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Abstract— The Kuramoto model evolves on the circle, i.e.,
the 1-sphere S

1. A graph G is referred to as S
1-synchronizing

if the Kuramoto model on G synchronizes almost globally. This
paper generalizes the Kuramoto model and the concept of
synchronizing graphs to the Stiefel manifold St(p, n). Previous
work on generalizations of the Kuramoto model have largely
been influenced by results and techniques that pertain to the
original model. It was recently shown that all connected graphs
are S

n-synchronizing for all n ≥ 2. However, that does not
hold for n = 1. Previous results on generalized models may
thus have been overly conservative. The n-sphere is a special
case of the Stiefel manifold, namely St(1, n + 1). As such, it is
natural to ask for the extent to which the results on S

n can
be extended to the Stiefel manifold. This paper shows that all
connected graphs are St(p, n)-synchronizing provided the pair
(p, n) satisfies p ≤ 2n

3
− 1.

I. INTRODUCTION

Scalability is a key advantage of distributed approaches to
feedback control of multi-agent systems [1]. It is achieved
by feedback laws with linear computational complexity that
can be executed when interactions between most agents is
indirect, e.g., when the communications topology is given
by a path or cycle graph. An often overlooked aspect of
scalability is control performance at a large distance from
nominal operating conditions. Consider the case of N ho-
mogeneous agents, the state of each belonging to a compact
manifold M. Many results in the literature concerns the
case when all agents belong to some convex subset of M
[2]–[4]. A typical result is the guaranteed convergence of a
synchronization algorithm [5]–[7]. If the initial states follow
a uniform distribution on M, then the probability that all
agents are contained in such a convex set decreases expo-
nentially with N . This is a case of poor scaling. Ideally, the
probability of convergence should be 1 independently of N .
Such performance is achieved by almost globally convergent
algorithms. This paper concerns the problem of establishing
almost global convergence of a class of continuous time
consensus protocols for multi-agent system that evolve on the
compact, real Stiefel manifold St(p, n). Each of the systems
under consideration is an intrinsic gradient descent flow of
a basic, quadratic potential function.

A graph G is S
1-synchronizing if, roughly speaking, the

consensus manifold is an almost globally stable equilibrium
manifold of a Kuramoto-like oscillator model with topology
G. Examples of such graphs include the complete graph,
acyclic graphs, and sufficiently dense graphs [8]. The survey
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[9] ponders the question of which combinations of graphs,
manifolds, and consensus protocols lead to almost global
synchrony. A key result is that not all undirected graphs are
S

1-synchronizing, but there are protocols that yield other,
almost globally synchronizing closed-loop systems on S

1 [1],
[10]. A generalization to SO(3) has been established [11].
Some protocols also converge in the case of quasi-strongly
connected digraphs on the Stiefel manifold [12]. The control
strategy requires that auxiliary variables are communicated
between agents. As such, it is intended for use in engineering
systems rather than as a model of self-organizing systems of
coupled oscillators that are observed in nature.

Consensus protocols for agents whose dynamics evolve
over linear spaces are well understood [13]. Moving forward,
it is natural to look at homogeneous spaces [14]. All points
on a homogeneous space are similar, making them well-
suited for hosting multi-agent systems where relative and
aggregate quantities are the main focus. This paper studies
a consensus protocol on a homogeneous space: a general-
ization of the Kuramoto model to the compact, real Stiefel
manifold. Special cases of St(p, n) include the (n − 1)-
sphere when p = 1, the special orthogonal group when
p = n − 1, and the orthogonal group when p = n. As such,
these results are of relevance in a number of applications
including cooperative reduced and full attitude control in the
cases of (p, n) = (1, 3) [15], [16] and (p, n) = (2, 3) [17]
respectively. The Stiefel manifold for p ∈ {2, . . . , n − 2} is
typically not used to model physical systems, which is the
main area of application for continuous time control systems
(although application of continuous time dynamical systems
theory to numerical linear algebra problems do exists [18]).

The authors of this paper have showed that all connected
graphs are S

n-synchronizing for all n ∈ N\{1} [19]. This
result is of interest since it is unexpected; it could not
have been interpolated from the previous research concerning
special cases such as S

1-synchronizing graphs for the Ku-
ramoto model and more general findings concerning almost
global synchrony on SO(3) [11]. This paper generalizes
those results to the Stiefel manifold where we show that
all connected graphs are St(p, n)-synchronizing provided
the pair (p, n) satisfies p ≤ 2n

3
− 1. This inequality is

imposed for technical reasons and is unlikely to have any
interesting interpretation. Previous research on almost global
synchronization over homogeneous manifolds departs from
the negative result that not all undirected graphs are S

1-
synchronizing [1], [14]. We show that such pessimism may
be unfounded since the circle is actually a pathological case,
providing hope that results akin to those of this paper also
apply to other Riemannian manifolds.
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II. PROBLEM FORMULATION

A. Preliminaries

The following notation is used in this paper. The Euclidean
inner product of X, Y ∈ R

n×p is ge(X, Y) = 〈X, Y〉 =
tr X

⊤
Y. The norm of X is given by ‖X‖ = 〈X, X〉

1

2 , i.e.,
the Frobenius norm. The compact real Stiefel manifold is
considered an embedded matrix manifold in R

n×p [20],

St(p, n) = {S ∈ R
n×p | S

⊤
S = I}.

The pair (St(p, n), ge) forms a smooth Riemannian manifold.
An important Stiefel manifold is St(1, n + 1), i.e., the n-
sphere which we denote S

n.
Define the projections skew : R

n×n → so(n) : X 7→
1

2
(X −X

⊤) and sym : Rn×n → so(n)⊥ : X 7→ 1

2
(X +X

⊤).
The tangent space of St(p, n) at X is given by

TSSt(p, n) = {∆ ∈ R
n×p | sym S

⊤
∆ = 0}.

The projection on the tangent space, Π : Rn×p ×St(p, n) →
TSSt(p, n), is given by

Π(X, S) = S skew S
⊤

X + (In − SS
⊤)X.

From a computational perspective, it is sometimes preferable
to use the equivalent expression

Π(X, S) = X − S sym S
⊤

X.

The gradient on St(p, n) (in terms of the Euclidean inner
product ge) of a function U : St(p, n) → R is given by

⧠U = Π ∇V,

where V is any smooth extension of U on R
n×p, and ∇

denotes the gradient in Euclidean space.
Each element i ∈ V also denotes an agent. Items asso-

ciated with a specific agent i carry the subindex i; we let
Si ∈ St(p, n) denote the state of an agent, Πi the projection
onto the tagent space Si, ⧠i U the gradient of U with respect
to Si, etc.

B. Distributed Control Design

The consensus submanifold C of an analytic Riemannian
manifold (M, g) is the set of equilibria

C = {(xi)
N
i=1 ∈ MN | xi = xj , ∀ {i, j} ∈ E}.

The consensus set is a manifold, in fact it is diffeomorphic
to M using the map (xi)

N
i=1 7→ x1.

Given a graph (V , E), define the potential function U :
MN → R by

U =
∑

e∈E

fij(dg(xi, xj)),

where fij : R → [0, ∞), dg is the geodesic distance on M in
terms of g, and e is on the form {i, j}. The consensus seeking
system on M obtained from U is the gradient descent flow

(ẋi)
N
i=1 = (−⧠i U)N

i=1, (1)

where xi(0) ∈ M for all i ∈ V .

Agent i does not have access to U , but can calculate

Ui = 1

2

∑

j∈Ni

fij(dg(xi, xj))

at its current position. Symmetry of dg gives U =
∑

i∈V Ui

whereby it follows that ⧠i Ui = ⧠i U . From a control design
perspective, we can assume that the dynamics of each agent
take the form ẋi = ui with ui ∈ TiM. Since agent i can
evaluate Ui at its current position, it is reasonable to assume
that it can also calculate ui = −⧠i Ui.

C. St(p, n)-Synchronizing Graphs

Definition 1: A graph G is M-synchronizing if all mini-
mizers of U belong to C.

The property of being M-synchronizing, which we have
adopted from [1], does not explicitly reference the specific
function U under consideration. For the purpose of this
paper, we limit consideration to potential functions U on
matrix manifolds M ⊂ R

n×m of the following form

U = 1

2

∑

e∈E

aij‖Xi − Xj‖2
, (2)

where Xi ∈ R
n×m, and the constants aij are strictly positive

and symmetric, i.e., aji = aij . On the Stiefel manifold
St(p, n) ⊂ R

n×p, this reduces to

U =
∑

e∈E

aij(p − 〈Si, Sj〉), (3)

since ‖Si‖
2 = p for all i ∈ V .

Definition 2: An equilibrium manifold Q of a dynami-
cal system Σ on an analytic Riemannian manifold (M, g)
is referred to as almost globally asymptotically stable
(AGAS) if it is stable and the flow Φ(t, x0) of Σ satisfies
limt→∞ dg(Q, Φ(t, x0)) = 0 for all x0 ∈ M\N , where
N ⊂ M has measure zero on M.

It is not immediately clear that G being M-synchronizing
implies that C is an AGAS equilibrium of (1). Since (1) is a
gradient descent of U , it cannot converge to any maximum
of U . Morover, any saddle point of U is unstable. However,
a set of saddle points may still have a region of attraction
with positive measure, in which case C cannot be AGAS. In
[19], we show that any connected graph is S

n-synchronizing
for the potential function U =

∑

{i,j}∈E aij(1 − 〈xi, xj〉).
Moreover, we prove that C is AGAS. However, obtaining
such results is not trivial. We limit the scope of this paper
to characterizing St(p, n)-synchronizing graphs. Sufficient
conditions for C to be AGAS will be established in future
work. To give the reader an idea of the current state of the
art in terms of characterizing M-synchronizing graphs, we
provide the following examples.

Example 3: On R
n, for U given by the potential function

(2) using the Euclidean vector norm, the system (1) becomes

ẋi =
∑

j∈Ni

aij(xj − xi), ∀ i ∈ V .

The consensus manifold of this system is well-known to be
globally asymptotically stable (which also implies AGAS),
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although that fact is usually not expressed by saying that
any connected graph is R

n-synchronizing.
Example 4: On S

1, the dynamics (1) can be expressed in
polar coordinates ϑi ∈ R for all i ∈ V as

ϑ̇i =
∑

j∈Ni

aij sin(ϑj − ϑi), ∀ i ∈ V . (4)

For a complete graph G, (4) is equivalent to the Kuramoto
model in the case of homogeneous agents, i.e., identical
oscillator frequencies. The cycle graph

GN = (V , {{i, j} ⊂ V | |i − j| = 1} ∪ {{1, N}})

is S
1-synchronizing for N ≤ 4 but not for N ≥ 5 [1].

The problem of characterizing all S
1-synchronizing graphs

is open [1], [8].
Example 5: On S

n, the dynamics are given by

ẋi =
∑

j∈Ni

aijxj −
〈

∑

j∈Ni

aijxj , xi

〉

xi, ∀ i ∈ V .

Any connected graph is S
n-synchronizing for all n ≥ 2 [19].

D. Problem Statement

The aim of this paper is to identify instances of the Stiefel
manifold that are St(p, n)-synchronizing. We know that all
connected graphs are St(1, n)-synchronizing for n ≥ 3
[19]. We also know that not all connected graphs are S

1-
synchronizing [1], nor SO(3)-synchronizing [11]. Note that
S

1 ≃ St(1, 2) ≃ SO(2) and SO(3) ≃ St(2, 3). The question,
to which we give a partial answer, is how the results of [19]
extends to the cases of 2 ≤ p ≤ n − 2.

III. MAIN RESULT

Theorem 6 is the main result of this paper. First we outline
the proof. The details are provided in Section III-A to III-E.

Theorem 6: Let the pair (p, n) satisfy p ≤ 2n
3

− 1. All
minimizers of the potential function U given by with aij = 1
for all e ∈ E belong to the consensus manifold; i.e., all
connected graphs are St(p, n)-synchronizing.

Proof: Let q : St(p, n)N × TSt(p, n)N → R de-
note the quadratic form obtained from the intrinsic Hes-
sian of U evaluated at a critical point. It can either be
calculated from the Lagrange optimality conditions or by
linearizing the dynamics at an equilibrium; we take the
latter approach. The second-order necessary conditions for
unconstrained optimization over Riemannian manifolds im-
ply that q is weakly positive at any minimum {Si}

N
i=1

of U . Our goal is to exclude minimality of all equilibria
(Si)

N
i=1 < C by finding (∆i)

N
i=1 ∈ X

N
i=1TiSt(p, n) such that

q((Si)
N
i=1, (∆i)

N
i=1)) < 0. It is clear that all elements of C

are global minimizers since U ≥ 0 and U |C = 0.
Based on our previous work [19], we consider pertur-

bations along the tangent space of C. We do not need to
determine an exact expression for the desired perturbation,
it suffices to prove that it exists. Showing that q is negative
amounts to solving a nonconvex constrained optimization
problem. This is done using the Lagrange optimality con-
ditions. Here, we introduce the inequality p ≤ 2n

3
− 1

to fix a variable in the optimization problem. For this
case, we can show that there is a perturbation such that C
maximizes q with an objective value of zero. Any other equi-
librium configuration gives a strictly negative objective value.
Throughout all these steps, we never utilize any particular
property of the graph topology besides connectedness. Hence
the final result applies to any connected graph. It follows that
all connected graphs are St(p, n)-synchronizing.

A. Critical Points

Let V : (Rn×p)N → [0, ∞) be the smooth extension of U

obtained by relaxing the requirement (Si)
N
i=1 ∈ St(p, n)N

for all i ∈ V . Then

Ṡi = −⧠i U = −Πi∇iV = Πi

∑

j∈Ni

Sj

= Si skew
(

S
⊤
i

∑

j∈Ni

Sj

)

+ (In − SiS
⊤
i )

∑

j∈Ni

Sj . (5)

Remark 7: The system of homogeneous state-space oscil-
lators on St(p, n) given by

Ṡi = ΩSi + SiΞ − ⧠
i U, (6)

where Ω ∈ so(n) and Ξ ∈ so(p) can be reduced to (5) by
a change of variables. To verify this, let R = exp(−tΩ) ∈
SO(n), Q = exp(−tΞ) ∈ SO(p), form Xi = RSiQ ∈
St(p, n), and calculate

Ẋi = − ΩRSiQ + QṠiR − RSiQΞ

= Xi skew
(

X
⊤
i

∑

j∈Ni

Xj

)

+ (In − XiX
⊤
i )

∑

j∈Ni

Xj ,

where we used that [Ω, R] = 0, [Ξ, Q] = 0. Put (p, n) =
(1, 2) and let G be the complete graph to obtain the Kuramoto
model of a system of homogeneous oscillators from (6).

The critical points of U are the equilibria of (5). At an
equilibrium,

0 = Si skew
(

S
⊤
i

∑

j∈Ni

Sj

)

+ (In − SiS
⊤
i )

∑

j∈Ni

Sj .

Since these two terms are orthogonal, we get

skew S
⊤
i

∑

j∈Ni

Sj = 0, (In − SiS
⊤
i )

∑

j∈Ni

Sj = 0. (7)

Assume (7) holds. Denote Vi =
∑

j∈Ni

Sj . Since Vi =

SiS
⊤
i Vi, it follows that Vi ∈ Im Si. Hence Vi = SiPi for

some Pi ∈ R
p×p. Moreover, since skew S

⊤
i Vi = skew Pi =

0, we find that Pi is symmetric.

B. The Intrinsic Hessian

Let Wi,st : R
N×n×p → R be the smooth extension of

(⧠i U)st = 〈es,⧠i Uet〉 : (St(p, n))N → R obtained by
relaxing the constraint Si ∈ St(p, n) to Si ∈ R

n×p for all i.
Using the rules governing derivatives of inner products with
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respect to matrices [21], introducing Est = ese
⊤
t , after a

few calculations, we obtain

∇kWi,st =































−ΠiEst if k ∈ Ni,

Est skew
(

S
⊤
i

∑

j∈Ni

Sj

)

+
∑

j∈Ni

Sj sym(S⊤
i Est)+

Est

∑

j∈Ni

S
⊤
j Si if k = i,

0 otherwise.

Evaluate at an equilibrium, where
∑

j∈Ni

Sj = SiPi and
Pi ∈ R

p×p is symmetric by Section III-A, to find

∇kWi,st =











−ΠiEst if k ∈ Ni,

SiPi sym(S⊤
i Est) + EstPi if k = i,

0 otherwise.

The intrinsic Hessian is a (N × n × p)2-tensor consisting
of N

2
np blocks Hki,st ∈ R

n×p, which are obtained by
projecting the extrinsic Hesssian on the tangent space of Sk

Hki,st = ⧠k(⧠i U)st = Πk∇kWi,st

= Πk∇k(Πi∇iV )st.

C. The Quadratic Form

Consider the quadratic form q : St(p, n)N × TSt(p, n)N →
R obtained from the intrinsic Hessian evaluated at an equi-
librium for some perturbation (∆i)

N
i=1 ∈ TC,

q =
N

∑

i=1

N
∑

k=1

〈∆i, [〈∆k,⧠k(⧠i U)st〉]〉

=

N
∑

i=1

N
∑

k=1

〈Πi∆, [〈Πk∆, Πk∇kWi,st〉]〉,

where ∆ ∈ R
n×p.

Note that 〈ΠkX, ΠkY〉 = 〈ΠkX, Y〉. The quadratic form
is hence

q =
N

∑

i=1

N
∑

k=1

〈Πi∆, [〈Πk∆, ∇kWi,st〉]〉.

Denote pki,st = 〈Πk∆, ∇kWi,st〉. Then

pki,st =











〈Πk∆, −ΠiEst〉

〈Πi∆, SiPi sym(S⊤
i Est) + EstPi〉

0

for the cases of k ∈ Ni, k = i, and k < Ni ∪{i} respectively.
Denote pki = [pst] and calculate

pki =











−ΠiΠk∆ if k ∈ Ni,

Si sym V
⊤
i Πi∆ + Πi(∆)Pi if k = i,

0 otherwise.

To see this, consider each case separately. For k ∈ Ni,

pki,st = 〈(In − Πi + Πi)Πk∆, −ΠiEst〉

= − 〈ΠiΠk∆, Est〉 = −(ΠiΠk∆)st,

whereby pki = −ΠiΠk∆. For the case of k = i,

pii,st = 〈Πi∆, SiPi sym(S⊤
i Est) + EstPi〉

= 1

2
(SiV

⊤
i Πi∆)st + 1

2
(Si(Πi∆)⊤Vi)st+

(Πi(∆)Pi)st,

whereby pii = Si sym V
⊤
i Πi∆ + Πi(∆)Pi.

This gives us the quadratic form

q =

N
∑

i=1

N
∑

k=1

〈Πi∆, pki〉

=
∑

e∈E

〈Πi∆, pki〉 + 〈Πk∆, pik〉 +
∑

i∈V

〈Πi∆, pii〉

For ease of notation, let q = 2
∑

e∈E qik +
∑

i∈V qi, where

qik = 〈Πi∆, pki〉 = −〈Πi∆, Πk∆〉 = qki,

qi = 〈Πi∆, pii〉.

Calculate

qik = − 〈Πi∆, Πk∆〉

= tr(−∆
⊤

∆ + 1

2
∆

⊤
SiS

⊤
i ∆ + 1

2
S

⊤
i ∆S

⊤
i ∆+

1

2
∆

⊤
SkS

⊤
k∆ + 1

2
∆

⊤
Sk∆

⊤
Sk−

1

4
∆

⊤
SiS

⊤
i SkS

⊤
k∆ − 1

4
∆

⊤
SiS

⊤
i Sk∆

⊤
Sk−

1

4
S

⊤
i ∆S

⊤
i SkS

⊤
k∆ − 1

4
S

⊤
i ∆S

⊤
i Sk∆

⊤
Sk).

Use the identity tr ABCD = 〈vec A
⊤

, (D⊤ ⊗ B) vec C〉
[22] and the notation d1 = vec ∆, d2 = vec ∆

⊤ to write
qik = 〈d, Qikd〉, where Qik is given in Table I and d =
[d⊤

1 d
⊤
2 ]⊤.

Furthermore,

qi = 〈Πi∆, Si sym V
⊤
i Πi∆ + Πi(∆)Pi〉 = 〈d, Qid〉,

where

Qi =

[

Pi ⊗ In − 3

4
Pi ⊗ SiS

⊤
i 0

− 1

2
SiPi ⊗ S

⊤
i

1

4
SiPiS

⊤
i ⊗ Ip

]

.

There is a constant permutation matrix K ∈ O(np) such
that vec ∆

⊤ = K vec ∆ for all vec ∆ ∈ R
np [22]. Hence

d =

[

vec ∆

vec ∆
⊤

]

=

[

Inp

K

]

vec ∆ =

[

Inp

K

]

d1.

The quadratic form q satisfies q = 〈d1, Md1〉, where

M =
[

Inp K
⊤

]

Q

[

Inp

K

]

, Q =
∑

i∈V

Qi +
∑

k∈Ni

Qik.

We wish to show that q assumes positive values for some
∆ ∈ R

n×p at all equilibria (Si)
N
i=1 < C. If tr M is positive,

then the symmetric part of M has at least one positive
eigenvalue. Hence calculate

tr M = tr
[

Inp K
⊤

]

Q

[

Inp

K

]

= tr

(

Q

[

Inp K
⊤

K Inp

])

= tr

([

A B

C D

] [

Inp K
⊤

K Inp

])

= tr(A + BK + CK
⊤ + D).
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Qik =

[

−Inp + 1

2
Ip ⊗ (SiS

⊤

i + SkS
⊤

k) −
1

4
Ip ⊗ SiS

⊤

i SkS
⊤

k
1

2
S

⊤

k ⊗ Sk −
1

4
S

⊤

k ⊗ SiS
⊤

i Sk
1

2
Si ⊗ S

⊤

i −
1

4
Si ⊗ S

⊤

i SkS
⊤

k −
1

4
SiS

⊤

k ⊗ S
⊤

i Sk

]

TABLE I. The matrix Qik.

Omitting the details of calculations, it holds that

tr A = 2
∑

e∈E

(

n − 3p
4

)

〈Sk, Si〉 − (n − p)p − p
4
‖S

⊤
kSi‖

2
,

tr D = 2
∑

e∈E

p
4

〈Sk, Si〉 − 1

4
〈Sk, Si〉

2
.

To deal with terms involving K, we utilize that K =
∑n

a=1

∑p

b=1
Eab ⊗ Eba, where the elemental matrix Eab ∈

R
n×p is given by Eab = ea ⊗ eb for all a ∈ {1, . . . , n},

b ∈ {1, . . . , p} [22]. After some calculations we obtain

tr BK = 2
∑

e∈E

p
2

− 1

4
‖S

⊤
kSi‖

2
,

tr CK
⊤= 2

∑

e∈E

− 1

2
〈Sk, Si〉 + p

2
− 1

4
‖S

⊤
i Sk‖2

.

Adding up all four terms gives

1

2
tr M =

∑

e∈E

(

n − p+1

2

)

〈Sk, Si〉 − p+2

4
‖S

⊤
kSi‖

2−

1

4
〈Sk, Si〉

2 + (1 − n + p)p. (8)

At a consensus we get tr M|C = 0. This is expected since U

is constant over C and C is invariant under any perturbation
that belongs to its tangent space. We also note that the result
(8) is consistent with that of [19].

D. Nonlinear Programming Problem

Having determined q = tr M in (8), it remains to show that
tr M is strictly negative for any configuration (Si)

N
i=1 < C.

To that end, consider

1

2
tr M ≤ |E| max

X,Y
f(X, Y), (9)

f(X, Y) =
(

n − p+1

2

)

〈X, Y〉 − p+2

4
‖X

⊤
Y‖2−

1

4
〈X, Y〉2 + (1 − n + p)p, (10)

where f : St(p, n) × St(p, n) → R. Hence, if we can show
that the image of f is negative for all X , Y, then we
are done. Note that the inequality is sharp in the case of
two agents and that f(X, X) = 0 since this corresponds to
consensus in a system of two agents.

Consider the nonlinear, non-convex optimization problem

max f(X, Y) s.t. X, Y ∈ St(p, n), (11)

where f(X, Y) is given by (10). It follows from (9) that (11)
is a relaxation of the problem max tr M such that (Si)

N
i=1 ∈

St(p, n)N and the equations (7) hold.
Problem (11) can be solved through use of the Lagrange

conditions for optimality. To that end, introduce the func-
tions gst(X) = 〈Xes, Xet〉 − δst, where δ·,· denotes the
Kronecker delta. The constraints in (11) can be summarized

as gst(X) = 0, gst(Y) = 0 for all s, t ∈ {1, . . . , p}. Form
the Lagrangian

L = f(X, Y) +
∑

s,t

λstgst(X) + ξstgst(Y),

where λst, ξst, s, t ∈ {1, . . . , p}, are Lagrange multipliers.
Partial derivatives of the objective function are given by

∂
∂X

L =
(

n − p+1

2

)

Y − p+2

2
YY

⊤
X − 1

2
〈X, Y〉Y + XΛ,

∂
∂Y

L =
(

n − p+1

2

)

X − p+2

2
XX

⊤
Y − 1

2
〈X, Y〉X + XΞ,

where

Λ =
∑

s,t

λst(ese
⊤
t + ete

⊤
s ) = [λst] + [λts] = [λst + λts],

Ξ =
∑

s,t

ξst(ese
⊤
t + ete

⊤
s ) = ([ξst] + [ξts]) = [ξst + ξts],

are symmetric. The critical points of L satisfy
(

n − p+1

2
− 1

2
〈X, Y〉

)

Y − p+2

2
YY

⊤
X + XΛ = 0, (12)

(

n − p+1

2
− 1

2
〈X, Y〉

)

X − p+2

2
XX

⊤
Y + YΞ = 0, (13)

[gst(X)] = X
⊤

X − I = 0, and [gst(Y)] = Y
⊤

Y − I = 0.
Solve this system for Λ and Ξ. Introduce Z = X

⊤
Y.

Multiply (12) and (13) from the left by X
⊤ and Y

⊤ respec-
tively, to find

Λ = −
(

n − p+1

2
− 1

2
tr Z

)

Z + p+2

2
ZZ

⊤
, Ξ = Λ

⊤
.

Since Λ and Ξ are symmetric, it holds that

skew Λ = −
(

n − p+1

2
− 1

2
tr Z

)

skew Z = − skew Ξ = 0.

Note that n − p+1

2
− 1

2
tr Z ≥ n − p − 1

2
> 0 for p < n

since tr Z ≤ p, wherefore skew Z = 0 (the case of p = n

is excluded from consideration since St(n, n) ≃ O(n) is not
path connected). This implies that Ξ = Λ.

Substitute

Λ = −
(

n − p+1

2
− 1

2
tr(Z)

)

Z + p+2

2
Z

2

into the equation Y
⊤∇XL = 0 to find

Y
⊤∇XL =

(

n − p+1

2
− 1

2
tr Z

)

I − p+2

2
Z+

Z
(

−
(

n − p+1

2
− 1

2
tr(Z)

)

Z + p+2

2
Z

2
)

= 0

By simplifying, we obtain

Y
⊤∇XL =

((

n − p+1

2
− 1

2
tr Z

)

− p+2

2
Z

)

(I + Z)(I − Z).

It follows that

p(z) =
(

2n−p−1−tr Z

p+2
− z

)

(1 + z)(1 − z) (14)

is the minimal polynomial of Z, up to the exclusion of any
factors corresponding to non-singular matrices.
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E. Integer Programming Problem

Reformulate the nonlinear programming problem (11) as
an integer programming problem in terms of the algebraic
multiplicities of the eigenvalues of Z. By (14), the spectrum
of Z satisfies σ ⊂ {−1, λ∗, 1}, where

λ∗ = 2n−p−1−tr Z

p+2
. (15)

Let m−, m∗, and m+ ∈ {0, . . . , p} denote the algebraic
multiplicities of the eigenvalues −1, λ∗, and 1 respectively.
First note that λ∗ ≤ ‖Z‖2 ≤ ‖X‖2‖Y‖2 = 1, wherefore
m∗ = 0 if λ∗ > 1. We know an expression for λ∗ in terms
of tr Z. We also know that tr Z = −m− + λ

∗
m∗ + m+ and

p = m− + m∗ + m+. Solving for λ∗ in terms of m− and
m∗, we find

λ∗ =
2n−2p−1+2m

−
+m

∗

p+2+m
∗

.

From the inequality λ
∗ ≤ 1 we obtain m− ≤ 3

2
(p + 1) − n.

This contradicts m− ≥ 0 if p < 2n
3

−1, in which case m∗ =
0. For the case of p = 2n

3
− 1 we learn that either m∗ = 0

or m− = 0. The case of p > 2n
3

− 1 is less informative.
We consider two cases: that of m∗ = 0 for general p and

that of m− = 0 for p = 2n
3

− 1. These two cases exhaust
all instances of St(p, n) for which the pair (p, n) satisfies
p ≤ 2n

3
− 1. Start with m∗ = 0. Then

tr Z = −m− + m+ = 2m+ − p,

tr Z
2 = m− + m+ = p,

(tr Z)2 = 4m
2
+ − 4pm+ + p

2
.

Recast the nonlinear program (11) as the equivalent quadratic
integer program

max (2n + 1)m+ − m
2

+ s.t. m+ ∈ {0, . . . , p} (16)

where we used Z = X
⊤

Y, 〈X, Y〉 = tr Z, ‖Z‖2 = tr Z
2,

and removed the constant terms.
Denote the objective function of Problem (16) by h : N →

R. Note that h(m++1) = h(m+)+2(n−m+). Since m+ ≤
p ≤ n, the optimization problem is solved by maximizing
m+, i.e., m+ = p. This corresponds to Z = I and the
optimal value of zero in (11). Any suboptimal solution gives
a strictly lower objective value.

It remains to consider the case of p = 2n
3

− 1, m− = 0.
Calculate

tr Z = λ∗m∗ + m+ = p + (λ∗ − 1)m∗

tr Z
2 = p + (λ∗ + 1)(λ∗ − 1)m∗

(tr Z)2 = p
2 + 2(λ∗ − 1)pm∗ + (λ∗ − 1)2

m
2
∗.

Recast the nonlinear program (11) as the equivalent mixed
integer nonlinear program

max −(n
6

+ 1

4
+ 1

4
m∗)(1 − λ∗)2

m∗,

s.t. λ∗ ∈ [0, 1], m∗ ∈ {0, . . . , p},
(17)

where the constant term has been removed. It is clear that
the optimal solution has λ∗ = 1 or m∗ = 0. It follows that
σ(Z) = {1}, i.e., Z = I.

IV. CONCLUSIONS

This paper extends the results of [19] concerning almost
global stability of a state space oscillator on S

n for n ≥ 2 to
the case of St(p, n). We characterize all connected graphs as
St(p, n)-synchronizing provided that the pair (p, n) satisfies
p ≤ 2n

3
− 1. This inequality is sharp with respect to known

results: some connected graphs are not S
1-synchronizing,

S
1 ≃ St(1, 2) and 1 � 1

3
[1]; all connected graphs are

Sn-synchronizing since Sn ≃ St(1, n + 1) and 1 ≤ 2n−1

3

for n ≥ 2 [19]; some connected graphs are not SO(3)-
synchronizing, SO(3) ≃ St(2, 3) and 2 � 1 [11]. Still, these
results are likely to be conservative for n ≥ 4 due to the
derivations involving a number of inequalities.
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