
ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

CAMPUS DI CESENA

DIPARTIMENTO DI INFORMATICA - SCIENZA E INGEGNERIA

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA E SCIENZE INFORMATICHE

End-to-End Goal-Oriented Conversational Agent

for Risk Awareness

Thesis in Autonomous Systems

Supervisor:

Prof. Andrea Omicini

Company supervisor:

Dott. Mauro Gatti

Presented by:

Marco Canducci

Session III

Academic Year 2018/2019

Ai miei genitori, le persone più coraggiose che conosca

Table of contents

1 Introduction 7

2 State of the art 9

2.1 Background . 9

2.2 Search objective and strategy . 10

2.3 Selection criteria . 11

2.4 Synthesis . 12

2.4.1 Base technologies for End-to-End Goal-Oriented Dialog Agents 13

3 Working method 23

3.1 Roadmap . 23

3.2 Obstacles and mindset . 24

4 Thesis project 25

4.1 Scenario . 25

4.2 Logical architecture . 30

4.2.1 Project plan . 30

4.2.2 Dialog Management System . 34

4.3 Implementation and Technologies . 41

4.3.1 Front end . 41

4.3.2 Speech-to-text . 43

4.3.3 Text-to-speech with talking avatar . 45

4.3.4 Dialog Management System . 47

4.3.5 Dialog corpora generation . 51

4.4 Licensing . 52

3

4.5 Limitations . 52

4.6 Future development . 53

5 Conclusions 55

References 56

4

List of Figures

1.1 DigiEduHack awarding ceremony in Bologna . 8

4.1 Example of a conversation’s preliminary phase where the user doesn’t sponta-

neously provide any information . 27

4.2 Example of a conversation’s preliminary phase where the user spontaneously pro-

vide one piece of information . 27

4.3 Example of a conversation’s preliminary phase where the user spontaneously pro-

vide both pieces of information . 28

4.4 Example of conversation continuation with a propositive user 28

4.5 Example of conversation continuation with an adverse user 29

4.6 Prototype’s architecture overview . 31

4.7 Prototype’s sequence diagram . 32

4.8 Prototype’s sequence diagram with API call . 33

4.9 End-to-End Memory Network model proposed by Sukhbaatar et al. 34

4.10 Example of conversation between the user and the conversational agent with ex-

plicit separation between the utterances saved in memory, the last user’s utterance,

and the correct conversational agent’s response to predict 37

4.11 Utterances representation as bag of words . 38

4.12 Mathematical model of the End-to-End Memory Network 39

4.13 Multi-hop model of the End-to-End Memory Network 40

4.14 Prototype’s implementation technologies . 42

4.15 Web-based user interface with an anthropomorphic conversational agent 44

4.16 First example of JSON document used in the POST request body when asking

the Dialog Management System for the next response 45

5

4.17 Second example of JSON document used in the POST request body when asking

the Dialog Management System for the next response 46

4.18 Python code snippet of the embedding matrix A 47

4.19 Python code snippet of the matching section . 48

4.20 Python code snippet of the final neural network section 49

4.21 Python code snippet of the neural network composition 50

4.22 Synonyms considered during dialog generation for housings and heating systems 51

4.23 Synonyms for user confirmations and negations used in dialog generation 52

4.24 Personalized MemN2N architecture . 54

6

Chapter 1

Introduction

Traditional development of conversational agents for goal-oriented applications typically require

a lot of domain-specific handcrafting, which precludes effectively scaling up to different domains;

end-to-end systems would escape this limitation because they can be trained directly from dia-

logues [1]. The encouraging success recently obtained in end-to-end chit-chat bots could carry

over to goal-oriented settings: applying deep learning models for building robust and scalable

digital assistants directly from corpora of conversations is in fact still a challenging task and an

open research area. For this reason, I decided with my company supervisor that it would have

been more relevant in the context of a master’s thesis to experiment and get acquainted with

new promising methodologies - although not yet ready for production - rather than investing

time in hand-crafting dialogue rules for a specific domain.

My internship at the IBM Research Center on Active Intelligence located in Bologna spanned

from September 2019 to February 2020, period during which I worked on two different projects,

both focused on new methodologies for Human-Computer Interaction. One of them regarded

my thesis work, and had the following macro objectives:

• investigate the latest scientific studies concerning goal-oriented conversational agents, study-

ing new methods to develop them and, in general, engage users;

• choose a reference study, understand it and implement it with an appropriate technology;

• apply what learnt to a particular domain of interest.

We chose the application domain of Risk awareness, a decision taken after the participation

to the hackathon organized by DigiEduHack [2] in collaboration with IBM, UniBo and Unipol

during the 3rd and the 4th of October.

7

Figure 1.1: Awarding of our team - I Mancini - winner of the hackathon organized by

DigiEduHack in collaboration with IBM, UniBo and Unipol. Out of five members, four of

us were from the School of Computer Science and Engineering located in Cesena [3].

Specifically, for my thesis project I developed the prototype of a conversational agent aimed to

educate and advise users on the topic of risk. We decided that, as a key feature, the system

should have been able to learn directly from past conversations, therefore being trainable end-to-

end. Not having real dialogues available though, I took care of synthetically generate a corpora

of conversations between a user and a conversational agent, taking a cue from the Dialog bAbI

dataset for restaurant reservations and adapting it to the new domain of interest.

8

Chapter 2

State of the art

2.1 Background

Conversational Agents are virtual entities that communicate with users in natural language

(text, speech, or both), and fall into two main categories [4].

Goal-oriented dialogue agents, or Task -oriented dialogue agents, use the conversation

with the users to help them complete tasks or, in general, to achieve goals; these kind of virtual

assistants are typically set up to have short conversations and, depending on the target userbase,

they can be implemented to cover broad, generic topics or, alternatively, to focus on narrower

domains in order to be more effective in specific areas. Examples of the former are digital

assistants like Siri, Alexa, Google Now, which give directions, control appliances, find restaurants,

or make calls; the latter provide more ad hoc solutions like answering frequent questions on

corporate websites, giving personalized financial advice [5], or even doing social good: DoNotPay

is the first “robot lawyer” that helps people challenge incorrect parking fines, apply for emergency

housing, or claim asylum for refugees [6].

By contrast, chatbots or chit-chat bots, are systems designed for extended interactions, set

up to mimic the unstructured conversations or “chats” characteristic of human-to-human interac-

tion; these systems have historically been studied to pass the Turing test, for pure entertainment

(see Microsoft’s XiaoIce emotional companion [7]), but also for practical purposes like testing

theories of psychological counseling or, lately, making goal-oriented agents more natural.

9

Goal-oriented dialog agents have been historically built with four major components: a pre-

processing unit, a natural language understanding unit, a dialog manager and a response gen-

erator [8]. This structure allows to model the conversation flow in detail, providing a strong

control to the designer but, at the same time, limiting the agent’s capabilities (i) to the ones

explicitly foreseen by the developer and (ii) to the specific domain of interest it’s being developed

for. Since extraordinary results have been obtained with deep learning frameworks for chit-chat

bots, the NLP and AI communities are verifying the suitability of these end-to-end solutions

for goal-oriented systems, in order to develop dialog agents from data with as little as possible

human intervention; furthermore, one long-term objective is to increasingly blur the dividing

line between the two dialog systems categories, with the aim to develop virtual agents capable of

supporting “chit chat” conversations and, at the same time, effectively helping users achieving

specific goals.

2.2 Search objective and strategy

The main objective of this chapter is to identify both the founding studies and the most recent

(and promising) ones which describe how to develop goal-oriented dialogue systems trained di-

rectly from data. The motivation behind such an investigation is twofold: first of all there’s

a rapidly growing market demand for dialogue agents capable of goal-oriented behaviour [9]

and, secondly, the technologies to develop them without the need to hand-craft the dialog flow

are evolving very quickly in the last few years, bringing an active interest from the scientific

community and, consequently, a strong proliferation of articles which could overwhelm anyone

approaching the topic for the first time.

The research have been carried out on three of the most relevant digital libraries identified

by Brereton et al. [10]: Google Scholar, ACM Digital and IEEExplore. I followed the standard

practice of performing the automatic search within the titles, abstracts and keywords; no restric-

tions have been imposed on the year of publication. For each individual search, only the first

200 results were considered, ordered by relevance.

Search string: (“goal-oriented” OR “task-oriented”) AND dialog* AND “end-to-end”.

Note: The wildcard in dialog* has been used to include plurals and different notations often seen

in literature such as dialog and dialogue.

10

Search results:

• Google Scholar, excluding patents and citations: 3780 results;

• ACM Digital Library: 95 results;

• IEEExplore: 12 results.

Finally, I’ve taken into account also new cited and citing articles when considered relevant to the

study.

2.3 Selection criteria

In this phase I had to perform a first screening, considering both the relevance to the study goal

and the scientific importance of the articles. First of all, basic rules for inclusion and exclusion

have been set up.

Inclusions:

• Full articles, not PowerPoint presentations or extendend abstracts

• Papers published in peer-reviewed journals or conference proceedings

• Only sources about goal-oriented (or task-oriented) dialog systems, not about chit-chat

bots

• Only sources with end-to-end trainable models

Exclusions:

• Reviews, which don’t introduce new solutions

• Papers focused solely on performance evaluation of dialog systems

• Papers that introduces new datasets or new ways to retrieve data without proposing novel

solutions

• Papers that were aimed at open-domain dialogue agents

• Papers related to Multi-modal or to Visual dialog

• Duplicates reports for the same study

Afterwards, since I wanted to include both the fundamental studies and the most promising ones

based on them, I added papers prior to 2018 only if they had more than 20 citations, while

most recent ones were included also with fewer or no citations, as long as they were accepted at

conferences (or published in peer-reviewed journals). Using the described criteria, a total of 31

publications has been selected.

11

2.4 Synthesis

All the chosen studies are based on end-to-end trainable neural networks and, although the goal

always remains to minimize human intervention, there are different levels of intervention nec-

essary depending on the different solutions. Typically, a model’s accuracy improves as manual

tuning increases and, in general, as the designer makes the network capable of recognizing mean-

ingful data types belonging to the domain of interest (see the “Match type features” in Memory

Networks [1] or the “Domain-specific action templates” in Hybrid Code Networks [11]); conse-

quently, it will be essential to always consider the best trade off between model accuracy and the

need for human intervention, and possibly choose the most appropriate solution for the specific

problem to solve.

I want to bring attention also to the different nature of the public datasets typically used in

the studies: some of them just provide many different dialogues between the user and the con-

versational agent (e.g. Facebook’s “Dialog bAbI tasks”), while others focus mainly on explicitly

tracking the state of the conversation and the user’s intentions, which must therefore be explicitly

provided together with the dialogues (e.g. Microsoft’s “Dialog State Tracking Challenge”). In

general, although it has been shown that the ability of a conversational agent to track the state

of the conversation is strongly linked to its effectiveness in the goal-oriented context, solutions

capable of performing well even in the first kind of datasets will be considered preferable since,

when applied to a real context, they allow the designer to avoid manual state and intent tagging.

Regarding the development of end-to-end solutions for goal-oriented agents, four fundamental

deep learning frameworks were developed between 2016 and 2017, which many studies have then

been based on and drew inspiration from in the following years, introducing new ideas and

improvements:

• Deep Q-Networks

• End-to-End Memory Networks

• Sequence-to-Sequence Networks

• Hybrid Code Networks

The four reference frameworks are briefly discussed in the sub-chapters below, while the novel

contributions of each of the most recent studies are directly reported in Table 2.1, alongside with

the papers’ titles, the frameworks on which they are based and the years of publication.

12

2.4.1 Base technologies for End-to-End Goal-Oriented Dialog Agents

Frameworks based on Deep Q-Networks

Since 2016 deep reinforcement learning solutions were proposed for dialog state tracking [12] and

for information access via user interaction [13]. The former work proposed a Recurrent extension

to Deep Q-Networks (DRQNs) which introduced an LSTM layer on top of the convolutional layer

of the original DQN model, which allowed DRQN to solve POMDPs in dialogue settings. The

major drawback of frameworks based on Deep Q-Networks is that they typically assume that

the model has access to an explicit representation of the dialog state or, more in general, to a

reward signal; such information could not be available in practice or would imply heavy manual

intervention by the designer.

A notable work from 2018 tried to overcome this shortcoming by proposing an adversarial

method to learn rewards directly from dialog samples [14]. Another study focused instead on

a typical problem of dialog systems - knowledge base access: it proposed a deep Q-learning

based system (Deep Q-network) capable of interact with a structured database to assist users in

accessing information and accomplishing tasks; the reinforcement learning based dialog manager

has been particularly able to handle noises caused by other components [15].

End-to-End Memory Networks (MemN2Ns)

MemN2Ns are a form of Memory Networks [16] which are trained end-to-end, and hence require

significantly less supervision during training, making them more generally applicable in realistic

settings [17]. Initially applied to question answering problems, MemN2Ns were subsequently

exploited for goal-oriented conversational agents when Bordes et al. [1] proposed a test bed

to break down the strengths and shortcomings of end-to-end dialog systems in goal-oriented

settings: the Dialog bAbI dataset. Set in the context of restaurant reservation, its tasks required

manipulating sentences and symbols, so as to properly conduct conversations, issue API calls

and use the information provided by the outputs of such calls.

MemN2N-based studies relevance is twofold: first of all, since they only need corpora of

dialogues as datasets there is no need to explicit the user’s intentions nor the state of the conver-

sation; secondly, because Memory Networks have been the starting point for many recent studies

which aim to enhance dialog personalization based on user characteristics [18] [19], integration

with external knowledge bases [20] [21], and modeling of long-range dialog history information

[22].

13

Sequence-to-Sequence Networks (Seq2Seq)

Seq2seq is a family of machine learning approaches developed by Google for machine translation

and then used in several natural language processing tasks. Seq2seqs are composed by an encoder

and a decoder components and, in general, turn one sequence into another; they can make use of

recurrent neural networks (RNNs) or, more often, LSTMs or GRUs. Having had extreme success

for chit-chat systems, it’s only natural that researchers would have tried to exploit Seq2Seq-based

systems even in goal-oriented contexts. In 2017 neural encoder-decoder architectures has been

used to frame goal-oriented dialogues as a sequence-to-sequence learning problem trainable both

with reinforcement learning and supervised learning [23]. Furthermore, it’s been added a copy

mechanism while testing its effectiveness on the DTSC2 - a dataset for dialog state tracking.

In recent years, several studies have tried to further develop Seq2Seq networks applied to

goal-oriented systems: Lei et al. [24] focused on reducing model complexity for better scala-

bility; Hupkes et al. [25] investigated how encoder-decoder models process disfluencies, such as

hesitations and self-corrections; Qin ed al. [26] proposed a novel framework which queries a

knowledge base in two steps in order to improve the consistency of generated entities.

Hybrid Code Networks (HCNs)

HCNs are Recurrent Neural Networks (RNNs) based frameworks introduced in 2017 which aug-

mented vanilla RNNs with two main components [11]: a domain-specific knowledge encoded as

software and system action templates. The goal is to considerably reduce the amount of train-

ing data required while retaining the benefits of inferring a latent representation of dialog state

and end-to-end trainability. The key advantage of this approach is the developer’s ability to

effectively inject domain knowledge and constraints.

Interestingly, although this type of framework requires some level of domain-specific human

intervention, it reports state-of-the-art performance on the bAbI dialog dataset and even better

performance than two commercial dialog agents [11]. Moreover, HCNs (like some Seq2Seq solu-

tions) can be trained both with supervised and reinforcement learning. Two notable studies in

particular have used HCNs: the first one demonstrated interactive teaching for end-to-end dia-

log control [27] while the other proposed a Hierarchical expansion (HHCNs) in order to conduct

better semantic analysis and therefore select more meaningful responses to user’s requests [28].

14

ID Title Framework Novelties Year

S01 Towards End-to-End Learn-

ing for Dialog State Track-

ing and Management using

Deep Reinforcement Learn-

ing [12]

Deep Recurrent

QNetworks (DRQN)

Implements a deep reinforce-

ment learning based end-to-end

framework for both dialog state

tracking and dialog policy

2016

S02 Learning End-to-End Goal-

Oriented Dialog [1]

End-to-End Memory

Networks (MemN2N)

Proposes a new dataset for

end-to-end goal-oriented dia-

log systems evaluation (Di-

alog bAbI) and adapts the

MemN2N framework for goal-

oriented tasks

2016

S03 Gated End-to-End Memory

Networks [29]

Gated MemN2N Exploits a gating mechanism

in the context of End-to-End

Memory Networks in order to

regulate the access to the mem-

ory blocks in a differentiable

fashion

2016

S04 End-to-end LSTM-based di-

alog control optimized with

supervised and reinforce-

ment learning [30]

LSTM Uses a recurrent neural network

(an LSTM) which maps from

raw dialog history directly to

a distribution over system ac-

tions

2016

S05 A Network-based End-

to-End Trainable Task-

oriented Dialogue System

[31]

Sequence-to-sequence

networks (Seq2Seq)

and RNN-CNN

Mixes POMDP and Seq2Seq

approaches, having each mod-

ule of the system end-to-end

trainable

2016

S06 A Copy-Augmented

Sequence-to-Sequence

Architecture Gives Good

Performance on Task-

Oriented Dialogue [23]

Copy-Augmented

Seq2Seq

Implements a recurrent neu-

ral dialogue architecture aug-

mented with an attention-

based copy mechanism

2017

15

ID Title Framework Novelties Year

S07 Hybrid Code Networks:

practical and efficient

end-to-end dialog con-

trol with supervised and

reinforcement learning [11]

Hybrid Code Net-

works (HCNs)

Combines an RNN with

domain-specific knowledge en-

coded as software and system

action templates

2017

S08 Demonstration of interac-

tive teaching for end-to-end

dialog control with hybrid

code networks [27]

Hybrid Code Net-

works (HCNs)

A developer teaches the net-

work by interacting with the

system and providing on-the-

spot corrections; once a sys-

tem is deployed, mistakes can

also be corrected from logged

dialogs

2017

S09 End-to-end task-completion

neural dialogue systems [15]

Deep Q-network

(DQN)

Proposes a neural dialogue sys-

tem that can directly interact

with a structured database to

assist users in accessing infor-

mation and accomplishing cer-

tain tasks. The Reinforce-

ment Learning based dialogue

manager offers robust capabili-

ties to handle noises caused by

other components of the dia-

logue system

2017

S10 Iterative policy learning in

end-to-end trainable task-

oriented neural dialog mod-

els [32]

Deep Reinforcement

Learning

Jointly optimizes the dialog

agent and a user simulator with

deep RL by simulating conver-

sations between the two

2017

S11 End-to-end optimization

of task-oriented dialogue

model with deep reinforce-

ment learning [33]

Hybrid supervised

and deep Reinforce-

ment Learning

The dialogue agent is trained in

a supervised manner by learn-

ing directly from task-oriented

dialogue corpora, and then op-

timized with deepRL during its

interaction with users

2017

16

ID Title Framework Novelties Year

S12 Personalization in Goal-

Oriented Dialog [18]

MemN2N with Split

Memory architecture

Presents a new dataset of goal-

oriented dialogs which are in-

fluenced by speaker profiles at-

tached to them. Then analyzes

the shortcomings of an existing

end-to-end dialog system based

on Memory Networks and pro-

pose modifications to the archi-

tecture which enable personal-

ization

2017

S13 Subgoal discovery for hi-

erarchical dialogue policy

learning [34]

Subgoal Discovery

Network (SDN) and

Hierarchical RL

Divides a complex goal-

oriented task into a set of

simpler subgoals in an unsu-

pervised fashion; then uses

these subgoals to learn a multi-

level policy by hierarchical

reinforcement learning

2018

S14 Analysing the potential of

seq-to-seq models for in-

cremental interpretation in

task-oriented dialogue [25]

Seq2Seq with atten-

tion mechanism

Concludes that recurrent net-

works with attention can learn

to correctly process disfluen-

cies, provided they were pre-

sented to them at training time;

furthermore, suggests that the

disfluencies contribute to a bet-

ter understanding of the input,

rather than hindering it

2018

S15 Hierarchical Hybrid Code

Networks for Task-Oriented

Dialogue [28]

Hierarchical Hy-

brid Code Networks

(HHCNs)

a word-character RNN for se-

mantic representation and a

NN-based selection for domain

knowledge are integrated

2018

17

ID Title Framework Novelties Year

S16 Bbq-networks: Efficient ex-

ploration in deep reinforce-

ment learning for task-

oriented dialogue systems

[35]

Deep Q-learning present a new algorithm that

significantly improves the effi-

ciency of exploration for deep

Q-learning agents in dialogue

systems

2018

S17 Dialogue learning with hu-

man teaching and feedback

in end-to-end trainable task-

oriented dialogue systems

[36]

Hierarchical LSTM Proposes a hybrid imitation

and reinforcement learning

method, with which a dialogue

agent can effectively learn from

its interaction with users by

learning from human teaching

and feedback

2018

S18 Sequicity: Simplifying Task-

oriented Dialogue Systems

with Single Sequence-to-

Sequence Architectures

[24]

Two Stage CopyNet,

based on Seq2Seq

Proposes a novel, holistic, ex-

tendable framework based on

a single sequence-to-sequence

model which can be optimized

with supervised or reinforce-

ment learning

2018

S19 Goal-Oriented Chatbot Dia-

log Management Bootstrap-

ping with Transfer Learning

[37]

End-to-End Rein-

forcement Learning

Introduces a transfer learning

method to mitigate the effects

of the low in-domain data avail-

ability

2018

S20 Adversarial Learning of

Task-Oriented Neural

Dialog Models [14]

Generative adversar-

ial networks (GANs)

Proposes an adversarial learn-

ing method to learn dialog re-

wards directly from dialog sam-

ples

2018

S21 Mem2Seq: Effectively

Incorporating Knowledge

Bases into End-to-End

Task-Oriented Dialog

Systems [20]

Mem2Seq Proposes the first neural gener-

ative model that combines the

multi-hop attention over mem-

ories with the idea of pointer

network, aiming to better in-

corporate knowledge bases

2018

18

ID Title Framework Novelties Year

S22 Memory-to-Sequence learn-

ing with LSTM joint de-

coding for task-oriented di-

alogue systems [21]

Memory-to-Sequence:

MemNN and LSTM

joint decoding

Proposes a Memory-to-

Sequence framework that

uses Memory Neural Network

(MemNN) and Long Short

Term Memory (LSTM) joint

decoding, in order to better

capture the dependence be-

tween the system responses

and the knowledge base items

2019

S23 A Modular Task-oriented

Dialogue System Using a

Neural Mixture-of-Experts

[38]

Modular Task-

oriented Dialogue

System (MTDS)

A “chair bot” coordinates mul-

tiple expert bots and adap-

tively selects an expert bot to

generate the appropriate re-

sponse

2019

S24 End-to-End Question An-

swering Models for Goal-

Oriented Dialog Learning

[39]

Hierarchical RNNs,

BiDAF, large-scale

KB query methods

from DrQA, Embed-

dings from Language

Models (ELMo)

Uses popular approaches from

both dialog and QA literature,

and show that QA methods

perform comparably well to the

former, despite they were de-

signed for a fairly different task

2019

S25 Incremental Learning from

Scratch for Task-Oriented

Dialogue Systems [40]

Incremental Dialogue

System (IDS)

Introduces an uncertainty es-

timation to evaluate the con-

fidence of giving correct re-

sponses; in case of low confi-

dence humans will be involved

in the dialogue process and

the system can learn from hu-

man intervention. Also, a new

dataset which simulates unan-

ticipated user needs is provided

2019

19

ID Title Framework Novelties Year

S26 Memory-Augmented Di-

alogue Management for

Task-Oriented Dialogue

Systems [22]

MAD, a novel

memory-augmented

dialogue management

Employs a memory controller

and two additional memory

structures: the slot-value mem-

ory tracks the dialogue state by

memorizing and updating the

values of semantic slots, while

the external memory augments

the representation of hidden

states of traditional RNN by

storing more context informa-

tion

2019

S27 Learning personalized end-

to-end goal-oriented dialog

[19]

Personalized

MemN2N

Introduces a “profile model”

which encodes user profiles into

distributed embeddings and

refers to conversation history

from other similar users, then

adds a “preference model” that

captures user preferences over

knowledge base entities, in or-

der to better handle the ambi-

guity in user requests

2019

S28 An end-to-end goal-oriented

dialog system with a gen-

erative natural language re-

sponse generation [41]

FFNN with positional

encoding

Generates the output word by

word: bot responses are no

longer restricted to a fixed

number of candidates

2019

S29 Entity-Consistent End-to-

end Task-Oriented Dialogue

System with KB Retriever

[26]

Seq2Seq with atten-

tion mechanism over

a database

Proposes a novel framework

which queries a Knowledge

Base in two steps in order to

improve the consistency of gen-

erated entities

2019

20

ID Title Framework Novelties Year

S30 DialogAct2Vec: Towards

End-to-End Dialogue Agent

by Multi-Task Representa-

tion Learning [42]

DialogAct2Vec Proposes a novel joint end-

to-end model by multi-task

representation learning, which

can capture the knowledge

from heterogeneous informa-

tion through automatically

learning of knowledgeable

low-dimensional embeddings

from data

2019

S31 Hello, It’s GPT-2 – How

Can I Help You? To-

wards the Use of Pretrained

Language Models for Task-

Oriented Dialogue Systems

[43]

GPT-2 Builds on top of the Transfer-

Transfo framework and genera-

tive model pre-training, in or-

der to validate the approach

on complex multi-domain task-

oriented dialogues from the

MultiWOZ dataset

2019

Table 2.1: State of the art overview - for every selected study it’s been

reported a brief summary of the main novelties introduced, in addition

to the reference framework and the year of publication.

21

Chapter 3

Working method

In agreement with my company supervisor we decided that, following the thesis goals, it would

have made sense to invest about 85% of my time to study and develop the dialogue management

system (see section 4.1.2), while in the remaining 15% I would have implemented the prototype’s

outline architecture (see section 4.2.2), including a bare bone client for the user interaction with

an anthropomorphic virtual assistant.

3.1 Roadmap

Over the period between mid-November and the Christmas holidays I alternated the theoretical

study of end-to-end goal-oriented dialogue systems with the development of the web-based client

in which I embedded an anthropomorphic avatar with text-to-speech capabilities. Regarding

the literature study, I described in detail the searching process, the selection criteria and the

synthesis of my findings in Chapter 2.

From the post-Christmas period until the end of February I focused on the implementation

of the core dialogue system, choosing the End-to-End Memory Networks [17] as reference frame-

work, applied to goal-oriented dialog systems as proposed in Bordes et al. [1]. Together with my

company supervisor, I’ve chosen this deep neural network architecture because it’s considered

extremely relevant in this research area, plus it’s been the crucial starting point for several recent

and promising studies [29] [18] [20] [19] [22] [21]. We kept each other regularly updated through

weekly checkpoint, during which we reviewed my progresses, compared our findings and, finally,

decided how to proceed until the next meeting on the basis of what had been done and learnt.

23

3.2 Obstacles and mindset

The two major obstacles I faced have been first of all trying to have a good grasp of the vast

literature available from 2016 and, subsequently, learning how to use in a relatively short time

tools for deep neural network development, with which I’ve never worked before. I often found

myself alternating moments of study with sessions for practical implementation; during the first

weeks it’s been of great help being able to consult reference code examples and open source

public repositories available on portals such as github.com and paperswithcode.com. It’s been

of great support and motivation also being able to regularly confront my company supervisor,

exchanging ideas, articles and code snippets in order to find guidance.

Regarding the first obstacle, I constantly tried to reasonably balance the breadth and the

depth of my studies, starting with a more superficial overview and then deepening the topics

assessed as more relevant for my work. As for the second obstacle, I found extremely useful

the availability of recent high-level frameworks for deep learning (e.g. Keras, see section 4.3.4)

which proved themselves perfect for a beginner, thanks to their effectiveness, ease of use and

community support.

During my time at IBM I also successfully took the last exams of my study plan: an under-

taking made possible thanks to the freedom and organizational autonomy that the company gave

me. I believe that this work experience, albeit relatively short, has helped me understanding

how to better manage available time and resources while facing new challenges: a lesson that I

will surely keep in mind for my future career.

24

Chapter 4

Thesis project

4.1 Scenario

The project goal is to develop a prototype which would allow a user to interact in spoken form

with an anthropomorphic conversational agent, with the aim of receiving advice about risk and

possible insurance plans based on the different kind of housing and heating systems. As already

specified in the previous chapters, the conversational agent’s model must be trained directly on

dialogues; not being in possession of real conversations though, it will be necessary to generate

them in a synthetic way. Inspired by the Dialog bAbi dataset for restaurant reservations, a

corpora of dialogues must be created with the following structure:

1. First of all, following an initial greeting and the request from the user to receive information

about risk, the conversational agent must effectively collect two information about the user:

his/her type of dwelling and his/her kind of heating. Specifically, three possible types of

housing (single house, multifamily, flat) and five types of heating (natural gas, LPG, wood,

pellet and electric) are identified. Note that the conversational agent must be able to

correctly handle different ways of collecting information, specifically the user could indeed

consult it:

• without immediately providing additional information, as seen in Figure 4.1, in which

case the agent would have to proactively ask for both;

• providing only one of the two, as seen in Figure 4.2 where the agent would have to

ask for the other;

25

• immediately providing both, as seen in Figure 4.3, in which case the agent should

identify them and immediately make the correct API call.

2. Once both information pieces have been collected, the agent must perform the correct API

call to the knowledge base, in which relevant advice and insurance policies are stored; note

that the agent must learn from the different conversations the various synonyms with which

users could refer to a particular type of housing and heating. Of course, the same API

call must be performed when users refer to the same thing differently; for example, “single

house”, “standalone house”, “single family home” and “detached house” all refer to the

same concept.

3. An API call will retrieve a couple of tips for risk prevention and a variable number -

from one to three - of insurance solutions, with maximum, medium or minimum coverage.

Of course such dialogue structure represents a simplification, but it’s been considered an

acceptable compromise, able to showcase some non-trivial skills to be learned with end-

to-end training: in addition to the already discussed synonyms and provided information

recognition, the conversational agent must learn to deal with different user behaviors, which

can range from the most positive (see Figure 4.4) to the most adverse (see Figure 4.5).

• First of all, the user is offered a first advice on risk prevention based on his home and

heating information;

• then he’s asked if he is interested in a second advice and, if so, another tip is given;

• subsequently, the user is asked if he’d like to learn more about a suitable insurance

coverage;

• in case of a positive response, the agent must offer the user the insurance with the

highest coverage among those retrieved from the knowledge base with the API call.

• if the user wants to know more about alternatives, the system must offer the next

available insurance in descending order of coverage, until the user accepts, or until the

available policies end, or until the user ends the conversation.

26

Figure 4.1: Example of a conversation’s preliminary phase where the user doesn’t spontaneously

provide any information. The conversational agent must therefore ask for both pieces of infor-

mation before performing the API call.

Figure 4.2: Example of a conversation’s preliminary phase where the user spontaneously provide

one piece of information. The conversational agent must therefore ask for the other before

performing the API call.

27

Figure 4.3: Example of a conversation’s preliminary phase where the user spontaneously provide

both pieces of information. The conversational agent must therefore immediately perform the

correct API call.

Figure 4.4: Example of conversation continuation after having issued the API call. In this case

the user accepts a second advice and shows interest in the second insurance coverage proposed

by the agent.

28

Figure 4.5: Example of conversation continuation after having issued the API call. In this

case the user is particularly adverse since he rejects both a second advice and insurance plans

information.

29

4.2 Logical architecture

4.2.1 Project plan

The project’s most interesting part lies in the Dialog Management System, described in detail in

section 4.2.2; all the other components are less relevant, but developed nonetheless in order to

deploy a complete prototype, which can better showcase the project results and eventually be

used as a starting point for future works.

Five main components are identified as shown in Figure 4.6:

• The central component must both provide a simple user interface equipped with an Embod-

ied Conversational Agent, and act as an orchestrator with the other components, actively

requesting Speech-to-Text and Text-to-Speech translations, asking the Dialog Management

System for the proper dialogue responses, and finally querying the Domain-specific Knowl-

edge Base.

• As already mentioned, most of the development time must be spent on the Dialog Manage-

ment System, being the most relevant component for the thesis’ purpose. It will embed the

model trained on corpora of dialogs and will offer a way to ask for the proper conversational

agent response by providing the last user utterance and the conversation history.

• An external Speech-to-Text service will be used to convert the sentences spoken by the

user into textual format.

• For the translation of the answers provided by the Dialog Management System into speech

format, it will be used another external service which will also provide an embodied con-

versational agent that will animate properly while pronouncing the sentences.

• Finally, it must be present a Knowledge Base storing domain-specific information; in our

case study it would incorporate advice for risk prevention and proposals for different in-

surance policies, organized by type of housings and heating systems.

It’s possible to consult Figures 4.7 and 4.8 to better understand the flow of interactions happening

between the different components, from the user request until the system response.

30

Figure 4.6: Prototype’s architecture overview. Blue arrows represent exchange of audio

information (speech) while red ones are for textual data. The yellow container incorporates in-

formation about risk hazards for different domestic heating solutions; the red box contains the

most important part of the thesis project: the prediction model for the conversational agent’s

answers; the green boxes represent services for text-speech conversion and avatar visualization;

finally, the gray box represents a component which deals with user interaction and system or-

chestration.

31

Figure 4.7: The diagram shows what kind of data is exchanged between which system components

between a user request and the system response. After the user pronounces an utterance, a

transcription service is exploited to obtain its textual representation. The transcription is then

provided as input to the Dialog Management System, together with all the previous dialogue

sentences. A proper response is evaluated and sent to a Text-to-Speech translation service, which

would also provide proper talking avatar animation.

32

Figure 4.8: The diagram shows the interaction flow between the system components as already

described for the Figure 4.7, with the addition of an API call request by the Dialog Management

System. The orchestrator takes care of it by retrieving the requested information from the

Knowledge Base and, subsequently, adding it to the conversation history; doing so, the obtained

knowledge will be available in memory for the rest of the conversation.

33

4.2.2 Dialog Management System

The Dialog Management System is modeled exploiting the End-to-End Memory Network frame-

work (MemN2N) proposed by Facebook AI Research in 2015: a neural network with a recurrent

attention model over an external memory, see Figure 4.9, initially applied to NLP tasks such

as question answering and language modeling [17]. In 2016 Bordes et al. [1] used MemN2N -

making some small changes to the baseline - for goal-oriented dialog systems, testing it with a

dataset of conversations for restaurant reservations created ad hoc: the Dialog bAbI dataset.

Figure 4.9: Single (a) and triple (b) layer version of the End-to-End Memory Network model

proposed by Sukhbaatar et al [17].

Model description with an example

The key concepts of the model are (i) how it stores the conversation in memory, (ii) how it reads

from memory to reason about the proper response, and (iii) how it outputs the response. In

order to better understand the model explanation I’ll make use of the simple example shown in

Figure 4.10, where the user and the conversational agent are in the middle of a brief conversation.

(i) As the model conducts a conversation with the user, at each time step t the previous user

utterance and model response are appended to the memory. Therefore, at any given time

there are cu1 , . . . c
u
t−1 user utterances and cr1, . . . c

r
t−1 model responses stored in memory

(the entire conversation). The goal at the time t is, given the conversation and last user

utterance cut , to choose the appropriate response crt . Taking as a reference the example

34

in Figure 4.10 we’d have cu1 and cr1 in memory, cu2 as the last user’s utterance, cr2 as the

response to predict, where:

t = 2

cu1 = “Good morning′′

cr1 = “Hi what can I help you with today?′′

cu2 = “I ′d like to know more about risk′′

cr2 = “What kind of housing do you live in?′′

Every utterance of the dialog is encoded as a bag of words of dimension V = (V ∗+T +2) by

the Φ(·) function, where V is the extended vocabulary size, V ∗ is the original vocabulary

size (which counts all the possible words present in the dialog corpora), T is equal to

the maximum number of turns that we estimate could happen during a conversation, and

finally the other two dimensions are added in order to specify when an utterance has been

said by the user and when by the conversational agent. Following the example as in Figure

4.11 we’d have:

V = 602

V ∗ = 500

T = 100

After having listed in alphabetical order all the possible V ∗ words contained within the

dialogues and having assigned them to a positional index, for every utterance c the resulting

bag of words vector Φ(c) is composed by three parts:

• the first V ∗ = 500 elements consist of all zeroes except for the ones at the same

positional index of words occurring in the utterance (in Figure 4.11 the only elements

equals to 1 for the utterance cu1 are the ones at position 84 and 204, corresponding to

the words good and morning respectively);

• the following T = 100 elements are all set to zero except for the one corresponding to

the current turn, which is set to 1;

• finally, the last two elements are always equals to 1 and 0, or to 0 and 1, depending

if the utterance has being said by the user or by the conversational agent.

35

Every past utterance encoded as bag of words is then embedded with a matrix A of di-

mension d × V , where d is the embedding size; these embedded utterances compose the

network’s memory component “m”:

m =
(
AΦ (cu1) , AΦ (cr1) . . . , AΦ

(
cut−1

)
, AΦ

(
crt−1

))

(ii) During training, the system must learn how to reason over the memory in order to identify

which one of the past utterances could be relevant in choosing the right response; let’s

see how this translate mathematically. The last user utterance cut is also embedded using

the matrix A, giving q = AΦ (cut), which is called “the controller state”. As shown in

Figure 4.12, the match between q and the memory - which indicates which are the most

relevant memories - is computed by taking the inner product followed by a softmax: pi =

Softmax
(
u>mi

)
, giving a probability vector over the memories. These probabilities are

then multiplied for the corresponding embedded memories, and finally combined as follow

in order to compute o = R
∑

i pimi where R is a d× d square matrix. The controller state

is therefore updated with q2 = o + q.

Note that the memory can be iteratively reread in order to refine the choice of relevant

past utterances using the updated state q2 instead of q, and in general using qh on iteration

h, with a fixed number of N iterations (called N-hops). The Figure 4.13 shows a 3-hops

representation of the model.

(iii) The final prediction is defined as:

â = Softmax
(
q>N+1WΦ (y1) , . . . , q>N+1WΦ (yC)

)
where yi are all the candidates responses with i ranging from 1 to C, and W is a weight

matrix of dimension d×V . The candidates are composed by all the possible conversational

agent’s responses, including the API calls.

The entire model (the weights of the matrices A, R and W) is trained using stochastic

gradient descent, minimizing a standard cross entropy loss between â and the true label a.

36

Figure 4.10: A preliminary exchange between the user and the conversational agent, used as

a simple example for the model description: the utterances cu1=“Good morning” and cr1=“Hi

what can I help you with today?” are part of the conversation history (stored in memory); the

utterance cu2=“I’d like to know more about risk” is the last user’s utterance and cr2=“What kind

of housing do you live in?” is the response we want to predict.

37

Figure 4.11: Bag of words representations of the four utterances showed in the dialog

of Figure 4.10. In this example we assumed a vocabulary dimension V of 500 words, extended

by T=100 time features and two further features which indicate if an utterance was said by the

user or by the conversational agent. For each sentence the words contained inside it are shown

on the left, alongside their numerical index, increasing in alphabetical order from 1 to 500 (the

size of V); on the right side it’s reported the corresponding vectorial representation as bag of

words. All the values non explicitly shown are considered equal to zero.

38

Figure 4.12: Mathematical model of the End-to-End Memory Network (MemN2N)

used for Goal-Oriented dialog systems as described in Bordes et al [1]. I’ve drawn this

picture taking inspiration from the one shown in Sukhbaatar et al [17], see Figure 4.9, bringing

some minor changes described in [1]. Note that, for a better understanding, light blue, gray and

red rectangles represent utterances as bags of words with the same color code used in Figure 4.11.

Yellow rectangles represent the memories embedded with the A matrix, while pi are drawn with

different green intensity in order to indicate different probability values that they can assume.

Note that there’s only one kind of embedding for the memories (in yellow), opposed to the

two embeddings present in figure 4.9 (in blue and salmon color): this derives from the imposed

constraint on the two embedding matrices A = C, as suggested in Bordes et al [1]. The same A

matrix is also used for the embedding of the last user’s utterances because of the constraint A =

B, applied to limit the neural network complexity.

39

Figure 4.13: Multi-hop model of the End-to-End Memory Network. It shows how to

compose a 3-hops neural network; for a detailed view of the single hops refer to the Figure 4.12.

I used the layer-wise weight tying method described in [17], with which the embeddings are the

same across different layers, i.e. A1 = A2 = A3 = A.

API calls mechanism

Three steps are followed in order to integrate external knowledge into the dialogs:

1. when the conversational agent has collected enough information to query the knowledge

base (e.g. the user’s type of housing and heating system), it must respond with coded

sentences which indicate an API call request: “api call single pellet” can be used to request

domain knowledge about pellet heating systems for users living in single houses;

2. a software component interposed between the conversational model and the user must be

able to recognize these requests and, instead of reporting them to the user, it must perform

the proper information retrieval on the database;

3. finally, once the responses from the external database are received, the software component

40

must inject them into the current dialog by adding them to the conversation memories; this

way, the Dialog Management System will be able to reason about them in the subsequent

interactions with the user.

If it’s necessary for the system to correctly interpret information present in the knowledge base

but absent in the training set, it would be possible to exploit the match type feature described

in Bordes et al. [1], as long as the new information is of the same “type” of other already learnt

by the model during the training phase.

4.3 Implementation and Technologies

Regarding the PoC implementation, I kept in mind the order of priorities assigned by my company

supervisor: I devoted most of my time and efforts to the development of the Dialog Management

System. His indication has also been reflected in the technological choices: for example, the handy

HTML5 Web Speech API has been considered a quick and reasonable compromise although still

not supported by some browsers (see Section 4.3.2), while I spent some time to better document,

refactor, and optimize the Python code of the neural network model.

In Figure 4.14 it’s reported an overview of the main technologies adopted for the prototype’s

development. They’re broken down below in the following sections: Front end, Speech-to-text

service, Text-to-Speech with talking avatar, Dialog Management System, Dialog corpora gener-

ation.

4.3.1 Front end

Given the prototypical nature of the project and the versatility of Web based solutions, I decided

to develop the front end as a simple Web page using HTML, CSS and plain JavaScript. The

result is shown in Figure 4.15: the talking avatar was chosen from the BotLibre’s free catalog

and it proved itself adequately flexible and easy to use thanks to the provided JavaScript’s Web

SDK; under the virtual agent I’ve inserted three buttons and two text areas. By pressing the

first button - push to talk - it’s possible to speak and see the live transcription inside the first

text area; doing so, if the user wants to change the text transcription, he could do it before

confirming with the send button. Conversely, inside the disabled text area at the bottom it’s

listed the conversation history, which can be reset by pressing the the button clear history.

41

Figure 4.14: Prototype’s implementation technologies applied on the system architecture

overview previously shown in Figure 4.6.

42

In addition to managing user interaction, the front end also deals with:

• Asking the Dialog Management System for the agent’s response, issuing a POST request

every time the user press the send button. The request body is a JSON file which include

the conversation history and the last user utterance, see Figure 4.16 and 4.17 for more

details.

• Questioning the Knowledge Base when a response from the Dialog Management System

contains an API call, and then appending the results inside the context field in the future

POST requests, see Figure 4.17. The Knowledge Base has been implemented as a set of

textual files, which contain hypothetical information about risk prevention and insurances

for different housing and heating systems.

4.3.2 Speech-to-text

The HTML5 Web Speech API aims to grant an alternative input method for web applications

and provides two distinct areas of functionality: speech recognition (with the Speech Input API),

and speech synthesis (with the Text to Speech API). I only made use of the former because, for

the speech synthesis, I exploited the text-to-speech provided by BotLibre - see Section 4.3.3. The

API itself is agnostic of the underlying speech recognition implementation and can support both

server based as well as embedded recognizers. For example, Chrome implementation of speech

recognition involves Google’s server-based recognition engine: the audio is sent to a Web service

for recognition processing, so it won’t work offline.

Support for Web Speech API speech recognition is currently limited to Chrome for Desktop

and Android, but it can also be enabled in recent versions of Firefox Nightly. Given the experi-

mental nature of the project and the convenience of these new APIs, I decided that despite the

current limited support, using HTML5 Web Speech API would have been a good compromise.

In case the system prototype should be further developed in the future - and several browsers

won’t have yet implemented the API - it will certainly be necessary to make use of alternative

services to obtain better browser coverage, such as IBM Speech to Text, Microsoft Bing Voice

Recognition, Google Cloud Speech API, Cedat85, Wit.ai, Houndify API, CMU Sphinx, etc.

43

Figure 4.15: Web-based user interface with an anthropomorphic conversational agent.

44

Figure 4.16: Simple example of JSON document used in the POST request body

when asking the Dialog Management System’s Web server for the correct response.

The context field is a list of lists containing the conversation’s past utterances (the memories);

every sub-list is composed by three strings, where the first one represent the turn, the second

indicates if it’s a user utterance “u” or a conversational agent response “r”, and the third one is

the actual sentence. The utterance field represent instead the last user utterance, to which the

Dialog Management System must respond.

4.3.3 Text-to-speech with talking avatar

As a requirement, it was mandatory to embed an anthropomorphic virtual agent into the appli-

cation’s UI, since these kind of avatars can add something to the interaction that, for us humans,

is viscerally different when perceived as a face-to-face conversation. Not being able to invest in

professional, paid solutions, I found an excellent alternative - the BotLibre framework - which

describe itself on botlibre.org as an “Open source chatbot and artificial intelligence platform”.

Note that this platform allows users to create their own chatbot from scratch, or simply make

use of many graphic and voice assets (3D models, animations and voices for speech synthesis).

Of course I only made use of the provided cosmetic and audio assets (see the model I chose in

Figure 4.15) because I implemented the conversational model’s logic in the Dialog Management

System; however, for information purposes I want to report how BotLibre also allows novices to

experiment and create their own assistant with no programming skills, following the tutorials

and examples shown in the website’s forum section. I used the SDK for JavaScript, but BotLibre

also provides development kits for Java, Android and iOS. My experience with the framework has

been generally positive: it’s very quick to set up and to use, even if not always well documented

or refined.

45

Figure 4.17: Another example of JSON document used in the POST request body

when asking the Dialog Management System for the correct response. I reported this

example more complex than the one in Figure 4.16 to illustrate how the results of an API call

are encoded in memory: the individual results retrieved from the Knowledge Base are provided

within the context of the conversation, encoded as if they were dialog system’s responses.

46

Figure 4.18: Python code snippet of the embedding matrix A.

4.3.4 Dialog Management System

The core component of the Dialog Management System consists of the dialog model which, given

the last user utterance and the conversation history, returns the agent’s response. It’s been

developed using Keras’ high-level neural network APIs with TensorFlow back end; I have shown

in Figures 4.18, 4.19, 4.20 the code snippets relative to three sections of the neural network and,

in Figure 4.21, how they are composed in order to obtain the final model.

In order to make it possible to query the dialog model from external components - in our

case from the Web client - I instantiated a simple Web server using the Flask Web application

framework for Python: each time the server receives an appropriate POST request at the /predict

address it appropriately vectorize the utterances passed in the request body, and then consults

the pre-trained dialog model (see examples of JSON request bodies in Figures 4.16 and 4.17).

Finally, I want to point out some optimization measures I made, which I found useful during

the dialog model training phase: in terms of time, using a simple caching system to save the

already vectorized dialogues in a pickle file; in terms of space representing the bag of words as

uint8 rather than the default float32.

47

Figure 4.19: Python code snippet of the matching section. This portion of neural network

implementation is used to identify which memories are most relevant in choosing the candidate

response. Within the call() function it’s possible to see a dot product between the embedded

memories and the last user utterance, followed by a softmax in order to evaluate which weights

to attribute to the different memories, and then to multiply these weights with the embedded

memories. Another dot product is made between the previous result and the R matrix, which

result is finally added to the embedded user utterance. Note that this section will be called N

times depending on the number of hops to perform on the memory, providing at each iteration

the result of the previous call as the new embedded user utterance. Refer to the for loop shown

in Figure 4.21 for the details.

48

Figure 4.20: Python code snippet of the final neural network section. This snipped

implements the portion of the model used for selecting the dialogue system response amongst all

possible candidates. Within the call() function it’s possible to see the dot product between the

input - the matching section’s output of Figure 4.19 - and the W matrix, followed by another dot

product with the candidates matrix and, finally, a softmax. Note that the candidates matrix is

composed by all the possible responses represented as bag of words and stacked side by side.

49

Figure 4.21: Python code snippet of the neural network composition. Within this piece

of code it’s illustrated how the sections defined in Figure 4.18, 4.19 and 4.20 have been used

to compose the complete neural network. First of all, both the user’s utterance tensor and the

memories tensor are embedded with the A matrix. After that, the matching section is repeatedly

invoked according to the number of hops; the first time it will take the embedded user utterance

as input, while the following invocations will take the result of the previous invocation as the new

input. The predicted candidate index will be finally computed as the output of the FinalSection.

50

Figure 4.22: Synonyms considered during dialog generation for housings and heating

systems. During the training, the dialogue system must be able to implicitly connect the

synonyms to the same concept. HOUSINGS is a Python dictionary where the keys correspond

to the string to use in the API calls, while the values are tuples containing many ways in which

the user could refer to the related concept. Same concept applies to the dictionary HEATINGS,

which describes the various types of heating systems and the various ways in which they can be

referred to.

4.3.5 Dialog corpora generation

Not having access to real dialogues, I had to synthetically generate a set of simulated conver-

sations. The dialog generation turned out to be a critical and educational exercise, as it led

me to a better understanding of the model’s potential and limitations while I tried to correctly

balance the diversity and the complexity of the dialogues I was generating. I took the Dialog

bAbI dataset for restaurant reservations as base reference, trying to adapt the challenges and

peculiarities proposed in it to the different context of risk awareness as described in Section 4.1.

Doing so, I better understood some of the choices made by the researchers who generated the

Dialog bAbI dataset, particularly regarding the interaction with the knowledge base and the

proposal of alternative restaurants which should take place in a specific order.

For each type of dwelling and heating system I have identified various synonyms (see Figure

4.22), and used them to generate different combinations of dialogues. I did the same for the

different ways in which the user could confirm or deny proposals from the conversational agent

(see Figure 4.23).

51

Figure 4.23: Synonyms for user confirmations, negations, acceptances, rejections used

in dialog generation. The different synonyms are used to generate a set of conversations with

a certain variety, and to help the dialogue system to learn typical ways with which the user could

answer yes/no questions and proposals.

4.4 Licensing

In the solution I implemented, the only licensed component is the BotLibre anthropomorphic

avatar, which uses the first version of the Eclipse Public License (EPL1). It’s a license aimed

at commercial use, in particular I must only remember that: I need to mention that my project

includes EPL code, and allow third parties to request access to the source code of the EPL

section if they want, including any modifications I’ve made to it. My own code though, which

only uses the EPL code in an import, does not need to be made EPL1.

4.5 Limitations

Since the End-to-End training of Goal-Oriented conversational agents is an extremely open and

recent research area, I was already aware that the final prototype would inevitably present several

compromises and limitations. I list below the most relevant ones:

• The system is unable to handle any word outside of the (limited) dictionary seen during

the training phase.

• The conversational agent’s response is chosen, at each turn, from a list of candidates (all the

possible answers learned during the training); more sophisticated solutions use a generative

approach instead.

52

• The prototype should be tested on a real dataset, since more or less satisfactory results

currently strongly depend on the complexity with which the synthetic dialogues are gener-

ated.

4.6 Future development

During the last months I often found myself faced with the choice of whether to deepen the study

of a certain promising enhancement, or to continue developing what I already had a grasp of.

Amongst the topics that I certainly wanted to explore further there are:

• Dialog personalization based on user’s known characteristics. First of all I could try to split

the memory between dialog history and user’s characteristics [18]. After that, it would be

very interesting to implement a more sophisticated Memory Network extension such as the

one presented by Luo et al. [19], called Personalized MemN2N, reported in Figure 4.24.

• Exploiting preexisting word embedding in addition to the ones learned by the model during

training: it could be fundamental both to better capture the semantics of sentences and

words, and most importantly to handle words that the model has never seen before.

• Generative approaches for Dialog Management System responses.

Finally, further small improvements could be attempted by experimenting with more refined

tokenization methods or by trying to consider word ordering in sentence embedding, rather than

coding them as bag of words.

53

Figure 4.24: Personalized MemN2N architecture [19].

54

Chapter 5

Conclusions

During my time at IBM I studied the topic of End-to-End Goal-Oriented conversational agents,

aiming at familiarizing myself with new solutions for Human-Computer Interaction. Market

demand for virtual assistants is constantly growing, and the End-to-End solutions based on

neural network models are attracting a lot of interest from the scientific community (especially

after the recent successes in chit-chat settings) because, being trainable directly from dialog

corpora, they allow to reuse the same solution on different application domains without the need

for manual intervention by the designer.

After having thoroughly investigated the literature published in the last 5 years I chose a

reference publication deemed particularly relevant [1], I studied it in depth and I implemented

it exploiting the latest technologies available to me. I verified my implementation’s proper

functioning by comparing my results with those reported in the paper for the reference Dialog

bAbI dataset ; I therefore proceeded to generate a corpora of conversations similar to the Dialog

bAbI but applied to the domain of risk awareness. The creation of the dataset was a useful

exercise firstly to grasp a better understanding of some choices made in the original study, but

also to comprehend the actual level of usability, the potential and the limitations of the developed

model. It would have been interesting to use a set of real dialogues, but unfortunately I didn’t

have any. To obtain a complete PoC, I then developed a simple Web client that incorporated an

embodied virtual agent capable of interacting with the user through voice, and was able to ask

the pre-trained dialog model for proper answers to give to the user.

I appreciated and found stimulating the choice of my company supervisor to let me experiment

with an emerging technology which prescinds from the application domain, rather than making

55

me invest time in developing a Goal-Oriented conversational agent the typical way through

tedious, domain specific, manual modeling of the dialogue flow. It’s been a valuable experiment

to truly understand the basics one of the most promising frameworks for End-to-End Goal-

Oriented dialog systems development, which could radically change the way personal assistants

are produced in the next years with the advancement of research and technology.

This internship has helped me increasing confidence in my abilities and gave me basic knowl-

edge of neural network development, an area of artificial intelligence which I’m very interested in

and would love to continue working on. In conclusion, it’s been an experience that I’d certainly

do again, my time at IBM has been absolutely positive for three main reasons:

• the technologies used and the topics covered have been cutting edge and of strong personal

interest;

• both colleagues and supervisors have always been helpful and extremely competent;

• the internship and thesis activities, despite rather short, have certainly enriched my per-

sonal and educational path.

56

Bibliography

[1] Antoine Bordes, Y-Lan Boureau, and Jason Weston. Learning end-to-end goal-oriented

dialog, 2016.

[2] DigiEduHack. One day. Hackathons all around Europe and beyond. Be a part of it. https:

//digieduhack.com/en/, 2019. [Online; accessed 13-February-2020].

[3] Premiazione DigiEduHack. Progetto VirTuS - Virtual Tutoring and Simulation. https:

//digieduhack.com/en/solutions/virtus-virtual-tutoring-and-simulation, 2019.

[Online; accessed 13-February-2020].

[4] Daniel Jurafsky and James H. Martin. Dialogue Systems and Chatbots, chapter 26, pages

1–35. Stanford University, 2019.

[5] WealthWizards. MyEva: your personal digital financial adviser. https://myeva.com/.

[Online; accessed 10-February-2020].

[6] DoNotPay - The world’s first Robot Lawyer. https://donotpay.com/. [Online; accessed

10-February-2020].

[7] Microsoft. XiaoIce. https://www.msxiaobing.com/. [Online; accessed 10-February-2020].

[8] James Lester, Karl Branting, and Bradford Mott. Conversational agents. The Practical

Handbook of Internet Computing, pages 220–240, 2004.

[9] Christian Muise, Tathagata Chakraborti, Shubham Agarwal, Ondrej Bajgar, Arunima

Chaudhary, Luis A Lastras-Montano, Josef Ondrej, Miroslav Vodolan, and Charlie Wiecha.

Planning for goal-oriented dialogue systems. arXiv preprint arXiv:1910.08137, 2019.

57

[10] Pearl Brereton, Barbara A Kitchenham, David Budgen, Mark Turner, and Mohamed Khalil.

Lessons from applying the systematic literature review process within the software engineer-

ing domain. Journal of systems and software, 80(4):571–583, 2007.

[11] Jason D. Williams, Kavosh Asadi, and Geoffrey Zweig. Hybrid code networks: practical

and efficient end-to-end dialog control with supervised and reinforcement learning. CoRR,

abs/1702.03274, 2017.

[12] Tiancheng Zhao and Maxine Eskénazi. Towards end-to-end learning for dialog state tracking

and management using deep reinforcement learning. CoRR, abs/1606.02560, 2016.

[13] Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao, Yun-Nung Chen, Faisal Ahmed,

and Li Deng. End-to-end reinforcement learning of dialogue agents for information access.

CoRR, abs/1609.00777, 2016.

[14] Bing Liu and Ian Lane. Adversarial learning of task-oriented neural dialog models. arXiv

preprint arXiv:1805.11762, 2018.

[15] Xiujun Li, Yun-Nung Chen, Lihong Li, Jianfeng Gao, and Asli Celikyilmaz. End-to-end

task-completion neural dialogue systems. arXiv preprint arXiv:1703.01008, 2017.

[16] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. arXiv preprint

arXiv:1410.3916, 2014.

[17] Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks. In

Advances in neural information processing systems, pages 2440–2448, 2015.

[18] Chaitanya K. Joshi, Fei Mi, and Boi Faltings. Personalization in goal-oriented dialog. CoRR,

abs/1706.07503, 2017.

[19] Liangchen Luo, Wenhao Huang, Qi Zeng, Zaiqing Nie, and Xu Sun. Learning personal-

ized end-to-end goal-oriented dialog. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 33, pages 6794–6801, 2019.

[20] Andrea Madotto, Chien-Sheng Wu, and Pascale Fung. Mem2seq: Effectively incorporating

knowledge bases into end-to-end task-oriented dialog systems. CoRR, abs/1804.08217, 2018.

[21] Bing Yu, Fuji Ren, and Yanwei Bao. Memory-to-sequence learning with lstm joint decoding

for task-oriented dialogue systems. In 2019 14th IEEE Conference on Industrial Electronics

and Applications (ICIEA), pages 200–204. IEEE, 2019.

58

[22] Zheng Zhang, Minlie Huang, Zhongzhou Zhao, Feng Ji, Haiqing Chen, and Xiaoyan Zhu.

Memory-augmented dialogue management for task-oriented dialogue systems. ACM Trans-

actions on Information Systems (TOIS), 37(3):1–30, 2019.

[23] Mihail Eric and Christopher D. Manning. A copy-augmented sequence-to-sequence archi-

tecture gives good performance on task-oriented dialogue, 2017.

[24] Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun Ren, Xiangnan He, and Dawei Yin.

Sequicity: Simplifying task-oriented dialogue systems with single sequence-to-sequence ar-

chitectures. In Proceedings of the 56th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 1437–1447, 2018.

[25] Dieuwke Hupkes, Sanne Bouwmeester, and Raquel Fernández. Analysing the poten-

tial of seq-to-seq models for incremental interpretation in task-oriented dialogue. CoRR,

abs/1808.09178, 2018.

[26] Libo Qin, Yijia Liu, Wanxiang Che, Haoyang Wen, Yangming Li, and Ting Liu. Entity-

consistent end-to-end task-oriented dialogue system with kb retriever. arXiv preprint

arXiv:1909.06762, 2019.

[27] Jason D Williams and Lars Liden. Demonstration of interactive teaching for end-to-end

dialog control with hybrid code networks. In Proceedings of the 18th Annual SIGdial Meeting

on Discourse and Dialogue, pages 82–85, 2017.

[28] Weiri Liang and Meng Yang. Hierarchical hybrid code networks for task-oriented dialogue.

In International Conference on Intelligent Computing, pages 194–204. Springer, 2018.

[29] Julien Perez and Fei Liu. Gated end-to-end memory networks. CoRR, abs/1610.04211,

2016.

[30] Jason D Williams and Geoffrey Zweig. End-to-end lstm-based dialog control optimized with

supervised and reinforcement learning. arXiv preprint arXiv:1606.01269, 2016.

[31] Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Lina Maria Rojas-Barahona, Pei-Hao Su,

Stefan Ultes, David Vandyke, and Steve J. Young. A network-based end-to-end trainable

task-oriented dialogue system. CoRR, abs/1604.04562, 2016.

59

[32] Bing Liu and Ian Lane. Iterative policy learning in end-to-end trainable task-oriented neural

dialog models. In 2017 IEEE Automatic Speech Recognition and Understanding Workshop

(ASRU), pages 482–489. IEEE, 2017.

[33] Bing Liu, Gokhan Tur, Dilek Hakkani-Tur, Pararth Shah, and Larry Heck. End-to-end op-

timization of task-oriented dialogue model with deep reinforcement learning. arXiv preprint

arXiv:1711.10712, 2017.

[34] Da Tang, Xiujun Li, Jianfeng Gao, Chong Wang, Lihong Li, and Tony Jebara. Subgoal

discovery for hierarchical dialogue policy learning. arXiv preprint arXiv:1804.07855, 2018.

[35] Zachary Lipton, Xiujun Li, Jianfeng Gao, Lihong Li, Faisal Ahmed, and Li Deng. Bbq-

networks: Efficient exploration in deep reinforcement learning for task-oriented dialogue

systems. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[36] Bing Liu, Gokhan Tur, Dilek Hakkani-Tur, Pararth Shah, and Larry Heck. Dialogue learning

with human teaching and feedback in end-to-end trainable task-oriented dialogue systems.

arXiv preprint arXiv:1804.06512, 2018.

[37] Vladimir Ilievski, Claudiu Musat, Andreea Hossmann, and Michael Baeriswyl. Goal-

oriented chatbot dialog management bootstrapping with transfer learning. arXiv preprint

arXiv:1802.00500, 2018.

[38] Jiahuan Pei, Pengjie Ren, and Maarten de Rijke. A modular task-oriented dialogue system

using a neural mixture-of-experts. CoRR, abs/1907.05346, 2019.

[39] Jamin Shin, Andrea Madotto, Minjoon Seo, and Pascale Fung. End-to-end question an-

swering models for goal-oriented dialog learning. 2019.

[40] Weikang Wang, Jiajun Zhang, Qian Li, Mei-Yuh Hwang, Chengqing Zong, and Zhifei Li. In-

cremental learning from scratch for task-oriented dialogue systems. CoRR, abs/1906.04991,

2019.

[41] Stefan Constantin, Jan Niehues, and Alex Waibel. An end-to-end goal-oriented dialog system

with a generative natural language response generation. In 9th International Workshop on

Spoken Dialogue System Technology, pages 209–219. Springer, 2019.

60

[42] Zhuoxuan Jiang, Ziming Huang, Dong Sheng Li, and Xian-Ling Mao. Dialogact2vec: To-

wards end-to-end dialogue agent by multi-task representation learning. arXiv preprint

arXiv:1911.04088, 2019.

[43] Pawel Budzianowski and Ivan Vulic. Hello, it’s GPT-2 - how can I help you? towards the use

of pretrained language models for task-oriented dialogue systems. CoRR, abs/1907.05774,

2019.

[44] Corriere Comunicazioni. 38 mln di investimenti e 250 posti di lavoro, l’Emilia Romagna

mette il turbo a Industria 4.0. https://www.corrierecomunicazioni.it/industria-4

-0/38-mln-di-investimenti-e-250-posti-di-lavoro-lemilia-romagna-mette-il-t

urbo-a-industria-4-0/, 2018. [Online; accessed 7-January-2020].

[45] Bologna Today. Lavoro, intelligenza artificiale: IBM cerca laureati in materie tecnico-

scientifiche. http://www.bolognatoday.it/economia/offerte-di-lavoro/ibm-ingegne

ri-laureati-lavoro-assume.html, 2018. [Online; accessed 7-January-2020].

[46] Corriere di Bologna. L’intelligenza artificiale sbarca in città: da IBM 5 milioni e 20 posti di

lavoro. https://corrieredibologna.corriere.it/bologna/economia/19 aprile 11/

intelligenza-artificiale-sbarca-cittada-ibm-5-milioni-20-posti-lavoro-14f6

1552-5c32-11e9-b21f-a9bf73d2542a.shtml, 2019. [Online; accessed 7-January-2020].

[47] ANSA. IBM Italia con UniBo, investe 5 milioni su ricerca. http://www.ansa.it/emilia

romagna/notizie/2019/04/10/ibm-italia-con-unibo-5-mln-per-ricerca 6d0c03fd-

7663-41d5-a267-546db73e2995.html, 2019. [Online; accessed 7-January-2020].

[48] Humanitas. Research Hospital. https://www.humanitas.it/.

[49] Yun-Nung Chen, Asli Celikyilmaz, and Dilek Hakkani-Tur. Deep learning for dialogue

systems. In Proceedings of the 27th International Conference on Computational Linguistics:

Tutorial Abstracts, pages 25–31, 2018.

[50] Nikola Mrksic, Diarmuid Ó Séaghdha, Tsung-Hsien Wen, Blaise Thomson, and Steve J.

Young. Neural belief tracker: Data-driven dialogue state tracking. CoRR, abs/1606.03777,

2016.

[51] Pei-Hao Su, Milica Gasic, Nikola Mrksic, Lina Rojas-Barahona, Stefan Ultes, David

Vandyke, Tsung-Hsien Wen, and Steve Young. Continuously learning neural dialogue man-

agement. arXiv preprint arXiv:1606.02689, 2016.

61

[52] Andrea Madotto, Zhaojiang Lin, Chien-Sheng Wu, and Pascale Fung. Personalizing dialogue

agents via meta-learning. In Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics, pages 5454–5459, 2019.

[53] Facebook. bAbI tasks public datasets. https://research.fb.com/downloads/babi/,

2016. [Online; accessed 14-January-2020].

62

