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The green technology approaches by harvesting energy from aerodynamic flow-

induced vibrations using a flexible square cylinder is experimentally investigated. The 

practicability of flow-induced vibration system to supply a sufficient base excitation 

vibration in microwatt scale is evaluated through a series of wind tunnel tests with 

different velocities. Test are performed for high Reynolds number 3.9 x 10�≤ Re 1.4 x 

10� and damping ratio ζ = 0.0052. The experiment setup is able to replicate the pattern 

of vibration amplitude for isolated square cylinder with previous available study. Then, 

the experimental setup is used to study the effect of vibration cylinder in harvesting 

the fluid energy. A prototype of electromagnetic energy harvesting is invented and 

fabricated to test its performance in the wind tunnel test. Test results reveal that the 

harnessed power is corresponding to vibration amplitude flow pattern, but the power 

obtained is much lower than the vibration amplitude due to the power dissipation at 

the resistor. The best condition for harnessing power is identified at U� = 7.7 where 

the Karman Vortex-Induced Vibration (KVIV) is the largest. 
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1. Introduction  

 

Flow-induced vibration (FIV) is claimed to cause large number of problems, especially in civil 

structural design [1] such as risers in marine technology [2], buildings and bridges [3] and heat 

exchanger tube bundle [4]. Commonly, this FIV is occurring when the structure is analogous to a body 

supported with a spring-damper system that is then contacting with a fluid flow [5]. The flow pattern 

found near the body is based on the Reynolds number. When the flow exceeds Reynolds number of 

40, unstable separation of fluid flow from the surfaces of the body will cause instability in the flow 

field [6]. The vortices that is usually fully attached when Re is low appears to detach periodically from 

the surface of body and this circumstance explains the definition of von-Karman vortex shedding, 

VKVS. The vortex shedding induces oscillating to the structure that thus generates vibrations. At a 
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certain free stream velocity, the vibration frequency is equal to the natural frequency of the structure 

once the resonance is met. Therefore, there are various studies in developing an effective wake 

control for suppression of vortex shedding which can be grouped into two: active vibration control 

[7-9] and passive vibration control [6, 10, 11]. 

From a totally different viewpoint, an approach to harvest energy from VKVS has been studied in 

recent years to manipulate and enhance its possibility as a new ideal energy source [12-15]. There 

are several types of transducer that can be used to convert the mechanical energy to the electrical 

power such as electromagnetic [16], electrostatic [17] and piezoelectric transducer [18-21]. However, 

most of the studies have focus on a flexible piezoelectric transducer due to its convenient mechanism 

to operate the energy harvester system in the optimum condition [22,23]. Studies on different cross 

section geometries are also have an attention in many years based on the fact that the flow behavior 

appears on the wake of bluff body will be affecting by the bluff body shape. Basically, the considered 

shape are circular cylinder, rectangular cylinder, triangular cylinder and square cylinder. But, a square 

cylinder has been acknowledged more due to its accessibility to the onset of galloping [24-27]. 

Therefore, the recent studies have shown the interest to improve the fluctuation of the body using a 

square cylinder in an effort to obtain higher performance of the energy harvester [28].  

An electromagnetic induction is literally having a potential to be used as a transducer in exploiting 

the energy from a relative body motion in the magnetic field, but only gained the interest from 

limited past studies. Jung and Lee [13] and Jung et al., [29] performed an experimental study on the 

concept of electromagnetic energy harvesting from a wake galloping. The study found the relation 

between the harvested energy and the aerodynamic instability (i.e., wake galloping). An approach to 

experimentally study the galloping oscillations-based electromagnetic wind generator has been 

investigated by Ali et al., [16] with different cross-section geometries. In the latest study by Maruai 

et al., [11], different cross geometries are considered and a detached flat plate is placed downstream 

of the body in the objective to amplify the vibration so that the harvested energy can be amplified. 

The study reveals that a downstream body with a relevant gap separation are able to magnify the 

amplitude vibration. Blazewicz and Bies [30] and Ozono [31] are also supported the findings. 

However, both study by Ali et al., [16] and Maruai et al., [11] did not consider the effect of transducer 

on the overall performance of the harvested energy where in the actual case, the energy harvester 

performance may be affected by the installation of the transducer. 

This manuscript presents the experimental study of a complete energy harvesting system by 

using an electromagnetic transducer that is utilized from VKVS. The design is targeted for low power 

consumption applications, such as wireless sensor network (WSN) [32,33] and also for the purpose 

of health monitoring applications [34,35]. The detail of the experimental setup to measure the 

velocity, displacement and output voltage are also presented in this paper. 

 

2. Experimental Apparatus and Measurements  

 

Arrangement of the experimental study and the framework that involved in this study are shown 

in Figure 1. The test section is having a square cross-section and lengths of 0.36 m × 0.36 m and 0.8 

m, respectively. The bluff body under investigation is a square cylinder with side lengths D = 26 mm 

and spanwise length of L = 0.349 mm. The cylinder is hollow and it is supported to the wind tunnel 

by a steel rod at each end of the cylinder and the length of supported steel rod is 0.105 m length. The 

steel rods pass through the opening slot on the side walls of the test section and elastically supported 

by two parallel twin spring plates at both ends outside the wall test section to allow the square 

cylinder moves in a transverse direction of the incoming airflow. The dimension of the spring plate is 

0.5 m × 0.004 m × 0.001 m. To prevent the end effect so that the cylinder will acting as an infinite 
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length, an end plate (circular disk) is used at each of the cylinder end. The experimental conditions 

are listed in Table 1. 

 

 
Fig. 1. Arrangement of the experimental apparatus and the 

system used in this study 

 
Table 1 

Experimental conditions 

Parameter Specification 

Square cylinder side length, D[m] 0.026 

Mass per unit length [kg/m] 0.34 

Mass damping ratio,m* 428.15 

Spring constant, k [N/m] 1189.75 

Logarithmic damping factor, δ 0.0305 

Damping ratio, ζ 0.0052 

Natural frequency, fn[Hz] 15.9 

Free flow velocity, U [m/s] 2.37-9 

 

 

2.1 Free Stream Velocity Measurement 

 

The selected device for measuring the air velocity of the airflow is by using the pitot tube. The 

pitot tube is having ellipsoidal sensing tip (NPL Modified Ellipsoidal Pitot Tube) and it is assembled 

from a co-axial tubing. This design provides the most accurate velocities measurement for high-

velocity flow like is being conducted for this experiment. Pitot tube enables the concurrent 

measurement of the pressure induced by the moving air particle hitting the tip of the pitot tube and 

the stagnant pressure of the static air. According to Jr [36], this device able to correct the errors in 

static pressure reading that is caused by pressure distribution when it is subjected to airflow.  Figure 

2 shows the basic pitot tube construction with L-shaped that is used in this experiment. 

 

 
Fig. 2. Basic Pitot tube construction 
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It should be noted that the pitot tube is physically measuring the pressure generated by the air 

mass moving around the tip, thus the pressure gauge is required. To obtain the accurate 

measurement, the sensing tip must be pointed directly into the moving air flow. In addition for a 

better measurement, the pitot tube is located at the average velocity point in the moving air to 

reduce the effect of frictional drag due to the pipe wall. The free flow velocity, U is obtained from the 

Bernoulli’s Equation as follows. 

 

Bernoulli’s Equation: 

Static pressure + Dynamic pressure = Total pressure 

 

( Ps + ρ 
U2

2
 ) = PT             (1) 

 

U =�2 (P� − P�) / ρ             (2) 

 

where Ps is the static pressure [pa], PT is the total pressure [pa], ρ is the density of air [kg/m3] and U 

is airflow velocity profile [m/s]. 

 

2.2 Vortex Shedding Frequency Measurement 

 

To measure the vortex shedding frequency in the wake of the cylinder, the hot wire probe with a 

single-wire sensor that is attached to two support needles is used as shown in Figure 3. 

 

 
Fig. 3. Hot wire probe with a single-wire sensor type 

 

 

The position of the hot wire probe in the wind tunnel is similar to Kawabata & Takahashi [37] with 

x/D = 1.5, y/D = 1.25, z/D = 0.4 from the center of the square cylinder. The two support needles 

should confront directly into the moving airflow in order to obtain the accurate readings. When the 

current is passed through the thin wire, heat will be generated. Due to the change in velocity, U, the 

convective heat transfer coefficient from the electrical package and the wire temperature will change 

until eventually reach a thermal equilibrium. Afterwards, the signal will be transmitted to the 

Constant Temperature Anemometer (CTA). CTA is work based on the fact that probe’s resistance will 

be proportional to the temperature of the hot wire and it is capable of measuring the flow and 

turbulence with low to medium velocity and moderate fluctuation frequencies. The CTA is also 

equipped with data noise reduction system. For high precision measurement, NI USB-9215 Series is 

used to build data acquisition and instrument control application using the LabVIEW. Physically, the 

hot wire measures the stream wise velocity in the wake of the square cylinder. The vortex shedding 

frequency is obtained by doing a series of power spectrum analysis of the fluctuation velocity. The 

peak on the spectrum indicates the frequency of the vortex shedding. 
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2.2 Displacement Measurement 

 

A laser displacement sensor with a diffuse reflective sensing sensor is used to measure the 

displacement at each end of the cylinder. Data acquisition and data analyzing are conducted using 

the LabVIEW software with NI USB-9215 Series as an interphase. To find the elastic properties of the 

system (natural frequency, fn, logarithmic damping factor, δ and spring constant, K), free damping 

oscillations are conducted in static air as shown in Figure 4. To calibrate the laser displacement 

sensor, height gauge is used as signify in Figure 5. 

 

  

Fig. 4. Free damping oscillation Fig. 5. Laser calibration method by using the 

height gauge 

 

 

2.4 Modelling the Energy Harvester System with Electromagnetic Damper System and 

Electromagnetic Induction 

 

The energy harvester consists of a customized permanent magnet (5 × neodymium, Ø 4 mm × 10 

mm) that is glued to the movable square cylinder. The circular coil is fixed above the permanent 

magnet, thus the position is confirmed to be in the middle of circular coil. Specifications of the coil is 

presented in Table 2. The method for controlling the vibrations using electromagnetic damper has 

been investigated experimentally. The width of aluminum thin-plate will be inserted for every 1 mm 

interval (∆ ��  = 1 mm) into the electromagnetic damper and free damping oscillations in static air is 

applied to identify the relevant damping factor that is applicable in this experiment. The effect of 

electromagnetic induction is also has been considered during the free damping test. Figure 6 shows 

the schematic modelling of energy harvester with electromagnetic damper while Fig.7 shows the 

equivalent circuit model in this study. 

 
Table 2 

 Coil specifications 

Coil type Parameters Specifications 

Copper No. of turns, Nt 400 

 Resistance, [mΩ] 0.49 

 Inductance, L [H] 0.00837 

 Wire diameter dw [mm] 0.4 

 Outer diameter coil, do [mm] 20.7 

 Inner diameter coil, di [mm] 14.9 

 Height of coil, hc [mm] 40 

 Total wire length, Lw [m] 9.61 
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Fig. 6. Schematic modelling of energy harvester 

with electromagnetic damper 

Fig. 7. Equivalent circuit model 

 

 

2.5 Mathematical Modelling 

In this part, a mathematical modelling for experimental power [Pe] is introduced as follows. 

• Resistance [R]  

R = 
ρ LT

A�             (3) 

 

where R is electrical resistance of coil[Ω], ρ is resistivity of the copper coil in [Ω⋅m], Lc is the length of 

coil [m] and A is the cross-sectional area of coil [m2] 

• Power [Pe] 

Vemf = IR            (4) 

Hence,  

I = 
Vemf 

R�             (5) 

Substitute I value into the power equation, 

 

P = VI             (6) 

 

where P is the power output [W] and V is the emf voltage. Noted that the V value is obtained from 

the experimental result. 

 

3. Experimental Result 

 

In a series of experimental studies of flow-induced vibration, the square cylinder is flexible and it 

is subjected to wind stream velocities within 2.37 m/s to 9 m/s that is corresponding to wind speed 

velocity in Malaysia [38]. The equivalent reduced velocities [�� =� �� �⁄ ] is determined in the range 

of 5.5 < �� < 19.5. The study has been conducted similar to Ismail et al., [10]; Maruai et al., [11]; 

Kawabata et al., [37]. Therefore, a comparison are made to validate the experimental setup as listed 

in Table 3.  The square cylinder side length (D), effective mass (��), and spring stiffness (k) have 
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chosen to be consistent with the previous studies and were kept as close as possible for this validation 

purposes. 

 
Table 3 

Damping factor calibration 

Physical parameter Kawabata et al., 

[37] 

Ismail et al., 

[10] 

Maruai et al., 

[11] 

Current 

study 

Square cylinder side 

length, D [m] 

0.0260 0.0260 0.0260 0.0260 

Effective length [m] 0.3150 0.3150 0.3150 0.3150 

Effective mass,��  [kg] 0.11 0.15 0.15 0.12 

Mass ratio, �∗ 585 587.56 587.56 428.15 

Spring stiffness, k 

[N/m] 

1181 1173 1173 1189 

Logarithmic damping 

factor, δ 

0.027 0.0275 0.0275 0.0305 

Damping ratio, ζ 0.0047 0.0047 0.0047 0.0052 

Natural frequency, ��  

[Hz] 

16.5 14.2 14.2 15.9 

Scruton number, Sc 35.1 32.3 32.3 26.1 

Free flow velocity, U 

[m/s] 

1.8-16.5 2.37-9 2.37-9 15.92.37-9 

 

For flow across an isolated square cylinder with one degree of freedom, there are two types of 

flow-induced vibration are predicted, Karman vortex-induced vibration (KVIV) and galloping. The 

current study is able to replicate the vibration behavior with reduce velocities as predicted by 

Sarpkaya, [39] when the regions of KVIV is occurred at lower branch velocity region while galloping 

is at higher branch velocity region. However, the occurrence of the peak vibration in the KVIV region 

is shifted to earlier reduced velocity compare to the other studies due to the different value in 

damping ratio (ζ) as shown in Figure 8. 

 

 
Fig. 8.  RMS transverse amplitude with 

reduced velocity, �� 
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3.1 Power Harnessing 

 

From the results presented in Fig. 9, the power harnessed by the electromagnetic converter from 

flow-induced vibration is calculated using the equation 3-6. It shows that the harnessed power flow 

pattern is equivalent to the amplitude ratio (�� ! "⁄ ) and this theory is supported by Maruai et al., 

[11]. According to the data, the ideal �� to harness the power is at �� = 7.7 which is in the Karman 

Vortex Induced Vibration region. The power identified at that particular �� is about 5.224 mW after 

the value of resistor and inductance has been considered. The determined power value across the 

�� is observed between 0.3265 mW-73.47mW within 5.5 ≤ �� ≤ 20. 

In Figure 10, three different frequencies are plot in the same graph for #$ = 7.7. Apparently, the 

PSD analysis shows that the energy frequency is the lowest among the three frequencies. Thus, the 

harnessed power is expected to loss due to the resistor that is equipped in the circuit or through the 

mechanical devices during the vibration. 

 

  
Fig. 9. Power against U� Fig. 10. PSD at U� = 7.7 

 

 

4. Conclusions 

 

In this paper, the feasibility study of flow-induced vibration for generating a green technology is 

extensively investigated. In order to design the portable energy harvester based electromagnetic 

transducer, the characteristics and mechanisms of various aerodynamic instability have been studied 

clearly before approaching the next step which is to design the energy harvesting device that is 

appropriated to test under the wind tunnel. As seen from the test results, the average generated 

power can be obtained in the range of 0.3265 mW-73.47mW under the wind speed 2.3 – 9 m/s. 

However, the ideal wind speed to harness the power is obtained at wind speed 3.3 m/s which is equal 

to  �� = 7.7. For this proposed device, the electromagnetic induction can be easily increased, thus 

more power can be produced with the right configuration. Therefore, the advantages of the 

proposed energy harvesting device is promising and it could be effectively used as a power supply 

for powering up low power electronic devices like the wireless sensor network under the moderate 

wind conditions. 
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