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"Quando uno scienziato non sa la risposta a un problema

é iwgnorante; quando ha una vaga idea della possibile
soluzione é incerto; e quando, dannazione, € sicuro del
risultato, ha ancora qualche dubbio. Noi scienziati ci siamo
abituati, e diamo per scontato che sia perfettamente coerente
non essere sicuri, che si possa vivere e non sapere.”

R. Feynman

A te, che stai leggendo; grazie,
perché quando ti chiedo di fare con me un miglio,
tu ne fai due.



Abstract

This thesis deals with the integration of differential algebraic equations systems.
Generally speaking the execution of numerical integration algorithms may introduce
some errors, which could propagate ending up in a wrong description of system
dynamics. This issue, named drifting, will be highlighted by dealing with a specific
constrained mechanical system presenting. Such system consists of a looper, which
is a mechanism used in the steel production to sense and control the tension acting
on the material. The thesis unfolds as follows: a first section model the looper
and inspects the main properties related to its joint space and singularities. A
brief introduction to stability analysis on multidof systems is proposed. Then, the
thesis proceeds analysing looper stability properties, eventually finding a globally
asymptotic stable configuration. Lastly, the drifting is highlighted by numerical
simulations. To solve this issue two control algorithms are proposed: the first is
the Baumgarte algorithm [8] and the second consists of a nonlinear stabilizer [7].
A performance comparison of both algorithms is then presented at the end of the
implementation description. All the code used for the symbolic analysis and the
numerical simulations is available under request at Federico Oliva github page.


https://github.com/fedeoli
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Chapter 1

Modelling of mechanical constrained
systems

Differential Algebraic Equations (DAE) consist of a composite set of differential and
algebraic equations. They are widely used in engineering as they accurately describe
multiple set-up. DAEs can be both linear and nonlinear. In this thesis we mostly
deal with nonlinear DAEs describing mechanical systems subject tp holonomic con-
straints.

1.1 Mechanical Systems - Lagrange modelling

Mechanical systems are usually composed by a set of rigid bodies interconnected
through joints. The structure of the interconnection dictates the number of dof
the system. Typically the joints are actuated and their position can be expressed
through the set of variables b = (by,...,b,)T. The number of joints is related to
the number of dof. The kinematic chain defining the mechanical system is usually
provided with an endpoint, namely a structure executing a specific action. Such
endpoint is instead described through its Cartesian coordinates. With respect to
this description, the following concepts are introduced.

1. Joint space. all the joint variables can be stacked in a single vector:
b=[by,...,b)" € BcCRNws (1.1)

The set B is called joint space, and contains all the possible values that the
joint variables may assume. Note that for each b € B, there is a unique
configuration of the mechanical structure|[1].

2. Work-space. The work-space is a subset of the Euclidean space E in which
the robot executes its tasks. It is the set of all the points (configurations) that
the mechanical structure may assume, and in general is a 3D (2D) subset of E.
Each point of the work-space is indicated by a vector = of proper dimension,
that is x € RY |, where usually y = {3,6}.

3. Configuration. It takes into account both the position and the orientation
of a reference frame fixed to the system endpoint. Then, locally:

a) x € R? if the system evolves in a plane



b) = € RO if the system evolves in space

In describing mechanical systems, two main problems have to be addressed, namely
the direct and the inverse kinematic problem [1].

1. Direct kinematic. Once the position, velocity and acceleration of the joints
are known, it is useful to determine the corresponding kinematic entities in
the work-space. This problem is solved through the so called direct kinematic
model, namely

x=f(), beB,xzecR’ (1.2)

2. Inverse kinematic. Once the position,velocity and acceleration of a point
in the work-space, the inverse kinematic problem is about determining the
corresponding entities in the joint space. This is done finding the inverse
mapping of the direct kinematic model, namely

b=g(xr)=fx), beB,recR (1.3)

Note that it is possible to define different kinematic models for a given mechanism,
although equivalent from a mathematical point of view. Mechanical systems are of
particular interest when dealing with algebraic constraints. In fact, it is not unusual
for system work-space and joint space to be limited in terms of kinematic entities
such as position and velocity.

Roughly speaking mechanical constraints can be divided into two main types [2].

— holonomic. Affecting both the configuration and the velocity (instantaneous
motion) of the system.

— non-holonomic. Affecting only the velocity (instantaneous motion) of the sys-
tem.

Indeed, it is way easier to deal with an unconstrained system. However, in some cases
it is impossible to avoid them or, even, it is preferable to have them. For instance,
when non-holonomic constraints contain non-integrable velocity expressions or when
holonomic constraints are described by a set of redundant coordinates. Recall that
a general mapping f : R — R is said to be integrable on a specific interval [a; b] if

/f(T)dT =M < 0 (1.4)

For example, constrained systems are used to achieve specific trajectories. Consider
a general mechanical system and its joint space variables b € B; as often hap-
pens, such variables are inconvenient to describe the configuration of the system.
Therefore, a set of redundant variables can be defined in order to simplify system
description. These variables are referred to as generalised coordinates and defined
by the vector



q1
g=1|:] e R" (1.5)
qn

Such coordinates are uniquely related to the joint space variables b by means of a
mapping, namely

q=W(b), U:RNwesr 5 R" (1.6)

Finally, the generalised coordinates are a redundant yet more convenient way to
describe the behaviour of the system. They will be used in the proposed mod-
elling procedure in subsection 1.2.2. Generalised velocities are defined as the time
derivative of the generalised coordinates, namely

q1
. _dg :
q9= a . (1.7)

an

Generally speaking, constraints are expressed both in configuration form and in
velocity form. The former description uses the system generalised coordinates, while
the latter uses the system generalised velocities. It follows that the configuration
form refers to the effects of the constraint on the system position and orientation.
The two forms have the following structure.

— Configuration form:

— Velocity form:

A constraint is said to be holonomic if it can be expressed in configuration form or
in an integrable velocity form?.

Mechanical constrained systems can be modelled through the Lagrange Multipliers
method. This method is discussed in section 1.1.3. As it will be shown, it is derived
as the unconstrained energetic Lagrange approach (subsection 1.1.1) but with some
modifications.

1.1.1 Lagrange equations for unconstrained systems

This section describes the modelling procedure for general unconstrained mechanical
systems via the Lagrange method. The Lagrange equations provide a simple method
to model mechanical systems by using an energetic approach. In this section no
constraints are considered. In order to develop this method two definitions are
needed (2] and [3]). Let P = P(qi,...,¢s,t) be a mapping of system position, and
v, = P the correspondent system velocity. The vector (qq, . .., ¢,) defines the system
independent generalised coordinates.

1See Equation 1.4



Definition 1 (Virtual displacement). A virtual displacement consists of a infinitesi-
mal quantity, consistent with system constraints and obtained by considering time as
fixed and changing only the generalised coordinates. Namely, a virtual displacement
15 defined as:

P =S —iq. (1.10)

Definition 2 (Virtual work). Consider a force F' acting on the system over a virtual
displacement OP. Its virtual work is defined as

0L =F-6P. (1.11)
The main result developed over the defined framework above is the so called virtual
work principle.

Theorem 1. A system is in dynamic equilibrium if and only if the virtual work
performed by the external forces and by the internal dissipative forces equals the
virtual variation of the kinetic energy, namely:

OL—46T =0. (1.12)
Considering that 0T = —d Ly the following equivalent statement holds:

SL+0L; =0, (1.13)

where Ly is the virtual work developed by system inertia forces. Moreover, if con-
servative and non-conservative external forces are distinguished, it holds:

0L +0Lyc — 60U =0, (1.14)
where U stands for the potential energy of the system.

From the considerations above it holds that the total work done by a set of external
forces acting on the system can be defined as

oL = Z QrOq, (1.15)
k=1

where @)y is defined as generalised force associated to the generalised coordinate g.
Defining £ = T — U as the Lagrangian function the following result can be proved

13].

“[d /oL oL
; [E (a—qk) - 8_% - QNC,k} 5% =0, (1-16)

which will be referred from now on as the virtual work equation. In this equation the
term ()¢, represents the generalised non-conservative force performing work due
to the virtual displacement J,, considered. By removing the virtual displacement
terms a set of n equations is obtained. This set describes the mechanical system by
means of the generalised coordinates (qi, ..., q).



Systems with friction If the system considered also has friction terms the previ-
ous formulation can be straightforwardly extended by adding a friction energy term.
This term is added to the Lagrangian function and then differentiated with respect
to the generalised coordinates. The additional term is in the general form

1 — 2 1 - )2

where p; and c¢; are the friction coefficients associated to the linear and torsional
dampers. The new Lagrangian function is defined as £L = T — U — R and the
Lagrange equations are

di\oq,) " o Oqn g Sqr =0 1.18
; [dt (3%) Oqx  Oqr  Odx QNC,k:| Gk ( )

1.1.2 Constraints definition

This section defines the main guidelines for dealing with general constraints. Con-
sider a system described by n generalised coordinates. Consider also a set of m
equality constraints. Generally speaking the number of dof is n — m. This aspect
will be clarified in subsection 1.2.1. For the time being assume the number of dof
tobe p=n—m.

The system constraints are described in velocity form as follows:

n
Zaijk+aj0:O j:{1727'--7m}7 (119)
k=1
where a;;, and ajo are scalar coefficients. Consider now the virtual displacements on
the generalised coordinates. The variations of the constraints can be defined as

n
D apdqe=0 j={12... m} (1.20)
k=1
All the description above are defined for a single constraint, identified by the index
j. Clearly, considering this formulation for a general constraint, there is no longer
any difference in the way holonomic and non-holonomic constraints are treated.

1.1.3 Lagrange multipliers method

This section describes a modification to the Lagrange equations approach in order to
take into account also constraints acting on the system. Consider a set of constraints
defined accordingly to subsection 1.1.2. The first step in the method consists in
multiplying the constraint description in Equation 1.20 by a set of algebraic variables
Aj called Lagrangian multipliers and then sum up the whole result.

n

S Napbg =0 j={1,2,...,m}. (1.21)
k=1

j=1 k=

At this stage of the method no restrictions on the magnitude of the multipliers are
imposed. Moreover, the summation order in Equation 1.21 is irrelevant.



The main difference between unconstrained and constrained systems is that the
generalised coordinates ¢ and their virtual displacements dq; are not independent
entities anymore. In fact, constraints define a precise algebraic relation between gen-
eralised coordinates ¢,. Lagrangian multipliers are introduced specifically to force
the constraints to be satisfied. Actually, their physical interpretation is strictly
related to the constraint reactions, widely use in Newton modelling approach. How-
ever, as far as the model formulation, they can be treated as input for the system.
Back to the magnitude consideration previously pointed out, it is clear that the
higher the value of the multipliers, the stronger the force acting on the mechanism.
Therefore, by looking at the magnitude of the multipliers it is possible to understand
in which configurations the system is subject to excessive strain.

Recall the virtual work equation defined in Equation 1.11. By adding the multipliers
to the former set of Lagrangian equations, a new model is obtained.

%(%) —g—é—QNc,k+kz::1)\jajk =0 k={1,2,...,n}

n (1.22)

];ajqu+ajo =0 j={1,2,...,m}
Such system is a set of n + m equations: the first n are differential equations while
the last m are algebraic ones. Differential equations describe the dynamics of the
system while the algebraic ones are in charge of the relations between the generalised
coordinates imposed by the constraints. These kind of equations set can be solved
in two ways:

— algebraic manipulation. Manipulating the system in order to eliminate the
Lagrangian multipliers. By doing so the system boils down to a set of n —m
equations.

— numerical integration. Solve the system by using a numerical scheme specifi-
cally suited for such tasks.
Holonomic constraints - coefficient computation

Consider a system subject only to m holonomic constraints. Those can be assumed
to be expressed in the form of Equation 1.8. Proceed by taking the derivative of the
configuration form, in order to obtain the velocity form of the constraint.

dfi N0, O o
dt—}; it 5 =0 j={1,...,m}. (1.23)

This equation coincides with the constraint velocity form described in Equation 1.19,
whith the following coefficients:

af; -

a; =

T (1.24)
ai = 4

J ot



1.2 Mechanical Systems - case of study

MILLS W+

———— STEEL

Q000

Figure 1.1: Lamination process - simplification model

The mechanism analysed in this thesis is a looper [4]. A looper is a mechanism widely
used in steel production to sense and control the tension acting on the material.
More precisely, the looper is used during the hot-rolling procedure of steel. This
procedure aims to turn reheated steel into strips which will be further processed
later on. Basically, the reheated steel passes through a set of mills being eventually
thickened. The process is simplified in Figure 1.1.

Rolling stand  Looper roll  Rolling stand

|.l'!|..5_H] Looper motor
1

‘ Tension-looper
control system

ACE: Awomatic Current Regulator

Figure 1.2: Looper configuration

It goes without saying that tension control has a huge role in this process. In fact,
by keeping tension constant between the mills, folds and rips can be avoided in the
material. The general structure of the hot-roller and of the looper can be seen in
Figure 1.2. However, the structure of the mills is here oversimplified. In fact, the
flow of reheated steel is initially processed by the so called stands, namely horizontal
cages thickening the material. These stands are placed sequentially one after the
other. The steel flows from a stand to the following one. During its path the looper
is used to tight the material and to keep its tension constant. Such structure can
be seen in Figure 1.3.
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Figure 1.3: Structure of the lamination process - stands and looper

1.2.1 Looper - model description

The simplified model of looper showed in Figure 1.3 has been expanded ending up
with the mechanism in Figure 1.4.

[

(a) Looper simplified 3D model (b) Looper CAD model

Figure 1.4: Lyapunov 3D models W

Such model consists of a fixed frame on which two revolute joints have been mounted
and positioned respectively on Frame 1 and on Frame 2. A first link (green in the
model) is attached to the revolute joint in Frame 1 and to a prismatic joint which is
also connected to the second link (red in the model). Therefore the first two links of
the mechanism define a 2-dof motion system. The second link is then connected to
a second revolute joint as well as the third link (blue in the model). This third link
is finally connected to the revolute joint in Frame 2. This link continues up to the
endpoint (pink in the model). The steel strip is assumed to flow over the endpoint,
pushing down on it. Indeed, the system can’t assume any position in the workspace
due to the connection between link 2 and link 3. Clearly, the blue revolute joint
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is responsible for the algebraic constraints acting on the system. The third link is
here represented as homogeneous but actually its weight is concentrated on the part
near the blue revolute joint. This is done to limit the inertia forces on the endpoint,
resulting in a more robust and reliable structure. Such structure is visible in the

CAD 3D model (Figure 1.4).

The mechanism just described has been also modelled in a 3D CAD environment.
However, its motion develops on a plane. Therefore a planar dof analysis can be
performed by means of the Grubler formula for planar mechanisms:

1. The system is build up by 4 links (frame, first link, second link, third link).

2. Recall that Any joint with ¢ dof is defined as a joint of class C;. Both prismatic
and revolute joints allow a single dof. Therefore they are all of class (.

The Grubler formula for planar mechanisms states:

Naog = 3(m — 1) — 2C; — Cy (1.25)

where Ngor stands for the number of dof of the system, m the number of links, C}
the number of joints of class C, and C5 the number of joints of class C5. The looper
has m =4, C; =4, Cy = 0 and therefore Ny, = 1.

This mechanism includes a closed loop kinematic chain. Thus it’s an example of
parallel robot.

In order to model and analyse the system, parametric entities have been defined;
they are all presented in Table 1.1 and they refer to the 2D model description in
Figure 1.52. Note that the origin is assumed to be placed on Frame 1, on the rolling
point of the first revolute joint.

1.2.2 Looper - Lagrange modelling

This section goes through the looper model description and analysis. In the first
paragraph the system is considered as unconstrained and the model equations are
derived; in the second the algebraic constraints are described and added to the
previous model.

Unconstrained system

Considering the Lagrange approach presented in subsection 1.2.2 the first step of
the modelling procedure consists in describing the system in terms of generalised
coordinates, namely:

¢ =0
q2 =5 (1.26)
q3 = 05

The looper is made up by 3 moving elements, whose centres of mass will be defined as
G1, G4, G3. Their position can be instantly described as a function of the generalised
coordinates.

2All the values has been estimated from the CAD model in Figure 1.4. The material considered
material is steel (p = 7827.082K g/M?).
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Table 1.1:

Model parameters

Variable Value Description
01 - angular position of the first/second link
S - elongation of the prismatic joint
0y - angular position of the third link
Geometric parameter Value Description
Re 0.703 m position of first link’s baricenter
Rgo 0.674 m position of second link’s baricenter
Rgs 0.182 m position of third link’s baricenter
Rio 0.29 m first link’s length
Ro3 1.392 m second link’s length
Rsy 0.55 m distance from second revolute joint and Frame 2
Rs 0.85m third link’s length
R, 0.8 m x coordinate of Frame 2
R, 22m y coordinate of Frame 2
Dynamic parameter Value Description
M, 130.6 Kg first link mass
Mo 66.8 Kg second link mass
M; 86.71 Kg third link mass
J1 32.55 Kg-m? first link inertia
Jo 10.18 Kg-m? second link inertia
Js 5.63 Kg-m? third link inertia
o 10° Kg/s first revolute joint friction
Cy 105 Kg/s prismatic joint friction
Cs 10° Kg/s second revolute joint friction
g 9.8 m/s> gravitational acceleration
F 0N external force magnitude
@ 0° external force orientation
G1 = (Rgicosqi, Rgising)
Gy = ((Riz+ Raz + q2) cos qu, (Ri2 + Rez + ¢2) singy)
Gs = (R + Rgscosgs, Ry — Rassings)

In order to proceed the kinetic and potential energy terms shall be computed. They

are defined in the following general form.

1 — A )

U= gZMkhkjL%Zk‘px?,
k=1 p=1

where Vi are the linear velocities of the center of mass, wgi the angular velocities,
M, the masses, J; the inertias with respect to the center of mass, hy the center of

masses height with respect to the origin, and k, the spring capacities.

In order to compute these terms, the velocities of the centres of mass are needed.
Both linear and angular velocities can be computed from Equation 1.27 through

simple time differentiation.

12
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Revolute joint

Revolute joint
POINT P

Thetal \

Revolute joint

Frame 1

ORIGIN (0,0)

Figure 1.5: Looper 2D model

Va1 = (—Ra1gqusinqi, Rg1d1 cos qu),

Voo = (—(Ri2 + Raa + ¢2)d1 sin g1 + o cos ¢,
(Ri2 + Raa + q2)¢1 cos q1 + gasinqy),

Vs = (Rasga cos g2, Rasgasin ¢a),

wer = 1,

was = §3-

(1.30)

Moreover, the squared modules of the previous velocities are described as follows.

VG21 = Réld%a

Vo = (Riz + Raa + ¢2)*41 + 63,
Vc%3 = Réﬂga

Wgn = (ﬁy

2 -2
Was = 43

(1.31)

From these considerations the kinetic energy turns out to be described by the fol-

lowing equations.

13



1 5 1 P
T = 5MlRéqu + =My ((Rio + Raa + ¢2)d7 + d3)+ (1.32)

2
1 . 1 1 1
+ S M3REs43 + 3 5 5

5 Jod3.

TG} + 52+
As for the potential energy, there won’t be elastic terms due to the absence of springs
in the model. Regarding the gravitational energy terms, the height of the centres
of mass shall be retrieved from Equation 1.27. Therefore the total potential energy

term is described by the following equation.

U= MigRcsing + May(Ria + Raa + q2) sin gy +
+ Ms3g(R, — Rgs cos ga). (1.33)

Ultimately, each joint is assumed to have friction. This aspect is modelled through
the viscous friction coefficient ¢;. Therefore, accordingly to section 1.1.1, the friction
energy term is defined as
Lo 1 5 1
R= S + 5C202 + 5C3ds- (1.34)
From the Lagrangian terms the model equations are derived as described in Equa-
tion 1.18:

— q = q1: the terms obtained by derivation with respect to ¢; are the following.

d (0T .. ..
% <aq1) = <M1Ré1 + M2(R12 + Rgo + q2)2 + J1 + J2) q1 + 2]V.[2(R12 + Rga + q2)q1q27
(1.35)

oT

o,

oq

oUu

£ =, | MiRg1 + Ma(Ri2 + Raa + ¢2) |gcosqi,

om_

9ay 141-

— q = @9 tthe terms obtained by derivation with respect to ¢o are the following.

d (0T
— | =— | = Myqg 1.36
i (5e. ) = e (1.36)

oT .

Y My(Riz + R + q2)d3,

q2

o _ Mag sin gy,

oq

o _

Dir = C242.

14



— q = q3: the terms obtained by derivation with respect to g3 are the following.

d (0T ..
4 (@) — (MR + )i, (1.37)
orT
— =0,
0qs
oU .
8_ = M3Rg3gsin gs,
q3
R _
8(1'3 = C343.

The looper doesn’t move only due to its free dynamics. In fact it’s subjected both
to an external force and to an actuation. As described in Figure 1.5 the endpoint
is subjected to a force F' with an orientation «. This force models the action of
the steel acting on the mechanism. Thus, such action creates a torque T on the
system, describes as follows.

TF = F(Rg, - R34 + Rgg) sin(q3 + O./). (138)

Moreover, the system is assumed to be actuated on ¢s. Namely, a force is applied
on the prismatic joint causing the mechanism to move. A single actuation is needed
as the system ha sonly 1 dof. This force is modelled as an input variable u directly
acting on ¢ dynamics.

Therefore, the unconstrained model for the looper is described by the following
equations.

(Mle;l + MQ(Rlz + RGQ + QQ)2 + Jl + JQ) c'jl = (139)
—2M5(Ry2 + Rao + ¢2)¢1G2+

— (MIRGI + My(Ry2 + Rea + Q2))QCOS ¢1 — €141,

Maiy = Ma(Rig + Raa + q2)¢ — Magsing, — cage + u,
(M3RZ; + J3)ds = —MsRezgsin gz — cags + T

These equations can be wrapped in the following compact form.

M{/th1 = Fl(Qv Q)
MGy = Fy(q,q) - (1.40)
Mi'Gs = Fs(q,q)

Constrained system

Recall now Figure 1.5. The intersection of the second and third link (point P) is
supposed to lie on the circumference centred in (0,0) with radius (Ri2 + Ras + ¢2)

15



but also on the one centred in (R, R,) with radius Rss. These conditions limit the
set of position the system can reach, namely they introduce 2 algebraic constraints.
Indeed, point P is constrained both along the x axis and along the y axis. Therefore,
as mentioned in subsection 1.2.1, the second revolute joint is responsible for the
algebraic constraints acting on the system.

The two constraints can be described as follows.

{hl(q) = (Ry2 + Ros + q2) cosq1 — R, — Raysingz =0 (1.41)

hg(q) = (R12 —I— R23 + QQ) Sin q1 — Ry + R34 COS (g3 = 0
In order to consider these constraints the previous model shall be extended through
the Lagrangian multipliers approach described in subsection 1.1.3. Both the intro-

duced constraints are holonomic and expressed in configuration form. Therefore the
Lagrangian coefficients can be computed as presented in section 1.1.3.

app = 2—211 = —(Ri2+ Ros + q2)singq

oh

a2 = 5.k =cosq (1.42)
oh

Q3 = 5o = — R34 cosq3

a9 = g—Zf = (Ri2 + Ros + q2) cos ¢y
oh .

(g = G2 = sing (1.43)
oh :

A23 = oo = — R34 8in g3

From these coefficients the model described in Equation 1.40 can be extended to the
constrained version below.

(Mt = Fy(q,4) + an (@M (g, §) + az1(9)Aa(g, )
MGy = Fy(q, ¢) + a12(q)M(q, ¢) + asz(q)Ma(q, §)

M3 = Fs(q,q) + ai3(@)Mi(q, 4) + as(q)Aa2(q, 4) (1.44)
hl(Q) =0
[ h2(q) =0

The pair of Lagrangian multipliers (Al(q, q), A2(q, q)) will be derived in section 2.3.
The obtained model is defined by n = 3 dynamic equations and by m = 2 algebraic
ones. Therefore, as reported in subsection 1.1.3 the system is expected to have
n —m = 1 dof, that is exactly the case. In fact, also from the analysis carried
on through Equation 1.25 it turns out that the system has a single dof. However,
the model described in section 1.1 uses 3 different generalised coordinates, namely
(1,42, q3). Therefore only one of these will be used as independent variable in the
description of the system. In order to understand the algebraic relation between
those variables, consider again Figure 1.5. Assume 6; = ¢ as the independent
variable and consider the intersection point P. The coordinates of P are defined by
the intersection of the following curves.

Yy = (tan ql)x
{(x —R)>+(y—R,)* =R (1.45)

namely the line with angular coefficient tang; and the circumference centred in
(R., R,) with radius Rs4. Clearly, point P depends only on the slope of the line and
therefore on the value of ¢;, that is
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P = (2int(q1), Yint(q1)) € R% (1.46)

Thus, the instantaneous relation between 6, s, and 6, is described by the following
equations.

§=qo = \/T5; + Yiy — (Raa + Raa), (1.47)

— Tint — Rx
0y = g3 = tan™* (—)
Ry — Yint

As previously mentioned the main effect of the constraints on the system is to limit
the configurations the mechanism can reach, resulting in a specific range of values
for ¢;. Consider now the further simplified system described in Figure 1.6.

=3222°

UES 38 430 Vmin
) G 1 3 3 a 5 [3 7 B 5

Figure 1.6: Limitations on ¢

The intersections between the circumference centred in F, with radius Rs, and
its tangents starting from [} represent two limit configurations of the mechanism.
Actually, the slope of those tangents represents the maximum and minimum value
that ¢; can assume during the motion. Moreover, they also coincides with the motion
inversion of ¢;, namely ¢; = 0. Such workspace limitations are computed through
the procedure reported below.

1. Curves intersection. The following system of equations imposes the intersec-
tion of the 2 curves

pr— t =
{y L= m = tangq, (1.48)

(= R.)* + (y — Ry)* = R,
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ending up with a quadratic equation in z:

2*(1+m®) = 2z(R, + mR,) + (R2 + R2 — R3,) =0 (1.49)

2. Tangency condition. In order impose tangency on the computed intersections,
Equation 1.49 A shall be put to zero, ending up with the following equation
in m:

m*(Rsy — R2) + 2mR,R, + (R3, — R.) = 0. (1.50)

3. q1 limats solution. The solution of Equation 1.50 results in

—R;Ry—Rsa\/R2+R2—R3, ,
my = ) ¢ = tan~"tm,
Ry — R 1 (1.51)
_ aa~/ R2 2_ R2 mar __ -1 ’
My = RzRy"!‘Rdﬁl Rz+Ry R54 ql = tan mo

R3,—R3

This solution points out another constraint on the geometry of the mechanism,
namely

(R2+ R>— R3,) > 0. (1.52)

This isn’t an algebraic constraint to be added to the model, it’s just a geometric
condition allowing the system to be in a physically meaningful configuration.

Clearly, from Equation 1.49 2 intersections are possible. These are related to the
initial configuration of the mechanism but they can also be crossed by the system
during its motion. Assuming to know the initial position of the mechanism, this
ambiguity won’t affect the model in Equation 1.44 because the correct position
is retrieved by integration on (g, g2, g3). However, recalling Figure 1.5, from now
on the system will be considered as working only in the lower configuration as this
allows the endpoint to be correctly positioned under the steel strip. Little oscillations
around a fixed position are required for the tension control described in section 1.2.
The 2 different configurations are shown in Figure 1.7.

1.2.3 Singularity analysis

The mechanism can run in some critical points during its motion. These are called
singular configurations as they change or limit the behaviour of the system. Consider
again the system in Figure 1.2. The following geometric relations are imposed by
the structure of the mechanism.

Tt + Yy = (Riz + Roz + o)’ (1.53)
(xint - Rx)2 + (ymt - Ry>2 = R§4
Time differentiation holds, therefore,
2TintTint + 2YintYint = 2(R12 + Ros + ¢2)Go (1.54)
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Figure 1.7: System’s different configurations

These relations can be written in matrix form, namely
2Jdir |:'mt:| = Jinvq2,
Yint

where

Jair = {(x _me) (y —yRy)} ’

o= {2(312 + Roz + QQ):|
mv 0 .

(1.55)

(1.56)

This mapping defines a relation between the workspace (represented by point P =
(Zint, Yint)) and the joint-space (represented by the actuated variable ¢o). Generally
speaking, in parallel mechanism as the looper, singularities occur whenever Jy;,-, Jin

or both become singular.

1. Jin, singularities. These configurations occur whenever the inverse kinematic

problem has multiple solutions for a specific set of workspace variables. Since
Jiny 18 singular, it’s possible to find non-zero values of ¢; corresponding to null
workspace velocities (&, Yint). Therefore, in these configurations non-zero
actuation values don’t correspond to any motion. The system loses a dof.

In the system in analysis the only way for J;;,, to be singular would be having
g2 = —(R12 + Ry3). Consider Equation 1.47. It holds

To = \/‘rz?nt -+ yfnt — (R12 + Rgg). (157)

Therefore J;,, would be singular only if (%, Yine) coincided with the origin.
This never happens for standard configurations of the mechanism. There-
fore, the system in analysis never reaches a singularity related to the inverse
kinematic problem.
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2. Jgr singularities: these configurations occur whenever the direct kinematic
problem has multiple solutions for a specific set of joint-space variables. Since
Jgir 1s singular, its null-space is not empty. Therefore it’s possible to find
non-zero values of (&, Yint) corresponding to zero input velocities, namely go.
Therefore, in these configurations zero actuation values correspond to motion.
The system gains a dof, meaning the endpoint to be locally movable even if
all the joints are locked.

In the system in analysis Jg;, is singular if

R
det(Jdir) = %m(ymt - Ry) - yint(xint - Rz) =0 = Yint = R—ylEmt~ (1-58)

This condition is satisfied in two points of the workspace, namely SING; and
SING, in Figure 1.6. Indeed, when the mechanism is in these positions, R34 and
(Ri12+4 Ra3) are aligned and therefore the prismatic joint is free to slide. Thus, locally
the system has an additional dof.
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Chapter 2

Introduction to DAE

This chapter goes through a general overview on DAE and their main properties.
Then, the state space representation of the looper is presented, followed by the
analysis of the system in.

2.1 DAE representation

DAE can be written both in general and in semi-explicit form, as described in
Equation 2.1 and Equation 2.2.

F(g,y,t) =0 (2.1)
= f(:p,u) + g(I))‘a (2'2)
0= h(z)

Transformations between these two formulations can be achieved as reported in [5].
From now on the semi-explicit form will be used. Consider then Equation 2.2. The
main elements present in the model are the following.

— z(t) € R™. State vector.

— A(t) € R™. Algebraic variable.

— u(t). Input variable.

— f U CR" — R". Free dynamics of the system.

— g : U CR" —= R™™. Input dynamics of the system.

— h : U CR™ — R™. Algebraic constraints acting on the system.

The mappings f : U — R*, ¢g:U — R™ and h : U — RP with U € R", are
smooth, i.e. they have continuous partial derivative of any order and can be written

as follows.
fi gi1 - - - Gmi hy
f=<£>,g=(gl,---,gm)=< P >,h=<£>~ (2.3)
fn Jin - - - hp
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These mappings can be used to describe both linear and nonlinear systems. The set
U is in general dictated by the specific application, for instance by the existence of
physical limitations in the work space or in the joint space.

The mappings f, g11,- - -, gnn assign to each point in U a vector and for this reason
they are called vector fields. They define a family of vectors, namely

() = (110,12 2.0
0y, (%) = (gli(i), . ,gm(i*)) |

2.2 Looper state space representation

Consider the system described by Equation 1.44. As mechanical systems are de-
scribed by a sequence of two integrators in the acceleration, the state variables for
the looper are chosen to be (x1, z9, x3, 24, T5, x6) = (q1,q2, g3, 1, G2, q3). As a con-
sequence, the model presented in Equation 1.44 can be written in the following
form.

j71:374
1'72:1]5
jfgzl'ﬁ

4 = Fy(x) + an(2)M(2) + agi(2) Mo(z) (2.5)

t5 = F5(x) + ajz2(z) A\ () + aga(x)A2(x)
\I"ﬁ = F6(l’) + a13<l’>/\1($) + CLQg(.I‘))\Q(JI)

where the algebraic variables (A1, A\y) represent the Lagrangian multipliers. Note
that as for the model analysis, the algebraic variables are considered as input signals.
The signal u is considered as an input too. However, from now on the system will
be considered as non-actuated, that is, v = 0. Therefore only the pair (A1, A2) is

considered as responsible for input signals. Thus, being m = 2 the system in analysis
is MIMO.

Back to the previous model, in order to simplify the notation, the following quantities
are defined.

(2.6)

Jtot, = (MlRQGq + My(Ry2 + Rea + ZU2)2 + Ji+ Jo)
Jtotg = (M?)R%‘:g + J3>

Consider again the state space model in Equation 2.5: the set of coefficients

(au(x)a a21(x), a12(x), ags(z), as(z), CL23(95))

is obtained from Equation 1.42 and Equation 1.43 through the following relation.

arp(x) = afi&?)
Qg (1) = 29 k={1,2,3}. (2.7)
azp(z) = ajiiz)
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Lastly, the triple (Fy(x), Fy(x), Fs(x))! describes system’s free dynamics, namely

Jioty

F4(33) = 1 ( — 2]\/[2(R12 + RGQ + 332)33‘4.135
— <]\[1RG1 —+ ]\/IQ(R12 + RG2 + ZQ))QCOS Iy — CliL'4>

Fs(x) = 1%12 (]VIQ(ng + Rga + w2)a3 — Magsinxy — coxs + u)

Fg(z) = 52 ( — M3Rg3gsinxs — c3re + TF)

Jtotz

2.3 Lagrange multipliers computation

As explained in subsection 1.1.3, Lagrange multipliers are algebraic variables use
to model the reaction of the constraints on the system. Therefore, such variables
assume precise values depending on the configuration of the system, in order to
guarantee the set of algebraic constraints to be instantaneously met.

Constraints hy(z) and ho(x) are assumed to be zero at any time instant. Therefore
the same shall be also for their time derivatives. Generally speaking, for a set of m
constraints, the following conditions shall be met.

0
hi((t)) = 0
; 0 Vie{l,....m} A VteR, reR (2.9)

D (2(t)) = 0

These conditions can be used to find an explicit expression for the Lagrangian mul-
tipliers through the concept of relative degree?. Consider a general nonlinear MIMO
system as the one described by Equation 2.2. This system has a vectorial relative
degree (ry,...,7,) whose general entry r; represents the number of times y; has to
be derivated in order to find an explicit dependence on \.

The explicit computation of the relative degree for the looper is reported in sec-
tion 2.5 for clarity. However, recall the mechanical nature of the looper. The system
is described by two integrators. Therefore, from the algebraic relations describing
the constraints, two time differentiations lead to a condition in which system dynam-
ics are involved. As a consequence, the relation h;(z(t)) = 0 includes (iy, @5, @)
and therefore (A1, Ag). It is straightforward that the relative degree of the system is
r = (2,2). Thus, the procedure to find the algebraic relation describing Lagrangian
multipliers unfolds as follows.

1. Take the second time derivative of h;(x). This results in

hz(x) = fhz($> = fhi($4,$5,$6,f4,f5,f6) =0 Vi € {17 cee am}' <210>

2. Replace every occurrence of (4,25, 2g) with system dynamics described in
Equation 2.5.

LAll the used variables have been described in subsection 1.2.1 and subsection 1.2.2
2For an accurate definition of relative degree see section 2.4

23



3. Consider the imposed condition h;(z) = 0 Vi € {1,...,m}. The following
linear system is obtained:

Apd+ -+ A = G
: A, Ci,e R Vi,jed{l,...,m}, (2.11)
where all the coefficients depend on the vector state x(t). Solving this system

provides the algebraic relations instantaneously describing (A1,...,\,;,) as a
function of x(t).

This procedure has been performed on the system in analysis ending up with the
following system.

Bl)\l + Bg)\g = 02 ’ '
the solution of which is
N\ = CA1=CiB
2 BQAlfAQBl (2 13)
_ CO1-)X2A, : :
A=

2.4 Relative degree

This section presents the concept of relative degree. As reported in section 2.3 the
relative degree can be interpreted as the number of time system dynamics have to be
differentiated in order to find an explicit dependence on the input. Relative degree
can be defined for both SISO ans MIMO systems. Consider then a system described
by equations of the following form.

&= f(x)+ g(x)A, (2.14)
y = h(x),

where z(t) € U C R™ denotes the state vector, A(t) € R™ denotes the input, and
y(t) € RP denotes the output. The relative degree can be defined respectively for
SISO ans MIMO systems as described in the following paragraphs.

SISO systems

Consider the system in Equation 2.14.

Definition 3 (Relative Degree). The nonlinear SISO system 2.14 is said to have
relative degree r at point * € R" if

i) LyLih(z) =0 Vk € {0,...,r =2}, = € Bs()
i) Lyl 'h(z) # 0
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The relative degree can be undefined in some points. However the set of points in
which it is well defined is a subset of . For example, consider a system in which

LyL¢h(z) = coszy. In this case the relative degree is well-defined for all points

except for those where L,L;h(z) = 0, that is all = such that z; # w7 ke Z.

Therefore, for the system in example the relative degree is well defined for all
x| LyLeh(z) # 0.

Definition 3 can be used also for linear systems. Consider a general linear system in
state space form.

& = Az + BA, (2.15)
y = Cu.

In this case we have f = A € R"™" g= B € R, h =C € RP*" and therefore
definition 3 reduces to the following conditions.

LyLih(z) = CA"B =0, Vk €{0,...,r—2} (2.16)
LyL ' h(z) = CA™'B # 0,

which is consistent with the classical notion of relative degree for linear SISO sys-
tems.

The concept of relative degree can be interpreted as the minimum number of time
the output shall be differentiated to find an explicit dependence from the input.
This claim can be proved through the following procedure.

1. Consider system’s output, namely
y = h(x) (2.17)
2. Compute y time derivative:

. Oh(z)dx _ Oh(z)
y= or dt Oz

[f(z) + g(x)A] = Lih(z) + Lyh(z)A (2.18)

From definition 3, if ~ > 1 it holds that L,h(z) = 0 and therefore y = Lsh(z).
This procedure can be iterated through further differentiations.

3. Compute the r** time differentiation of the output, namely
y'") = Lih(x) + LyL}  h(z)A, (2.19)
which is exactly the result stated in definition 3.

Assume now to check the relative degree in a restricted set, namely a ball Bs(Z) of
radius 0 near a generic point £ € U. Assume the following claim to be valid.

L,L¢h(z) =0 Vo € Bs(z) and Yk > 0 (2.20)
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In this case no relative degree can be defined. Moreover, the input never affects the
output. This is shown by the Taylor expansion of the output, namely

inf ($ . jj)k

y=>_ L’;h(:z:)T. (2.21)
k=0 )

Clearly, this Taylor expansion is never affected by the input A.

MIMO model

The concept of relative degree can be extended to a general nonlinear MIMO model.
Such systems end up with a vector of relative degrees.

Definition 4 (Relative Degree). The nonlinear MIMO system in 2.1} is said to
have relative degree (r1,...,ry,) at point & € R™ if

i) Ly, Lihi(x) =0 Vje{l,....m} k< (ri—1)Aie{l,...,m} Az € Bs(T)
ii) Matriz A(z) is non singular in x = T, where

Lo L hy(x) ... Lg, L hy(x)
Alz) = : " :
Lo Ly hy(z) ... Lg, Ly ()

As for the MIMO case, each entry of the relative degree vector r; represents the
number of times y; has to be differentiated in order to find an explicit dependence
on A\.

2.5 Looper - relative degree computation

This section goes through the relative degree computation for the system in analysis.
As the looper is a MIMO system, the computation is performed accordingly to
definition 4.

The system has 2 constraints (hy, hy) and 2 input (Ay, A\2). Therefore the relative
degree will be a vector r € R%. Conditions described in definition 4 shall be checked
for all the combinations (i, 7) such that ¢,j € {1,2} . The mapping for the system
in analysis are described as follows.

Ty 0 0
Ty 0 0
Tg 0 0
_ 7 — — ., h=(h1 he), 2.22
f o) g="(0n 92) a au (h1 ho) (2.22)
E5 a1 G2
Fy as  as2

where each coefficient a;; is defined accordingly to Equation 2.7. Therefore, for a
general pair (7, ), the relative degree computation unfolds as follows.
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1. k=0

0
0
oh;,  0Oh;  Oh; 0
Lyjh; = ’ ) , 0, 0, 0 =0
9 8:61 8372 81'3 % Q1;
A2,
as;
2. k=1
Ty
L5
oh;  Oh; Ol T 6
Lih; = , : .0, 0, 0 —w : RS SR
f |:8.’L'1 81'2 8.1'3 :| % F4 v -
Fy
Fs
0
0
ow Ow Ow OJw  OJw  OJw 0
Ly;L hz - ) ’ ) 9 ) = RG — R
9i s {axl Oxs’  Oxs’  Oxy  Oxs 8:706} X a1 v
A2,
agj

This procedure results in different expressions for w and v for each pair (i, j). These
shall be analysed accordingly to definition 4. If both map w and v result generally
non singular in Z the relative degree is well defined in such point. The pairs (w,v)
are presented and analysed below for all the (i, j) combinations.

1. :=1
wy; = —(Ri2 + Roz + z2)xysinxy + x5 cos xq1 — Ragg cOS T3 (2.23)
aj=1
(Riz + Roz + x9)%sin®x; cos’xy R cos’as
V11 = — — —
Jtotl M2 JtOtg
bj=2
(Rig + Roz + m3)%sinzycosry;  sinzjcosz;  R2,sinxscos s
V12 = - -
Jt0t1 M2 Jtotz
2.1=2
wy = (R12 + Roz + x9)xy cOS 1 + T58in 1y — R34 sin 3 (2.24)
aj=1
ot (Rig + Roz + m2)?sinzycosry;  sinzjcosz; R, sinxgcos s
21 = — —
Jtot1 M2 Jtot2
b j=2

(Riz + Roz + w9)%cos?w;  sinx;  RZ sin® s
Voo = — — —

Jtotl M2 Jtotg
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Considering a general vector T € U both (w1, v11, v12) and (ws, Va1, Veg) are non-zero
in z. Therefore, accordingly to condition 1 in definition 4, r = (2,2) is a candidate
relative degree vector. However, condition 2 of definition 4 shall be met as well,
namely

LoLthy LyL:h
A — (Lol LgpLghn 2.25
<Lg2th2 LgsLshs (2.25)

shall be non-singular in . The determinant of this matrix is

(Ria 4+ Roz + x2)*  (Ri2 + Ras + 22)* Ry 9 Rg4* | 9
det(A) = + cos“(xr1—x3)+ sin“(x1—x
(4) Jroty Mo Jrots Jrots A T
(2.26)
Necessary condition for this expression to be null is
Ris+ Ros + 22 =0 (2.27)

which never happens in standard configurations for this mechanism, as explained
in subsection 1.2.3. However, it’s useful to consider also the term sin(z; — x3). By
simple geometric considerations it holds that this term is null only if the first and the
third link of the mechanism are normal. This situation occurs only when z; = 7"
or when z; = 67"**. These configurations represent a sort of boundary position for
the mechanism.

At the end of this analysis, the vector relative for system Equation 1.44 turns out
to be

r=(2,2) € R% (2.28)

2.6 Change of coordinates - nonlinear systems

Systems in state space representation can be transformed in equivalent ones de-
scribed in different coordinates. The mappings allowing these transformations are
called change of coordinates. As far as control theory is concerned, change of coordi-
nates are very useful as they highlight important properties like controllability and
observability of the system. They’re also used to simplify system’s implementation
and control.

2.6.1 Diffeomorphism - general overview

Change of coordinates are different for linear and nonlinear systems. Consider a
nonlinear system in the form of Equation 2.14, namely

i = f(z) + g(a), (2.29)
y = h(x).
A general change of coordinates is expressed in the following form.
z = ®(x). (2.30)
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where z € R" is the vector state and ® : R® — R" a vector field, namely,

P1
<I>:< : ) (2.31)
Pn

® is assumed to be invertible. Moreover, both ® and ®~! are smooth vector fields.
Mappings of this type are called global diffeomorphism. However, global diffeomor-
phisms are difficult to be found. Therefore, limited mapping are defined over a
restricted domain and referred to as local diffeomorphism.

®:U CR" - R" (2.32)

Local diffeomorphism are defined in a neighbourhood of a point of particular interest
for the system in analysis. Therefore U/ is a set usually containing such point, which
from now on will be referred to as z € R". The following lemma helps determining
whether a function is or is not a local diffeomorphism with respect to a point x € R™:

Lemma 1. AssumeUd CR", 2 € U, and ® : U — R"™ a smooth vector field. If the
Jacobian J(®(z)) of the mapping ® in T is non-singular, then on a proper choice of
U, d: U — R" is a local diffeomorphism for x € R™.

2.6.2 Normal form - SISO system

The normal form of a nonlinear system is a particular kind of diffeomorphism. Such
transformation is useful as it simplify the analysis of the system [6]. Consider a
general SISO system described by equations of the following form.

T = f(z)+ g(x)A, (2.33)
y = h(z).

Recall the considerations in section 2.4, on the relative degree definition. The fol-

lowing lemma holds.

Lemma 2. Consider a system in the form of Fquation 2.14 and a general point
z € R". The row vectors

Vh(z),VLh(z),..., VL h(z), (2.34)
are linearly independent.

Linear independence of these vectors make them a valid candidate to be a refer-
ence frame for the system. Note that this consideration holds if » < n, with n
the dimension of the state vector. Therefore, the relative degree of a system is re-
lated to a partial set of new coordinates in a neighbourhood of the point z. These
considerations are summarized in the following proposition.
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Proposition 1. Consider a system described by equations in the following form.

&= f(z)+ g(x)A, (2.35)
y = h(x).

Assume such system to have a relative degree v at T € R™. Therefore r < mn. Set

;= h(z), (2.36)
(I)g = th(l’),

®, = L} h(x).

If r < n (strictly), it’s always possible to find (n — r) functions (¢,11,...,dn) such
that the mapping

¢1

o=1... (2.37)
On

has a non-singular Jacobian matriz J(®(x)) in T. Therefore, this mapping represents
a local coordinates transformation in a neighbourhood Bs(z) of . The additional
mappings (Gri1, . .., On) can assume arbitrary values in . Without loss of generality,
these can be chosen such that

Lypi(z) =0 Vie{r+1,....n} A z € Bs(x). (2.38)

Note that it is not trivial at all to choose (¢p41,...,¢,) such that Ly¢;(x) = 0.
However, even if this condition is not met, the set of mappings is still a valid local
diffeomorphism.

The description of the system in this new reference frame is straightforward. The
final coordinates transformation is described by equations in the following form.

21 = ¢1(7)
: (2.39)
Zn = ¢n($)
The computation of the dynamics of the system unfolds as follows.
Lie{l,....r—1}
d 01 d ohd
21 (bl_x _ _SC — th(x) = ¢2(gj) = 29, (240)

dt ~ Or dt O dt

dzpy  O¢p 1 dx  OLT%de
= — = — = L7 'h(z) = ¢p(z) = 2.
dt oo dt - o @t Lr @) =era) =z
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2.1=r

dz. _ 0¢pdx _
dt — Ox dt

Lih(z) + Ly h(z)A = Lih(®7(2)) + Le L h(271(2)) A
(2.41)

Note that the state vector x has been replaced with its expression depending
on z, i.e. z = ® 1(z). Moreover, define the following terms.

{a(z) = L, L h(@7(2)) (2.4
b(z) = L3h(®7'(2))
Namely, it holds

Z = b(2) + a(z)\ (2.43)
Consider definition 3. Note that

a(z) #0, zeR", (2.44)

equals the second condition to be met for the relative degree to be defined.

3.ie{r+1,...,n}

dz _ ¢ dr _ 99,
dt  Ox dt Oz

(f(x) + g(@)A) = Lydi(z) + Lygi(x)A (2.45)

These last transformations can be simplified if the following holds.

{%(Z) = Lo @) (2.46)

pi(2) = Lei(®71(2))

Thus, the whole state space representation of the system in the new set of coordinates
is described by equations in the following form.

21 = Z9

737"71 = Zr

Z = b(z)+alz)A (2.47)
27"—}-1 = qr—i-l(z) + Pri1 (Z))\

Additionally to these equations the output shall be added as well. It is described
as a function of the new state variable z. Recalling that y = h(x) it holds y = 2.
These equations describing the system are said to be in normal form. Note that if
the change of coordinates had been designed such that
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Lypi(z) =0, Vie{r+1,...,n}, (2.48)

the last (n — r) dynamics equations wouldn’t have been influenced by the input,
namely

Zry1 = QT+1<2)
: (2.49)

Zn = qu(2)

2.6.3 Normal form - MIMO system

This section traces the procedure to compute the normal form presented in subsec-
tion 2.6.2 on general MIMO system. Consider a state space system described by
equations in the following form.

B = flz)+ ) gi()\ (2.50)
i=0
= hy (ZL’),
Ym = hm(l'),
where (f,91,...,9m) are smooth vector fields and (hy,...,h,,) smooth functions.

Note that these equations consists of the expanded version of the system described
by Equation 2.14. As in the SISO analysis, the normal form for MIMO systems is
developed from the relative degree, which in this case is the vector r = (r1,..., 7).
The relative degree is computed accordingly to definition 4.

Recall definition 4 for MIMO systems. Consider a general point £ € R" for which
the relative degree vector is well defined. Accordingly to definition 4 the following
vector

(LglL?_lhi(x), U LgmL}’i_lhi(x)>, (2.51)

is nonsingular in Z for any value of i in {1,...,m}. In fact, it consists of the i row
of matrix A which is nonsingular in ¥ due to the second condition of definition 4.
Therefore, it always exist at least a 7 € {1,...,m} such that

Lg, L7 hi(x) # 0. (2.52)
From these considerations the following lemma is stated for MIMO systems.

Lemma 3. Consider a system in the form of Equation 2.50 and a general point
T € R™. Suppose the system to have a vector relative degree r = {ry,...,r,} in Z.
The row vectors
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Vhi(2), VLshy(Z),. .., VL h (1) (2.53)

Vho(2), VLhe(Z), ..., VLT i (T)
are linearly independent.

Likewise SISO systems, the property of linear independence of these vectors makes
them a good candidate for a coordinate transformation. As for MIMO systems, the
approach is to consider each output as a SISO system and apply the related normal
transformation. This procedure is summarized in the following proposition.

Proposition 2. Consider a system in the form of Equation 2.50 and a general point

T € R". Suppose the system to have a vector relative degree r = (ry,...,Tm). It
holds
Ttot = Zﬁ' <n. (2.54)
i=1

Then, fori € {1,...,m}, set

1 = hi(), (2.55)
é = thl(x)a

7 r;i—1
If rir < m, it is always possible to find (n — ry) more functions (¢p,41,-- - On)
such that the mapping

<I>:coz(d)i,...,qﬁ;,...7¢T,...,¢¢m,...,¢rtot+1,...,gbn), (2.56)

has a Jacobian matriz J(®(Z)) nonsingular. Therefore, these mappings represents a
local coordinate transformation for the system in a neighbourhood of T. The values
of the additional mappings can be chosen arbitrarily.

For the sake of simplicity all the variables transformed by the relations defined
through the relative degree are described as gg' . All the variables transformed by
the additional mappings (¢,,,,, ..., ®,) are described as n;. Therefore, the final
coordinates transformation is described by equations of the following form.

E=(&...,6m) st Vie{l,...,m} (2.57)
g\ (d)
c_la] e
3 i (2)

33



T ¢7'tot+1(x>
M2 ¢7‘t0t+2 (JZ)

,r}n_'T'tot Cbn(x)

The dynamics of the system are derived following the same procedure reported in
subsection 2.6.2 for each subsystem associated to an output h;. Thus, set

aij(£> 77) = ngL;i_lhi((bil(ga 77)) V1 S 7/7] S m, (258)
bi(&,m) = L;Lihi(@’l(f,n)) Vl<i<m.

System dynamics in the new set of coordinates are described by equations in the
following form.

& =6, (2.59)

Ti—l_ T

&= bi&m) + Y ay (&N,
j=1

Yi = giu
for 1 < i < m. The remaining variables, namely (9, ...,7,_r,,), have the following
general structure.
n=q&n) + > pil&mAhi = (&) + p(& A (2.60)
i=1

2.6.4 Normal form - zero dynamics

Consider a general MIMO nonlinear system in normal form, namely described by
the following equations.

& =6, (2.61)
o e
& =bi(&m + > a(E ),
j=1
& =&,
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‘m m

rm—1 " Srm)

5:; = bm(gv 77) + Zamj(€777>>‘ja

j=1

m=q(&n)+ Zpli(éaﬁ))\m
i=1

m

T‘](n*rtot) = q(“*"’tot)(&? 77) + Zp(nﬂ”tot)i(€7 77))‘2

i=1

Recall that as described in subsection 2.6.3 the output of the system is the whole
set of constraints h;. The following definition can be stated [6].

Definition 5. (zero dynamics) Consider system 2.60. The dynamics described by

m=q(0,n) + ;pu(oﬁ))\i

1= fo(0,n) = q: (2.62)

If](n—not) = Q(n—rtot)<07 7]) + ;p(n—not)i <O7 77))\2

18 called zero dynamics of the system. The system is said to be minimum phase if
its zero dynamics have an asymptotically stable equilibrium point in the domain of
interest.

From this definition an important theorem can be proved [7].

Theorem 2. Consider a general system described by the following equations:

&= f(@)+ D gil@)A; (2.63)
v = hl(@,
Ym = hm(x7)

and its equivalent transformed in normal form, namely

£ = fe(&m), (2.64)
n= fn(f,ﬁ),

where f U CR™ = R and x € R". Assume system Equation 2.63 to have relative
degree 0 < ryoy < n — 1. Stability properties of equilibrium points of system 2.63 are
equivalent to stability properties of the zero dynamics 2.64.
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2.7 Looper - normal form computation

This section presents the normal form transformation of the system in analysis,
namely the looper presented in section 2.2. The choice of such transformation is of
the utmost importance for the stability analysis, as it will be explained in chapter 3.
Therefore, two different normal form transformations are presented below, whose
benefits and drawbacks will be addressed in section 3.2 and in section 3.3.

2.7.1 Normal form - preliminary analysis

Consider the system described by Equation 1.44 and a general point z € R%. As
reported in section 2.5, the vector relative degree of the looper is r = (2,2). Recall
the notions presented in subsection 2.6.3. The normal form is described by equations
of the following form.

Z1 1 1 ()
2| [d] {o
Z3 1 ¢1(z)
z = = = , 2.65
2 5 ¢3(x) (2.65)
%5 m ¢1(x)
26 12 Pa()
where the vector (¢1, ¢3, ¢?, ¢2) is defined as follows.
1 hi ()
3 Lyhy(x)
= . 2.66
ol ha(z) ( )
3 Lyha(x)
Consider then the normal form mapping
1
y
b7
P = . 2.67
& (2.67)
o1
?2

The choice of the pair (¢1, ¢2) shall be done in order to meet the condition expressed
in proposition 2, namely

det (J(@@))) £ 0. (2.68)

2.7.2 Normal form - free mappings choice

The following two paragraphs present two possible choices of mappings (¢1, @2).
These mappings result in different considerations on the stability analysis of the
system.
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Normal form - case 1

The first proposed normal form transformation is described by the following equa-
tions.

1 hi ()
b5 Lyhy(z)
7 ha(z)
P = = 2.69
3 Lyhs(x) (2.69)
o1 T
b2 T
Recall the structure of f and h described in section 2.2, namely
{ -
1 = X4
j?2 = T5
= e , (2.70)
Ty = Fy(z) + a11(x) A (x) + ag1(x) Ao ()
.’II'L'5 = F5(1’) + a12<1‘)>\1($) + Clgg(fﬂ))\g(l‘)
jfﬁ = F6<SC) + CL13<JJ)>\1($) + CLQg(CIJ))\Q(SC)
and
hi(q) = (Ri2 + Rasz + q2) cos gy — R, — Rgysings =0 (2.71)
hg((]) = (R12 + R23 + q2) sin q1 — Ry + R34 COS (q3 = 0

The Jacobian matrix of the proposed diffeomorphism takes the following form.

o o o 0 0
ox oz oz
8Lf}11 3Lf?11 BLf?Ll 8th1 Bthl athl
1o, 1o) O 16) 0 1%
oy ohy oh 00 Y
— 0 o) ox:
J<(P(:L')) - 8L§}12 8L9;712 8L§?L2 8th2 8th2 8th2 (272)
ox1 Oxo Oxs Oxy Oxs Oxg
1 0 0 0 0 0

0 0 0 0 0 1

The determinant of this Jacobian matrix is in the following form.
det (J((I)(ﬂf))) = R34(R12 + R23 + ZBQ) Sin(&?l — $3) (273)

Recall the considerations on the singularities of the looper reported in subsec-
tion 1.2.3. The only configuration making the Jacobian singular occurs when

xr1 = I3, (274)
namely when the first and the third link of the mechanism are normal. This happens

in the joint space boundaries only.

As a result of the previous considerations, the proposed transformation turns out
to be a local diffeomorphism for the system in analysis in any point except for
r1 = 07" and x; = 07"%®. Therefore, such mapping is also invertible. The inverse
transformation is described by the following equations.
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( . \

+Ro+ Ry sin g/ (2)
Z5 \ Z1 34 o B
(gb—l(z) cos z (Ry2 + Ra3)
Zg R o R,) sin 25
¢71(Z) <5 — arccos st y)COSZR (21+R;)sin z
v - - 34
¢;41 (Z) 24 COS 25—22 SinZ5+R34Z6lsin(¢;31(2)—zs)
o-1(2) o
\ 5 / 2ot (Ria+Ros+0,) (2)) 0, (2) sin 25+ Raazg cos 9,1 (2)
° cos 25
\ : /

(2.75)

Normal form - case 2

The second proposed normal form transformation is described by the following equa-
tions:

1 hi(z)
Q% Lyhi(x)
et ] ho(x)
o = ¢% = thQ(x) (2.76)
03} xy
¢2 Ty

Recal the structure of f and h described in Equation 2.70 and Equation 2.71. The
Jacobian matrix of this mapping takes the following form.

oh1 oh1 oh1 0 0 0
Ox ox Ox
OLihy  0Lihy  OLghy  OL;hy OL;hy OLphy
2 p) 2 B) B) B)
_| 0 p) p)
J@@) = | o0, ol ol orjhe oLihe 0L (2.77)
81'1 8:22 81‘3 8$4 615 8%6
1 0 0 0 0 0

0 0 0 1 0 0

The determinant of this Jacobian matrix turns out to be the following.

det (J(@(@)) = —R3, sin®(z; — x3) (2.78)

Recall the considerations on the singularities of the looper reported in subsec-
tion 1.2.3. The only configuration making the Jacobian singular occurs when

r1 = I3, (279)

namely when the first and the third link of the mechanism are normal. This happens
in the joint space boundaries only.

As a result of the previous considerations, the proposed transformation turns out
to be a local diffeomorphism for the system in analysis in any point except for
r1 = 07" and x; = 07"%®. Therefore, such mapping is also invertible. The inverse
transformation is described by the following equations.
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z5

21+ Ry +Raq sin (;5;.31 (2)

COS

— (R12 + Ro3)

Or, (2) y .
*21 Zrx — arccos (23+Ry) cos 25— (21+ R, ) sin 25
(I)_l — gbx?’ (Z) — g R34
qbaug (;Z) 2?6
¢;51 (Z> 2’2+(R12+R23+(/5;21 (2))z6 sin 25+R34¢;61 (2) cos ¢;31 (2)
\ <6 / COS 25

24 €OS 25— 22 8N 25— (R12+Roz+¢,) (2)) 26
Raysin(zs— oy (2))

\

2.7.3 Normal form - system dynamics

(2.80)

From the algebraic mappings describing the coordinates transformation, system dy-
namics can be computed. Thus, recalling subsection 2.6.3, set

a1 = Ly, Lh (®71(2)), (2.81)
12 = Ly, Liha(97(2)),
az = Ly, Lt (27'(2)),
9o = Ly, Liho(®71(2)),

by = Lihi (@7 (2)),

by = Liha(®71(2)),

@ = L@, (971 (2)) = ¢, (2),

G2 = Ly®o(P7(2)) = Fu(®7'(2)),
P11 = Lg,®1(®7'(2)) = 0,
P12 = Ly, ®1(®71(2)) = 0.

(2.82)

The last coefficients to be computed are (pa1,p22). Such coefficients vary depend-
ing on the mapping. Therefore, they are described as follows, accordingly to the
coordinates choice presented in subsection 2.7.2.

1. Consider the mapping described in Equation 2.69. It holds

_ R12 + R23 + ¢;21 (Z)

pa1 = Ly, 2(®71(2)) ¥ sin zs, (2.83)
toty
R R .
P2 = Ly ¢2(7'(2)) = — b 53 e COS z5.
totq
2. Consider the mapping described in Equation 2.76. It holds.
_ R34 _
P = Ly 2(271(2)) = 7= cos 8/ (2), (2.84)
toto
_ R4 . _
Paz = Ly, $2(271(2)) = J3 Sln¢x31(z)
toto
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Therefore, for both the coordinate transformations, the dynamics of the system are
described by equations in the following form.

(=6
55 = by +an + agAs
&=¢

! (2.85)
&5 = by + as A1 + axnls

M = q1 + puA + pi2Ae
72 = G2 + D21 A1 + Pas Ao

Note that the main difference between mapping 2.69 and 2.76 is that in the latter
defines (11,72) as respectively an angular position and velocity. Therefore, the n
dynamics (7, 72) represents a mechanical system, whose stability properties can be
analysed easier than other kind of systems.

2.7.4 Normal form - Lagrangian multipliers computation

Consider the system described in Equation 2.85. As a matter of fact, the Lagrangian
multipliers computed in section 2.3 shall be modified accordingly to the new sys-
tem of coordinates. Note that the algebraic constraints are represented in the new
coordinate system by the pair (£},&2). The procedure to compute the Lagrangian
multipliers is similar to the one carried on in the original coordinate system. It
unfolds as follows.

1. Recall that the vector relative degree is r = (2,2). Therefore, both the al-
gebraic constraint shall be differentiated twice in order to find an explicit
dependence on the input, namely

d’ &Y _ 5% (b1t an A +ans
—(55) =[] = ) (2.86)
dt \&i &2 by + agi A1 + axls
2. Constraints derivatives shall be zero at any time. Therefore, the following
holds.

{bl + an)\l + a12/\2 =0 (287)

bg -+ CL21)\1 + CL22>\2 =0

3. The solution of this set of equations provides the solution for the Lagrangian
multipliers in the new coordinates system, that is

)\1 _ _ bitainA

Ay = b16121ai152a11 (288)

(11022 —0120G21
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Chapter 3
Stability analysis

This chapter presents the study of equilibrium points for the system in analysis,
namely the looper. Roughly speaking, the looper consists of an actuated constrained
pendulum. Therefore, its free dynamics shall be characterized by two equilibrium
point, one of which being stable, the other unstable. However, such points don’t
always correspond to #; = 0 and 0, = 7, as in the simple pendulum case. Generally
speaking, the equilibrium points of the looper are described as follows.

Teg, = (m‘i‘”,x;‘“,x?ﬂ,(), 0,0), xgql S [— g; g} (3.1)
3
Tegy, = (217, 252, 25,0,0,0), 25" € {g g} (3.2)

Consider again the system described in Figure 1.5. As explained in section 1.2
the steel flows on the upper part of the mechanism, loading the endpoint of the
looper. Therefore,it’s realistic to assume the operational range of the mechanism to
be limited to 6, € [~7; J]. As a consequence, the stability analysis of the system is
carried on for x4 only. For the sake of simplicity from now on z., will be referred
to as 7.

The model of the looper has been implemented in MATLAB, considering the set-
up described in Table 1.1. In order to find the equilibrium point two different
approaches have been used.

1. Simulation test. The first and more rough approach to find the equilibrium
point of the system consists in running the simulation of the model for a
significant amount of time. Due to the presence of friction the simulation
asymptotically settles down on a specific state vector, which is assumed to be
the equilibrium point z.

2. Optimisation test. This second approach addresses the research of the equi-
librium point as constrained optimisation problem. Consider an initial condi-
tion xg coherent with the assumptions on the algebraic constraints, namely

The optimisation process considers at each iteration the output of the model,
that is
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i = f(z). (3.4)

Then, starting from xg, the optimisation algorithm minimizes the value of &
considering Equation 3.3 as an additional constraint to be satisfied at any
iteration.

From both these analysis the equilibrium point of the looper results

T = [1.0946 0.1774 0.0955 0 0 0]. (3.5)

3.1 Lyapunov stability theory

The stability analysis is developed accordingly to Lyapunov theory of stability. This
section shortly recalls the basis of such theory. To develop Lyapunov stability theory
consider a general system in the following form.

t=f(z), fUCR"—=R, zelU (3.6)

Lyapunov stability Consider z € U to be an equilibrium point for such system,
namely

F=f(z)=0 (3.7)

Consider also system initial condition to be xg € U in t = ;. The following stability
definition holds.

Definition 6 (simple stability). = € U is said to be stable if

de >0, 3Jd(e) >0 s.t. (3.8)
lzo — Z|| < 0(e) = |lz(t) — Z|| <€, Vt>to

If the above condition is not satisfied, point Z is said to be unstable. A more strict
kind of stability can be defined.

Definition 7 (local asymptotic stability). & € U is said to be locally asymptotically
stable (LAS) if

Je>0, Fo(e) >0 s.t.
i) xo—Z| < 0(e) = ||x(t) — || <€, Vit >t
@)  lim Jz(t) =z =0
Local asymptotic stability can be extended to the whole system domain.

Definition 8 (global asymptotic stability). Z € U is said to be globally asymptoti-
cally stable (GAS) if

Ve >0, 3Jd(e) >0 s.t.
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i) xo—zZ| <d(e) = ||x(t) — || <€, V>t
i) lim ||z(t) —Z|| =0
t—o0
Note that the difference between LAS and GAS points is the existence of an upper

bound for the initial displacement ||zo — Z||. GAS points are said to be globally
attractive as any trajectory of the system always tends to them as t — oo.

Quadratic forms This paragraph provides a brief introduction on quadratic forms
as they are are widely used in Lyapunov theory. Their definition and main properties
are summarized in the following definition.

Definition 9 (quadratic form). Consider a mapping V : R™ — R such that:
V=z"Pz, PeRY™ zeR" (3.9)
V' is said to be a quadratic form in R™. The following properties hold.

i) Assume P = PT, then
V(z) >0 VxeR"-{0} (3.10)

Moreover, it holds

)\mmeHQ <2'pPr< AmaxHxHQ, Amin = min(o(P)),  Apex = max(o(P))

i) Assume P = —PT then
V(z) <0 VaxeR"-{0} (3.12)

Recall also that V' : &4/ C R™ — R is said to be positive definite (semi-definite) if
V(z) >0 (>0), Vo e lU. Moreover, V is said to be negative definite (semi-
definite) if —V is positive definite (semi-definite).

Lyapunov theorems At this stage, Lyapunov theory can be introduced. The
three main theorems for stability analysis are presented below.

Theorem 3 (simple stability). Consider a general system described by Equation 3.6.
Let & = be an equilibrium point for such system. Consider also a continuously
differentiable mapping V : U C R™ — R such that

i) V(0) =0
i) V(z) >0, Veeldd-—{0}
ii) V(r) <0, VYxel-{0}

If such conditions are satisfied, T is a simply stable point for system 3.6.
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Theorem 3 can be modified in order to prove the local asymptotic stability equilib-
rium points.

Theorem 4 (local asymptotic stability). Consider a general system described by
Equation 3.6. Let T = be an equilibrium point for such system. Consider also a
continuously differentiable mapping V : U C R™ — R such that

i) V(0)=0
ii) V(x) >0, Vreld-—{0}
ii) V(r) <0, VYeel-{0}

If such conditions are satisfied,  is a locally asymptotic stable point for system 3.6.

Again, Theorem 4 can be extended to prove the global asymptotic stability of equi-
librium points. To do so, recall the following definition.

Definition 10. Consider a mapping f : R® — R. Such mapping is said to be
radially unbounded if
|z|| > 00 = f(z) = o0 (3.13)

The following theorem can be stated.

Theorem 5 (global asymptotic stability). Consider a general system described by
Equation 3.6. Let T = be an equilibrium point for such system. Consider also a
continuously differentiable mapping V : U C R™ — R such that

i) V(0

0

)
ii) V(x) >0, Vreld-—{0}
iii) V(x) is radially unbounded
)

i) V(z) <0, Vzeld—{0}
If such conditions are satisfied, T is a globally asymptotic stable point for system 3.6.

Note that Lyapunov theorems are sufficient yet not necessary conditions for the
stability of equilibrium points. That is, even if a specific Lyapunov function V'
satisfying theorem’s requirements can’t be found, nothing can be said on the stability
of the point.

As for the looper, the stability analysis is performed on the system in normal form.
Indeed, different results can be achieved considering different coordinate transfor-
mations, as shown in the following paragraphs. The choice of the right coordinate
transformation turns out to be crucial for the stability analysis.
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3.2 Stability analysis - case 1

This section addresses the stability analysis of the looper in the first normal form
choice, namely the one described by Equation 2.69. As explained in subsection 2.6.4,
stability properties of a system in normal form can be analysed considering its zero
dynamics. Therefore, consider the system described by the following equations.

atg=] atg=] , (3.14
= Fo(-1 () & PRt gy Rttt oo (1)

Jtotq Jtotq

{771 = ¢, (n)

which can be also written as

0 = lm] — lq‘h} — . (3.15)

772 [

Recalling the considerations presented in chapter 3, the equilibrium point of such
system consists of Z restricted to the n dynamics, namely

1 = (¢2,(74),0) = (71, 0)- (3.16)

3.2.1 Linearised model

This section studies the stability properties of the linearised model of the looper.
The obtained results are then used to infer stability properties on the nonlinear
model too.

Consider system 3.15 and compute its linearisation around the equilibrium point 7,
that is

V| =)+ oln — )’ (3.17)

7;]lin = QO‘ ~
n=eta =7

This affine system can always be considered a general linear system through a co-
ordinate transformation, namely

Min = A(n —n) + o(n — 7)? (3.18)

Before dealing with the looper model, the stability analysis approach is described
on a general linear system. The stability analysis of linear systems is carried on by
means of Theorem 4. Consider then a general system described by equations in the
form of

T = Azx. (3.19)

Consider also an equilibrium point z = 0 and a candidate Lyapunov function V :
D C R® — R such that V = 27 Pz, where x € R® and PT = P € R™". Such
assumptions are consistent with Theorem 4 and Theorem 5. However, in order to
prove the stability of z, V' derivative shall be computed and imposed to be negative
semi-definite. This procedure unfolds as follows.
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av

o= 2" Pi 4 &' Pr = (3.20)

= 2T PAz + 2T AT Py =
=2"(PA+ ATP)r <0

According to definition 9, V' is a quadratic form, as well as V. Recall that a quadratic
form V = 27 Pz is negative definite if P is a skew symmetric matrix. Thus, consider
a matrix Q = QT € R™". Consider also the following matrix equation

PA+A"P+Q=0. (3.21)

This is called Lyapunov equation. Solving such equation in P ensures V= T (PA+
AT P)z < 0. This proves the local as well as the global asymptotic stability of the
equilibrium point z = 0 considered.

3.2.2 Nonlinear model

The results on the stability of the linear system defined in Equation 3.19 can be
extended locally to the related nonlinear system.

Consider a general nonlinear system described by equations of the following form
= f(x), zeR" (3.22)

where f: U C R"™ — R". Assume also T = 0 to be an equilibrium point. The ques-
tion to be addressed is whether the Lyapunov function V' defined for the linearised
system in subsection 3.2.1 is good to prove the stabiliy of z also in the nonlinear
framework or not.

In this framework, the nonlinear system can be expressed in terms of the linearised
one as follows

& = &y + hot(x) = Ax + hot(z) (3.23)

Therefore, the Lyapunov function derivative analysis becomes the following.

av

o= o' Pi+ 3" Pr = (3.24)

= 2" P(Ax + hot(x)) + (27 AT + hot” (z)) Pz =
= 2" PAz + 2" Phot(z) + 2" AT Pz + hot” (z) Pz =
=2T(PA+ AT P)x + 22" Phot ()

By solving the Lyapunov equation as reported in subsection 3.2.1, it holds
PA+ATP=-Q <0, Q>0. (3.25)
Therefore, the Lyapunov function derivative can be bounded as follows.
V = —2TQu + 227 P < —2T'Qx + 2| P||||z|||| hot (z)]| (3.26)

46



Recall now the properties defined for a quadratic form in 9, and more specifically
that

Amin||7|)* < 2" Pz < Ao ||| (3.27)
Therefore, it holds

V < =Auin(@)l2ll + 2 Pl [z hot ()] (3.28)

Therefore, in order to have V < 0, the following condition shall be met.

Amin (@) |||

[hot ()] <
2|\ Pl

(3.29)

where ||hot(z)|| can be retrieved from Equation 3.23. Thus, the very same Lya-
punov function designed for the linear case holds locally also for the nonlinear one.
Therefore, only local asymptotic stability of the equilibrium point Z can be proved.

3.2.3 Results

The procedure described in subsection 3.2.1 and subsection 3.2.2 has been performed
on the model of the looper, described in section 2.7.

The nonlinear model and its linearised counterpart are shown in Figure 3.1. The
linearisation has been performed around the equilibrium point 7.

I Nonlinear
[ Linearised

577 LTHAL
L Oy LA Oy
Ay o

rittess s

Figure 3.1: Nonlinear model and linearised model of the looper

The Lyapunov equation has been solved considering A as described in subsec-
tion 3.2.1 and the following target matrix Q).

0.0001 0

Q=1"0 " 00002 (3.30)

The solution matrix P turns out to be
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— 1.4084413  —0.0000015

P=

—0.0000015  0.0031958

(3.31)

The considered Lyapunov function is in the following form.

W:

(n—n)"P(n—mn) (3.32)

As expected W has a global minimum in 7. W is shown in Figure 3.2.
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Figure 3.2: Lyapunov function W

This Lyapunov function has been used to check the local asymptotic stability of n
both for the linear and nonlinear case, namely the following mappings have been

defined

W =

(n—m)" P(n—1).

Both W and I/Vlm are shown in Figure 3.3. As it can be seen, the condition W <0
is satisfied over a limited domain as far as the nonlinear model is concerned, proving

the local asymptotic stability of 7.
W and Wy, are negative definite.
values of 7 where W > 0.
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In fact, note that in a neighbourhood of 7 both
Differently, over the whole domain, there exist
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(b) W near 7j

Figure 3.3: Lyapunov function W and Wy,
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The stability analysis of the linear and nonlinear models differs due to the term
||hot(n)||. This term has been computed as described in subsection 3.2.2 and referred
to as b,,q.. The final condition for the local asymptotic stability is described by the
following inequality.

[[hot(n)]]

2l < biaz = 3.550023613765002e — 05 (3.34)
T

The comparison between ”hﬁi(‘?)” and b,,4, is shown in Figure 3.4.

x10™
[ |hot(q)|
] [N stability bound

0.8

0.6

0.4

0.2

1.162768

-5 1.16276 1.162764

X

Figure 3.4: Comparison between ”h“";ﬂ?)” and b,,4

3.3 Stability analysis - case 2

Consider the second normal form transformation of the looper, presented in sec-
tion 2.7.2, namely

1 hi(x)
(b% thl(x)
i | he(z)
= o | 7| prhate) (8.35)
®1 T
05 Ty

In this section the stability analysis is addressed through the looper transformed
in this normal form. As discussed, this specific transformation describes the zero
dynamics as a mechanical system. The 1 dynamics of the considered system is
described by equations in the following form.

{m = ¢, (n) (3.36)

—1 —1
’[;]2 = F4<®_1<rr])) + w Sin 771)\1 + _w coS /rhA2

Jtotl Jtotl
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3.3.1 Simple stability

Generally speaking a scalar mechanical system is described by the following relation

G=[f(q,4), ¢q€eR, (3.37)

where f : R? — R. Assume the equilibrium point to be ¢ € R. Define the new
variable § = ¢ — g. Thus, the equilibrium point becomes ¢ = 0. Consider the Taylor
expansion of such system in a neighbourhood of ¢ = 0. The resulting system is
described by the following scalar equation.

q=To+ TG+ Tod’ (3.38)

where Ty, T}, T> depends on ¢. For the sake of simplicity this dependence will be
neglected in the notation from now on. Note that the dynamics of a mechanical
system are quadratic in the velocities. Therefore, the system is described exactly by
its Taylor expansion.

Consider a positive variable M(G) > 0 € R depending on ¢. System 3.40 can be
written as:

M(q)g+ Cig + Cag® + G =0, (3.39)
where
02 = _M<Q>T27

Note that term G doesn’t introduce any relation with ¢. In fact it is related to
the gravitational action on the system. Instead, terms C} and Cy are respectively
related to friction and Coriolis terms. These analogies can be stated because of the
mechanical nature of the system.

Consider again the equilibrium point ¢ = 0. In order to prove the stability of such
point the following Lyapunov function is defined.

V- %M(g)(f + / GE)de + ¢, (3.41)

—0o0

where V' : R® — R and ¢ € R is a constant. Recall now the gravitational interpre-
tation of term G. The integral term in V' consists of the gravitational potential of
the system, which will be addressed as U(§). Instead, the first term depends on q,
defining a sort of kinetic energy for the whole system. Moreover, the potential is
always defined net of a constant, namely the ¢ term in V. Such constant is assumed
to be

c=minU(G), ¢eR. (3.42)

q

Such minimum coincides with the lowest energy configuration of the system, namely
its minimum is reached in ¢ = 0. Thus, the stability analysis unfolds as follows.
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91 qq (3.43)
CL[OM(@) ) s s .
=379 ¢ +Gq+ M(q)qq =

1[OM(G .

S AL P ey N | BeY MeY e
2| 0q

1[oM(q)] - £
= M@ oy g - i - it - i =

21 0q

1[0M(q) .

_ 1 <

9 6q CQ:| 016_] 0

Therefore, in order to impose V < 0, the following conditions shall be satisfied.

M
0 8q( 7 +2M(§)Ty =0, VieR, (3.44)

C1>0 VieR. (3.45)

Accordingly to Theorem 4, these conditions ensure the local asymptotic stability of
the equilibrium point ¢ = 0. In order to meet these conditions a proper choice of
M (q) shall be made. Given that ¢ € R, condition 3.44 becomes an ODE whose
solution is the following.

dM (G = [ 1y(6)de
d(j(q) MG =0 = M) —e

(3.46)

In the scalar case condition 3.45 shall be met directly checking the sign of (' in the
domain of the system. Therefore, the choice of this Lyapunov function proves the
simple stability of ¢, as V() = 0.

3.3.2 Global asymptotic stability

As reported above, function 3.47 proves only the local asymptotic stability of ¢. In
order to prove also its global asymptotic stability an additional term is specifically
designed for the Lyapunov function V. The additional term is defined as T = §q.
The new Lyapunov function is defined as follows:

1 . .
V.=V 4+l = §M((j)(f + /G(f)df +c+eqq, eeR. (3.47)

This function still meets the assumptions of Theorem 5. The stability of ¢ depends
on V. = V + ¢T. Therefore, in order to prove the global asymptotic stability of ¢,
the following shall be true.

i) Vi(q) <0 = V2V(q) <0.
i) V2V.(§) > 0.
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Counsider the first condition. The derivative of the additional term unfolds as follows.

0T . 0T .
gt (3.49)
. . O, G

) RS2 1.2 229~ ~

Assume to choose M (q) accordingly to Equation 3.46. The Lyapunov function
derivative turns out to be the following.

P P C ~A N G ~
V.= —-Cq* + e(q2 — Mqu — 771" Mq), e € R. (3.49)

In order to have V, < 0, the following shall be true.
VV.(§) < 0. (3.50)

Recall that the equilibrium point of the system is ¢ = 0. Through simple computa-
tions the condition 3.50 turns out to be

1 —9G(0) _ C1(0)
V2V.(0) = | MO, 04 M(0) < 0. 3.51
o [—fjéﬁ)’ 2(e — G1(0) 0

On the other hand, by computing V?V.(q), the condition on the Hessian of the
Lyapunov function is defined as follows.

oq

M<§><o>} >0

V2V (0) =

F’G(O) (3.52)

Therefore, a proper choice of € can grant the global asymptotic stability of the equi-
librium point ¢ = 0. Note that the choice of € shall be such that both Equation 3.51
and Equation 3.52 hold. This results in specific bounds on ¢, different from case to
case.

3.3.3 Results

The procedure described in section 3.3 has been performed on the looper, described
in section 2.7. The system has an equilibrium point in 7.

The Taylor expansion terms Ty, 77, T> are shown Figure 3.5.

40

-0.18

Tol@) —T,@

1 -02

301

3
2
1
0
1
-2 1 -028 -10F
3
4
5
0.

(a) To(n) term (b) T1(n) term (¢c) To(n) term

Figure 3.5: Model’s Taylor expansion terms
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Recalling the considerations in subsection 3.3.1, M (n) has been chosen properly,
in order to meet condition 3.44. Note that all these analysis has been carried out
numerically instead of in a symbolic way. This because the symbolic computation
of Equation 3.44 is heavy computationally speaking. M (n) is shown in Figure 3.6.

1

M(a)
09 1

081
071
06
051
04r
03F
02F

01F

Figure 3.6: M (n) - solution of Equation 3.44

From these results, G, C1,Cy can be computed. As explained in subsection 3.3.1,
terms C and Cs are related to friction and Coriolis effects. Such terms are presented
in Figure 3.7.
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(a) Ci(n) term (b) Ca(n) term

Figure 3.7: Friction term and Coriolis term

The condition described in Equation 3.44 is checked in Figure 3.8. As explained
before, the whole analysis has been carried out numerically and for this reason the
computed condition is not exactly zero.

It is interesting to show also term G = —M (n)Ty. As explained above this term is
related to the gravitational action on the system. In fact, as shown in Figure 3.9, it
has a zero in 7, as reported in Figure 3.9

Therefore, its integral defines the gravitational potential U(n) of the system. Con-
sistently, U(n) has a minimum in 7, as shown in Figure 3.10.

The gravitational potential is always defined net of a constant. As it can be negative,
its value could prevent V(n) to be positive semi-definite, as required by stability
theorems defined in section 3.1. Therefore, in the definition of Lyapunov functions
V and V,, the constant ¢ has been set to
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Condition on M(g) - ODE solution check
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Figure 3.8: Numerical check of condition 3.44
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Figure 3.9: Gravitational action on the system and in 7

¢=|[min U(n)] (3.53)

Therefore the two Lyapunov functions are defined as follows:
1 . .
V= gMmn* + U + || minU(n)] (3.54)
1 : . .
Ve= 3 M)+ U(n) + [[minU ()| + e(y — 7).

The two Lyapunov function are presented in Figure 3.11. Both the plot in the entire
domain and on a restricted interval around 7 are shown. The equilibrium point 7 is

highlighted in blue.
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Figure 3.11: Lyapunov functions V(n) and V.(n)

Figure 3.12 presents the same analysis but on the derivative of the Lyapunov func-
tions, namely the conditions proving respectively simple and global asymptotic sta-

bility of 7.
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Figure 3.12: Lyapunov functions V (n) and V.()
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Choice of ¢

As reported in subsection 3.3.2 global asymptotic stability of 7 is proved for a
limited range of ¢ values. Indeed, to check the stability of 7 both the conditions
in Equation 3.3.2 shall be met. More specifically the eigenvalues of those matrices
shall be respectively both negative and positive. Such conditions depends on the
value of € and are shown in Figure 3.13.

0.01F ]
Ml 18
0.008 INE y
0.006 |- er %
0.004 | 1ar
0.002 112}
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0.01F ‘ do2t
5 0 5
x10* -05 0 05
(a) Condition 3.50 (b) Condition 3.3.2

Figure 3.13: Eigenvalues of condition 3.50 and 3.3.2 - dependence on €

Therefore, considering the obtained results, set ¢ = 0.0001. This choice leads to the
following results:

i) Condition 3.50

2o o[ —0.0021  —0.00000043
VVen) = Hy = {—0.00000043 —0.00053 (3.55)
— o(Hy) = (Mg, Ay,) = (—0.0021, —0.00053)
ii) Condition 3.3.2
] 1.773  0.00005
V() = Hy = {0.00005 0.0844} (3.56)

— O'(Hv) = ()\Vl, )‘Vz) = (00844, 1773)

These results are consistent with the requirements. Therefore, global asymptotic
stability of 7 is proved.
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3.4 Mechanical system - multidof

This section goes through the analysis of multidof mechanical systems. More specif-
ically, after a brief general introduction, it describes the model and the behaviour
of the looper in a different configuration compared to the one described so far. In
fact, one of the two algebraic constraints is removed and, more specifically, Frame
2 is allowed to slide horizontally. This analysis is presented both for the nonlinear
and a linearised version of the model. Moreover, the stability analysis carried on in
section 3.3 is introduced on multidof mechanical systems.

The goal of this section is to introduce a potential research field as far as the stability
analysis is concerned.

3.4.1 General introduction

For the sake of simplicity this general analysis is performed on a system of the
same dimensions of the looper. Consider then the system described by the following
equations:

i = f(q.q)+ VA" (q)X, (3.57)
0= h(q),

where f: R - R3 h:R3 = R, (4,4, q) € R®, A\ € R. This system has 3 generalised
coordinates and a single algebraic constraint, ending up with a total of two dof.

Assume this system to have an equilibrium point g € R3. Indeed q = 0. Define
G = q — q. The equilibrium point becomes now ¢ = 0, with g = 0.

Consider now a global diffeomorphism ® : R® — R® and transform the system
in normal form. Considering that the system is subjected to a single algebraic
constraint h, system dynamics can be described as follows.

&=6 (3.58)
£y = b+ al
N = q1 + piA
Te = q2 + P2
T3 = q3 + p3A
Ta = qa + paX.
(3.59)

Moreover, considering that a single algebraic constraint acts on the system, the zero
dynamics have dimension 4. Therefore, they are described by the following equation.

77 = qO(Ov 77) +p0(0777))‘ = fO(Oa 77)7 ne R4' (360)

3.4.2 Looper - 2 dof

Consider the looper model described in chapter 1 and assume to relax the set of
constraints, namely to remove
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hi(q) = (Ri2 + Ras + q2) cosqy — R, — Rgysings =0

(3.61)

The resulting 2-dof mechanical system can be described by the following equations.

M4 = Fi(q,q) + a1(9) Mg 4)
M3 Ga = Fy(q, ) + az(q) Mg, 4)
M3 = Fs(q, q) + as(q) Mg, )
h(g) =0

where

h(q) = (Ri2 + Ra3 + q2) sings — Ry, + Rsscos gz = 0.
Consider then the following global diffeomorphism.

h(zx)
th(l‘)
x
Ty
Z3
Zg

z2=®(x) =

(3.62)

(3.63)

(3.64)

This diffeomorphism makes the n dynamics to be in the form of a mechanical system.
In fact, both (21, x3) describe a position and (x4, x¢) the respective velocity. Trans-
form now the system in normal form through ® : R — RS The system dynamics

turn out to be

G =6
o= b+ a)
=12

T2 = q2 + P2
N3 = Ma

(74 = G4 + paA

(3.65)

Consider the equilibrium point of the system 3.62, namely ¢ € RS. Note that g is
computed through the same procedure described in section Equation 3. It holds

g=1[0.1399 10.1541 0 0 0 0].

This point is transformed through ® as well, namely

_ m ER’.

Consider the 2 dof mechanical system with restricted state variable

I
I

~— — — ' — —r

P~~~

Q) Q QR QK

oo e o o o
D ot >~ w (V] —

o8

(3.66)

(3.67)



= [’71] € R, (3.68)
3

Recall now Theorem 2. As a consequence of this theorem, stability properties of the
zero dynamics coincides with the ones of the system in original coordinates. The
equilibrium point of the n dynamics is 7. Consider then the following system.

iy = {Zj = qo, (s 1) + Po, (15 1) A = fo, (1, 11r).- (3.69)

The restricted equilibrium point becomes 7,.. Define also 7, = 1, — 7,.. The equi-
librium points becomes 7, = 0. Consider then the linearisation of the system free
dynamics near 7,..

fOr(n'raﬁr) - fOT(nraﬁr> +me0T(77m7'7r) 'f]r—i‘vmfor(??rﬂ?r) 'ﬁr+0(ﬁr2aﬁ3) =

r Nr Nr

(3.70)
= _Gﬁr + _Cﬁr + O(ﬁ?"2> ﬁz)v

where G, C € R?*2, Thus, the final linearised system is described by the following
equations:

Results

The analysis described in the previous section has been performed on the looper,
considering the restricted equilibrium point

_ ] 0.1399

Figure 3.14 shows the trajectories of both the nonlinear and the linearised system.

z,/1000000 -...+ 0.0027906200057482616778969930493304 2,/1000000 - (8840745475648677 2,)/140737488355328

%1073 [, - ronlinear : [ 4, - noniinear

[ 1n, - linearised [, - linearised
1.5
14
0.5 4
04
0.5 ~
44
1.5 +
0.1

(a) m1 - linearisation (b) n3 - linearisation

Figure 3.14: Multi dof system linearisation
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In absence of friction the linearised system is described by matrix Gy,, namely

0 1 0 O |'m
. ~|1-0.02 0 0 Of [n2
=Gl =1 4 0 1| sl (3.73)
0 0 —62.8173 O |m4
Such system can also be described through Equation 3.71, namely
. ~[—0.0200 0 M
=G =1 —62.8173] [ng} ' (3.74)
In presence of friction, the dissipative terms is described by the following matrix.
0 0 0 0 m
i 0 —0.0147 0 0
1=Gu =g o o o Zz . (3.75)
0

0 0 —0.1172| |m

The friction action can be described also by Equation 3.71, namely

... [-00147 0 T
i = G = { 0 —0.1172} [m] ' (3.76)

The nonlinear and the linearised systems have been simulated both in presence and
absence of friction. The obtained results are shown in Figure 3.15.
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Consider the linearised model described in Equation 3.71, namely

ﬁr—i_Gﬁr—i_Cﬁr:O

(3.77)
The stability analysis of this system can be addressed as described in subsec-

tion 3.3.1. However, in a multidof system the variable M(q) is a matrix, not a
scalar anymore. This introduces several considerations. One among the others,
recall that M (q) shall be chosen in order to satisfy condition 3.44, namely
oM (q -
a;‘” +2M ()T = 0,

VieR (3.78)
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Figure 3.15: Multi dof system linearisation - simulation results

In the case of a multidof system, this procedure implies the solution of a system

of PDEs. The study of the necessary and sufficient conditions for this requirement

to be met are not investigated in this thesis. However, this could be an interesting

topic to be treated more in detail.
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Chapter 4

Control on numerical integration of
DAE

This chapter addresses the issues rising during the numerical integration of DAE.
Once the dynamics of a DAE system have been computed as described in chapter 2,
their simulation is usually carried on through numerical integration schemes. How-
ever, as presented in [8],the accuracy of such integration schemes is poor in general.
This issue is referred to as drifting. Therefore, this chapter unfolds with a first
introduction on such phenomenon and then with two control schemes specifically
crafted to solve it.

4.1 Drifting - general introduction

Consider a general mechanical system composed of n mass points, with n € N. The
dynamics of such system are described by the following equations [§].

where z; is the position of the mass m;, and F; the external forces. Assume also such
system as subjected to a constraint h(z). At this time no assumptions are made
on the constraint, namely it could be both holonomic and non-holonomic!. The
described setting mimics a general system of DAE as the one defined in Equation 2.2
and here expressed in semi-explicit form, namely

T = f(z,u) + g(z)\, (4.2)
0 = h(x).

Consider now a general constraint described by the following relations.
h = N(x,i,t), (4.3)
h=W(N,z, i,t).

The differential system in Equation 4.2 together with the set of initial conditions

imply that N = 0, namely the constraint is initially satisfied. Theoretically speaking,
this condition should be met during the entire evolution of the system.

1Recall the definition of holonomic and non-holonomic constraints in subsection 1.1.2

62



However, Equation 4.3 could be unstable in the sense of Lyapunov?. Consider an
initial condition Ny = € # 0. This initial condition is wrong and propagates on
the time evolution of (x,#). This may lead to an unstable behaviour of N(z,,t).
For instance, assume Equation 4.3 to represent an holonomic constraint. Thus its
dynamics are described by

h = N(zx, & & t). (4.4)
Assume also that the numerical integration at a certain time instant t* yields
N(t*) = o, (4.5)
N(#) = e
Such values deviate from the exact ones, which are
N(t) =0, (4.6)
N(#) =0

Assume the differential equation solution to be described by the general relation

N =©O(N,N). (4.7)
Generally speaking, the numerical integration returns N(t*) = O(e,0) # 0, in-
troducing further errors in the following integration steps. These errors make the
algebraic constraint to be not satisfied, ending in wrong system dynamics evolution.

The drifting effect is negligible if the simulation runs for a limited time range. The
more the simulation runs, the more the dynamics are affected by drifting. In Fig-
ure 4.1 drifting effects are presented on the looper over a time range of 10s and
100s.
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(b) Drifting - 100 s
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Figure 4.1: Drifting example on looper constraints hq(z) and hy(x)

2For Lyapunov stability theory see section 3.1
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Simulations in Figure 4.1 have been run considering the initial condition z( to be
coherent with the algebraic constraints hy(z) and hs(x), namely

h() = h(l’o) = O, To € R™. (48)
In Figure 4.2 the system has been simulated starting from
To = o + 0. (49)
This disturbed initial condition results in a greater drifting effect.
2 T 20
h, 00 h0
154 h(x) 1 151 h,(x)
1 1 101
05 51
051 7\\\'\\_\ 15 e I
At \.\\-\"\'-—\., {10t \\\"\-\_\_7
A5} T 1ast .\\'\'\,\\
2 2 s 6 8 102% 20 40 60 80 100

(a) Drifting - 10 s - disturbed

Figure 4.2: Drift example on looper constraints hi(x) and ha(x)

condition

(b) Drifting - 100 s - disturbed

- disturbed initial

The effect on the dynamics of the system are shown in Figure 4.3. Clearly, the right
behaviour is described by the oscillation of the looper around its equilibrium point,
namely the one depicted in the right section of Figure 4.3.
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Figure 4.3: Drift effect on system’s dynamics

Different integration schemes introduce different errors.

Figure 4.4 presents the

drifting on constraint hs(x) resulting from three different integration schemes.
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Figure 4.4: Drift example on looper constraints - different numerical integration
methods

4.2 Stabilisation - Baumgarte method

This section addresses a first method to correct the drifting effect. Consider a set
of holonomic constraints, that is the exact case handled in the looper analysis. As
described in section 4.1 the dynamics of the constraint shall be zero at any time but
due to integration errors this doesn’t happen. Baumgarte method [8] modifies the
dynamics of the constraint in order to impose the following 2" order system.

=N+2N+#N =0, a>0. (4.10)

The aggregate term (204]\7 + 82N ) acts as control term achieving the stability of the
DAE system.

This method is stated with the system in the original coordinates. By applying
one of the diffeomorphisms defined in subsection 2.7.2 the controlled dynamics of
Baumgarte algorithm are described by equations in the following form.
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S :ija;gg, ie{l,...,r},j€{l,...,m}, (4.11)
k=1
n=q(&n) +p(E A,

where the coefficients ai, can be stacked in a single vector such that

a=[al,...,a" ] =[ay,...,a,] (4.12)

Y Tm

These coefficients shall be chosen such that the roots of the following polynomial
have all negative part.

Ttot

o(r) = Zaﬂj, TeR (4.13)
j=1

Consider now the model of the looper in normal form, namely the system described
by the following equations.

(&1 =6
£ = b1+ annh + azhs
o D)
=5 (4.14)
£ = by + ag A1 + ags
T = q1 +puA + D22
72 = @2 + P21 A1 + pasAo
Baumgarte algorithm modifies such dynamics as follows.
(=6
5% = by +an + apdy — 0615% - 0425%
& =8
> (4.15)

£3 = by + a1 + ands — azéi — s
= q1 +puA + D22
72 = @2 + P21 A1 + pasAo

where [ay, a, aig, ] satisfy condition expresses by Equation 4.13.

Baumgarte algorithm has been tested on the looper. The coefficients have been
chosen to be

[, g, ag, ay] = (28,284, 1232, 1920), (4.16)

defining a polynomial with roots (—10, —8, —6, —4), satisfying condition 4.13.
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4.2.1 Looper - Results

This paragraph presents some results on the looper model. A random disturb ¢ is
considered on the initial condition x(, with order of magnitude le~2. Therefore the
initial condition is defined as described in Equation 4.9. The drifting correction on
the algebraic constraints is shown in Figure 4.5.
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Figure 4.5: Drifting correction through Baumgarte algorithm - algebraic constraints

Instead, Figure 4.6 shows the effect of drifting on the state variables and the cor-
rection operated by Baumgarte algorithm. Note that, due to the initial disturb on
xg, drifting is significant even after only 10s.
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Figure 4.6: Drift correction through Baumgarte algorithm - state variables
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4.3 Stabilisation - Nonlinear method

Depending on the structure of the system in analysis, Baumgarte algorithm may
perform poorly or even end up in trajectories with finite escape time (see [7]). This
occurs often in holonomic systems of which the looper is an example. Mainly for
this reason a different stabilisation has been proposed. This section presents the
theoretical background of such method, discusses the implementation and shows
simulation results. All the following arguments are presented in [7].

4.3.1 General overview

Consider a general nonlinear MIMO system subjected to algebraic constraints. As-
sume to have a global diffeomorphism defined over its domain and then transform
the system in its normal form. The system in analysis is described by equations in
the form of 2.59 and 2.60, namely

& =&, (4.17)

Sf«ifl = fﬁza
gwly :bi(§7n>+zaij(§un))‘j7 Vi € {17"'7m}7
j=1

n=q(&n) + > pil&mhi=ql&n) +pEmA =&, G0
=1

The solution manifold of such system is defined as
M={("n")": =0} (4.18)

Note that if in general {(t) # 0 the trajectories of system 4.17 differ from the ex-
pected manifold in which £(¢) = 0. As explained in section 4.1 this may happen
due to numerical integration errors. Therefore, it is useful to describe system dy-
namics considering also these drifting elements. Indeed, under proper smoothness
assumptions, the n subsystem of Equation 4.17 can be rewritten as

i=alem) = 000+ 3N g€ ne = 0.0 +QENET,  (419)

j=1 i=1

where ¢o(0,7) is the system zero dynamics and ¢;; : R™ — R" "™ are smooth
mappings Vi € {1,...,7},7 € {1,...,m}. This model shows how disturbances
introduced by the drifting effect affect system dynamics. Such disturbances could
lead to finite escape time trajectories but also to erroneous equilibrium points.

System dynamics are now described by the following equations:
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& =6, (4.20)

g:'ifl = g;‘27

Z’Z = bz(gvn) + Zaij(gvn))‘ﬁ Vi € {17 R am}7
j=1
n=q(&n) =q0,7) + > ) g nE.

j=1 i=1

Clearly, if the system evolves correctly, both system 4.17 and 4.20 lay on the zero
dynamics manifold, namely M.

4.3.2 Stabilisation approach

Consider the following modified version of system 4.20.

& =&+ k(&) (4.21)

=& k. (&nE, |,
m

j=1
j=1 i=1
where ¢ € R and
J 62 2
k(& n) = = llai (€ )" —e (4.22)

for 4,5 € {1,...,m}, with &, > 0. The control terms k/(&,7) have been added in
order to steer the £ dynamics to zero, keeping system trajectories on the solution
manifold M.

As control terms have been added it is of the utmost importance that the solutions
of the original system 4.17 and of the controlled 4.21 coincide. Such result is ensured
by the following lemma |[7].

Lemma 4. Consider system 4.17 and 4.21. Assume system 4.17 to have a well
defined relative degree r = (11, ...,1m). Suppose also (&9, m0) to belong to the solution
manifold M defined in Equation 4.18. Then, any solution of 4.17 is a solution of
4.21 and viceversa.

As a consequence of this result the trajectories of system 4.17 and 4.21 are the
same. Therefore, if the solution manifold M was modified to be attractive on 4.21,
the consequence would be valid also on 4.17. This result is stated by the following
theorem [7].
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Theorem 6. Consider system 4.21. Assume there exist a positive definite and
radially unbounded function W (n) such that both the following hold

oW (n)

Ch a—n%(n) <AWm) +7, 1w eER (4.23)
o -
Cy: sup —2A _— <W <400, WEeER (4.24)

neERMTtot W(n)

Then, there exists 6,€ > 0 such that for all § > 6 and € > € the control terms defined
mn 4.22 ensure that:

i) n(t) and &(t) exist for all ng € R* "ot &y € Rt and t > 0.

i) tliglof(t) =0, for all § € R,

Theorem 6 presents global results proving M to be attractive. However, it requires
to find a mapping W (n) meeting conditions 4.23 and 4.24 globally, that could be
difficult. Therefore, Theorem 6 is stated in a local fashion, adding some interesting
considerations on the stability of 7 trajectories.

Theorem 7. Consider system 4.21. Assume such system to have a locally asymp-
totic stable equilibrium point in ¢ = (£,7). Let B C R "t be a closed set which
contains 1 . Assume there exist a positive definite and radially unbounded function
W(n) such that both the following hold

oW
o QW%WSva+%,7<a%=meB (4.25)
[
Cy: sup——— < W < 400, W >0 4.26
2osup s (4.26)

Then, there exists a neighbourhood U C R™ of the equilibrium point (£,7) and 6, > 0
such that for all 6 > 6 and € > € in 4.22 the following hold:

i) n(t) and £(t) exist for all (ny,&) € U, and t > 0.
i) tlirn E(t) =0, for all (ny,&) € U.
—00
i) tlim n(t) =10, for all (no, &) € U.
—00

if Theorem 7 holds globally the following remark holds:

Remark 1. Consider the setting defined in Theorem 7. If B = R" "t and W(n) is
radially unbounded, the whole set of statements in Theorem 7 holds globally.
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4.3.3 Discretization scheme

Assume M to be attractive accordingly to one among Theorem 6, Theorem 7, or
Remark 1. Consider the controlled scheme described in Equation 4.21. In order to
implement such control method, a discretization scheme is needed. Indeed, differ-
ent discretization schemes imply different behaviours as far as the drifting effect is
concerned. Consider the following discretization scheme.

8 =& _ e el
T =k} (& )&, (4.27)
nlj_mf_ E gk }m:i g j

T _pT q0)+ Qz](£7n>§i7

=1 i=1

where i € {1,...,m}, 7 € {1,....,m},k € {i,...,n — 7}, and pf : R — R. More-
over, consider (k7,g}) as defined in Equation 4.22 and Equation 4.21. Consider the
following expression.

%im Phlgs) =qt, Vke{i,....,n— 1w} (4.28)
—0

If " — 0 and Equation 4.28 holds, system Equation 4.27 coincides with Equa-
tion 4.21. Moreover, if

Pr(ae) = a5, Yk € {i,. .. ,n —rig}, (4.29)

the discretization scheme presented in Equation 4.27 consists of a simple forward
Euler method for the integration of ODEs (ODE1 method). ODEI is one of the
simplest yet less accurate integration methods. Thus, the drifting effect introduced
by this method is significant.

In this framework, the results obtained in subsection 4.3.2 can be stated in a dis-
cretized fashion, providing a constructive procedure to implement the control scheme
described in Equation 4.21. Consider then the discretized system 4.27. The following
holds [7].

Theorem 8. Consider system 4.27 and its equilibrium point ¢ = (£,7). Assume
(&0,m0) € U C R™ where U is a compact set containing q. Then, for all T' such that

0<T< (4.30)

the following holds:

i) (&(t),n(t)) exist for all (§,m0) € R™
it) lim £(t) = 0, for all (§o,m0) € U.

This theorem reframes results of Theorem 6 considering the sampling time needed
for the discretization scheme. The same reasoning can be carried on for Theorem 7

7.
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Theorem 9. Assume now the results of Theorem 7 to be valid for the equilibrium
point q. LetU C R" be a closed set containing q. Consider the discretization scheme

presented in system 4.27. Assume there exists T such that

m < W < ~+00, 4.31
(€meU Win) +£7¢ 3
forall0 <T < i where
PW(nt) PW(nt)
o%ny T omfom)_,,
Hr(€,m) = . : (4.32)
W (n*) W (n*)
677"1_7‘2&0156771+ o 6277:—7‘,50,5
Define a = % Let the sampling time be
_ = LW
T < min (aT, T min (1, ”y_—_li’)) (4.33)
0w

where (3,7) have been chosen accordingly to Theorem 7. By choosing T accordingly
to Equation 4.33, there exists a neighbourhood of the equilibrium point U C U in
which the following hold.

i) n(t) and £(t) exist for all (ny, &) € U, and t > 0.
i) tli)m E(t) =0, for all (ny,&) €U.

i) tlim n(t) =7, for all (o, &) € U.

Note that results on the local or global attractivity of M are a direct consequence
of W (n) properties, accordingly to Theorem 7 and Remark 1.
Algorithm implementation

The discretization represents the last step in the control scheme described by Equa-
tion 4.21. The following sequence recalls all the procedure described until now.

Data

1. Consider a general system of DAE described by equations in the form of
2.14. Assume such system to have a locally asymptotic equilibrium point
Z. Moreover, assume such system to have a well defined relative degree

= ("1, )
2. Consider zy such that h(xy) = 0.

3. Consider a function W meeting the assumptions of Theorem 7.
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Algorithm output

Consider the discretization presented in Equation 4.27. The output of the control
scheme is T such that both Theorem 8 and Theorem 9 hold.

Algorithm

The following steps shall be computed on the current state vector x:

1.

Step 1. Consider a local diffeomorphism ¢ : ¢/ C R" — R” valid in .
Through such mapping transform the current state vector in normal form
coordinates, namely set g = (§,7n) = ®(x).

. Step 2. From the system in normal form, compute the mappings ¢;; such that

ﬁz=¢ﬂ§,n)==@ﬂoan)+-§£:§i:qu(§ﬂﬂ§f- (4.34)

j=1 i=1

Step 3. Select a compact set B C R" "t and compute the parameters v < 0
and W satisfying conditions 4.25 and 4.26 with v, = 0.

Step 4. Check the following conditions:
IF v <0 AND ~ =0

Select:
e>—y—p, Be0,—], (4.35)
§<0= %W, B € [0,—9].
ELSE
Select:
e >0, (4.36)

S
5<(5—%W, B> 0.

. Step 5. Compute T and T such that condition 4.33 and 4.31 are satisfied.

Step 6. Check the following conditions:
IF vy <0 AND 4 =0
Select T" according to Equation 4.33

ELSE
Select T < T

Step 7. Accordingly to the choices made in the previous steps, update the
state vector as defined in Equation 4.27.

Step 8. Set xt = d~ (¢t ph).
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4.3.4 Looper - Algorithm implementation

The procedure described in subsection 4.3.2 has been applied on the system in
analysis, namely the looper. Recall the stability analysis carried on in section 3.2
and section 3.3. The system has been proved to have a globally asymptotic stable
equilibrium point T = (q1, ¢533,0,0,0) € U C R™, where U defines the joint space of
the system. This section presents the implementation of each step of the algorithm
described in subsection 4.3.3.

Data

The system considered is the one described by Equation 1.44, namely

(MG, = Fy(q,4) + an (@M (g, §) + a21(9)Aa (g, )
MGy = Fy(q, ¢) + a12(q)M(q, ¢) + asz(q)Na(q, §)

M3 = Fs(q,q) + ai3(@)Mi(q, 4) + as(q)A2(q, ) (4.37)
hl(Q) =0
[ h2(q) =0

Note that here (¢1, o, q3) are the generalised coordinates used to describe the sys-
tem. Accordingly to section 2.7 such system has a well defined relative degree
r = (r1,r2) = (2,2). Recall the stability analysis in section 3.2 and section 3.3.

Consider now the diffeomorphism defined in Equation 2.76. Transform system 4.37
accordingly to such diffeomorphism. The transformed equilibrium point is

q=(0,7) € R. (4.38)

Recall the stability analysis performed in subsection 3.3.1. Both the Lyapunov func-
tions V(n) and V,(n) represent a good candidate for the mapping W (n) mentioned
in subsection 4.3.2. Again, the choice of the normal form transformation turns out
to be decisive as it defines the main properties of mapping W (n). The main goal of
this analysis is to prove the solution manifold M to be attractive on the controlled
system defined in Equation 4.21.

Consider the equilibrium ¢ = (0,7) and restrict it to 7. This is done because
W depends only on n. Set Wi(n) = V(n) and Ws(n) = V.(n) as a candidate
mapping, where V() is defined accordingly to Equation 3.41 and V. accordingly to
Equation 3.47, namely

n
Wy = %M(n)f]z +/ G(r)dr + ¢ (4.39)
0
1 n
W= SM)i+ [ Gr)dr+e+ =i, ceR (1.40)
0

Note that both Wi(n) and Ws(n) are defined around the equilibrium point 77 # 0
instead of 7 = 0 as in Equation 3.41 and Equation 3.47. In Figure 4.7 both W; and
Wy are presented, along with their derivative Wy and Ws.
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Figure 4.7: Comparison between the two candidates functions W, and W5 and their
derivatives

By setting e = 0.0001 as reported in subsection 3.3.1, from the numerical analysis
it turns out that

max W1 (i) =0, (4.41)

' =—-2.107 <0.
max Wa(n) 077 <0

As expected W, proves local asymptotic stability while W5 global asymptotic sta-
bility of 7. W7 and W5 can be used to check the assumptions defined in Theorem 7.
From the stability analysis the looper is known to have a globally asymptotic sta-
ble equilibrium point in (0,7). It is always possible to define a subset B C R"™ "t
containing 7. Moreover, as shown in Figure 4.7, both W; and W, are radially un-
bounded, namely

lim W;(n) = oc. (4.42)

l[nll—o0

Consider now conditions 4.25 and 4.26. Figure 4.8 compares condition 4.25 on both
W1 and WQ.

cond final
25 cond,,;

+ C‘mdzs(’/eq)

)

final
+ cond,.? (:/eq

(a) Condition 4.25 on W, (b) Condition 4.25 on W»

Figure 4.8: Comparison between condition 4.25 on both W and W,
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Consider now B = U, C R""t, coinciding with the whole joint space of the looper
n dynamics, defined in subsection 1.2.1. Set v = —1 - 1071 and compute condition
4.25 on both Wy and Wy, namely C}'* and C}"2. The numerical analysis returns the
following results.

max C}"'(n) =2-1071% > 0, (4.43)
neB

max C}"*(n) = —2-1071° < 0.

neB

Therefore, there exist points in B in which C’fv ' > 0. Thus W; meets condition 4.25
only locally near the equilibrium point 1 while W, satisfies the same globally in B.
Wi and W5 behaviour near 7 is presented in the contour plots in Figure 4.9.

1 T T T T T T T T 0 1
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(a) Contour plot of condition 4.25 on W (b) Contour plot of condition 4.25 on Ws

Figure 4.9: Comparison between the contour plots of condition 4.25 for both W)
and Ws

Figure 4.10 presents instead the comparison between condition 4.26 on both W, and
Ws.

-, -,

+ C""dz(’/eq) + C""dz(’/eq)

100
80 +
60

40 4

05 1

< : 1.2
3, 4 13

14 -1

(a) Condition 4.26 on W (b) Condition 4.26 on Wo

Figure 4.10: Comparison between condition 4.26 on both Wi and W,

Clearly, both W and W5 meet condition 4.26, in fact, from numerical analysis, the
following holds.
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W1 =maxCy () = Wy = max Cy 2 (n) = 83.6255 (4.44)
neB neB

This analysis points out that both W; and W5 meet all the conditions of Theorem 7,
proving the local asymptotic stability of # on the controlled system described in
Equation 4.21. However, mapping W5 meets conditions 4.25 and 4.25 also globally
in B = U,. Therefore, for W5, Remark 1 holds, proving 7 to be a global asymptotic
equilibrium point for the controlled system Equation 4.21. Thus, this prove M to
be attractive on the whole joint space domain B = U,,.

At the end of this analysis the set up described in section Data of subsection 4.3.3
is correctly defined. In fact, the system is provided with an asymptotic equilibrium
point and with a well defined relative degree. Moreover, two W mappings have been
found both meeting the requirements of Theorem 7 and even Remark 1.

Algorithm - Step 1

Recall the stability analysis in subsection 3.3.2. The diffeomorphism defined in
Equation 2.76 transform the system in a normal form whose zero dynamics behaves
as a mechanical system with a globally asymptotic equilibrium point, namely g.
Recall that

] _ 11_
Z9 %
2

2= |7 = |8 (4.45)
Z4 2
z5 T
| <6 | L 772 ]

Therefore the considered diffeomorphism for the looper is described by equations in
the following form.

ol hi(x)
cz% Lyhy ()
Kz ha(x)
=1 | 7| L (4.46)
¢1 X1
¢2 Xyg

The inverse transformation is described by the following equations.

( . \

21+ Ry+Raysin ¢ (2)
(¢ 215( )\ Cos 2 : o (R12 + R23)
Tz
xTo s+R 5— Raj i 5
¢ 1(2) 25 — arccos | &t y)COSZR e
ol — x31 _ 34
gb;; (Z) zo+(Ria+Ros+¢,) (2)) 26 sin 25+ Ry, (2) cos d) (2)
\ e / oS 25
6 24 €0 25— 22 8N 25— (R12+Roz+¢,) (2)) 26
\ R34 Sin(2’5*¢;31(2)) /

(4.47)
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This diffeomorphism is well defined over the whole joint space of the looper, except
for the boundary configurations, namely ¢ = 67" and ¢, = 607" (See subsec-
tion 1.2.3).

Algorithm - Step 2

Consider the system transformed in normal form, whose dynamics are described by
equations in the following form.

(& =¢
& = by + a1 + arhs
=g

! (4.48)
52 = b2 + agl)\l + (122)\2

M = q1 + P11 + D22
72 = @2 + D21 A1 + pazAa

The 1 dynamics of this system can be written in the following form.
1 =q(&m) = q(0,1) + QEME = ao(0,m) + D> (&, m)E. (4.49)
j=1 i=1

The ¢;; terms shall be computed from the original mapping ¢(£,n). To do so consider
the general mapping Q(&,n) defined as follows.

Q& mE = q(&m) — qo(0,7m). (4.50)

By means of this formulation the system can be written in the following form.

ds 45 5%_

- .
q1 q1 9 4 51
= + + 4.51
[qz} &l @) le) e @l gl (4:51)
_ e ot @] [a] (e @] [5]
| |t d? = @t @3 |z

where (q1,¢2) and (gj, ¢3) are respectively the mappings for the 7 general and zero
dynamics. The procedure to compute the ¢ is developed as follows.

1. Consider the general mapping

¢ =24(P7(2)) = 26 = 1o (4.52)

Accordingly to the diffeomorphism defined in Equation 4.46 and Equation 4.47
there is no dependence on & and therefore ¢/ =0, Vi,j € {1,2}.

2. Consider the general mapping

@2(2) = fa+ p2aAi + P2t (4.53)
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Generally speaking, the dependence between ¢; and (21, 29, 23, 24) is defined by
a nonlinear mapping. However, consider the expanded version of the relation
described in Equation 4.51, namely,

B=g+ ¢ 1+ G+ @+ 4 . (4.54)

Assume to know the zero dynamics ¢J and three linear mappings, for instance

(21, ¢?2,3?). The last mapping ¢3' can be computed as
21 _ 2 — qS — Q%lzl - Q%QZQ - q%%
2 = :

(4.55)

Note that in general, nothing prevent 23 to be null during the simulation. On
the contrary, as z3 = ho(x), its desired value is exactly 0. Thus, z3 = 0 would
cause a zero division. Therefore, in the practical implementation, a saturation
is applied on z3, namely

This solution shall be taken into account during the algorithm performance
evaluation, which will be addressed in section 4.4.

Note that even if the linear mappings (¢3!, ¢?2, ¢3*) don’t describe the exact
relation with g, the final mapping is correct because ¢3! embodies all the
previously neglected terms.

The following computations are presented in order to derive these mappings.
Recall the computation of A\; carried on in subsection 2.7.4. It holds

A\ = __bitaiske

ain (4.57)
A, — —brazi=baaiy
27 anraz—aizaz;

From Equation 4.53, consider the ps\s term. It holds

r 2 2
Toxj SIN X1 COS” T 1
DPad2 = P2 + T‘unk:| - = 4.58

I ]\42 J ‘D)\2 ( )

r 2 2
21 T3 sin Ty cos” xy 1

b2 | COS T ! k] [ My ! k] D,

- o .

23 SIn 1 Cos T1
= Zz1|DP2 + Tunk:| —
L MQD)Q ’

21
=q; 21+ ﬂunkzl

where D), = (ai1a22 — a12a91) and Tjy,,, represents the remaining part of the
nonlinear relation between pyAs and z;. Note that any mapping depends on
the vector state z by means of the diffeomorphism defined in Equation 4.46
and Equation 4.47. The same computations can be done to extract ¢?* and
¢3%. The final mappings are described by the following equations.
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2 .
o1 23 sinz cos 1y
_ | 459

@ = [ (4.59)

99 222 sin® 7
q1 = |P2 Mo D )

2D,

2 [ 2w4sin®zy cos® x5 cos s

s = _pz M,Dy,

Therefore, ¢3! is computed as reported in Equation 4.55. The final description
of the n dynamics turns out to be

; 0

m| |G qi 0 O} [21] {O O} |:23:|

: = + + , 4.60
M H [qg] [qfl 2| 2| Tl & | (4.60)

Lastly, note that each linear mapping depends on p,. Recall that the La-
grangian multipliers description is invariant with respect to the choice of the
diffeomorphism. Therefore, the mappings would remain the same if transfor-
mation 2.69 was used, except for the formulation of the coefficient ps.

Algorithm - Step 3

The next step in the nonlinear stabilisation algorithm consists in selecting a compact
set B € R" "t containing the equilibrium point 7. Once this set has been defined,
consider it as the domain of the W mapping defined in section 4.3.4.

Considering the results of analysis carried on in section 4.3.4, consider B = U,, C
R™ "t namely the whole system joint space, restricted to the 7 state variables.

Consider then the following W mapping, previously defined in section 4.3.4.
1 2 K .\
W= §M(n)77 + | G(r)dr+c+e(n—n)n, ecR. (4.61)
0
From the analysis performed in section 4.3.4 it holds that the pair
y=-1-10"" (4.62)
Yo = 07

satisfies both conditions 4.25 and 4.26 over the whole set B, with W = 83.6255.
With this choice, step 3 of the algorithm is completed.

Algorithm - Step 4

Considering the values of v and 7y described in section 4.3.4 the following choices
have been done.

B=5-10""1e[0,1-1071], (4.63)
e=3>é=—y—pB=5-10"",

_ 1 —
§=09<d=—W =836-10'".
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Algorithm - Step 5

As reported in the algorithm described insubsection 4.3.2, T and T shall be com-
puted. Consider the conditions described in Equation 4.30 and in Equation 4.31. T'
and T shall be chosen such that the following hold.

2
max max max —k’ ,
j=1,....m (z’:l ,,,,, T ( (€n)eU % (§ 77)))

(Emeu Wn) +¢7¢

0<T <T= (4.64)

<W < +0o0.

The research of the maxima has been performed over the domain B through a grid
search on (£,7) with an accuracy of A = 0.01. The obtained values are reported
below.

.10~ (4.65)

Algorithm - Step 6

From the values of T and T the final sampling time shall be computed accordingly
to Equation 4.33, namely

_ 52 | T
T < min (ozT,Tmin (1, W_—M)), (4.66)
62w

with a = % Therefore, T = 2.7 - 1073,

The selected sampling time turns out to be very small. This because the margin
on condition 4.26 ensured by v is very tiny. Consequently, all the bounds end up
in strict conditions. Indeed, the selected sampling time ensures the effectiveness of
the algorithm from a theoretical background. However, consider the formulation
of Theorem 9. All the conditions imposed on T are sufficient but not necessary to
prove M to be attractive. Therefore, a different (more relaxed) sampling time T
doesn’t necessarily prevent the algorithm to steer the system onto the trajectories
defined by the solution manifold M. Consequently, for the numeric analysis of the
algorithm performance on the looper, the sampling time has been set to

T=1-10"% (4.67)

Algorithm - Step 7

This step is straightforward as the state vector ¢ = (£, ) is updated accordingly to
Equation 4.27, namely
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R : :
S S e (1.68)

+ m
Me — Tk j
Fmm =) + DY a(€ el
j=1 =1
Algorithm - Step 8

The last step of the discretized control scheme defined in subsection 4.3.2 applies
the inverse transformation described in Equation 4.47. By doing so the state vector
is expressed in the original coordinates. Therefore, it holds

et =7 ). (4.69)

4.4 Looper - results
This section presents the algorithm performances on the looper, compared to Baum-
garte approach.

In Figure 4.11 the performances of the nonlinear stabilizer and the Baumgarte al-
gorithm are compared, assuming no disturb on the initial condition.

T R \ N R A . N 0184 A
\ M A [ I Baumgarte || \ Baumgarte
\ [ Nonlinear || IR Nonlinear
1.098 || [ [l 7ot [
[ T O I
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0174 |
oo} ] |
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1.088 017
0 2 4 6 8 10 0 2 4 6 8 10
(a) Comparison on xy (b) Comparison on x5
012
n A \ N n Baumgarte
01151 | \ A I\ A I\ Nonlinear
o11F ||
0105F | |
o1t | |
0.095 |
009f |
0085 |
0.08 |
0075
007
0 2 4 6 8 10

(c¢) Comparison on 3

Figure 4.11: Comparison between condition the nonlinear stabilizer and Baumgarte
algorithm - state variable and no disturb

Clearly, the performances are almost the same. The real effectiveness of the al-
gorithms shall be tested considering a disturb on the initial condition. Therefore,
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a random disturb is introduced in the initial condition xq, as described in Equa-
tion 4.9. Such disturb is generated adding a random value to the initial state vector
of the system. Therefore, the initial condition is described by the following relation.

To =m0+ 0o, 0o €RC |o,]| <dER (4.70)
20 — @(i’o)

Consider the simple case in which § = 0.001. The results of the simulations are
shown in Figure 4.12.
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(c) Comparison on 3

Figure 4.12: Comparison between condition the nonlinear stabilizer and Baumgarte
algorithm - state variable and disturb with amplitude ¢ = 0.001

The results on the algebraic constraints hi, hy are instead shown in Figure 4.13. As
the figure depicts, the nonlinear stabilizer corrects the disturb way more quickly
than the Baumgarte algorithm. This ends up in different dynamics of the system as
shown by the oscillation amplitude in Figure 4.12.
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Figure 4.13: Comparison between condition the nonlinear stabilizer and Baumgarte
algorithm - constraints correction

However, note the discontinuous trend on the stabilization of ho. Recall section 4.3.4.
Any spike present in the nonlinear algorithm simulation is due to the saturation
on 23 defined in Equation 4.56. More specifically, the threshold has been set to
zz3 = 0.005. The effect of the saturation, as expected, is evident in the control
of ho, namely the physical interpretation of z3 variable. Such numerical effect is
evident in constraint ho in Figure 4.13. Such numerical issues make it difficult to
test the actual performance of the algorithm. For this reason the whole model, with
both Baumgarte and the nonlinear stabilization schemes have been implemented in
SIMULINK. This because this tool allows to reach a higher accuracy during the
numerical integration. The results of the very same simulation run on SIMULINK
are shown in Figure 4.14.

I I I I I |
0 1 2 3 4 5 6 7 8 9 10
Offset=0

(a) Comparison on hy

0
Offset=0

(b) Comparison on hs

Figure 4.14: Comparison between condition the nonlinear stabilizer and Baumgarte
algorithm - constraints on SIMULINK
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As the figure shows, the numerical effects of the saturation on z3 are mitigated by
the higher accuracy of the solver used by SIMULINK. Note that the solver method
is still ODE1. Therefore, in order to test the algorithm performances in the best
possible set-up, the SIMULINK model will be used from now on.

Robustness analysis

Both the algorithms has been tested on different disturbance amplitudes, in order to
check their robustness. Assuming the disturbance amplitude to be at most § = 0.1,
the nonlinear stabilizer performs better compared to the Baumgarte algorithm, as
reported in Figure 4.15

(b) Comparison on hg

Figure 4.15: Comparison between condition the nonlinear stabilizer and Baumgarte
algorithm - constraints on SIMULINK

Again, the error in the algebraic constraint is corrected more quickly by the non-
linear stabilization scheme. Such error implies different dynamics on the Looper, as
depicted in Figure 4.16.

I T I I
= = = Baumgarte
Nonlinear

(a) Comparison on x;
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Figure 4.16: Comparison between condition the nonlinear stabilizer and Baumgarte
algorithm - state variable

Clearly, both the algorithms are able to correct disturbances of a limited entity. If the
nonlinear stabilizer performed better generally speaking, the Baumgarte approach is
more robust in terms of disturbs. In fact, from the numerical analysis, the nonlinear
stabilizer is able to correct disturbances up to § = 0.8 while the Baumgarte algorithm
still works on that disturbance, even if the stabilization time rises significantly.

Finally, consider the disturbance definition in Equation 4.70. As for the physics of
the system, it makes no sense to perturb the initial position of the looper as this
would imply an impossible initial configuration of the mechanical system. Yet, the
links could be stressed in an unnatural way. Thus, a disturbed initial condition on
velocities is useful to study the mechanism. Therefore, the disturbance § is set in
order to affect only (x4, x5, 26), namely 6; = 0 for all i = {1,2,3}. The results of
the simulation are shown in Figure 4.17.

%107
T

(a) Comparison on hq
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(b) Comparison on hs

Figure 4.17: Comparison between condition the nonlinear stabilizer and Baumgarte
algorithm - constraints on SIMULINK

As shown in the figure, the control effect on h; presents an overshoot. This is because
of the structure of the controller, namely

2

| 5
ki (& m) = —quz'j(f,ﬁ)lP—G- (4.71)

Indeed, a coherent initial condition such that h;(0) = 0 is perturbed by the pro-
portional structure of the controller itself. This is a drawback highlighted by the
structure of the specific system in analysis.
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Conclusions

This thesis went through a complete analysis of a 1 dof mechanical system, namely
the looper. The main steps are summarized in the following sequence, as well as the
main results.

— Modelling. Chapter 1 of the the thesis presents a general modelling technique
for constrained mechanical system, namely the Lagrange multipliers method.
Then, the model of the looper is described, along with a general analysis
of the joint space, and some considerations on the mechanism singularities.
Chapter 2 describes the state space representation of the looper and its main
properties like the relative degree. Lastly, two different change of coordinates
are computed, in order to transform the system in normal form. Different
interpretations of the resulting zero dynamics are presented, depending on the
transformation used.

— Stability analysis. Chapter 3 goes through the stability analysis of the
looper. After a brief introduction on Lyapunov stability theory, local and
global asymptotic stability of an equilibrium point are proved through respec-
tively the first and the second coordinate transformation described in chap-
ter 2. The stability analysis is performed through two different approaches,
both based on Lyapunov stability theory.

— Control. Chapter 4 presents the drifting issue and two possible solutions,
namely Baumgarte approach and a nonlinear stabilizer. Both the algorithms
shows good performances. The nonlinear stabilizer performs better in terms of
speed of convergence while Baumgarte algorithm turns out to be more reliable
in terms of robustness to initial disturbances.

— Possible developments. The main results of this thesis deals with the sta-
bility analysis and the design of control algorithms for nonlinear mechanical
systems. Two main topics could be further investigated.

1. The nonlinear stabilization method presented in chapter 4 could be ex-
tended in order to use it as a more general control design procedure.

2. The stability analysis proposed in chapter 3 could be tested on multidof
mechanical systems, as briefly introduced in subsection 3.4.2.
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