
VOL. 18, NO. 3-2, 2019, 7-12
www.elektrika.utm.my

ISSN 0128-4428

7

Automotive Real-Time Data Acquisition Using

Wi-Fi Connected Embedded System

Ahmad Faiz Ab Rahman1, Hazlina Selamat2*, Ahmad Jais Alimin3, Mohd Taufiq Muslim1, Muhammad

Mazizan Msduki2 and Nurulaqilla Khamis2

1Apt Touch Sdn. Bhd., UTM-MTDC Technology Centre, UTM Technovation Park, 81300 Skudai, Johor, Malaysia.
2Centre for Artificial Intelligence & Robotics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala

Lumpur, Malaysia.
3Faculty of Mechanical & Manufacturing Eng., Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor,

Malaysia.

*Corresponding author: hazlina@fke.utm.my, Tel: 607-5535324, Fax: 607-5566272

Abstract: The advancement in embedded systems, which includes the mass deployment of internet-connected electronics,

allows the concept of Internet of Things (IoT), to become a reality. This paper discusses one example of how an internet-

connected embedded system is utilized in an automotive system. An Electronic Control Unit (ECU), which functions as a

control unit in a fuel injection system, are equipped with Wi-Fi capability and installed on 110cc motorcycle. The ECU is

connected to multiple sensors that is used by the ECU as part of control system, as well as giving raw data in real time to the

server by using Wi-Fi as the communication medium. The server will accumulate data transmitted from ECU by using MQTT

protocol, chosen due to its minimal data profile. The data can be visualized through web portal, or opened by any other web-

enabled devices. The data collected may also be used later for any other purposes, such as On-Board Diagnostics (OBD)

system, etc.

Keywords: Internet of Things (IoT), ESP8266, Message Queue Telemetry Transport (MQTT), Node-RED, 802.11.

© 2019 Penerbit UTM Press. All rights reserved

Article History: received 4 September 2019; accepted 1 December 2019; published 24 December 2019.

1. INTRODUCTION

The advancement in new and emerging technologies, such

as wired/wireless internet embedded systems, cloud

systems as well as faster internet, gives the new field of

technologies, such as the concept known as Internet of

Things (IoT). This concept revolves on the idea that low

power consuming devices, equipped with wireless internet

communication capability as well as multiple sensors, will

be able to collect and send data to the network of high-

performance computer servers known as cloud farms,

where all heavy computations are done here, so that the

embedded systems do not need to do all the heavy tasks.

The output data will then be presented to the interested

parties through a Graphical User Interface (GUI) which

also connected to the cloud farm through the

wired/wireless internet.

In this paper, the concept described above is

implemented on an automotive system, where an 110cc

motorcycle, which has been retrofitted with an Electronic

Fuel Injection (EFI) system before. EFI is a system where

the main controller, usually called Electronic Control Unit

(ECU), is tasked to mix air and fuel in an Internal

Combustion Engine (ICE) with efficient and precise

manner. The injected fuel amount and the injection timing

are dictated from multiple inputs from sensors connected

to the ECU.

Since ECU already possess all the sensor readings

during its operation, the same data will also be fed to an

ESP8266, a 32-bit Wi-Fi System on Chip (SoC), which is

tasked to further transmit it to the server by utilizing

Message Queuing Telemetry Transport (MQTT) protocol,

a lightweight publish-subscribe based messaging protocol

across the internet. While the SoC acts as a MQTT client,

the MQTT server software, sometimes called a broker, will

listen and then pass the data received to a Node-RED flow.

Node-RED is a NodeJS based IoT development platform

which used flow-based programming for wiring up inputs

and outputs such as MQTT client, API or even online

services. The flow will then execute relevant data

processing, before the output being presented in a dynamic

web application service, which can be opened by devices

such as another PC or smartphones.

2. LITERATURE REVIEW

It is important to remember that for this project, the overall

setup will be divided into client and server. Both are

constructed separately and only connected together

through the internet connection. The client part obviously

will be attached close to the sensors, which is an EFI

system equipped motorcycle. Meanwhile, the server side

that collects and process data will not be physically

connected but wirelessly received data transmitted by the

client.

For the client side, sensors have to be attached on the

motorcycle and connected to the client-side transmitter so

that data readings from the sensors will be sent through

transmitter. However, since the motorcycle in question is

known to be equipped with an EFI system, it is such a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/288476992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ahmad Faiz Ab Rahman et al. / ELEKTRIKA, 18(3-2), 2019, 7-12

8

waste to not utilizing the sensors that is built as part of the

EFI system, such as what is shown in [1] and [2]. In

addition, [1] and [2] mentions that the main controller of

the system, ECU is actually an embedded system centred

around a microcontroller, which means direct

communication between ECU and client-side transmitter

is possible. This means any sensor readings sent from

sensor to the microcontroller could also be sent to the

transmitter through a communication line, such as UART.

There is also another literature [3] that clearly states that

communication between ECU being used in the research is

connected with the PC through serial port.

For the transmitter side, a 32-bit Wi-Fi System on Chip

(SoC) named ESP8266 is chosen. Manufactured by

Espressif Systems, it is based on Xtensa L106 RISC

architecture, operated on 80MHz [4][10]. There are 16

General Purpose Input Output (GPIO) pins, an Inter-

Integrated Circuit (I2C) bus port, a Serial Peripheral

Interface (SPI) bus port, two Inter-IC Sound (I2S) bus

ports, three PWM pins and an ADC input pin [4][10]. Due

to its extensive amount of documentations [4], libraries

and example codes [5-7], it is not only sought by the

makers and hobbyist, but also chosen by the researchers in

many published papers [8-17].

While there are researchers utilizing ESP8266 to

connect to server through numerous methods such as to

HTTP/MySQL protocol to HTTP/MySQL/PHP server [8],

or HTTP API to cloud services like ThingSpeak [14] or

Microsoft Azure [17], others utilize a lightweight protocol

called Message Queue Telemetry Transport (MQTT) [9-

13][15][16]. MQTT works by clients, which is divided to

publisher, the one that sends data, while the other one is

called subscriber, which receives data [10]. All

connections must through the broker, also known as

MQTT server. There are numerous examples of MQTT

used by researchers, such as ESP8266 used as MQTT

publisher to local MQTT broker such as Mosquitto [9] or

Mosca [12], or same setup but using public broker

[10][11][15]. The popularity of MQTT is due to its

lightweight characteristics, as well as abundance of

libraries and code related to it.

While there are different methods utilized by

researchers to for receiving data (subscribe) from MQTT

broker, such as using readily available MQTT client on PC

and Android devices [9-11], in this project a software

called Node-RED is used. Node-RED is a tool written in

Node.JS which connects IoT devices and software

together. Like ESP8266, Node-RED is also popular among

researchers. Originally developed by IBM as an open

source project in 2013 [18][19], it is now extensively used

different IoT related projects, due to its simple to use flow-

based approach to connect devices and codes altogether.

Due to its simple learning curve, it is also recommended

by some researchers as an education tool for learning basic

IoT technology [19]. However, its vast options for

different types of communication protocols and mediums

also attract researchers to consider Node-RED to be part of

the possible replacement for industrial control systems

[21][22], even though it is also excellent to be part of

wireless sensor networks when installed at compatible

devices such as Raspberry Pi [20][23]. However, due to its

built-in nodes that allows MQTT protocol connectivity

[21], allows us to connect Node-RED with ESP8266,

which is the setup that will be done on this project.

3. METHODOLOGY

In order to fully understand the overall setup of this

research project, a diagram was prepared and shown in

Figure 1. There is hardware on both client and server sides.

Clients are connected to the server through the Wi-Fi

protocol. Both client and server are located inside the same

local network, which is provided by Wi-Fi router modem.

Figure 1. Diagram showing the hardware used in data

acquisition system

Client side, as it is named, is an embedded system tasked

to collect data from sensors through the ECU, which is part

of the EFI system. Communication is done through

Universal Asynchronous Receiver/Transmitter (UART)

bus in serial port that is available on ECU cables. After all

required data are received by the client; it will be converted

into a simple string and transmitted through Wi-Fi to the

server side, utilizing MQTT protocol. Since the hardware

on the client side is quite minimal, to data processing is

further done here. This will ensure that the data fetching

process can be done as fast as possible, thus reducing data

latency.

Unlike client-side setup, server-side hardware is usually

powerful, which might be part of the cloud server farm, or

at least a decent computer, which are several magnitudes

faster at computation than a single microcontroller at client

side. This is where all the resource intensive computation

is done. In our case, a personal laptop with average

hardware specifications is used as the only hardware for

the server-side software to reside in. After all computations

are done, the data will be represented on the laptop itself

in a Web-based GUI or can be sent through HTTP REST

API protocol to another device, such as smartphone, which

will also show the same data through an app, if needed.

3.1 EFI System Equipped Motorcycle as Data

Provider

Since this project is done for data collection on an

automotive system, a fully working vehicle needs to be

prepared for this setup. A SYM E-Bonus 110cc motorcycle

is prepared and equipped with an Electronic Fuel Injection

(EFI) system; where it’s Electronic Control Unit (ECU)

have capability to communicate to other devices through

DB-9 serial port. The aforementioned EFI system is

equipped with six different sensors, which are Throttle

Position Sensor (TPS), Manifold Air Pressure (MAP),

engine revolutions per minute (RPM), Intake Air

Temperature (IAT), Cylinder Head Temperature (CHT)

and lastly, oxygen sensor (O2). The picture of the

motorcycle used for this setup is shown in Figure 2.

Ahmad Faiz Ab Rahman et al. / ELEKTRIKA, 18(3-2), 2019, 7-12

9

Figure 2. SYM E-Bonus 110cc motorcycle used for the

project

3.2 Embedded ESP8266 as Data Collection Device

A simple, minimal circuit is developed by using ESP8266

Wi-Fi SoC as the main controller for the client-side

embedded system, tasked for data collection and

transmission to the server. ESP8266 is a small, 32-bit

microcontroller produced by Espressif Systems. Due to its

low price and simple to use, it is a popular choice for many

electronic design projects which requires Wi-Fi

connections. The microcontroller is equipped with

multiple input/output peripherals for different needs.

However, there are different types of modules, which

consist of Printed Circuit Board (PCB) with ESP8266

available in the market, each with different sizes and

number of pins available to the user.

Figure 3. Pinout diagram for ESP-01 module

However, in this setup, the ESP-01 module, which reveals

only 8 pins, is more than enough, since the only connection

that is needed is the power rails and UART bus, as well as

minimal circuitry for other important features like reset

and flashing mode trigger. Other circuits such as crystal

oscillator are already done on PCB, so this will ease the

job. The pinout diagram for ESP-01 module is shown in

Figure 3.

In addition of official RTOS-based and non-OS based

Software Development Kit (SDK) freely provided by the

manufacturer themselves, there are also implementations

on Arduino IDE, where user can use Arduino IDE

ecosystems alongside ESP8266, thus making

programming this microcontroller simpler. Therefore, a

short code was written which is tasked to fetch the sensor

reading from ECU UART bus.

Basically, the program flow is pretty straightforward,

which begins with initialization phase first, before entering

an infinite loop phase. The whole code flow is illustrated

in Figure 4. The initialization phase contains codes for

authentication and connection to local Wi-Fi router as well

as to the server-side, which enters through MQTT protocol

at port 1883. The infinite loop phase begins with

initializing the input string with all zero values of sensor

readings, followed by waiting for input string from UART

bus. If there is no input from UART detected, the initial

values will be sent instead. A check whether connection to

the server has been established or not will be done first,

before publishing the string containing sensor readings to

the server through MQTT protocol.

Figure 4. Flow chart describing ESP8266 tasks

3.3 MQTT Server and Node-Red for Data Processing

and Visualization

For the server, a laptop is used as hardware for hosting

server-side software. The laptop was installed with

Node.JS, which is required for installing and running

Node-RED. Node-RED is basically simple, GUI flow-

based tool for developing Internet-of-Things (IoT)

program. The Node-RED GUI was served as a web

application, so it can be opened by any decent web

browser. A snapshot of Node-RED interface is shown in

Figure 5.

Ahmad Faiz Ab Rahman et al. / ELEKTRIKA, 18(3-2), 2019, 7-12

10

Figure 5. Snapshot of Node-RED interface

In Node-RED, all work is done by connecting and

configuring flowcharts. There are a lot of different types of

nodes that is available by default, while there are also

optional nodes that can be easily installed inside the

interface itself. While there are already MQTT publish and

subscribe node already available by default, there is no

MQTT broker. A MQTT broker node named Mosca is

installed later, so there will be no need for external broker.

Figure 6. Snapshot of web-based UI produced by

Dashboard UI node in Node-RED

On top of having Node-RED to install a built-in MQTT

broker node, another node to be installed are UI nodes.

These nodes are used for rendering different types of web-

based user interface, like gauges and switches. In our case,

meters are used to show the value of different types of

sensors. Since there are six main types of sensor used by

the EFI system, there will be six gauges rendered in the UI

web pages. The snapshot of the web-based UI can be seen

at Figure 6, where web-based UI here can be opened by

any web browser on any decent PC, tablet or smartphone

alike.

4. RESULT AND DISCUSSIONS

There are several different ways of how the result data

could be presented for the end user. In this section, three

different types of data visualization and representation

schemes are developed, each with different purposes and

methods. These visualizations are by using debug node, the

dashboard UI node, as well storing inside a CSV file. The

overall Node-RED flow chart is shown in Figure 7.

As what can be seen in Figure 7, the flow starts with one

Mosca MQTT broker node, which acts independently for

providing MQTT broker to both ESP8266 and other

MQTT publish or subscribe nodes. This then followed by

an inject node, used just for resetting the dashboard UI if

needed. The MQTT subscribe node, which listens on topic

named ‘all’, will produce output data received from both

ESP8266 and inject node, which the data is in the form of

comma separated string. This string will be presented

straight to the debug node, where the string from ESP8266

can be seen in the debug tab. The same data is also split in

accordance to different variable types before fed into

dashboard UI nodes for rendering gauges. The last part is

the file generation node, where a CSV file is generated, and

can be opened later in Microsoft Excel. This data can later

be used for producing graphs in Microsoft Excel itself.

Figure 7. Node-RED flow chart for this project, which

includes Mosca MQTT broker, MQTT subscribe node,

debug nodes, dashboard UI nodes as well as file output

node.

The easiest way would be by utilizing debug capability

inside Node-RED. There are debug node available by

default inside Node-RED, which simply prints whatever

input data it accepts at the debug tab on the right side of

the Node-RED user interface. The example of how the

debug data output data can be seen on snapshot at Figure

8.

Figure 8. Example of debug node output showing comma

separated strings, written in red.

However, the clearest way to present the data is by

utilizing dashboard UI node. Dashboard UI is also the best

method to present data on mobile devices, such as

smartphones and tablets. Figure 9 shows an example of six

different gauges, each rendered and controlled by six

separate dashboard UI nodes shown earlier in Figure 7

flow chart. Since each node is fed input data of different

types of sensors, the gauges in Figure 9 will point values

that correspond to the pre-assigned variables.

Ahmad Faiz Ab Rahman et al. / ELEKTRIKA, 18(3-2), 2019, 7-12

11

Figure 9. Dashboard UI nodes rendered web-based GUI

shows 6 gauges represents readings of different kinds of

sensors

The last method or representing data produced by this

platform is by generating a Comma Separated Values

(CSV) file. By storing the data inside a CSV file, it can be

opened and processed later by other data processing

software, such as Microsoft Excel, which can do all sorts

of tasks, such as producing graphs. Figure 10 shows how a

CSV file can be used inside Microsoft Excel.

Figure 10: Example of CSV files which stores variables

based on types of sensors opened in Microsoft Excel

5. CONCLUSIONS

The emergence of new and emerging technologies such as

low-power, Wi-Fi capable System on Chip (SoC) and

cloud computing allows rapid deployments of sensor based

monitoring system which is easy to build, simple learning

curve as well as affordable at lower cost. Implementation

on automotive system such as motorcycles will allow us to

introduce a way in which a vehicle can be closely

monitored not in a controlled environment such as in a

laboratory, instead being operated in field test. The

collected data, of course could be used for multitude of

usages, such as usage for analysis on EFI performance

whether based on power or emission levels, or the data can

be input to an On-Board Diagnostics (OBD) system for

troubleshooting, etc.

REFERENCES

[1] Muslim, M. T., Selamat, H., Alimin, A. J., and

Hushim, M. F, “Electronic Control Unit Design for a

Retrofit Fuel Injection System of a 4-stroke 1-

cylinder Small Engine,” Applied Mechanics and

Materials, 2012. 229: 968-972.

[2] Muslim, M. T., Selamat, H., Alimin, A. J., Rohi, N.

M., and Hushim, M. F, “A Review on Retrofit Fuel

Injection Technology for Small Carburetted

Motorcycle Engines towards Lower Fuel

Consumption and Cleaner Exhaust Emission,”

Renewable and Sustainable Energy Reviews, 2014.

35: 279-284.

[3] Muslim M. T., Selamat H., Alimin A. J., Haniff M.

F., “Manifold absolute pressure estimation using

neural network with hybrid training algorithm,”

PLoS ONE 12(11): e0188553.

https://doi.org/10.1371/journal.pone.0188553.

[4] Espressif Systems, “ESP8266EX Datasheet”, Dec.

2015, [Revised Feb. 2018].

[5] M. Schwartz, Internet of Things with ESP8266. Packt

Publishing Ltd, 2016.

[6] M. Schwartz, ESP8266 Internet of Things Cookbook.

Packt Publishing Ltd, 2017.

[7] N. Kolban, Kolban’s Book on ESP8266. 2016.

[8] T. Thaker, "ESP8266 based implementation of

wireless sensor network with Linux based web-

server," 2016 Symposium on Colossal Data Analysis

and Networking (CDAN), Indore, 2016, pp. 1-5. doi:

10.1109/CDAN.2016.7570919.

[9] R. K. Kodali and S. Soratkal, "MQTT based home

automation system using ESP8266," 2016 IEEE

Region 10 Humanitarian Technology Conference

(R10-HTC), Agra, 2016, pp. 1-5. doi: 10.1109/R10-

HTC.2016.7906845.

[10] R. K. Kodali and K. S. Mahesh, "A low cost

implementation of MQTT using ESP8266," 2016

2nd International Conference on Contemporary

Computing and Informatics (IC3I), Noida, 2016, pp.

404-408. doi: 10.1109/IC3I.2016.7917998.

[11] N. M. Sonawala, B. Tank and H. Patel, "IoT protocol

based environmental data monitoring," 2017

International Conference on Computing

Methodologies and Communication (ICCMC),

Erode, 2017, pp.1041-1045. doi:

10.1109/ICCMC.2017.8282629.

[12] G. M. B. Oliveira et al., "Comparison Between

MQTT and WebSocket Protocols for IoT

Applications Using ESP8266," 2018 Workshop on

Metrology for Industry 4.0 and IoT, Brescia, 2018,

pp. 236-241. doi:

10.1109/METROI4.2018.8428348.

[13] S. R. Akbar, K. Amron, H. Mulya and S. Hanifah,

"Message queue telemetry transport protocols

implementation for wireless sensor networks

communication - A performance review," 2017

International Conference on Sustainable

Information Engineering and Technology (SIET),

Malang, 2017, pp. 107-112. doi:

10.1109/SIET.2017.8304118.

[14] Endy Silveira, Samir Bonho, “Temperature

Monitoring Through Wireless Sensor Network

Using an 802.15.4/802.11 Gateway,” IFAC-

PapersOnLine, 2016. 49: 120-125.

[15] Monika Kashyap, Vidushi Sharma, Neeti

Gupta,“Taking MQTT and NodeMcu to IOT:

Communication in Internet of Things,” Procedia

Computer Science, 2018. 132: 1611-1618.

[16] Y. Nait Malek, A. Kharbouch, H. El Khoukhi, M.

Bakhouya, V. De Florio, D. El Ouadghiri, S. Latre,

C. Blondia, “On the use of IoT and Big Data

Technologies for Real-time Monitoring and Data

Ahmad Faiz Ab Rahman et al. / ELEKTRIKA, 18(3-2), 2019, 7-12

12

Processing,” Procedia Computer Science, 2017. 113:

429-434.

[17] Carmelo Ardito, Paolo Buono, Giuseppe Desolda,

Maristella Matera, “From smart objects to smart

experiences: An end-user development approach,”

International Journal of Human-Computer Studies,

2018. 114: 51-68.

[18] Node-RED, “Documentation”, Oct. 2013. [Online].

Available: https://nodered.org/docs. [Accessed July

10, 2018].

[19] Z. Chaczko and R. Braun, "Learning data

engineering: Creating IoT apps using the node-RED

and the RPI technologies," 2017 16th International

Conference on Information Technology Based

Higher Education and Training (ITHET), Ohrid,

2017, pp. 1-8.

[20] M. Lekić and G. Gardašević, "IoT sensor integration

to Node-RED platform," 2018 17th International

Symposium INFOTEH-JAHORINA (INFOTEH),

East Sarajevo, 2018, pp. 1-5. doi:

10.1109/INFOTEH.2018.8345544.

[21] Antonin Gavlas, Jan Zwierzyna, Jiri Koziorek,

“Possibilities of transfer process data from PLC to

Cloud platforms based on IoT,” IFAC Conferences

on Programmable Devices and Embedded Systems

(PDeS), Ostrava, 2018, pp. 156-161. doi:

10.1016/j.ifacol.2018.07.146.

[22] Mohamed Tabaa, Brahim Chouri, Safa Saadaoui,

Karim Alami, “Industrial Communication based on

Modbus and Node-RED,” Procedia Computer

Science, 2018. 130: 583-588. doi:

10.1016/j.procs.2018.04.107.

[23] Jiri Skovranek, Martin Pies, Radovan Hajovsky,

“Use of the IQRF and Node-RED technology for

control and visualization in an IQMESH network,”

IFAC Conferences on Programmable Devices and

Embedded Systems (PDeS), Ostrava, 2018, pp. 295-

300. doi: 10.1016/j.ifacol.2018.07.169.

