
Evolving a Deep Neural Network
Training Time Estimator

Frédéric Pinel1(B), Jian-xiong Yin2, Christian Hundt2, Emmanuel Kieffer1,
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Abstract. We present a procedure for the design of a Deep Neural Net-
work (DNN) that estimates the execution time for training a deep neural
network per batch on GPU accelerators. The estimator is destined to be
embedded in the scheduler of a shared GPU infrastructure, capable of
providing estimated training times for a wide range of network architec-
tures, when the user submits a training job. To this end, a very short and
simple representation for a given DNN is chosen. In order to compensate
for the limited degree of description of the basic network representa-
tion, a novel co-evolutionary approach is taken to fit the estimator. The
training set for the estimator, i.e. DNNs, is evolved by an evolutionary
algorithm that optimizes the accuracy of the estimator. In the process,
the genetic algorithm evolves DNNs, generates Python-Keras programs
and projects them onto the simple representation. The genetic opera-
tors are dynamic, they change with the estimator’s accuracy in order to
balance accuracy with generalization. Results show that despite the low
degree of information in the representation and the simple initial design
for the predictor, co-evolving the training set performs better than near
random generated population of DNNs.

Keywords: Deep Learning · Genetic algorithm

1 Introduction

Deep Learning [16] related computation has become a fast growing workload in
High Performance Computing (HPC) facilities and cloud data centers DTT/B to
the rapid advancement and proliferation of Deep Learning technology. It allows
for scalable and fully automatic learning of robust features from a broad range of
multimedia data, e.g., image, video, audio, and text. The highly regular struc-
ture of commonly used primitives in Deep Learning is amenable to massively
parallel architectures such as CUDA-enabled GPUs especially when processing
huge amounts of data. Nevertheless, the ever growing amount of recorded data
and associated operations needed to train modern DNNs outpaces the compute
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capabilities of mid-sized data centers usually found in academia. As an example,
a state-of-the-art transformer network such as GPT-2 [20] exhibits 774 million
trainable parameters in comparison to the 62 million parameters of AlexNet [15]
from 2012. In the last decade it has empirically been observed [3] that the qual-
ity and amount of data might have a significantly higher impact on the model
quality than the specific choice of classifiers. Recent research [11] suggests that
the same is applicable to Deep Learning – empirical improvement of generaliza-
tion properties is correlated to increasing amounts of training data. As a result,
Deep Learning is widely adopted by a broad range of scientists in a diversity of
disciplines not necessarily related to computer science.

This demand can be addressed by efficient scheduling of Deep Learning tasks
to fully saturate available compute resources. However, existing job schedulers
in large scale compute cluster resource management system or large scale batch
processing framework such as MESOS [13] in a Tensorflow Cluster [2], YARN [22]
in MXNet cluster [5], SLURM [24] in general, scientific High Performance Com-
puting tends to statically allocate compute resource based on user resource quota
or requested quantity. (1) Using dynamic resource allocation, (2) recommending
optimal job execution time to users from scheduler perspective are two natural
ideas for improvements.

In the case of static resource allocation, the resource allocation is done
one-time off when the resource for the job is initialized with the best match-
ing resource, and it might prevent the job from getting accelerated from later
released more suitable compute resource unless manually reconfigured by cluster
operation team or job submitter.

Deep Learning training time highly depends on DNN model architecture and
other factors such as training environment and setup, and the training finish
time still highly depends on human empirical observation, hence is challenging
for average job submitter to estimate job execution time without special knowl-
edge on the targeting system. If a recommended DNN training job time could
be provided, job submitter will be able to better manage not only their job
monitoring cycle but also model development turn-around-time, hence save the
compute resource from being occupied in the long tail of DNN training.

In this paper, we present a DNN training time per batch estimator, which
aims to address the common requirements of DNN execution time estimation
which could potentially pave the path forward towards an intelligent Deep Learn-
ing task scheduler. In our work, we empirically assume batch size as the major
hyperparameter factor, and accelerator throughput as the major environmental
factor, for execution time.

Moreover, estimating a training time allows to assess the cost of training (as
in the pay-per-use model of cloud computing). This cost estimate is useful per
se, but also influences the design process as it controls the number of neural
architectures to explore, hyperparameter tuning and data requirements, all of
which contribute to the accuracy of the model [14].

The proposed DNN training time per batch estimator (abbreviated as
DTT/B from here onwards) can be used by data center and HPC task scheduler,
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which would complement its estimation with additional information such as data
volume, allocated resources (i.e. GPUs) and their characteristics. For this pur-
pose the DTT/B estimator’s role is to provide a time estimation for any given
DNN architecture, with a standard batch size (32), on a single GPU accelerator.
The approach followed for the design of the DTT/B is our contribution, and
different DTT/B can be designed under the same approach. More specifically,
our contributions are:

– A DNN that predicts the training time of a submitted Keras [6]-
TensorFlow [1] model for a batch.

– A simple, succinct representation for DNNs, that is easily extracted from the
model definition (such as source code).

– A novel co-evolutionary [12] like procedure to train the DTT/B DNN. The
training data necessary to fit the DTT/B (i.e. different DNNs for which the
DTT/B predicts runtimes) is grown incrementally over successive generations
of a genetic algorithm [9]. The new DNNs are generated according to their
predicted runtime: the training data for the DTT/B evolves with the accuracy
of the DTT/B. Also, the DNNs evolved are converted to executable Python-
Keras DNN programs.

The description of the DTT/B DNN, the simple representation and the co-
evolutionary data generation process are presented in Sect. 3.

2 Related Work

Paleo [19] is an analytical model for runtime, fitted with measured runtimes on
specific architectures. The results show that accurate estimates for different com-
ponents (networking, computation) can be produced from simple models (linear).
Paleo’s approach relies on detailed representation of an architecture (FLOP for
an algorithm). The analytical models are fitted from few training data, and eval-
uated on one unseen example, its generalization is therefore uncertain. Moreover
the hyperparameter space and data dependency are not dependent variables.
Our approach is similar to Paleo’s in that different models are used for differ-
ent factors (networking, computation, memory), yet, a higher-level description
of an architecture is used (Tensorflow code). Data and hyperparameters are
also explicitely included. Generalization is a key objective, and is accordingly
reported in our results.

NeuralPower [4] is a predictor for energy consumption of a Convolutional
Neural Network (CNN) inference, and relies on runtime prediction. The scope
of our paper is the prediction of the training time, not the inference time, of
any DNN, not only CNN. Compared with [19], NeuralPower differs in the choice
of the model class to be fitted (polynomial), and improves the model fitting
with cross-validation. It is similar in that the same lower-level features are used
(FLOP, memory access count). Also, it is based on a few CNN architectures.
The differences with our approach are therefore similar to those mentioned in



16 F. Pinel et al.

the review of [19]. In addition, NeuralPower considers only CNNs, and their
prediction runtimes, not training times.

Approaches similar (from this paper’s perspective) to Paleo and NeuralPower
are presented in [18,21,23]. The runtime prediction model is composed of several
analytical sub-models. Each model is fitted with measurements obtained from a
selection of well-known CNNs. The accuracy of the predictions are evaluated on a
limited number of CNNs (typically three). As with the above results, the models
rely on detailed features of the algorithms (for example: FLOP, clock cycles),
and the hardware. In addition, the target platform in [23] is Xeon PHI, and the
prediction model’s generalization is aimed at the number of threads. Also, the
runtime predicted in [8,21] is for CNN inference, because their objective is to
tailor a CNN inference model for the specific user needs.

Our approach does not fit an analytical model of detailed information on the
algorithms used. Also, our scope is not restricted to CNNs.

In [14], the predictor is trained from existing architectures (restricted to Fully
Connected Networks -FCN- and CNN) and their respective data sets. The model
estimates the runtime per type of layer, under different hyperparameters and
GPU configuration. Unseen architecture runtimes are said to be extrapolated
from these individual layers (but not composition rule is provided). This estima-
tor design leads to a large input space, that is sampled to train the estimator.
Also, they propose a complete runtime estimator, whereas this paper focuses on
a part of a larger estimator. They report results for a variety of GPUs. The pre-
dictor we present is also a DNN, but in contrast, our proposed batch estimator
aims to make predictions from features derived from known architectures, where
those features will also be available in future or unseen architectures (not just
individual layers). The estimator’s training data is generated with a genetic algo-
rithm throughout the estimator’s training. Our estimator also aims to support
any, unseen, data set (data records and hyperparameters).

[7,17] collect training times for well-known DNNs. This is related to our
work because it records measured runtimes of known DNNs, yet fundamentally
different as it does perform any prediction.

GAN [10] could be applied to the generation of DNN architectures for training
the DTT/B, but it pursues a different objective from the evolutionary approach
we present. GAN would generate DNNs in-the-style-of a given model, while we
also need to generate different DNNs to cover any future architecture.

3 Proposed Approach

3.1 Overview

As mentioned in Sect. 1, the objective of the DTT/B is to predict the training
time per batch of a given DNN, from a model representation that is easily
extracted from the DNN definition or source code. As the DTT/B is to be
embedded in a scheduler of a shared infrastructure of GPUs, the simplicity of
the representation is more important than its accuracy, because only a simple
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Fig. 1. Overview of the DTT/B evolutionary design.

representation will allow the DTT/B to be actually deployed, whereas estimation
errors can be accounted for.

The approach presented consists of a very simple representation of the DNN,
the DTT/B modeled as a DNN, and a co-evolutionary process that generates
appropriate training data for the DTT/B. Figure 1 illustrates that the DTT/B is
evolved through its training set. DTT/B accepts as input DNN representations,
predicts runtimes that then serve to evolve the next training data set, such that
each cycle -or generation- improves the DTT/B’s accuracy.

3.2 DTT/B Model

The DTT/B is modeled as a DNN, and defined by the code listing below. The
DTT/B is a simple sequential DNN, because the key element in the DTT/B’s
design is not the DNN design, but the training data set used for its fitting [11]. Of
course, the DTT/B’s architecture can be further refined to improve the predic-
tion results. The notable feature of the DTT/B DNN is that it solves a regression
problem: predicting a runtime.

model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(

32, input_shape=(32,), activation=’relu’))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Dense(

64, input_shape=(32,),activation=’relu’))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Dense(

64, input_shape=(32,), activation=’relu’))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Dense(

1, activation=’linear’, kernel_initializer=’zeros’))
model.compile(loss=’mean_squared_error’, optimizer=’rmsprop’)
model.fit(x_train, y_train, batch_size=16, epochs=500)
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3.3 DTT/B Features

The requirement for the DTT/B is to provide runtime estimates from a readily
extracted representation of a given DNN. Our approach is use a simple repre-
sentation, available both to the designer of the DNN and to the scheduler of the
shared computing platform.

We propose to represent a complete DNN as the sequence of each layer’s
number of trainable parameters (i.e. without any layer type information). As an
example, the DNN representation of the DTT/B DNN defined above is [1056,
0, 2112, 0, 4160, 0, 65] as can be seen from the output of the summary()
function of Keras applied to the DTT/B model.

Layer (type) Output Shape Param #
______________________________________________________
dense (Dense) (None, 32) 1056
dropout (Dropout) (None, 32) 0
dense_1 (Dense) (None, 64) 2112
dropout_1 (Dropout) (None, 64) 0
dense_2 (Dense) (None, 64) 4160
dropout_2 (Dropout) (None, 64) 0
dense_3 (Dense) (None, 1) 65
______________________________________________________
Total params: 7,393
Trainable params: 7,393
Non-trainable params: 0

3.4 Co-evolving the DTT/B Training Set

The training data for the DTT/B DNN are short sequences of each layer’s num-
ber of trainable parameters. In order to generate this DTT/B training data,
DNNs must first be generated. Our objective is to accurately predict training

Fig. 2. Evolutionary data generation.
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runtimes for DNNs similar to well-known architectures and to generalize to dif-
ferent DNNs that may be submitted in the future.

Our approach to meet this objective is to grow the DTT/B training data
(DNNs). From an initial set of a few well-known DNNs, an evolutionary process
generates additional DNNs in a co-evolutionary fashion: the population of DNNs
evolves with the accuracy of the DTT/B. The intent is to add similar DNNs
to the population, until the accuracy of the DTT/B is satisfactory, then to
introduce different DNNs, and loop. From each DNN in the population, the
simple proposed representation is extracted as input to the DTT/B.

As presented in Fig. 2, at each generation in the evolutionary process, each
DNN in the population is evaluated. The evaluation consists of (1) generating
executable model (a Python-Keras program), (2) executing the program and
recording the observed runtime, (3) training the DTT/B with the extracted
representation, (4) predicting the runtime on a test set (unseen data). This
evaluation results in a runtime prediction error for the DNN. For each DNN
evaluated, a new DNN is produced according to following rule:

– if the prediction error ratio is greater than 25%, then a similar child DNN is
generated,

– if the error ratio is greater than 10%, then a slightly different child DNN is
generated,

– if the error ratio is less than 10%, then a rather different child DNN is gen-
erated.

The exact meaning for similar, slightly different and rather different is defined
below. The generated or child DNNs (according to the rule above) are added
to the DTT/B training set (the child DNN does not replace its parent DNN).
Therefore, at each generation, the population doubles.

Table 1. Elementary operations on DNN layers.

Operator name Function performed Domain (supported layers)

Mutation Randomly changes several layer
parameters: units, filters, kernel
size, stride, use bias, regularizer
function, activation function,
dropout rate

Dense, Conv1D, Conv2D,
LSTM, ConvLSTM2D,
Dropout, Activation,
BatchNormalization

Addition Duplicates the previous layer
and mutates

Dense, Conv1D, Conv2D,
Conv3D, LSTM, ConvLSTM2D,
Dropout, Flatten, Activation,
BatchNormalization

Removal Deletes a layer Layers previously added

A child DNN in the population is generated by combining three elemen-
tary layer operations: mutation, removal and addition, summarized in Table 1.
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The operators are valid only on sequential DNN architectures. The elementary
layer operations are combined to generate a child DNN:

– A similar child DNN is the result of a single layer mutation.
– A slightly different child DNN is the result of a layer removal, mutation and

addition.
– A rather different child DNN is the result of two slightly different changes.

The design of the layer operators aims to introduce changes that modify the
chosen representation (sequence of layer variables), but also to make changes
that do not, in order to test our representation with counter-examples. The
layer addition and removal functions are chosen such as to ensure that almost
all generated architectures produce valid DNNs.

4 Results

4.1 Experimental Setup

The initial population of DNNs consists of six well-known architectures: MNIST
MLP, MNIST CNN, Reuters MLP, Conv LSTM, Addition RNN, IMDB CNN,
as provided as examples by the Keras framework. The unit of work predicted is
the batch training time, for a batch size of 32. The evolutionary process lasts 8
generations, leading to a maximum of 1536 DNNs.

The evolutionary algorithm operates on a JSON representation of a DNN 1.
The JSON representation is transformed into a Python program that calls the
Keras framework. The Python program is then executed to record the expected
batch runtime (the label). The generated python program includes instrumen-
tation code to record the batch runtime. DNNs from the previous generation
are carried over to the next generation without modification. The GPUs used
for the measured and predicted batch training time are NVIDIA Tesla V100
SXM2 32GiB of memory. The evaluation of the DNN population is performed
with 4-fold cross-validation, such that each DNN receives a prediction while not
present in the training of the DTT/B.

4.2 Results

Table 2 summarizes the results of the evolved DTT/B through its training set.
The objective is to evaluate the suitability of a simple representation (sequence
of layer parameters), and the co-evolution process to train the DTT/B. The
DTT/B’s design is at this moment secondary and can later be changed.

In order to evaluate the co-evolutionary design of the DTT/B, the evolved
training set is compared to a more random population generation, fourth column
in Table 2. The more random generation process consists in applying the rather
different (Sect. 3.4) changes to each DNN, indistinctly of the prediction error.

1 https://gitlab.uni.lu/src/ola2020.

https://gitlab.uni.lu/src/ola2020
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Table 2. DTT/B accuracy results.

Layer
distance

#DNNs Wilcoxon
sign-rank

Evolved training
set (median error)

More random
training set
(median error)

0 566 W=20344.500
p=0.000

39.8% 56.8%

1 548 W=44483.500,
p=0.000

38.9% 40.0%

2 383 W=28469.000,
p=0.000

41.5% 39.2%

3 237 W=13682.000,
p=0.774

43.2% 37.2%

4 274 W=15059.500,
p=0.004

52.6% 43.7%

5 283 W=16162.000,
p=0.006

52.5% 44.5%

6 205 W=8048.000,
p=0.003

59.8% 49.8%

7 119 W=3357.500,
p=0.573

59.1% 56.1%

8 40 W=327.500,
p=0.267

69.2% 67.5%

While the changes are more random, they apply the same elementary operations
as the evolutionary process. Also, the evolutionary process applies the same
changes, albeit less often.

The results shown are obtained from the 6 different models, three evolved
DTT/B, and three more random. From each model’s final training set (at gen-
eration 8), 10% of the DNNs are sampled and set aside for the comparison.
The sampled are not used in the training of the 6 models. Thus, the test DNNs
come from the final training sets of the different models. Although the evolution-
ary operators introduce diversity, sampling from both evolved and more random
models helps measure the generalization of the estimator, which would otherwise
be evaluated on DNNs issued from the same generator.

In addition, the 10% sampling is performed separately across different cate-
gories: each category corresponds to a distance between the DNN and its original
template (one of the 6 initial models from Keras). The distance is expressed as
the difference in number of layers (without distinguishing type). For example,
Keras’s MNIST MLP contains 5 layers (including 2 without trainable parame-
ters), after 8 generations if a generated DNN contains 6 layers, the distance is 1.
Column 1 of Table 2 indicates the distance to the original model. Five samplings
are performed, and for each sample, each of the 6 models is tested three times.
Each test DNN is therefore evaluated 9 times for the evolved DTT/Bs and also
9 times for the more random DTT/Bs.
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The results indicate that when the number of layers of the evolved DTT/B
training set is close to the original DNN, the evolved population yields a more
accurate DTT/B (distances 0 and 1). It is important to remind that even if a
layer distance is small, the evolved DNN will be significantly different from the
original template, in the number of parameters (visible in the simple represen-
tation chosen) and in other properties of the layer. The evolved population and
more random population is equivalent (the statistical test show the results come
from the same distribution) when the layer distance is 3, 7 and 8. This means
that although the evolved population initially targeted DNNs similar (in num-
ber of layers) to their original model, the resulting DTT/B still performs well
on DNN with more layers. Nevertheless, because the difference in population
generation between the evolutionary and more random process are small, the
accuracy difference is not very different.

Overall, the current design for the DTT/B yields prediction errors of 39 to
50%. This is more than previous analytical prediction models, yet the represen-
tation of the DNNs to predict is much simpler, and the scope of DNNs is greater.
More elaborate DTT/B designs can be proposed, this is considered future work,
as we focused on the DNN representation and DNN generation.

5 Conclusion and Future Work

In this paper we presented an evolutionary approach to the design of a deep
neural network that predicts training time per batch. The evolutionary approach
consists of co-evolving the training data with the accuracy of the predictor.
This approach first exploits the initial training data, then explores new DNNs
once the accuracy is satisfactory (25% error). The motivation for this approach
is to validate a simple representation of a given DNN for prediction: a short
sequence of the number of parameters per layer. The simple representation is
motivated by the pragmatic objective of embedding this predictor in schedulers
of shared GPU infrastructure. The results show that the simple representation,
combined with an evolutionary design is better able to predict training times
than a more random data generation process (with a 39–50% error rate). With
these preliminary findings, more focus can now be placed on the accuracy of the
DTT/B.
Future work will consist of:

– extending the DNN evolutionary algorithm, to support more complex DNN
architectures, to add a cross-over operator that will lead to a better coverage
of all possible DNNs. A possible approach is to apply programming language
based evolutionary techniques, by considering the DNNs models as high-level
programs.

– Refining the design of the predictor. With a more capable evolutionary DNN
generator, the predictor’s design could also be evolved.

– Complementing the batch training runtime estimator by taking the comput-
ing resources and data size into account.
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