′γ(n −∇μ′ ,μ)Wμ′μ(n))∣n −∇γ′ ,γ −∇μ′ ,μ⟩⟨n∣,

A2B − BA2 = −∑
n

esμ′μ(Wμ′μ(n)Wγ′γ(n)

−Wγ′γ(n −∇μ′ ,μ)Wμ′μ(n))∣n −∇μ′ ,μ⟩⟨n∣.

For n of order V, we can expand Wγ′ γ(n) in orders of V using
Stirling’s approximation, defining ρ = n/V,

Wγ′γ(n) ∼ kγ′γV∏
y
ρ
νγy
y (1 +∑

x

νγx(1 − 2νγx)
2Vρx

),

Wγ′γ(n −∇μ′ ,μ) ∼ kγ′γV∏
y
ρ
νγy
y
⎛

⎝

1 +∑
x

νγx(1 − 2νγx)
2Vρx

− νγx
νμ
′

x − ν
μ
x

Vρx

⎞

⎠

so that

A2A1 − A1A2 = V∑
n

esγ′γ+sμ′μ kμ′μkγ′γρν
μ+νγ⎛

⎝
∑

x

νγxν
μ′
x − ν

μ
xν

γ′
x

ρx

⎞

⎠

× ∣n −∇γ′ ,γ −∇μ′ ,μ⟩⟨n∣,

A2B − BA2 = −V∑
n

esμ′μ kμ′μkγ′γρν
μ+νγ⎛

⎝
∑

x
νγx
νμ
′

x − ν
μ
x

ρx

⎞

⎠

× ∣n −∇μ′ ,μ⟩⟨n∣.

We therefore have that A1, A2, B, as well as their commutators, are
of order V, as would be any higher order commutator. We can then
apply the Baker-Campbell-Hausdorff formula to second order in δt
to sums of those operators, such as A1 + A2,

eδt(A1+A2)
∼ eδtA1 eδtA2 e−δt2

[A1 ,A2]/2
∼ eδtA2 eδtA1 eδt2

[A1 ,A2]/2. (A9)

In both expressions, the last term is negligible for δt→ 0, which con-
cludes the proof. A similar computation leads to the commutation
of Aγ′γ

s with Bh.
Let us now estimate the value of a term of the form

⟨n2∣eδt(Aγ′γ
s

+Bγ
′γ
)
∣n1⟩ in the limits stated above, also considering that

Vδt →∞, which is to say that the number of reactions occurring in
one time step is large. This is an important step to ensure that we
are in a large deviation regime. Applying B to n1 and expanding the
other exponential, we find
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⟨n2∣eδt(Aγ′γ
s

+Bγ
′γ
)
∣n1⟩ ≍ e−Vδtkγ′γρ

νγ
1
∑

k

δtk

k!
⟨n2∣(A

γ′γ
s )

k
∣n1⟩

≍ e−Vδtkγ′γρ
νγ
1
(Vδt esγ′γkγ′γρν

γ

1 )
k

k!
× I(n2 − n1 − k∇γ′ ,γ). (A10)

Given that, for a large factor X, the function Xk/k! has a maximum
around k = X, we can rescale k by X = Vδt in the expression above,
defining

k = Vδt λγ′ ,γ, (A11)

where, as before, λ has the interpretation of a number of transitions
per time step, rescaled by volume. One final use of the Stirling’s
formula then yields

⟨n2∣eδt(Aγ′γ
s

+Bγ
′γ
)
∣n1⟩

≍ exp(−Vδt L̃s(λγ′ ,γ, ρ1)) δ(ρ2 − ρ1 − δt λγ′ ,γ∇γ′ ,γ), (A12)

where we have replaced the discrete indicator function I with a
continuous delta function, and

L̃s(λγ′γ, ρ) = λγ′γ ln(λγ′γ/kγ′γρν
γ

) − λγ′γ + kγ′γρν
γ

− sγ′γλγ′γ. (A13)

This is the rate function of a single biased Poisson distribution,
which is what we would expect for independent jumps processes.
Similarly, we have

⟨n2∣eδt(Aγ′γ
s

+Bγ
′γ
)
∣n1⟩ ≍ eVδt hρ1 δ(ρ2 − ρ1). (A14)

We can then consider the whole of ⟨nf ∣eδtWs,h
∣ni⟩, by splitting

the terms in Ws,h in any order we like and injecting the identity
between every term. We are left with the product of all exponentials,
with a global delta function that takes into account all the currents
λγ′ γ,

⟨nf ∣e
δtWs,h
∣ni⟩ ≍ exp(−Vδt Ls(λ, ρi)) δ(ρf − ρi + δt ∇ ⋅ λ) (A15)

with

Ls(λ, ρ) =∑
γ′ ,γ
λγ′γ ln(λγ′γ/kγ′γρν

γ

) − λγ′γ + kγ′γρν
γ

− sγ′γλγ′γ −∑
x

hxρx.

(A16)

All that remains is to define ρf − ρi = ρ̇ δt to recover formulae
(51) for s = 0 and h = 0, and (70) otherwise.

To obtain an expression for the Hamiltonians instead, one may
simply do a Legendre transform of the Lagrangians with respect to
their respective flux variables. However, we may also start from their
definition as a generating function,

Hs(σ, ni) =
1

Vδt
ln(∑

n
⟨n∣eδtWσ+s,h

∣ni⟩). (A17)

In this case, the sum over the endpoint n means we do not have
to keep track of the number of particles exchanged. The same

procedure as above, summed over the endpoint, yields

∑

n
⟨n∣eδt(Aγ′γ

σ+s+Bγ
′γ
)
∣n1⟩ ≍ e−Vδtkγ′γρ

νγ
1
∑

k,n

δtk

k!
⟨n∣(Aγ′γ

s )
k
∣n1⟩

≍ e−Vδtkγ′γρ
νγ
1
∑

k

(Vδt eσγ′γ+sγ′γkγ′γρν
γ

1 )
k

k!

≍ exp(Vδt kγ′γρν
γ

1 (e
σγ′γ+sγ′γ

− 1)).

Putting all terms together including Bh immediately yields

Hs(σ, n) =∑
γ′ ,γ

kγ′γρν
γ

1 (e
σγ′γ+sγ′γ

− 1) +∑
x

hxρx, (A18)

which is Eq. (76). Setting s = 0 and h = 0 yields Eq. (62). Finally,
setting σ =∇f yields Eq. (37).

One should note that these derivations very much rely on the
fact that n stays of order V at all times so that a change in nx of
order νγx is negligible in terms of ρ. For dynamics whose trajecto-
ries end up close to any wall nx = 0, one has to treat that species
separately at the microscopic scale, resulting in a so-called hybrid
dynamics.126

It should also be noted that those results can be easily gener-
alized to dynamics other than mass-action, as long as one is able to
show that all commutators between reaction operators are of order
V (or of the same order as the operator themselves).
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