
Alma Mater Studiorum · Università di Bologna
Campus di Cesena

Scuola di Ingegneria e Architettura

Corso di Laurea Magistrale in Ingegneria e Scienze
Informatiche

A Reinforcement Learning approach

to discriminate unsafe devices in
aggregate computing systems

Relatore:
Prof. Mirko Viroli

Corelatore:
Dott. Roberto Casadei

Presentata da:
Chiara Volonnino

Sessione III
Anno Accademico 2018/1019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AMS Tesi di Laurea

https://core.ac.uk/display/288476842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

“Knowing is not enough; we must apply.
Willing is not enough; we must do.”

Cit. Leonardo Da Vinci

Contents

Abstract 13

Introduction 15

1 Reinforcement Learning 19
1.1 Learning Techniques . 19
1.2 Elements of Reinforcement Learning 20

1.2.1 Optimal Policy . 21
1.2.2 Exploration vs. Exploitation 22

1.3 Markov Decision Process . 22
1.4 Model-based Learning . 23

1.4.1 Dynamic Programming 24
1.5 Model-free Learning . 25

1.5.1 Monte Carlo Learning 25
1.5.2 Temporal-Difference Learning 28

1.6 Multi-agent Reinforcement Learning 29
1.6.1 Related Works . 30

2 Aggregate Computing 33
2.1 Collective Adaptive Computing 33
2.2 Aggregate Computational Model 34

2.2.1 Computational Field 35
2.2.2 Aggregate Programming Stack 35

2.3 ScaFi . 38
2.4 Alchemist . 39
2.5 Aggregate Computing and Security 40

2.5.1 Related work . 41

3 Analysis 45
3.1 Requirements . 45

3.1.1 Scala Library for Reinforcement Learning 45

3

3.1.2 Reinforcement Learning-based Trust Framework 46
3.2 Requirements Analysis . 46
3.3 Problem Analysis . 47
3.4 Domain Model: Overview . 50

4 Design 53
4.1 Design Architecture . 53

4.1.1 Reinforcement Learning Model 54
4.1.2 Reinforcement Learning Engine 56
4.1.3 Monte Carlo Learning 56

4.2 The Overall System’s Flow . 57

5 Implementation 59
5.1 Project Organisation . 59
5.2 Model Implementation . 60

5.2.1 Generic Reinforcement Learning Model 60
5.2.2 Generic Reinforcement Learning Engine 63
5.2.3 Monte Carlo Implementation 64

5.3 Application Logic Implementation 67
5.4 Trust Algorithm . 69
5.5 Update Q-table Implementation 70
5.6 Simulations . 71

5.6.1 Application Flow . 72
5.7 How reinforcement learning fits aggregate computing 73

6 Evaluation 75
6.1 Requirements satisfaction . 75

6.1.1 Scala Library for Reinforcement Learning 75
6.1.2 Reinforcement Learning-based Trust Framework 76

6.2 Case Study: Trust-based Gradients 76
6.2.1 Simulation Setup . 76
6.2.2 Graphical Evolution of the Simulation 77
6.2.3 Solution 1: Trust or Classic Gradient 79
6.2.4 Solution 2: Trust, Classic or Mix Gradient 80
6.2.5 Solution 3: Action Selection Based on isTrusted Value 82
6.2.6 Solution 4: Action Selection Based on trustValue . . 83

6.3 Results . 85

7 Conclusion 87
7.1 Discussion . 87
7.2 Further Developments . 88

4

References 88

5

List of Figures

1.1 The agent–environment interaction in a Markov decision process 20
1.2 Monte Carlo control . 27
1.3 Monte Carlo exploring start pseudo-code 28
1.4 Q-learning pseudo-code . 29

2.1 Physical sight according to computational fields logic 35
2.2 Aggregate programming stack 37
2.3 Computational model of Alchemist 40

3.1 Experiment’s reinforcement learning interaction cycle 49
3.2 System use-cases diagram . 50
3.3 First system architecture design 50

4.1 Design architecture . 54
4.2 Reinforcement learning model design architecture. 55
4.3 Reinforcement learning engine design architecture. 56
4.4 Monte Carlo learning design architecture. 57
4.5 Overall system flow . 58

5.1 Application flow diagram . 73
5.2 Reinforcement learning fits in aggregate computing dynamics . 74

6.1 Phases of the experiment . 78

7

List of Code

2.1 Trust gradient implementation. 43
5.1 Q trait implementation. 61
5.2 Main methods of reinforcement learning. 61
5.3 Reinforcement learning parameters implementation. 62
5.4 Reinforcement learning engine implementation. 63
5.5 State and action implementations. 64
5.6 Return list implementation. 65
5.7 First-visit estimates implementation. 66
5.8 Computing of the G value implementation. 66
5.9 Updating of Q-table implementation. 66
5.10 Monte Carlo application logic implementation. 67
5.11 Generic interface in order to capture learning cycles. 68
5.12 Trust algorithm implementation. 69
5.13 Trust parameters implementation. 70
5.14 Implementation of Q-table update and management. 70
5.15 YAML file with configuration in order to launch the experiments. 71
6.1 Reward rule implementation. 77
6.2 Solution 1: trust or classic gradient implementation. 80
6.3 Solution 2: Trust or classic or mix implementation. 81
6.4 Solution 3: based on isTrusted value implementation. 83
6.5 Solution 4: based on trustValue implementation. 84

9

Summary of Notation

S Set of states

A(st) Set of actions that can be taken in state s

R Reward value, it can be positive, negative or zero

s Actual agent state

s′ Next agent state

a Actual action selected by an agent

r Reward value

t Discrete time step

T Final time step

π, π∗ Policy and optimal policy

vπ(s), v∗(s) Value function and optimal value function

qπ(s, a), q∗(s, a) State-value function and optimal state-value function (Q-function)

γ Discounted rate

E Expected return value

p(x) Probability density function when x is continuous

P (x) Probability mass function when x is discrete

P (x|y) Conditional probability of x given y
E−→ Complete policy evaluation
I−→ Complete policy improvement

α Learning rate

11

Abstract

Reinforcement learning is a machine learning approach that has been studied
for many years, but particularly nowadays the interest about this topic has
exponentially grown. Its purpose is to create autonomous agents able to sense
and act in their environment. They should learn to choose optimal actions
to achieve their goals, in order to maximise a cumulative reward. Based on
the knowledge of the environment, there are different solutions.

Aggregate programming is a paradigm that supports the large-scale pro-
gramming of adaptive systems by focusing on the behaviour of the cluster
instead of the singles. One promising aggregate programming approach is
based on the field calculus, that allows the definition of aggregate programs
by the functional composition of computational fields. A topic of interest re-
lated to Aggregate Computing is computer security. Aggregate Computing
systems are, in fact, vulnerable to security threats due to their distributed
nature, situatedness and openness, which can make participant nodes leave
and join the computation at any time.

A solution that enables to combine reinforcement learning, aggregate
computing and security, would be an interesting and innovative approach,
especially because there are no experiments so far that include this combi-
nation.

The goal of this thesis is to implement a Scala library for reinforcement
learning, which must be easily integrated with the aggregate computing con-
text. Starting from an existing work, on trust computation in aggregate
applications, we want to train a network, via reinforcement learning, which

13

through the calculation of the gradient – a fundamental pattern of collective
coordination – is able to identify and discriminate compromised nodes.

The dissertation work focused on: (i) development of a generic Scala
library that implements the reinforcement approach, in accord to an aggre-
gate computing model; (ii) development of a reinforcement learning based
solution; (iii) integration of the solution that allows us to calculate the trust
gradient.

Keywords: Aggregate Programming, Reinforcement Learning, Monte Carlo
Learning, Distributed Learning, Scala, Scafi, Alchemist.

14

Introduction

Reinforcement learning is a machine learning approach that has been studied
for many years, but particularly nowadays the interest about this topic is
exponentially growing. Its purpose is to create autonomous agents able to
sense and act in their environment. They should learn to choose optimal
actions to achieve their goals, in order to maximise a cumulative reward.
Based on the knowledge of the environment, there are different solutions.
Among the most known and used algorithm, we remember: Q-learning and
Monte Carlo learning.

Aggregate programming is a paradigm that supports the large-scale pro-
gramming of adaptive systems, by focusing on the behaviour of the cluster
rather than of the single ones. One promising aggregate programming ap-
proach is based on the field calculus, that allows the definition of aggregate
programs by the functional composition of computational fields. A topic of
interest related to Aggregate Computing is computer security. Aggregate
Computing systems are, in fact, vulnerable to security threats due to their
distributed nature, situatedness and openness, which can make participant
nodes leave and join the computation at any time.

A solution that enables to combine reinforcement learning, aggregate
computing and security is an interesting and innovative approach, especially
because there are no experiments so far that include this combination.

The goal of this thesis is to implement a Scala library for reinforcement
learning. This library must be easily integrated with the aggregate comput-
ing context. Starting from an existing work, we want to train a network,

15

16

via reinforcement learning, which, through the calculation of the gradient
– a fundamental pattern of collective coordination – is able to identify and
discriminate compromised nodes.

The dissertation work focused on:

1. the development of a generic Scala library that implements the rein-
forcement approach, in accord to an aggregate computing model;

2. the development of a reinforcement learning based solution;

3. the integration of the solution that allows us to calculate the trust
gradient.

It is notable that the initial design of the library has been authored by the
supervisors.

This thesis is conceptually organised into three parts.

In the first part, a background overview is provided. In chapter 1, Re-
inforcement Learning, the reinforcement learning approaches are introduced,
focusing on: main elements, different existing models and most famous al-
gorithms, like Q-learning and Monte Carlo learning. Then, the multi-agent
reinforcement learning is discussed. In chapter 2, Aggregate Computing, a
high-level description of the aggregate programming is offered. An outline
of the computational field is supplied and the aggregate programming stack,
based on the field calculation, is described.

The second part, which represents the main work of this thesis, covers the
implementation of the reinforcement learning library and its application in
an aggregate computing context in order to discriminate unsafe devices. In
chapter 3, Analysis, the requirements and the problem are cleared up. Then,
in chapter 4, Design, the architecture and the key elements of the design
of our prototype are outlined, while a more detailed view of the solution is
provided in chapter 5, Implementation.

Finally, the evaluation of the work is carried out in the last part. In
chapter 6, Evaluation, an assessment of our prototype compared to the re-

17

quirements and some experiments are reported. Then, included in chapter
7, Conclusion, some general, retrospective considerations.

Chapter 1

Reinforcement Learning

In this chapter we will make an overview of the reinforcement learning back-
ground, based on [20] and [3]. At first we will focus on the fundamentals,
like policy, function value and optimal condition, in a more specific way for
Markov decision processes. Then, we will cover some of the most famous
algorithms such as Dynamic Programming, Monte Carlo learning and Q-
learning. In the end we will consider reinforcement learning in a multi-agent
environment.

1.1 Learning Techniques

We will define learning programs as all computer programs which improve
their performances at some tasks through their experiences. More formally:
a computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in
T, as measured by P, improves with experience E [18].

In a more specific way we can talk about three different learning tech-
niques:

• Supervised Learning : a set of labeled examples representing input-
output relationships, is used to derive a model for discovering unknown
relationships, is provided by a knowledgeable external supervisor.

19

20 CHAPTER 1. REINFORCEMENT LEARNING

• Unsupervised Learning : the system is provided with a series of inputs,
representing the experience of the system, which must classify and or-
ganise in order to find structures hidden in collections of unlabeled
data.

• Reinforcement Learning : an agent able to sense and act in its environ-
ment should learn to choose optimal actions to achieve its goal.

Reinforcement Learning (RL) is a type of associative learning where a rela-
tionship between stimulus and response is studied. In classical conditioning,
instead, is considered the relationship between two stimulus. Essentially this
type of learning was born to learn from interactions.

1.2 Elements of Reinforcement Learning

According to [3] and [20], in reinforcement learning there is a decision maker
called agent, which interacts with its environment. Notably, as shown in
fig. 1.1, at time t = 0, 1, 2, . . . the agent is in state st ∈ S and chooses the
action at ∈ A(st). Then the agent receives a signal, rt+1 ∈ R, called reward,
and moves to the next state st+1. The reward can be positive or negative. A
positive reward is applied for increasing the action probability to be chosen,
on the contrary the action probability is decreased by negative reward. This

Figure 1.1: The agent–environment interaction in a Markov decision process
[20].

problem is modeled using the Markov Decision Problem (MDP), discussed

1.2. ELEMENTS OF REINFORCEMENT LEARNING 21

in section 1.3. Actually in reinforcement learning a solution is a sequence of
actions, and the agent should learn the best sequence in order to maximise
its total reward. The sequence of actions taken, from the first to the last
state (usually called terminal state), embodies an episode (or trial).

The policy π : S −→ A delineates the mapping from the perceived states
of the environment to the actions that can be taken, in other words the policy
defines the agent’s behaviour. While reward represents the signal received
in the immediate sense, the value function vπ(s) specifies what is good in
the long run. In this context, the agent’s objective is to learn a policy with
a view to maximise the expected return value. For the finite-horizon model
this value is defined by:

vπ(st) = Eπ[Rt+1 +Rt+2 +Rt+3 + · · ·+RT] = Eπ

[
T∑
k=0

Rt+k

]
(1.1)

However, the eq. (1.1) is problematic for continuous tasks, also there is no
prefixed limit to the episode. To solve this issue we use the infinite-horizon
discounted model :

vπ(st) = Eπ[Rt+1 + γRt+2 + γ2Rt+3 + · · ·+ γT−1RT] = Eπ

[∞∑
k=0

γkRt+k+1

]
(1.2)

where γ is the discount rate and 0 ≤ γ ≤ 1.
Similarly, we call state-value function (or Q-function) the expected

return, which is obtained starting from state s, taking the action a by fol-
lowing the policy π. It is denoted qπ(s, a) and is defined by:

qπ(s, a) = Eπ[Rt+1+γRt+2+γ
2Rt+3+ · · ·+γT−1RT] = Eπ

[∞∑
k=0

γkRt+k+1

]
(1.3)

1.2.1 Optimal Policy

A policy π is considered better than a policy π′ if its expected return is better
than π′ expected return for each s ∈ S, which means that vπ(s) ≥ vπ′(s) for
each s ∈ S. If π is better than π′, we can assert that π is an optimal policy,
and we denote it as π∗ [20]. There might be more than one optimal policy and

22 CHAPTER 1. REINFORCEMENT LEARNING

they necessary share the same state-value function, which is called optimal
state-value function, denoted v∗ and defined as:

v∗(s) = max
π

vπ(s) ∀s ∈ S (1.4)

Optimal policies also share the same optimal action-value function q∗, defined
as:

q∗(s, a) = max
π

qπ(s, a) ∀s ∈ S, ∀s ∈ A(s) (1.5)

It follows that for an optimal policy:

v∗(s) = max
a∈A(s)

q∗(s, a) ∀s ∈ S,∀s ∈ A(s) (1.6)

1.2.2 Exploration vs. Exploitation

One critical point of reinforcement learning is the trade-off between explo-
ration and exploitation. In fact, in order to obtain an high reward, an agent
must prefer actions it has already selected in the past and which have pro-
duced good results (exploitation), but to figure out which these actions are,
it must also try actions it has never selected before in order to make better
action selections in the future (exploration). The best case is when the
agent tries a variety of actions and progressively favours those that appear
to be the best.

The exploration–exploitation dilemma has been intensively studied by
mathematicians for many decades, it still remains unresolved [20].

1.3 Markov Decision Process

Reinforcement learning methods typically represent the environment in
the form of the Markov decision process (MDP). The main difference be-
tween classical dynamic programming methods and reinforcement learning
algorithms is the lattice, which does not assume the same knowledge of an
exact mathematical model. In fact it does not matter to know how it is

1.4. MODEL-BASED LEARNING 23

exactly done but, more generally, we will define an overall assumption about
its properties.

A Markov Decision Process is formally defined by [20]:

• S: finished set of states.

• A: finished set of actions.

• T : transition function T : S × A −→ Π(S), which assigns to each
action-state pair a probability distribution on S.

• R: reinforcement function R : S ×A×S −→ R, which assigns a numer-
ical value at each possible transition.

As shown in fig. 1.1 the interaction between agent and environment occurs
in the following way: at time t the agent senses the environment as st, based
on this value it takes an action at and the environment responses with an
immediate reward rt+1 = r(st, at). Then it changes its state st+1 = δ(st, at)

where δ and r are part of the environment and they are not necessarily known
by the agent, they can also be non-deterministic.

Markov property

A problem is defined by the Markov property if:

P [st+1 = s, rt+1 = r|st, at] = P [st+1, rt+1|st, at, rt, . . . , r1, s0, a0] (1.7)

which involves that the probability of each possible value of st+1 and rt+1

depends only on the predecessors state and action, st and At [20].

1.4 Model-based Learning

In themodel-based model we completely know the environment model param-
eters p(st+1, rt+1|st, at) and P (st+1, rt+1|st, at). Typically we do not need any
exploration and we can immediately solve the optimal policies and optimal
value-function by dynamic programming.

24 CHAPTER 1. REINFORCEMENT LEARNING

1.4.1 Dynamic Programming

Dynamic programming is a problem solving technique introduced in the 1940s
by the american mathematician Richard Bellman. It refers to a collection
of algorithms that can be used to compute optimal policies when a perfect
model of the environment, like a Markov decision process, is given.

Classical dynamic programming methods are limited used in reinforce-
ment learning, because they are computational expansive and a lot of their
assumptions include a perfect environment model. They are, however, very
important from a theoretical point of view. As the matter of fact, some of
reinforcement learning methods use value-functions to organise and structure
the search of good policies, like is done in dynamic programming, by using
the Bellman equation [20].

Bellman Equation

The Bellman equations formulate the problem of the maximising the sum
of the expected reward in terms of its recursive relationship with the value-
function. Joining together eq. (1.6) with eq. (1.3) we get:

v∗ = max
a
Eπ∗ [Gt|st = s, at = a]

= max
a
Eπ∗

[
Rt + γ

∞∑
k=0

γkRt+k+1|st = s, at = a

]
= max

a

∑
s′

p(s′|s, a)[Rt + γv∗(s
′)]

(1.8)

where Gt is the expected return and p(s′|s, a) is the probability of arriving
in state s′ starting from state s taking action a. In the first step we break
down the Gt value recursively (strength of the equation).

For q∗ the optimal equation is defined by eq. (1.3) and eq. (1.5) is:

q∗(s, a) = E[Rt + γmax
a′

q∗(st+1, a
′)|st = s, at = a]

=
∑
s′

p(s′|s, a)[Rt + γmax
a′

q∗(s
′, a′)]

(1.9)

1.5. MODEL-FREE LEARNING 25

1.5 Model-free Learning

Opposite to model-based learning there is model-free learning, in which the
prediction estimates the value function of an unknown MDP.

The three main methods for model-free predictions are:

• Monte-Carlo Learning

• Temporal-Difference Learning

• TD(λ)

1.5.1 Monte Carlo Learning

The Monte Carlo methods are used to solve reinforcement learning problems,
it employs averaging sample returns for episodic tasks.

The idea is to split the experience in episodes, each episode can eventually
terminate no matter what actions are selected [20]. Only when an episode
terminates the policy and the value -unction change. Summarising, at first
the state-value function from the experience is estimated, then is computed
the average of the returns obtained after visiting a certain state. As many
returns are observed as more the average should converge to the expected
value.

First-visit vs Every-visit

We defined as visit to s each occurrence of state s in an episode. We have
two approaches to calculate the expected reward, depending on how it is
estimated vπ(s) [similarly qπ(s, a)].

• First-visit (FV): estimates vπ(s) as the average of the returns for the
first visit to s.

• Every-visit (EV): estimates vπ(s) as the average of the returns for all
the visits to s.

26 CHAPTER 1. REINFORCEMENT LEARNING

Example:

Two episodes are given:

1. A + 1 −→ A + 3 −→ B + 4 −→ A − 1 −→ B − 1 −→ end

2. B − 1 −→ A + 3 −→ B − 1 −→ A − 1 −→ end

where s+r −→ s′ represents a transition from state s to state s′ with a reward
r.

Table 1.1: Calculate v(s) using first-visit approach

FV Episode 1 Episode 2 v(s)

A (+ 1 + 3 + 4 − 1 − 1) = 6 (+ 3 − 1 − 1) = 1
1

2
(6 + 1) = 3, 5

B (+ 4 - 1 - 1) = 2 (- 1 + 3 - 1 - 1) = 0
1

2
(2 + 0) = 1

Table 1.2: Calculate v(s) using every-visit approach

EV Episode 1 Episode 2 v(s)

A

(+ 1 + 3 + 4 − 1 − 1) = 6
(+ 3 + 4 − 1 − 1) = 5
(− 1 − 1) = − 2
total: 9

(+ 3 − 1 − 1) = 1
− 1
total: 0

1

5
(9 + 0) = 1, 8

B
(+ 4 − 1 − 1) = 2
− 1
total:− 1

(− 1 + 3 − 1 − 1) = 0
(− 1 − 1) = − 2
total: − 2

1

4
(−1− 2) = −0, 25

Exploring Start

When a model of the environment is present the estimate of the action-
value function is obtained by simply computing a policy like in dynamic
programming. Vice versa, if the model is not defined, the state-value alone
is not sufficient because some (s, a) pairs may never be visited. To solved
this problem Monte Carlo learning adopts the exploring start (ES), which

1.5. MODEL-FREE LEARNING 27

specifies that the episodes started in (s, a) pair and that every pairs have a
non-zero probability of being selected as the start.

The pseudo-code of the Monte Carlo exploring start algorithm with first-
visit approach is available in fig. 1.3.

This approach sometimes is useful but generally it can not be relied,
particularly when the agent learns directly from actual interactions with the
environment. In this case stochastic policies, which have non-zero probability
of selecting all actions in each state, are considered the best option. [20].

Generalised Policy Iteration

Generalised Policy Iteration (GPI) is an iterative schema based on two pro-
cesses (fig. 1.2):

Figure 1.2: Monte Carlo control [20].

• Policy evaluation: builds an approximation of the value-function
relying on the current policy.

• Policy improvement: improves the current policy relying on the cur-
rent value-function. Particularly the improvement is done by making
a greedy policy respect the current value-function.

It is proven that, begin with an arbitrary policy π0 will end with an optimal
policy π∗ and an optimal action-value function q∗: π0

E−→ qπ0
I−→ π1

E−→ qπ1
I−→

. . .
I−→ π∗

E−→ q∗.

28 CHAPTER 1. REINFORCEMENT LEARNING

Figure 1.3: Monte Carlo exploring start using first visit pseudo-code [20].

1.5.2 Temporal-Difference Learning

Temporal-difference (TD) methods are a combination of Monte Carlo and
dynamic programming ideas. After all, temporal-difference techniques can
learn directly from experience; they evaluate the policy by calculating the
temporal error, which is the difference between the new estimate and the old
estimate of the value-function. The value-function updating equations is:

V (St)←− V (St) + α[Rt+1 + γV (St+1)− V (St)] (1.10)

where α is the learning rate. According to [20], when the update target
is Rt+1 + γV (St+1) − V (St) we are in the case of TD(0), or one-step TD,
methods, a special case of TD(λ) where λ > 1. Since TD(0) bases its update
only on a part of the existing estimates, we say that it is a bootstrapping
method, like DP. Therefore temporal-difference algorithms approximate the
value-function at each time step t, in which a non-terminal state is visited,
but the value-function is changed only once, by the sum of all increments.
This type of update is called batch updating : it reduces the variance but
increases the bias in the estimate of the value-function.

1.6. MULTI-AGENT REINFORCEMENT LEARNING 29

Q-learning

One of the most famous temporal-difference algorithms is Q-learning, which is
an off is an off-policy algorithm because it directly approximates Q regardless
of the policy it is following.

Starting from the eq. (1.10) we obtain for the Q-learning method:

Q(St, At)←− Q(St, At) + α[Rt+1 + γmax
a
Q(St+1, a)−Q(St, At)] (1.11)

The algorithm is described in fig. 1.4.

Usually a table is used in order to store the value-function values, but the
more the number of the states and actions increases the more this algorithm
is computationally inefficient. To solve this problem function approximators
have been introduced.

Figure 1.4: Q-learning pseudo-code [20].

1.6 Multi-agent Reinforcement Learning

The problem of reinforcement learning in multi-agent systems (MAS) has
been studied for a vary long time, most widely over recent years, carried out
with a lot of experiments. All these studies figured out that the collaboration
of several agents can bring a benefit to the agents community, improving the

30 CHAPTER 1. REINFORCEMENT LEARNING

performances, the accuracy and convergence of the problem solution [20].
Furthermore, MAS has connections to social and collective aspects of the
agent behaviour. Obviously, those systems are usually formed by a large
number of agents whose involve an high computation time and the need of
keeping a large amount of data memorised; without forgetting that we are
dealing, by definition, with strongly decentralized and partially observable
architectures.

In multi-agent systems all the agents try to maximise a common reward
they simultaneously receive. This scenario is called cooperative game (or
team problem). This means that each individual agent has only limited abil-
ity to affect the reward, because each single agent contributes just for one
component of the collective action; therefore an agent behaviour depends on
how all the other agents are behaving [20].

For those reasons, two main troubles have arisen: how to decrease the
total number of episodes necessary to make the agents learn how to solve the
problem and how to decrease the number of stored data for each agent.

1.6.1 Related Works

Some works that have tried to solve, in different ways, the above mentioned
problems.

Architectural Solutions

Some solutions, to improve accuracy and performances, include two types of
agents, according to the master-slave architecture, [7], [14], [16], [23]. Has
been proven that the convergence of these solutions is better and more effi-
cient than solutions that do not include the use of master-slave architecture.

It is also clear, as shown in [11], [16], [10], [17], [9], [23], that an agent’s
decision is conditioned by its neighbours’ behaviours. Others, propose to
use message passing to increase self-organization and coordination between
agents, like in [11], in which they have done so using the joint-value function
approximation as a linear combination of local-value functions. This function

1.6. MULTI-AGENT REINFORCEMENT LEARNING 31

of factored values allows the agents to globally calculate the optimal joint-
action using a very natural message passing scheme.

Conceptual Solutions

In [12], to reduce the amount of stored data, they propose to use a state
aggregation, that, according to some constraints of similarity and closeness
between different states, allows coupling and processing the values of those
states like it were only one; so you will always have the same return value
for every processed action in that subset of states. A similar solution is
introduced in [23] which poses the problem as a clustering problem, in this
case we want to pair states and improve communication between different
agents.

Some solutions, [15], [11], [10], [9], in order to reduce the number of data,
suggest to simply keep the best value or the most probable in the value
function and discarding the others.

Challenges

However, it remains clear that the question of which is the best approach is
still open. A recent challenge, called Challenges and Opportunities for Multi-
Agent Reinforcement Learning (COMARL) [8], has been issued by AAAI
Spring Symposium Series in cooperation with the Stanford University Com-
puter Science Department. COMARL’s goal is to bring together researchers
from all over the world to try to solve many of the challenges that are still
open in multi-agent reinforcement learning.

Chapter 2

Aggregate Computing

In this chapter we will introduce the main issues concerning aggregate com-
puting an why has been necessary to move towards this approach. Then, the
ScaFi framework and the Alchemist simulator will be presented and anal-
ysed. At last we overview the relation between Aggregate Computing and
computer security.

2.1 Collective Adaptive Computing

The exponential growth of distributed networked IT devices brought to the
world of the Internet of Things (IoT). The need of interaction and cooperation
between those devices have been two of the main reasons that made bring
together our day life objects with the digital world. To do so the most
natural paradigm is single-device viewpoint, but even if it is useful, for certain
applications it still has some limits; in fact it was proved to be inappropriate
due to the increasing number of devices any the strong bond it has with their
spatial concept. [13].

To solve those issues there are several possible methods, one of them is
Aggregate Computing (AC). According to [13], [6], aggregate computing
is a large scale approach to distributed systems programming with which it
is possible to define a generic collective behaviour of the system in high-level

33

34 CHAPTER 2. AGGREGATE COMPUTING

and modular way. Furthermore, this approach supports the programming of
self-adaptive/self-organising behaviours.

2.2 Aggregate Computational Model

An aggregate system is a compound of computational devices. All of these
devices perform the same aggregate program in asynchronous rounds of com-
putation and define an export that represents its last state value that will be
propagate at the neighbours during the executions.

In each round is defined by four steps, as indicated in [6]:

• Creation of the execution context state which includes the latest com-
puted local value, the most recent exports received from neighbours,
and a snapshot of local sensor values.

• Local execution of the aggregate program, which, based on context state,
yields the new state (or export).

• Propagation of the computed export to the entire neighbourhood, done
by a broadcast.

• Activation of the actuators, with the input given by the result of com-
putation.

The aggregate computing idea, as shown in fig. 2.1, is to program the
aggregate not individual device, and it is based on three main fundamentals,
reported in [13]:

• the “machine” being programmed is a region of the computational en-
vironment whose specific details are abstracted away-perhaps even to
a pure spatial continuum;

• the program is specified as manipulation of data constructs with spatial
and temporal extent across that region;

2.2. AGGREGATE COMPUTATIONAL MODEL 35

Figure 2.1: Physical sight according to computational fields logic of a network
of devices [21].

• these manipulations are actually executed by the individual devices
in the region, using resilient coordination mechanisms and proximity
based interactions.

In this context, the reference elaboration process can be seen as an atomic
manipulation of a collective data structure and the model can be described
by the computational fields and the field calculus. [6]

2.2.1 Computational Field

A computational field (fig. 2.1) is a distributed data structure that asso-
ciates a value to each device localised into the space-time. More formally, a
field as a space-time structure is defined φ : D −→ V , where:

• D is the events domain. When an event E is defined E = 〈δ, t, p〉 which
consists of device δ observed at time t in position p.

• V is the field value and can be any data value.

2.2.2 Aggregate Programming Stack

The aggregate computing stack, as shown in fig. 2.2, is built as a multi-layer
structure. Following a brief description is provided.

36 CHAPTER 2. AGGREGATE COMPUTING

Device Capabilities

In the low layer the devices capabilities are abstracted and composed with
the purpose of creating a common level.

Field Calculus

Field calculus [22] is a theoretical model used to describe a set of primitives to
manipulate a computational field in a global and expressive way. In particular
we have:

• Function: b(e1, . . . , en).
Function b is applied to inputs e1, . . . , en.

• Dynamic: rep(x←− v){s1; . . . ; sn}.
Defines a local variable x, initialised by the value v and periodically
updated with the results obtained by computing s1, . . . , sn.

• Interaction: nbr(s).
Defines a map that associates each device in the neighbourhood to its
last value s.

• Restriction: if(e){s1; . . . ; sn}else{s′1; . . . ; s′n}.
This operator separates the network in different regions. Each region,
based on e condition, runs different programs.

These constructs allow portability, infrastructure independency and mod-
ularity.

Building Blocks

In the third layer there is the building block, it identifies a generic collection
in order to add a resilience coordination layer to the infrastructure. Many
building blocks can be combined to create advanced applications using aggre-
gate programming of collective systems [13]. There are four types of building
blocks:

2.2. AGGREGATE COMPUTATIONAL MODEL 37

Figure 2.2: Aggregate programming stack [13].

• Gradient-cast : G(source, init, metric, accumulator).
It spreads information across the space through distance estimation
and broadcast.

• Converge-cast : C(potential, accumulate, local, null).
It collects information through the space and accumulates values up to
a potential field.

• Time-decay : T(initial, decay).
Information across time.

• Sparse-choice: S(grain, metric).
It is useful to create partitions and to select subsets of devices.

All those building blocks are self-stabilising, this means that all mecha-

38 CHAPTER 2. AGGREGATE COMPUTING

nisms of this level can reach the corrected state in a finite number of steps,
regardless of their initial state [4].

Developer APIs

The second-to-last layer provides a user-friendly API. These developer APIs
are resilient and safely composable since they rely on resilient operators and
field calculus constructs. They can, in turn, be combined in order to raise the
abstraction level and ease the development of applications for IoT scenarios
[13].

2.3 ScaFi

ScaFi1 (Scala Fields) is a Scala-based library and framework born for the
purpose of providing an integrated environment to code aggregate systems,
exploiting the advantages of the Scala programming language. ScaFi imple-
ments a language for field calculus, embedded within Scala as an internal
domain specific language (DSL), and provides a platform and APIs to simu-
late and execute aggregate applications. Moreover, it offers a platform which
supports both the definition and the execution of distributed aggregate ap-
plications [2].

More details about ScaFi can be found in its official documentation [2].

Why Scala?

Scala is a modern language interoperable with Java, it integrates the object-
oriented and functional paradigms in an excellent way and offers advanced
features to support the design of high-level software libraries and fluent APIs
[6].

1https://github.com/scafi/scafi

https://github.com/scafi/scafi

2.4. ALCHEMIST 39

2.4 Alchemist

Alchemist2 is a simulator for pervasive, aggregate and nature-inspired com-
puting.

As shown in fig. 2.3, in Alchemist, the simulation world is composed of
the following entities [19]:

• Molecule: an abstraction representing the node’s information.

• Concentration: the value associated to a particular molecule.

• Node: a container of molecules and reactions which live inside an en-
vironment.

• Environment : space abstraction which contains the nodes.

• Linking rule: function of the current status of the environment that
associates to each node a neighbourhood.

• Neighbourhood : an entity composed by a node and a set of nodes, the
neighbours.

• Reaction: any event that can change the status of the environment.

• Condition: a function that takes the current environment as input
and returns a boolean and a number. The boolean value define if the
reaction has to be taken, the number influences the reaction speed.

• Action: models an environment change.

More details about Alchemist can be found in its official documentation
[1].

2https://github.com/AlchemistSimulator/Alchemist

https://github.com/AlchemistSimulator/Alchemist

40 CHAPTER 2. AGGREGATE COMPUTING

Figure 2.3: Computational model of Alchemist [19].

Incarnation

The framework presents a modular and extensible architecture. An Al-
chemist incarnation includes a type definition of concentration and possibly a
set of specific conditions, actions and (rarely) environments. In other words,
an incarnation is a concrete instance of an Alchemist meta-model [19]. The
standalone distribution comes with: Protelis, Sapere, Biochemistry and Scafi
[1].

Simulation

In good order to write a simulation is necessary to define a specific incarnation
and fully describe environment and reactions, using YAML language.

2.5 Aggregate Computing and Security

One of the topics of interest related to Aggregate Computing is computer se-
curity. In compliance with [5], Aggregate Computing systems are vulnerable

2.5. AGGREGATE COMPUTING AND SECURITY 41

to security threats due to their distributed nature, situatedness and open-
ness, which can make participant nodes leave and join the computation at
any time.

The attack surface is very large; in fact attacks may hit:

• Infrastructure: the physical environment may be manipulated and/or
the communication network interrupted.

• Physical devices : the hardware, sensors and actuators may be altered
or hijacked.

• Platform level : databases may be sabotaged and fake messages can be
sent.

Despite this, the capacity of Aggregate Computing to abstract from the sys-
tem’s execution strategy can provide resistance to certain types of attack, or
anyway can provide to the programmer the possibility of make design choices
that take into account the security of the system. As a matter of fact, in-
frastructural malfunctioning could be avoided by adjusting interaction and
computation consistent with communication media and endpoints. For the
logical design instead, Aggregate Computing promotes decentralised systems
and ad-hoc networking where computation is physically distributed and peer-
to-peer interactions happen according to physical proximity, avoiding single
points of failure typical of central servers or cloud endpoints.

From a functional point of view, the decentralised nature and the pe-
culiar characteristics of adaptivity of Aggregate Computing approach make
aggregate applications resilient to intermittent or prolonged failure of some
nodes. However, the actual impact of node malfunctioning depends on many
factors, such as the topology of the network, its density and the role that a
node plays in the application [5].

2.5.1 Related work

In [5] the authors work on attacks to aggregate systems at application-level,
where they assume that nodes are untrusted and, potentially, can create and

42 CHAPTER 2. AGGREGATE COMPUTING

inject fake messages that can be received and used by their neighbourhood.
In particular the fake messages can be: malformed or well-formed. For mal-
formed messages there are no heavy problems because the Aggregate virtual
machine ensures that the nodes which emit this type of messages are auto-
matically ignored. Instead, if well-formed messages with malevolent payload
are broadcasted, they can make the nodes decide erroneously and potentially
compromise the entire network spreading those malicious information.

This problem arises due to the cooperative nature of the aggregate appli-
cations, in fact in aggregate systems each device has to appropriately par-
ticipate to the calculation process and at the same time it has to maintain
autonomy with respect of mobility, sensing and actuation. For these reasons
an appropriate security strategy would require countermeasures to be applied
across the aggregate computing stack.

Trust Framework

Typically the trusted relations are based on direct observations and advises
gathered interacting with the neighbourhood. So once a trust metric is de-
fined, the trust-base decision-making policy is responsible of comparing the
trust estimated by a node, called trustor, with the expected behaviour of an-
other node, called trustee, and a trust threshold value. In current literature
are presented several solutions, many of which are based on the Bayesian
approach, where the trustor uses an unknown parameter θ to predict a prob-
abilistic future behaviour of the trustee. There are several probability prior
distributions solutions, particularly in [5] the beta distribution is employed
together with an ageing mechanism applied to the Aggregate Computing.
In the beta distribution there are two parameters, α and β, which count
the number of positive and negative observations experienced by the trustor
while interacting with the trustee; the evaluation of each observation depends
from the context and is formally computed:

E(Beta(α + 1, β + 1)) =
α + 1

α + β + 2
(2.1)

2.5. AGGREGATE COMPUTING AND SECURITY 43

where α and β define the quality of the information that the nodes share
at each round to define their trustworthiness. More specifically, the quality
estimate is based on the calculation of the gradient, and the node is consid-
ered trust if for each node the value is similar to the neighbourhood values.
Otherwise, when there are obvious perturbations the node is considered fake.
The code of [5] is the following:
rep(Double.PositiveInfinity){ distance =>

val dist = if(!fake) distance else fakeValue

def nbrDist = nbr{dist}

val n = countHood(nbrDist.isFinite)

val sumValues = sumHood(mux(nbrDist.isFinite){nbrDist} {0.0})

val xmean = sumValues/n

val sumSqDev = sumHood(mux(nbrDist.isFinite)

{Math.pow(dist -xmean , 2)} {0.0})

val s = Math.sqrt(sumSqDev / n)

mux(source) {0.0} {

val res = foldhoodPlus(Double.PositiveInfinity)(Math.min){

val trustParams = calculateTrustParams(dist , xmean , s)

val trustValue = beta(trustParams.a, trustParams.b)

val isTrusted =

if(trustParams.numObservations >= minObservations)

trustable(trustValue)

else true

val nbrId = nbr{mid()}

if(! isTrusted) {distrustedNbrs=nbrId :: distrustedNbrs}

val newg = mux(isTrusted)

{nbr{dist}+ nbrRange }{ Double.PositiveInfinity}

newg

}

res.orIf(_==Double.PositiveInfinity){dist}

{minHood(nbr{dist} + nbrRange)}

}

}

Listing 2.1: Trust gradient implementation.

It emerges that the structure used is that of a classic gradient where,
moreover, for each node:

• before and after the mux field, a data collection is performed. It is useful
for the purpose of verifying whether a node is considered trust or not;

• the trustValue is calculated using beta distribution;

44 CHAPTER 2. AGGREGATE COMPUTING

• if trustValue ≥ trustThreshold and the number of neighbours is
sufficiently high a node is considered trust. In this case the gradient is
normally calculated;

• otherwise, the node is considered as fake. In this case the node should
be ignored by the calculation of the gradient.

Starting from the work done in [5] we tried to implement a reinforce-
ment learning algorithm that was capable of discriminate unsafe devices in
aggregate computing systems. The work is outlined in the next chapter.

Chapter 3

Analysis

In this chapter we introduce our contribution. The development of the solu-
tion has been achieved with an iterative and incremental process where even
the requirements have been progressively refined.

In order to maintain a correct engineering approach: in the first section
we define the requirements and then we will analyse them. In the end we
will discuss and analyse our problem.

3.1 Requirements

In this section we will underline some requirements that are considered fun-
damental.

3.1.1 Scala Library for Reinforcement Learning

1. The implementation of a Scala library that is able to capture known
reinforcement learning algorithms.

(a) This library must capture the main concepts of reinforcement
learning: state, action, reward, Q-table, Q-function and policy.

(b) It must be written in Scala and must extract as much as possible
from the single case of study.

45

46 CHAPTER 3. ANALYSIS

(c) This solution must be flexibly applicable in various contexts.

2. The solution must be integrated and work with the Aggregate comput-
ing approach.

(a) It must allow aggregate computations and calculations.

(b) The interactions between the nodes are essential in order to pro-
duce results.

3. The solution must be tested with multiple episodes. For each episode
it must be possible to view the computed Q-table.

3.1.2 Reinforcement Learning-based Trust Framework

1. The trust solution implemented in [5] must be used as a basis for the
learning process.

(a) It must be integrable into various application designs.

(b) The solution should be improved by reinforcement learning.

2. Like in the trust solution, the reinforcement learning solution must be
capable of identifying and discriminating fake nodes.

3.2 Requirements Analysis

We will now analyse the above mentioned requirements.
First of all, it is immediately obvious that in order to implement and

test our solution it is necessary to use a simulator capable of supporting the
Aggregate Computing approach. So, from a structural point of view, the
system is shaped by a network of devices (or nodes) that stand in the same
environment; the single node behaviour emerges from the global environment
interactions. This means that, each individual node:

• interacts with its neighbourhood by transmitting its value (or state)
and receiving messages from its neighbours;

3.3. PROBLEM ANALYSIS 47

• can sense and act on its environment by its sensors and actuators.

Given the observations, the reinforcement learning algorithm used by us
must be capable of capture learning only when the entire network has finished
to calculate its state, because we are interested in the computation of the
community, not of the individual. So it has been immediately clear that we
had to work in a multi-agent reinforcement learning (MARL) context.

There are several reinforcement learning algorithms, they all require the
right manipulation of environment concept and agent, consequently every-
thing that was defined in the requirements. However these algorithms differ
from each other for:

• knowledge of the environment: what can be totally known, partially
known and totally unknown;

• immediately and long round reward processing;

• Q-table and policy updating.

For better clarity and understanding it is required to save the results
obtained during each learning episode.

Instead, regarding the trust solution, it must be reorganised and inte-
grated as required. For greater abstraction, we decided to encapsulate the
trust solution within our global solution.

For identifying and discriminating fake nodes, through aggregate compu-
tations is necessary to identify those nodes which send perturbed values to
their neighbourhood:

• Check which nodes send different values.

• Ignore these values during subsequent processing.

3.3 Problem Analysis

Working in an aggregate environment where, by definition, different devices
exist and cooperate in the same environment, it is obvious that the environ-

48 CHAPTER 3. ANALYSIS

ment is partially known and therefore each agent is able to recognise and
communicate only with its own range of neighbours. Model-based learn-
ing solutions can hence be excluded, and model-free approaches begin to be
explored.

After a careful analysis of the literature, we decided to use the Monte
Carlo approach as reinforcement learning algorithm. This choice was taken
because we needed the calculation of the result to be done only when an
episode is declared concluded, in order to allow to capture the result obtained
from the final interactions of the devices’ network and therefore have an
overall result. This can be seen as a TD(λ) approach where λ is not fixed;
the policy is updated only at the end, using real sample results, but at the
same time we incrementally try to improve the results on the basis of the
previous optimal policy.

A very important technical issue to underline is the problem of the “align-
ment” in aggregate computing. In fact, the network devices can interact with
each other only if they run the same program. But in a program devices only
interact in common sub-computations. This is in line with the fact that we
have global specifications which must lead to coherent collective behaviours.

Based on the trust algorithm, it seemed natural to maintain the compu-
tation of the gradient as a case of study. In particular, starting from one or
more nodes defined as source, each nodes must:

• Calculate its distance from the source node. If more sources are present,
the distance from the nearest one is only evaluated.

• Send its state to its neighbours.

• Receive neighbours’ values.

• Evaluate through the trust framework if a given neighbour is reliable
or not:

– If it is trusted, the gradient is calculated

– Otherwise is considered as a fake node.

3.3. PROBLEM ANALYSIS 49

Figure 3.1: Reinforcement Learning interaction cycle. This represents the
basic model from which our work started.

Starting from these first considerations it is now possible to define the
learning model implemented. As shown in fig. 3.1 an agent which is in a
given state selects an action (among those that can be performed in that
state) based on the Q-table value and a given exploration strategy. This
action produces environment changes, then the agent receives a reward and
changes its state.

More specifically:

• The agent chooses an (s,a) pair.

• The agent receives a reward based on the (s,a) pair.

• The agent computes the gradient, evaluates neighbours for trust and
changes its state.

After these observations we also define a use case (fig. 3.2) that allows us
to have a global panoramic of our system.

50 CHAPTER 3. ANALYSIS

Figure 3.2: System use-cases diagram.

3.4 Domain Model: Overview

After a careful analysis of the requirements, four main components were
immediately found (fig. 3.3):

Figure 3.3: First system architecture design.

• EnvironmentModel: this component models the main reinforcement
learning concepts and the environment.

• ReinforcementLearning: implements the reinforcement learning en-
gine.

• QTable: manages Q-table update and storage.

3.4. DOMAIN MODEL: OVERVIEW 51

• TrustAlgorithm: it contains the modified gradient code, which allows
to identify and dismiss the fake neighbours. In other words it contains
the trust algorithm.

Chapter 4

Design

At this point we are able to define a design model capable of describing,
more or less in detail, how the implementation should be done. This chap-
ter intends to describe the main elements of our application’s design. At
first a general design architecture is presented, then each component will be
separately analysed in detail. This architecture has been projected in collab-
oration with thesis supervisors and starting from a prototype they supplied.

4.1 Design Architecture

Going in great detail the main components that make up our system are
(fig. 4.1):

• MCRL: defines a trait of reinforcement learning.

• MCRLImpl: implements MCRL and characterises a learning core.

• ManagementQtable: set of functions to manage the Q-table.

• GMCRL: a singleton object useful to determine the learning engine.

• MonteCarloLearning: implements the logic of our experiment.

• TrustAlgorithm: encapsulates the trust algorithm presented in sec-
tion 2.5.1.

53

54 CHAPTER 4. DESIGN

Figure 4.1: Design architecture.

Each individual component is described in depth below.

4.1.1 Reinforcement Learning Model

As defined in fig. 4.2, an attempt to define a reinforcement learning model,
regardless of the algorithm used and capable of capturing all the common
concepts of reinforcement, was made.

The Q trait extends the concept of (S,A) ⇒ R, that corresponds to the
reward associated to a given pair (state, action) and it is implemented by
the class QFunction, a map-base implementation to manages Q function. In
addition Q defines fundamental concepts of reinforcement learning, like the
update table model, optimal value-function and possible exploration strate-
gies. In particular the exploration strategy can be greedy or ε-greedy:

• greedy: selects action with highest value.

• ε-greedy: continues infinitely to explore and:

– with probability 1− ε selects the action with the highest value;

4.1. DESIGN ARCHITECTURE 55

Figure 4.2: Reinforcement learning model design architecture.

– with probability ε selects a random action.

LearningParameters is a support class used here to define the con-
stant variables employed in Monte Carlo, such as the gamma (discount value),
alpha (learning rate) and epsilon parameters.

Finally, RealTimeMCLearning is an essential component for our imple-
mentation. This class provided a suite with methods needed for the rein-
forcement learning. In fact here we find:

• takeGreedyAction: implements the greedy exploration strategy;

• takeEpsilonGreedyAction: implements the ε-greedy exploration
strategy;

• observeEnvAndUpdate: allows to update the values in the Q-table at
the end of each episode. We implemented it as a map of the type:
(state, action) → reward.

In this class we also defined some specifics of the Monte Carlo learning
method, like an estimates rule and the relative rewards’ processing.

56 CHAPTER 4. DESIGN

4.1.2 Reinforcement Learning Engine

We present the library engine. As outlined in fig. 4.3, we created here the
access point to the implementation of the reinforcement model and the main
data structures useful to manage the algorithm. Furthermore, the definition
of the different sets of state and action is made possible thanks to the GState
and GActions traits.

Figure 4.3: Reinforcement learning engine design architecture.

4.1.3 Monte Carlo Learning

In fig. 4.4 we want to capture the logic of the experiment. As already said,
GMCRL allows us to access the engine and therefore the model of reinforcement
learning introduced in section 4.1.2 and section 4.1.1. New concepts include:

• RlBasedAlgorithm: trait that defines the application logic.

• RLBasedradient: implements fundamental methods in order to exe-
cute our experiment. We defined here:

– Run: computes the gradient using the methods defined according
to the experiment. In our case it will initiate the trust gradient.

– Reward: defines the immediate reward value, following a given
rule.

4.2. THE OVERALL SYSTEM’S FLOW 57

– State: defines the rule for assessing the current agent’s state.

• ManagementQTable: encapsulates the update logic of the Q-table value
and provides episodes’ management support.

• MonteCarloLearning: the main class, which allows the experiment to
be performed.

Figure 4.4: Monte Carlo learning design architecture.

4.2 The Overall System’s Flow

The fig. 4.5 shows the overall system flow from the beginning of the applica-
tion, through the creation of the Monte Carlo model and the reinforcement
learning library as the result of the learning instance call, and ending with
the episode termination.

First the application initialise the environment. Then that the Monte
Carlo Learning can require to the reinforcement learning Scala library to cre-
ate the useful to our model data structures like qTable or genereteEpisode.
When the initialisation is done, the Monte Carlo model runs the reinforce-
ment learning engine. Therefore, until the episode is over, each node:

1. set its state;

2. chooses an action following the exploration strategy;

3. it is awarded a reward based on the selected state-action pair;

58 CHAPTER 4. DESIGN

4. updates the genereteEpisode structure adding the sequence (state,
action) → reward;

5. process the new gradient calling the trust algorithm in order to detect
the fake node. At the end it return the gradient value and it change
the environment.

When this cycle is done, the application calls the Q-table update manager.
For each state and action:

1. the first-visit estimates is calculated;

2. on the basis of the first-visit result and according to the learning rules
the Q-table is updated.

This flow is repeated for each learning episode.

Figure 4.5: Overall system flow.

Chapter 5

Implementation

Based on the design model delineated in chapter 4 now we want to present
our implementation in detail. Therefore, in this chapter we will specify the
implementation choices, with references to code, which brought us to the
creation of our library.

Outline:

• Project organization

• Reinforcement learning library implementation

• Monte Carlo learning implementation

• Application logic implementation

• Simulation

5.1 Project Organisation

For greater organisation, the project has been divided in packages as follows:

• model: implements the reinforcement learning based model and its
functionality. In other words, it represents the core of our library.

59

60 CHAPTER 5. IMPLEMENTATION

• trustAlgorithm: includes the refactored work of [5].

• update: implements Q-table end episode management.

• caseStudy: contains example programs.

The project is versioned with Git and uses Gradle Build Tool for project
and build automation.

5.2 Model Implementation

Starting from a prototype already provided by the supervisors, we have pro-
gressively defined the library model. The solution was implemented in Scala1

using a few features and techniques described in chapter 1 and chapter 2.
This allowed us to define a flexible Scala library for reinforcement learning
applicable to Aggregate Computing contexts.

5.2.1 Generic Reinforcement Learning Model

First, an interface to manage the learning model has been provided. It has
the task of defining the main concepts of the learning process, abstracting
from the selected algorithm type.

Particularly, as specified in section 1.2, we define:

• Policy: delineates the mapping from the perceived states of the envi-
ronment to the actions that can be taken.

• VFunction: identifies the best cumulative total reward for a given state.

The V-function and the policy must be optimised and therefore it is
necessary to identify the optimal policy and optimal value-function.

• Exploration Strategy : what can be greedy or ε-greedy. Where:

– a greedy strategy privileges exploitation;
1https://www.scala-lang.org/

https://www.scala-lang.org/

5.2. MODEL IMPLEMENTATION 61

– an ε-greedy strategy privileges exploration.

For a better balance between exploitation and exploration (tackled in
section 1.2.2) it is necessary to use a strategy that initially prefers
exploration and subsequently, as time passes, it prefers exploitation.

• update: defines Q-table pattern.

Fundamental is the definition of generic types that allow us to map the
definition of State, Action and Reward respectively like: S, A, R.

The above observations brought to the drafting of the following code:
type Policy = S=>A // A strategy to act

type VFunction = S=>R // A state -value function

trait Q extends ((S,A)=>R) {

def actions: Set[A]

def greedyPolicy: Policy = s => actions.maxBy{this(s,_)}

def epsilonGreedyPolicy(epsilon: P): Policy = {

case s if Stochastics.drawFiltered(_<epsilon)

=> Stochastics.uniformDraw(actions)

case s => greedyPolicy(s)

}

def update(s:S, a:A, v: R): Q

def optimalVFunction: VFunction = s => actions.map{ this(s,_) }.max

}

Listing 5.1: Q trait implementation.

This trait is implemented by QFunction case class in order to create a
correct function to manipulate the reinforcement process.

Then, we proceeded with the implementation of a class that allowed the
management of the various reinforcement learning steps. In fact during the
computation of an episode, an agent for each step: (i) sets its status based
on observations made on the environment; (ii) selects an action based on
the given exploration strategy; (iii) update the Q-table values. Notice that
the time instant in which this last step occurs depends on the type of the
algorithm used.

To implement this procedure the following code has been outlined:
case class RealtimeLearning(gamma: Double , q0: Q) {

62 CHAPTER 5. IMPLEMENTATION

private var state: Option[S] = None

private var action: Option[A] = None

def setState(s: S) {

state = Some(s)

}

def takeAction(a: A) {

action = Some(a)

}

def takeGreedyAction(qf: Q): A = {

val a = qf.greedyPolicy(state.get)

takeAction(a)

a

}

def takeEpsilonGreedyAction(qf: Q, time: Double): A = {

val epsilon = epsilonDecayWithTime(time)

val a = qf.epsilonGreedyPolicy(epsilon)(state.get)

takeAction(a)

a

}

def observeEnvAndUpdateQ(qf: Q): Q = {

qf.update(state , action , v)

}

}

Listing 5.2: Main methods of reinforcement learning.

It is notable that in the takeEpsilonGreedyAction method, in order
to reach a exploration-exploitation trade-off, epsilon is used as a function
of time (epsilonDecayWithTime(time)). More details will be provided in
Learning Parameters section 5.2.1.

Learning Parameters

In order to improve the experience, for the definition of the learning support
parameters, an object has been implemented, with the additional parameters:
learning rate α, exploration rate ε and discounting rate γ.

While for the discounting rate literature prefers stable values, like 1 (non-
discounted) or 0.99 (discounted), for α and ε the discussion is still open. We
have decided to give a double possibility: calculate them as a function of
time t or as a fixed value.

5.2. MODEL IMPLEMENTATION 63

case object RLParameters {

lazy val epsilon = 0.3

lazy val alpha = 0.5

def epsilonDecayWithTime(t: Double) =

Math.min(EPSILON_MAX_VALUE , EPSILON_MIN_VALUE +

(1- EPSILON_MIN_VALUE) * math.exp(-DECAY_VALUE * t))

def alphaDecayWithTime(t: Double) =

Math.max(MIN_VALUE , Math.min(ALPHA_MAX_VALUE ,

ALPHA_MIN_VALUE - Math.log10((t+1) /1000.0)))

}

Listing 5.3: Reinforcement learning parameters implementation.

To enhance the trade-off between exploration and exploitation ε it is
recommended to use epsilonDecayWithTime(t: Double). The method
allows the decrease of the exploration factor and the speed of this decreasing
is given by the DECAY_VALUE variable.

As regards, α it behaves similarly to ε but learning rate determines how
much the new acquired information have to extent and/or overwrite the old
ones.

5.2.2 Generic Reinforcement Learning Engine

We will now talk about the access point to our library. A facade class is
needed to simplify the initialisation of all the data structures, useful to keep
track of the learning and to provide a single, coherent and consistent access
point for each node of the network.

For this purpose the class Facade[T,P](gamma:Double, v0:Double) has
been developed, to allow us to create a qFunction and an instance of the
learning process (makeLearningInstance).

In the end a qTable variable is built, to allow to keep track and access the
values entered in the table. In particular, the Q-table allows us to capture
the best reward associated to each state-action pair.
class GMCRL[S,A](

val mcrl: MCRLImpl[S,A],

val actions: Set[A]) {

case class Facade[T,P](gamma: Double ,

v0: Double) {

64 CHAPTER 5. IMPLEMENTATION

import mcrl._

def qFunction = QFunction(actions , v0)

def makeLearningInstance () = RealtimeLearning(gamma , qFunction)

}

val system = Facade(gamma = 1, v0 = 0.0)

val mcLearning = system.makeLearningInstance ()

var qTable = mcLearning.q0

}

object GMCRL extends GMCRL[GState , GAction](

new MCRLImpl[GState ,GAction]{ },

Set[GAction](<action_name >)) {

val states = Set[GState](<state_name >)

}

Listing 5.4: Reinforcement learning engine implementation.

States and Actions

The definition of states and actions selectable by agents at any instant t
follows this pattern:
trait GState

case object <state_name > extends GState

...

trait GAction

case object <action_name > extends GAction

...

Listing 5.5: State and action implementations.

5.2.3 Monte Carlo Implementation

In accordance with the Monte Carlo algorithm, presented in section 1.5.1,
we have developed the main concepts for its proper functioning. Recalling
that Monte Carlo employs averaging sample returns for episodic tasks, and
therefore updates the values in the Q-table only when an episode is done.
So, at each episode, the node i performs the following operations:

1. Choose state-action pair, initially randomly, then following the values
in the Q-table.

5.2. MODEL IMPLEMENTATION 65

2. Generate an episode following the policy.

3. When the episode ends:

(a) if the value is present in the episode, calculate the g value, accord-
ing to the first-visit rule, and add it to Returns (s, a);

(b) update the Q-table;

(c) update the policy.

Particularly, has been necessary to add two new data structures to sec-
tion 5.2.2:

• generateEpisode: variable that keeps track of the reward associated
to each action-state pair selected at each instant t in an episode. This
is modelled by an LinkedHashMap[(Int,S,A), Double] in order to
maintain the insertion order.

• returnValue: maintains the total of the return values and the num-
ber of total visits for each state-action pair. This variable is updated
when an episode is done by: updateReturnList(qr: Map[(S,A),

(Double,Int)], state: S, action: A, g: Double).
def updateReturnList(

qr: Map[(S,A), (Double ,Int)],

state: S, action: A, g: Double) = {

if(qr.contains(state ,action))

qr += ((state , action) -> (qr(state ,action)._1 +

g, qr(state ,action)._2+1))

else qr += ((state , action) -> (g, 1))

}

Listing 5.6: Return list implementation.

First-visit

As discussed in section 1.5.1, we implemented first-visit, that we remember
to estimate q(s,a) as the average of the returns for the first visit to (s,a), as
following:

66 CHAPTER 5. IMPLEMENTATION

def firstVisitEstimates(

qe: LinkedHashMap [(Int ,S,A), R],

state: S, action: A) = {

val firstOccurrence = qe.find(

v => v._1._2 == state && v._1._3 == action)

while (qe.head != firstOccurrence.get) qe-= qe.head._1

qe

}

Listing 5.7: First-visit estimates implementation.

Computing of G Value

Once the first-visit has been processed, we calculate the G value for each
state-action pair in the following way:
def updateG(

qe: LinkedHashMap [(Int ,S,A), R],

state: S, action: A): Double = {

val episodes = qe.clone()

val tmp = firstVisitEstimates(episodes , state , action)

val g = tmp.map{case((t,_,_),v) => v*math.pow(gamma , t.toDouble)}.sum

g

}

Listing 5.8: Computing of the G value implementation.

where γ is the discounted rate and 0 ≤ γ ≤ 1.

Q-table Update Value

At the end we proceed with the updating of the values in the Q-table. For
this we modified the method defined in section 5.2.1 in the following way:
def observeEnvAndUpdateQ(

qf: Q,

returnValue: Map[(S,A), (Double ,Int)],

a: S, a: A, g: Double): Q = {

/* Incremental solution

* val ns = 1/ returnValue(s,a)._2

* val v = qf(s,a) + ns * (g - qf(s,a))

*/

val v = qf(s,a) + alpha * (g - qf(s,a))

qf.update(s, a, v)

5.3. APPLICATION LOGIC IMPLEMENTATION 67

}

Listing 5.9: Updating of Q-table implementation.

Notable that there are two methodologies to calculate the v value:

• v = qf(s, a) + ns ∗ (g − qf(s, a))

Averaging sample returns.

• v = qf(s, a) + alpha ∗ (g − qf(s, a))

In non-stationary problems, it can be useful to track a running mean.

All of those methods were added in the class RealtimeLearning (sec-
tion 5.2.1).

5.3 Application Logic Implementation

Analysing the application logic, we decided that each node of the network
must:

1. set its state;

2. choose an action;

3. receive a reward to associate with a state-action pair;

4. change the environment according to the defined rules.

This is repeated for each temporal instant t, where t = 0, 1, . . . , T and T
is the end of an episode.

In order to capture this cycle a method accessible by all the nodes of the
network was necessary to allow us to define for each episode the sequence
of (state, action) −→ reward captured at each instant t, implemented in
the following way:
def monteCarloLearning[I,O,A,S](

algorithm: RLBasedAlgorithm[I,O,A,S,Double],

mc: GMCRL[S,A],

o0: O, a0: A, input: I, t: Double ,

68 CHAPTER 5. IMPLEMENTATION

learn: Boolean = true): O =

rep((o0,a0)) { case (o,a) =>

val action = branch (!learn){

mc.mcLearning.setState(algorithm.state(o))

mc.mcLearning.takeGreedyAction(mc.qTable)

} {

val state = algorithm.state(o)

mc.mcLearning.setState(state)

val action = mc.mcLearning.takeEpsilonGreedyAction(mc.qTable , t)

val reward = algorithm.reward(action , t)

mc.generateEpisode += (t.toInt , state , action) -> reward

node.put("state", state)

node.put("action", action)

action

}

val output = algorithm.run(input , action)

(output , action)

}._1

Listing 5.10: Monte Carlo application logic implementation.

The calculation of the total estimate of the rewards and the update of the
Q-table will be carried out later, when the episode ends. It will be described
in detail in the section 5.5.

To make this sequence more reusable, an interface has been projected:

trait RLBasedAlgorithm[I,O,A,S,R] {

def run(input: I, action: A): O

def state(o: O): S

def reward(time: Double): R

}

Listing 5.11: Generic interface in order to capture learning cycles.

where: I, O, A, S and R defined the generic types which represents respectively
the: input, output, action, state and reward.

This trait is instantiated through the class that will allow us to define the
reinforcement rules based on the result we want to achieve.

5.4. TRUST ALGORITHM 69

5.4 Trust Algorithm

In this section we are going to talk in depth about the trust algorithm used
by our application to identify and exclude the fake nodes from the calculation
of the gradient.

The solution presented in section 2.5.1 has been used, which after a first
phase of refactoring has been encapsulated in our experiment.

So, now the interface presented in section 5.3 will have a class that im-
plements the run method by calling the trust algorithm.

Greater attention goes to the rules to identify and delineate a node as
fake:
def gradientWithTrust(

source: Boolean ,

fake: Boolean = false ,

fakeValue: Double = 0.0): Double = {

rep(Double.PositiveInfinity){ distance =>

<trust_parameters >

mux(source) { 0.0 } {

<another_trust_parameters >

val trustParams = calculateTrustParams(dist , xmean , s)

val trustValue = beta(trustParams.a, trustParams.b)

val isTrusted =

if(trustParams.numObservations >= minObservations)

trustable(trustValue)

else true

if(! isTrusted)

{distrustedNbrs = nbrId :: distrustedNbrs}

val newg = mux(isTrusted)

{ nbr{dist} + nbrRange }{ Double.PositiveInfinity }

newg

}

<add_untrust_node_in_list_of_distrusted >

res.orIf(_==Double.PositiveInfinity){dist}

}

}

}

Listing 5.12: Trust algorithm implementation.

The beta function distribution calculates the beta distribution, this value
is then passed to the trustValue. With isTrusted, instead, we define if a
node is to be considered trust or not, after evaluating it using a threshold:

70 CHAPTER 5. IMPLEMENTATION

trustThreshold.
def beta(a: Double , b: Double) = (a+1)/(a+b+2)

def trustable(trustValue: Double): Boolean = trustValue >= trustThreshold

Listing 5.13: Trust parameters implementation.

On the basis of these choices the gradient is calculated taking into account
the neighbour’s value.

5.5 Update Q-table Implementation

In this section we examine the last phases: an episode ends and the Q-
table must be updated. An ad-hoc class has been created to capture the
termination of an episode. For each state- action we call the methods defined
in section 5.2.3. After updating the table, the results can be printed.

Here is the code that does these operations:
override def execute (): Unit = if(episode >0 && episode%saveEvery==0){

var g = 0.0

for(s <- GMCRL.states;

a <- GMCRL.actions){

val condition = GMCRL.generateEpisode.exists{

case((_,state ,action),_) => st.equals(s) & act.equals(a)}

if(condition) {

g = GMCRL.mcLearning.updateG(GMCRL.generateEpisode , s, a)

GMCRL.returnValue =

GMCRL.mcLearning.updateReturnList(GMCRL.returnValue , s, a, g)

}

GMCRL.qTable =

GMCRL.mcLearning.observeEnvAndUpdateQ(GMCRL.qTable , s, a, g)

// insert GMCRL.returnValue , for classical computing of value

}

...

for(s <- GMCRL.states;

a <- GMCRL.actions){

oos.writeDouble(GMCRL.qTable(s,a))

bos.write(s"($s,$a) = ${GMCRL.qTable(s,a)}\n")

}

GMCRL.generateEpisode.clear()

..

}

}

Listing 5.14: Implementation of Q-table update and management.

5.6. SIMULATIONS 71

The latter class is essential to start our analyses and start the batch-
execution of our solution.

5.6 Simulations

As simulation environment to test our prototype we used ScaFi and Al-
chemist (presented respectively in section 2.3 and section 2.4). This allow us
to comply with the requirement of the solution must be integrated and work
with the Aggregate computing approach.

We decided to use Alchemist as a simulator to improve the performances,
using a solid and performing platform for aggregate applications. Further-
more it offers flexibility and superior simulation control compared to an ad-
hoc simulator.

It is important to underline the fact that, in order to perform multiple
learning processes (multiple episodes), execution takes place in batch. The
graphical interface, made available by Alchemist, allows us to capture a single
episode.

Our Alchemist simulation is started by:

episodes: &episodes <num_of_episodes >

Definition of variables

variables:

...

minObservations: &minObservations

formula: 6

trustThreshold: &trustThreshold

min: 0.40

step: 0.05

max: 0.95

default: 0.8

...

incarnation: scafi

...

network-model:

type: ConnectWithinDistance

parameters: [* commRadius]

pools:

72 CHAPTER 5. IMPLEMENTATION

- pool: &program

- time-distribution: 1

type: Event

actions:

- type: RunScafiProgram

parameters: [it.unibo.monteCarloWithES.TrustOrClassic , 5.0]

- program: send

...

Manages Q-table loads and saves

- pool: &saveQF

- time-distribution:

type: Trigger

parameters: [120.0]

type: Event

actions:

- type: it.unibo.monteCarloWithES.update.SaveQF

parameters: [qf]

...

Network configuration

displacements:

- in:

type: Grid

parameters: [0, 0, 10, 10, 1, 1, 0, 0]

...

Listing 5.15: YAML file with configuration in order to launch the
experiments.

5.6.1 Application Flow

In fig. 5.1 we want to capture the flow followed by our prototype.

A YAML file to start the simulation has been written, it will start the
main program. Then, we will instantiate the main structures that will enable
the use of the reinforcement learning library and the trust algorithm will be
launched. When an episode is done, all the operations that lead us to the
calculation of the estimate are performed and the Q-table is updated. At the
end the results are stored.

5.7. HOW REINFORCEMENT LEARNING FITS AGGREGATE COMPUTING73

Figure 5.1: Application flow diagram.

5.7 How reinforcement learning fits aggregate

computing

In fig. 5.2 is shown how the reinforcement learning based solution fits into the
aggregate system dynamic rounds and how the state of the network evolves.

Starting from an initial configuration, where there are a source and fake
node, the computation goes through those steps:

1. the source node and its neighbours compute the reinforcement learning
based solution, in particular:

74 CHAPTER 5. IMPLEMENTATION

Figure 5.2: Reinforcement learning fits in aggregate computing dynamics.

(a) each node of the sub-net sets its state, selects an action and re-
ceives a reward;

(b) based on the state-action pair selected computes a gradient,

(c) sets the environment and sends its value to the neighbourhood.

2. when the propagation of the information reaches each device in the net-
work, through the round execution typical of the aggregate computing
systems, the episode ends and the results are outputted;

3. the episode is incremented and the computation restarts from point 1.

Chapter 6

Evaluation

This chapter intends to evaluate how much the result of our application meets
our requirements.

Therefore, we will discuss the requirements satisfaction. Then, we will
present the case of studies and finally the results obtained will be examined.

6.1 Requirements satisfaction

Considering the requirements defined in section section 3.1, we evaluate which
have been respected and which are to be improved.

6.1.1 Scala Library for Reinforcement Learning

• Requirement 1: our Scala library, by definition written in Scala, capture
all the main concepts of reinforcement learning algorithm effectively
abstracting from the type of algorithm used (ref. section 5.2.1).

• Requirement 2: each node of the network executes the program, select-
ing actions and calculating its reward and then writes it in an aggregate
way. Furthermore, the reward is assigned according to a community
condition and the gradient is calculated on the basis of the neighbour’s
value (ref. section 5.3 and section 6.2.1)

75

76 CHAPTER 6. EVALUATION

• Requirement 3: for each episode, the value associated with each state-
action pair is stored according to the policies determined by the algo-
rithm used (ref. section 5.5).

6.1.2 Reinforcement Learning-based Trust Framework

• Requirement 1: our solution encapsulates and integrates with the solu-
tion presented in [5] (ref. section 5.4). However a significant improve-
ment has not been found, so on this point we keep ourselves open to
future developments and improvements.

• Requirement 2: all our case of studies are able to identify fake nodes
(ref. section 6.2 and section 6.3).

6.2 Case Study: Trust-based Gradients

A few demonstrative programs have been written in order to show how the
library can be used to develop reinforcement learning program in order to
discriminated unsafe devices in aggregate computing system.

6.2.1 Simulation Setup

All solutions use:

1. a network consisting of 100 nodes;

2. Monte Carlo Exploring Start and first-visit estimated (presented in
section 5.2.3);

3. the trust algorithm (section 5.4), with these parameter values (among
the many present):

(a) minObservations = 6

(b) trustThreshold = 0.8

6.2. CASE STUDY: TRUST-BASED GRADIENTS 77

4. discount rate: γ = 1;

5. reward rule.

The reward rule defines that:

• a positive reward is given if the value of the gradient of each node of
the network is equal to the value that would have performed a classic
gradient for at least n steps;

• otherwise a negative reward will be assigned. The negative reward
increases when the time passes, in order to define the convergence times
of the solution.

The following code captures this idea:
def isStableForEachNode = {

for (n <- alchemistEnvironment.getNodes.iterator ().asScala) {

val classicValue = n.getConcentration(

new SimpleMolecule("classicGIgnoreFake")).toString.toDouble

val rlValue = n.getConcentration(

new SimpleMolecule("rlbasedG")).toString.toDouble

if (n.getId != FAKE_DEVICE) {

rewardMap.put(

n.getId ,

recentValues(STEP_EVALUATION , classicValue

) ++ recentValues(STEP_EVALUATION , rlValue))

}

}

rt = rewardMap.forall { case (id, v) =>

rewardMap(id).forall(e => e == v.last) }

}

Listing 6.1: Reward rule implementation.

6.2.2 Graphical Evolution of the Simulation

As shown in fig. 6.1, when a simulation is launched the gradient field com-
putation begins. At first, the gradient field is calculated starting from both
the source node and the fake node, which sends random values to its neigh-
bourhood (fig. 6.1a). This is because the number of neighbours participating

78 CHAPTER 6. EVALUATION

(a) Step 1: gradient calculation.
(b) Step 2: the nodes understand that the

gradient is corrupted.

(c) Step 3: fake is detected.

Figure 6.1: Phases of the experiment. In (a), the calculation of the gradient
begins. The fake node has already started to infect. In (b) the nodes start to
understand that the gradient is corrupted; then they start exchanging infor-
mation about the nodes to be considered distrusted. In (c) fake is detected
and is distrusted. At this point the gradient field is recovered.

in the distrusted valuation is still too low. Then, when the neighbourhood
reaches an appropriate number, they understand that the gradient is cor-
rupted; so the nodes exchange information in order to identify the fake node.

6.2. CASE STUDY: TRUST-BASED GRADIENTS 79

Remember that a node is considered false when its gradient value is too far
from the values sent by its neighbours. In our simulation the nodes that are
considered distrusted are selected by a blue rectangle (fig. 6.1b). At the end,
when the algorithm identifies the fake node, it is excluded and labeled as
distrusted. At this point the gradient field is recovered.

6.2.3 Solution 1: Trust or Classic Gradient

The goal of this simulation is to identify the gradient that takes less time to
converge and therefore privileges its selection.

Configuration

• State: DummyState

• Actions: ClassicAction, TrustAction

• Exploration strategy: greedy

• Update strategy: averaging sample returns

• Gradients: TrustGradient, ClassicGradientWithFakeNode (or Clas-
sicGradientIgnoreFake)

Implementation

In this solution, for simplicity, we have considered a single state. We have two
possible actions, both selectable from the dummy state. One represents the
execution of the classic gradient that does not ignore the neighbours while,
the other, represents the execution of the trust gradient. Each node in the
network must select the same action at a same instant t. The target is to
train the network to select the action, and therefore the gradient, which takes
less time to converge according to the rule defined in isStableForEachNode.

80 CHAPTER 6. EVALUATION

Code

// Set state and actions

trait GState

case object DummyState extends GState

trait GAction { def selection: Boolean }

class SelectionAlgorithm(val selection: Boolean = false) extends GAction

case object ClassicAction extends SelectionAlgorithm(true)

case object TrustAction extends SelectionAlgorithm(false)

// Set reinforcement configurations

class RLbasedGradient extends RLBasedAlgorithm

[(Boolean , () => Double), Double , GAction , GState , Double] {

override def run(input: GInput , action: GAction): Double = {

val (source , isFake) = input

if (action.selection) gradient(source , isFake , fakeValue)

else gradientWithTrust(source , isFake , fakeValue)

}

override def state(o: Double): GState = {

ClassicState

}

override def reward: Double = {

val reward = if(isStableForEachNode) 0 else -time -1

reward

}

}

Listing 6.2: Solution 1: trust or classic gradient implementation.

6.2.4 Solution 2: Trust, Classic or Mix Gradient

Starting from solution 1, we asked ourselves how the prototype behaved by
adding actions that involved the use of a mix gradient.

Configuration

• State: DummyState

• Actions: ClassicAction, TrustAction, MixAction

• Exploration strategy: greedy

• Update strategy: averaging sample returns

6.2. CASE STUDY: TRUST-BASED GRADIENTS 81

• Gradients: TrustGradient, ClassicGradientWithFakeNode (or Clas-
sicGradientIgnoreFake), MixOfThePrevious

Implementation

In this solution we have only one state. We have five possible actions, all
selectable from the dummy state. A ϕ value is defined; it represents the
possibility of selecting one gradient with respect to another, according to the
following rule:

ϕ ∗ Classic Gradient + (1− ϕ) ∗ Trust Gradient (6.1)

Each node in the network must select the same action at a same instant t.
The target is to train the network to select the action, and therefore the
gradient, which takes less time to converge according to the rule defined in
isStableForEachNode.

Code

// Set state and actions

trait DummyState

case object ClassicState extends GState

trait GAction { def selection: Double }

class SelectionAlgorithm(val selection: Double = 1.0) extends GAction

case object ClassicAction extends SelectionAlgorithm (1.0)

case object MixAction1 extends SelectionAlgorithm (0.8)

case object MixAction2 extends SelectionAlgorithm (0.5)

case object MixAction3 extends SelectionAlgorithm (0.2)

case object TrustAction extends SelectionAlgorithm (0.0)

// Set reinforcement configurations

class RLbasedGradient extends RLBasedAlgorithm

[(Boolean , () => Double), Double , GAction , GState , Double] {

override def run(input: GInput , action: GAction): Double = {

val (source , isFake) = input

action.selection * gradient(source ,isFake ,fakeValue) +

(1-action.selection) * gradientWithTrust(source ,isFake ,fakeValue)

/* If the solution with ClassicGradientIgnoreFake is analysed

* action.selection * branch(isFake){fakeValue }{ gradient(source)} +

(1-action.selection) * gradientWithTrust(source ,isFake ,fakeValue)

*/

82 CHAPTER 6. EVALUATION

}

override def state(o: Double): GState = {

ClassicState

}

override def reward: Double = {

val reward = if(isStableForEachNode) 0 else -time -1

reward

}

}

Listing 6.3: Solution 2: Trust or classic or mix implementation.

6.2.5 Solution 3: Action Selection Based on isTrusted

Value

The goal of the experiment is learning to select the correct action basing on
the state in which the agent is.

Configuration

• State: TrustState, NotTrustState

• Actions: ClassicAction, IgnoreAction

• Exploration strategy: greedy or ε-greedy

• Update strategy: averaging sample returns or non-stationary

• Gradients: TrustGradient, ClassicGradientIgnoreFake

Implementation

In this solution we have two possible states. The state is determined based
on the isTrusted value, that is: if isTrusted is true the state will be
set to TrustState, otherwise it is NotTrustState. We have two possible
actions, both selectable from all states. The first involves running the classic
gradient that ignores fake nodes (ClassicAction), the other involves the
trust gradient (IgnoreAction). The expectation in this context is to have a
reward that favours:

6.2. CASE STUDY: TRUST-BASED GRADIENTS 83

• ClassicAction when the state is TrustState;

• IgnoreAction when the state is NotTrustState.

Code

// Set states and actions

trait GState

case object TrustState extends GState

case object NotTrustState extends GState

trait GAction

case object ClassicAction

case object IgnoreAction

// Set reinforcement configurations

class RLbasedGradient extends RLBasedAlgorithm

[(Boolean , () => Double), Double , GAction , GState , Double] {

override def run(input: GInput , action: GAction): Double = {

gradientWithTrust(source , isFake , fakeValue)

}

override def state(o: Double): GState = {

if(distrusted) TrustState else NotTrustState

}

override def reward: Double = {

val reward = if(isStableForEachNode) 0 else -time -1

reward

}

}

Listing 6.4: Solution 3: based on isTrusted value implementation.

6.2.6 Solution 4: Action Selection Based on trustValue

Starting from the trustValue variable (section 5.4) we want to learn how to
select the right action.

Configuration

• State: SurelyIgnore, MaybeIgnore, DoNotIgnore

• Actions: Ignore, Gradient

• Exploration strategy: greedy or ε-greedy

84 CHAPTER 6. EVALUATION

• Update strategy: averaging sample returns or non-stationary

• Gradients: TrustGradient, ClassicGradientIgnoreFake

Implementation

In this solution we have three possible states. The state is determined based
on the trustValue. This value is in the [0, 1] range, so we have divided it into
slots. When the values are very low, the status will be set as SurelyIgnore,
in intermediate cases such as MaybeIgnore and for high values DoNotIgnore.
We have two possible actions, both selectable from all states. The first in-
volves running the classic gradient that ignores fake nodes (Gradient), the
other involves trust gradient (Ignore). Obviously the expectation in this
context is to have a reward that favours:

• SurelyIgnore when the state is Ignore;

• DoNotIgnore when the state is Gradient.

Code

// Set states and actions

trait GState

case object SurelyIgnore extends GState

case object MaybeIgnore extends GState

case object DoNotIgnore extends GState

trait GAction { def selection: Double }

class SelectionAlgorithm(val selection: Double = 1.0) extends GAction

case object Ignore extends SelectionAlgorithm (1.0)

case object Gradient extends SelectionAlgorithm (0.0)

// Set reinforcement configurations

class RLbasedGradient extends RLBasedAlgorithm

[(Boolean , () => Double), Double , GAction , GState , Double] {

override def run(input: GInput , action: GAction): Double = {

val (source , isFake , metric) = input

gradientWithTrust(source , isFake , fakeValue)

}

override def state(o: Double): GState = {

trustValue match {

case v if v>= 0 && v<0.4 => SurelyIgnore

6.3. RESULTS 85

case v if v>=0.4 && v<0.8 => MaybeIgnore

case _ => DoNotIgnore

}

}

override def reward(time: Double): Double = {

val reward = if(isStableForEachNode) 0 else -time - 1

reward

}

}

Listing 6.5: Solution 4: based on trustValue implementation.

6.3 Results

The performances are evaluated through the accuracy index:

Accuracy =
Episodes completed successfully

Total episodes
(6.2)

where correctly classified episodes are considered those that have a less
negative cumulative reward for the state-action pair considered correct. Specif-
ically, for each solution the table 6.1 shows the desired results.

Table 6.1: Legend of desired results for each experiments.

Preference

Solution 1 DummyState-TrustAction

Solution 2 DummyState-TrustAction

Solution 3
TrustState-TrustAction
NotTrustState-ClassicAction

Solution 4
SurelyIgnore-Ignore
MaybeIgnore no preference
DoNotIgnore-Gradiente

Note that, in solution 1 and solution 2, if the simulation uses ClassicGra-
dientIgnoreFake the DummyState-Classic solution is preferred.

The sampling was carried out on 100 episodes and the results are listed in
table 6.2. Remember that as long as the algorithm does not identify the fake

86 CHAPTER 6. EVALUATION

nodes, the reward is negative and it increases as time passes. Furthermore,
solution 1 (section 6.2.3) and solution 2 (section 6.2.4) converge after a few
episodes and their accuracy is high. Although, solution 3 (section 6.2.5) takes
longer to converge, the results are still good, in fact, after about 26 steps it
stabilises. Finally, in solution 4 (section 6.2.6) the error rate is higher. Here
the failure rate grows exponentially and the solution is quite unstable. In
the few cases where the sampling takes place correctly, the values are very
close to each other.

Table 6.2: Experiments results table.

Exploration Strategy Accuracy Avg Reward

Solution 1 greedy 99%
DummyState-ClassicAction -3712.0
DummyState-TrustAction -250,47

DummyState-ClassicAction -53,9
DummyState,MixAction1 -70,6

Solution 2 greedy 95% DummyState-MixAction2 -250,47
DummyState-MixAction3 -245,41
DummyState-TrustAction -253.0

Solution 3 ε-greedy 75%

TrustState-ClassicAction -400,068
TrustState-IgnoreAction -533,068

NotTrustState-ClassicAction -532,566
NotTrustState-IgnoreAction -431,094

Solution 4 ε-greedy 35%

SurelyIgnore-Ignore -512,995
SurelyIgnore-Gradient -533,257
MaybeIgnore-Ignore -570,358

MaybeIgnore-Gradient -570,394
DoNotIgnore-Ignore -524,74

DoNotIgnore-Gradient -514,70

Chapter 7

Conclusion

This chapter includes a few brief and general considerations about this thesis’
work; as well as some references to the possible future developments.

7.1 Discussion

The reinforcement learning approach in the aggregate computing system dis-
cussed in chapter 1, chapter 2 and implemented in chapter 5 seems promising.

The prototype can learn the correct sequence of actions to take for basic
cases of study. It can, for example, select the actions which favour the
execution of a modified gradient in order to identify the fake nodes when there
is an unsafe device in the neighbourhood. It prefers instead the execution of a
classic gradient when the neighbours are considered trust. Good results have
been obtained also when the selection of the gradient to execute is based on
the state in which the agent is. The more the states and the actions increase
the more certain problems emerge. As the matter of fact in those cases
has been noticed that the agent has trouble to find the correct sequence of
actions to choose and the failure rate increases. A more structured solution
would be appropriate. In addition the reinforcement learning based solution
is applied to a more “external” level then aggregate computing through the
simulation. Therefore the learning is not done directly by the aggregate

87

88 CHAPTER 7. CONCLUSION

system via collective computation.
However, this solution must be improved and made more performing in

order to become more robust, both for different case of studies and for real
world applications.

Although, we are aware of the big challenges and limitations that exist
nowadays in the world of multi-agent reinforcement learning we believe that
this work can be useful as a starting point for innovative solutions. Thanks
both to the use of solutions that allow aggregate calculations and to rein-
forcement learning solutions. Allowing devices to learn information directly
from data, without predetermined models, thus becoming a highly reusable
solution. In fact, by modifying only a few variables it can be used in various
application contexts.

7.2 Further Developments

Obviously our prototype is not complete. Below is a list with some possible
developments:

• Let the system learn the complete trust logic.

• Addition of approximators (e.g. Neural Networks) that allow to im-
prove and enhance the solution.

• Provide more powerful data analysis to support and improve the man-
agement of the files containing the different solutions.

• Implement a solution that includes two types of agents following a logic
similar to the master-slave.

• Build a deep reinforcement learning solution and compare the results
with our implementation.

Bibliography

[1] Alchemist official web site. https://alchemistsimulator.github.

io/, accessed on: 2020-02-17.

[2] Scafi official web site. https://scafi.github.io/, accessed on: 2020-
02-17.

[3] Alpaydin, E. Introduction to Machine Learning, 3 ed. Adaptive Com-
putation and Machine Learning. MIT Press, Cambridge, MA, 2014.

[4] Beal, J., and Viroli, M. Building blocks for aggregate programming
of self-organising applications. In 2014 IEEE Eighth International Con-
ference on Self-Adaptive and Self-Organizing Systems Workshops (Sep.
2014), pp. 8–13.

[5] Casadei, R., Aldini, A., and Viroli, M. Towards attack-resistant
aggregate computing using trust mechanisms. Science of Computer Pro-
gramming 167 (2018), 114 – 137.

[6] Casadei, R., and Viroli, M. Towards aggregate programming in
scala. In PMLDC ’16 (2016).

[7] Cetina, V. A multiagent architecture for concurrent reinforcement
learning. pp. 107–112.

[8] COMARL. Challenges and opportunities for multi-agent rein-
forcement learning, 2019-2020. https://sites.google.com/view/

comarl-aaai-2020/, accessed on: 2020-02-17.

89

https://alchemistsimulator.github.io/
https://alchemistsimulator.github.io/
https://scafi.github.io/
https://sites.google.com/view/comarl-aaai-2020/
https://sites.google.com/view/comarl-aaai-2020/

90 BIBLIOGRAPHY

[9] Das, P., Behera, H., and Panigrahi, B. Intelligent-based multi-
robot path planning inspired by improved classical q-learning and im-
proved particle swarm optimization with perturbed velocity. Engineering
Science and Technology, an International Journal 19, 1 (2016), 651 –
669.

[10] Dowling, J., and Haridi, S. Decentralized reinforcement learning
for the online optimization of distributed systems. Reinforcement Learn-
ing, Cornelius Weber, Mark Elshaw and Norbert Michael Mayer, Inte-
chOpen.

[11] Guestrin, C., Lagoudakis, M. G., and Parr, R. Coordinated rein-
forcement learning. In Proceedings of the Nineteenth International Con-
ference on Machine Learning (San Francisco, CA, USA, 2002), ICML
’02, Morgan Kaufmann Publishers Inc., pp. 227–234.

[12] Gunady, M. K., Gomaa, W., and Takeuchi, I. Multi-agent task
division learning in hide-and-seek games. In Artificial Intelligence:
Methodology, Systems, and Applications (Berlin, Heidelberg, 2012),
A. Ramsay and G. Agre, Eds., Springer Berlin Heidelberg, pp. 256–265.

[13] J. Beal, D. P., and Viroli, M. Aggregate programming for the
internet of things. IEEE Computer magazine 48 (2015), 22–30.

[14] Kabysh, A., and Golovko, V. Collective behavior in multiagent
systems based on reinforcement learning.

[15] Kwon, W. Y., Suh, I. H., Lee, S., and Cho, Y.-J. Fast reinforce-
ment learning using stochastic shortest paths for a mobile robot. pp. 82
– 87.

[16] Lamini, C., Fathi, Y., and Benhlima, S. H-mas architecture and
reinforcement learning method for autonomous robot path planning. In
2017 Intelligent Systems and Computer Vision (ISCV) (April 2017),
pp. 1–7.

BIBLIOGRAPHY 91

[17] Leottau, D. L., del Solar, J. R., and Babuška, R. Decentralized
reinforcement learning of robot behaviors. Artificial Intelligence 256
(2018), 130 – 159.

[18] Mitchell, T. M. Machine Learning. McGraw-Hill, New York, 1997.

[19] Pianini, D., Montagna, S., and Viroli, M. Chemical-oriented sim-
ulation of computational systems with alchemist. Journal of Simulation
7, 3 (2013), 202–215.

[20] Sutton, R. S., and Barto, A. G. Reinforcement Learning: An
Introduction, second ed. The MIT Press, 2018.

[21] Viroli, M., Beal, J., Damiani, F., Audrito, G., Casadei, R.,

and Pianini, D. From field-based coordination to aggregate comput-
ing. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
10852 LNCS (2018), 252–279. cited By 14.

[22] Viroli, M., Damiani, F., and Beal, J. A calculus of computational
fields. In Advances in Service-Oriented and Cloud Computing (Berlin,
Heidelberg, 2013), C. Canal and M. Villari, Eds., Springer Berlin Hei-
delberg, pp. 114–128.

[23] Zhang, C., Lesser, V., and Abdallah, S. Self-organization for
coordinating decentralized reinforcement learning. In Proceedings of
the 9th International Conference on Autonomous Agents and Multia-
gent Systems: Volume 1 - Volume 1 (Richland, SC, 2010), AAMAS
’10, International Foundation for Autonomous Agents and Multiagent
Systems, pp. 739–746.

	Abstract
	Introduction
	Reinforcement Learning
	Learning Techniques
	Elements of Reinforcement Learning
	Optimal Policy
	Exploration vs. Exploitation

	Markov Decision Process
	Model-based Learning
	Dynamic Programming

	Model-free Learning
	Monte Carlo Learning
	Temporal-Difference Learning

	Multi-agent Reinforcement Learning
	Related Works

	Aggregate Computing
	Collective Adaptive Computing
	Aggregate Computational Model
	Computational Field
	Aggregate Programming Stack

	ScaFi
	Alchemist
	Aggregate Computing and Security
	Related work

	Analysis
	Requirements
	Scala Library for Reinforcement Learning
	Reinforcement Learning-based Trust Framework

	Requirements Analysis
	Problem Analysis
	Domain Model: Overview

	Design
	Design Architecture
	Reinforcement Learning Model
	Reinforcement Learning Engine
	Monte Carlo Learning

	The Overall System's Flow

	Implementation
	Project Organisation
	Model Implementation
	Generic Reinforcement Learning Model
	Generic Reinforcement Learning Engine
	Monte Carlo Implementation

	Application Logic Implementation
	Trust Algorithm
	Update Q-table Implementation
	Simulations
	Application Flow

	How reinforcement learning fits aggregate computing

	Evaluation
	Requirements satisfaction
	Scala Library for Reinforcement Learning
	Reinforcement Learning-based Trust Framework

	Case Study: Trust-based Gradients
	Simulation Setup
	Graphical Evolution of the Simulation
	Solution 1: Trust or Classic Gradient
	Solution 2: Trust, Classic or Mix Gradient
	Solution 3: Action Selection Based on isTrusted Value
	Solution 4: Action Selection Based on trustValue

	Results

	Conclusion
	Discussion
	Further Developments

	References

