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The purpose of this study was to evaluate the quality of surface contouring of chondromalacic cartilage by bipolar radio frequency
energy using different treatment patterns in an animal model, as well as examining the impact of the treatment onto chondrocyte
viability by two different methods. Our experiments were conducted on 36 fresh osteochondral sections from the tibia plateau of
slaughtered 6-month-old pigs, where the thickness of the cartilage is similar to that of human wrist cartilage. An area of 1 cm2

was first treated with emery paper to simulate the chondromalacic cartilage. Then, the treatment with RFE followed in 6
different patterns. The osteochondral sections were assessed for cellular viability (live/dead assay, caspase (cell apoptosis marker)
staining, and quantitative analysed images obtained by fluorescent microscopy). For a quantitative characterization of none or
treated cartilage surfaces, various roughness parameters were measured using confocal laser scanning microscopy (Olympus
LEXT OLS 4000 3D). To describe the roughness, the Root-Mean-Square parameter (Sq) was calculated. A smoothing effect of
the cartilage surface was detectable upon each pattern of RFE treatment. The Sq for native cartilage was Sq = 3:8 ± 1:1 μm. The
best smoothing pattern was seen for two RFE passes and a 2-second pulsed mode (B2p2) with an Sq = 27:3 ± 4:9μm. However,
with increased smoothing, an augmentation in chondrocyte death up to 95% was detected. Using bipolar RFE treatment in
arthroscopy for small joints like the wrist or MCP joints should be used with caution. In the case of chondroplasty, there is a
high chance to destroy the joint cartilage.

1. Introduction

In recent years, treatment of cartilage degeneration with
radiofrequency energy (RFE) remains controversial. Many
experimental studies have shown that using RFE can lead
to severe chondrocyte damage, if temperatures above 45°C
are applied directly to the cartilage layer [1–3]. The chon-
drocyte death rate is proportional to the temperature
increase. Edwards et al. reported a 40% chondrocyte death
rate at a temperature of 55°C and almost 100% at 65°C [4].
The temperature elevation during an arthroscopic procedure
is also time-dependent, as the longer the RFE electrode is
activated, the higher is the temperature. However, several
studies demonstrated that an activation of the energy flow

between 3 and 10 seconds should be safe enough for use in
arthroscopy [5, 6].

The positive effect of RFE compared to mechanical deb-
riding is the “sealing effect” of the cartilage layer that stabi-
lizes the damaged cartilage [7–12]. However, this “sealing
effect” is also time-dependent. RFE of 15 seconds via a mono-
polar device resulted in a visibly smoother cartilage surface,
as observed using electron microscopy, whilst a similar effect
was also obtained with a bipolar device. However, in the lat-
ter case, a deeper chondrocyte damage was noted [13]. The
above experiments were conducted on fresh osteochondral
sections with chondromalacic cartilage from patients under-
going knee arthroplasty. An area of 1 cm2 was placed in a cus-
tom designed holder and treated with a meander-like pattern
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and cooled with a lavage fluid (22°C). In our opinion, these
results cannot be compared to the impact of RFE in the
arthroscopy of the wrist, due to the fact that the thickness
of human knee cartilage is between 3 and 4mm [14], whilst
the cartilage layer in the wrist is between 0.7 and 1.2mm
[15]. Furthermore, a previous study has reported that a single
RFE application of 2 seconds during wrist arthroscopy [5]
reaches a mean temperature of around 24°C in the subchon-
dral layer.

In our present study, we evaluated the smoothness of the
cartilage surface generated by different RFE treatment pat-
terns, as well as the vitality and apoptosis of the cartilage res-
ident cells using a detailed quantitative analyses [16]. Based
on the above literature evidence, we hypothesized that with
a pulsed application of RFE, we can lower the apoptotic rate
and increase chondrocytes’ vitality caused by its continuous
use with the concomitant rise in temperature.

2. Materials and Methods

2.1. Study Sample Preparation. Knees where dissected from
freshly slaughtered 6-month-old pigs, and 9 tibia plateaus
were utilized for the experiments. The thickness of the
porcine chondral layer is similar to that of the human radius
cartilage with a mean thickness of 0.9mm. Areas of 1 cm2 (4
independent times) were marked, and their middles had
1mm subchondral holes drilled to fit a temperature sensor
(platinum-chip-sensors, Pt 1000, TYP PCA, 1.1505.10M
JUMO, Fulda, Germany). Then, the marked areas were
treated with a commercially available emery paper (size
P60), using a manual grinding procedure, to simulate an out-
erbridge grade III osteoarthritis (OA), that was evaluated in a
previous experiment [17]. In our previous experiment, the
different roughness induced through the emery paper was
compared with fresh osteochondral sections taken from hip
arthroplasties, where the cartilage defect was graded accord-
ing to the outerbridge classification. Then, the tibia plateaus
were positioned in a custom-made holder, filled with 0.9%
NaCl at room temperature and a flow rate of 50ml/min with
a gravity-assisted outflow was applied. Afterwards, the
induced OA areas were treated with the bipolar radiofre-
quency electrode (RFE) (VAPR II 2.3mm side effect, Depuy
Mitek, Westwood, MA, USA) in an ablation mode using a
non touch technique. Six different treatment patterns were
applied as depicted in Figure 1.

The main treatment patterns evaluated were continuous
versus pulsed mode. Half of the designated areas were treated
once and the other half twice, as the whole procedure was
carried out manually. Furthermore, in the pulsed mode,
RFE activation was 1 second followed by a 1-second pause
(Figure 1) or 2 seconds followed by a 2-second pause
(Figure 1). The temperature was recorded simultaneously
via the inserted sensor. The time needed for the different
treatment groups is depicted in Figure 2.

2.2. Live/Dead and Caspase 3/7 Analyses. Directly after the
treatment with RFE, the tibia plateaus were processed for
live/dead staining and active caspase 3/7 detection and
imaged using a confocal laser scanning microscope (CLSM,

Nikon Eclipse E600, Kawasaki, Japan). A diamond waver
blade (Bühler Säge) was used to cut 1.5mm thin osteochon-
dral sections for the staining procedures, and a bigger block
was utilized for CLSM. For the live/dead staining, one sec-
tion was incubated with 1.0ml of phosphate-buffered saline
(PBS) containing 2μm calcein-acetoxymethylester and 4μm
ethidium homodimer-1 (EthD-1) for 30 minutes at room
temperature. The specimens were mounted on the CLSM
stage and evaluated at 4x magnification. The photomicro-
graphs where then implemented for quantitate analysis by
counting live or dead and caspase 3/7-positive cells with
ImageJ software.

For detection of cell apoptosis by caspase (Cas) 3/7
analysis, osteochondral sections were incubated overnight
in a cell culture incubator with 4μm Cas 3/7 green detec-
tion reagent (Molecular Probes, Thermofisher, Dreieich,
Germany) diluted in DMEM low-glucose supplemented
(Gibco, Thermofisher) with 10% Fetal Calf Serum (FCS)
(PAN-Biotech, Aidenbach, Germany). Afterwards, speci-
mens were rinsed with PBS and imaged as described above.

2.3. Quantitative Topographical CLSM Analysis. CLSM was
used for quantitative analysis of cartilage surface roughness.
The tibia plateau explants from the treated joint surfaces
(consisting of cartilage with underlying bone tissue) with
dimensions of approximately 1 cm2 area and 3mm thick-
ness were fixed overnight in a 4% formaldehyde solution
in 0.1M phosphate buffer further supplemented with 15%
saturated picric acid solution and 0.1% Triton X-100. Fol-
lowing three times washing with PBS, the specimens were
immersed in a 2% aqueous solution of tannic acid overnight

B1 B2

B1p1

B1p2 B2p2

B2p1

Figure 1: RFE treatment patterns used on chondromalacic cartilage
with different treatment patterns: B1 = continuous treatment, 1 pass;
B2 = continuous treatment, 2 passes; B1p1 = pulsed Treatment 1
second, 1 pass; B1p2 = pulsed Treatment 1 second, 2 passes;
B1p2 = pulsed Treatment 2 seconds, 1 pass; and B2p2 = pulsed
Treatment 2 seconds, 2 passes.
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and subsequently rinsed 6 hours with several changes of
H2O followed by an overnight impregnation with 4%
AgNO3 dissolved in H2O. The silver-stained specimens
were rinsed and dehydrated in ascending concentrations
of acetone, followed by substitution with 100% tert-
butanol. Finally, specimens were placed in small aluminum
dishes, frozen in liquid nitrogen, and vacuum-dried.

The deeply black color of the cartilage surface achieved
by this technique is excellent for follow-up CLSM imaging.
First, qualitative images of the surfaces were acquired. Sec-
ond, for quantitative characterization of the surfaces, various
roughness parameters were measured using the Olympus

LEXT OLS 4000 3D CLSM (Olympus, Hamburg, Germany).
The surface roughness was expressed by the Root-Mean-
Square parameter (Sq). The region of interest of each image
was set to 1281μm× 1279 μm with 216x magnification and
laser intensity of 50%. Six areas of 4mm2 per sample were
marked under light microscopy. If the measurement gener-
ated Sq > 35 μm, a different second angle was measured. If
Sq was >40, 4 different angles were measured; margins of
each treated section served as a control for that section.
Repeated measurements at different locations for each speci-
men were undertaken to establish statistical inference. In
total, 46 areas per pattern were evaluated.
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Figure 2: Average treatment duration (in seconds) for each RFE pattern.
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Figure 3: Rate of chondrocyte death with respect to RFE treatment pattern. Data is expressed as a percentage of dead cells to the total cell
number. Box plot representing median ± I:Q:R: of n = 6.
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2.4. Statistics. Statistical analysis was performed using IBM
SPSS Statistics 24.0 software for Windows (SPSS, Chicago,
IL, USA). The roughness data was normally distributed (Kol-
mogorov-Smirnov Test) and a one-way ANOVA test was
conducted. The Least Significance Difference Test was cho-
sen as a post hoc test, to explore the difference between the
treatment groups. Since the underlying data of the live/dead
staining were not normally distributed, a nonparametric test
was applied (Kruskal-Wallis Test). Values of p < 0:05 were
considered statistically significant.

3. Results

3.1. Evaluation of Chondrocyte Survival. The cell death rate
for each group is shown in Figure 3 and Table 1. For contin-

uous modes, B1 and B2, the median cell death in the cartilage
layer was 93.9% and 94.5%, respectively. The lowest value
was found for the B1p1 group with a median of 90.4% and
followed by the B2p1 group with 92.9%. The highest death
toll was in the B1p2 with 94.3% and in the B2p2 with
94.6%. Analysis of only emery-treated cartilage samples
shows that cell death is primarily restricted to the superficial
layer of cartilage with minimal cell death in the deep zones of
the tissue. Quantitative analysis of this group demonstrates
that there is a substantially lower cell death rate (mean:
25%) compared to samples subjected to RFE (Figure 4 and
Table 1).

Statistically, there were no significant differences between
the treatments (p = 0:744), although the death rate was
higher, when two RFE passes were applied. These results

Table 1: Table showing the relationship between temperature and cell death rate with respect to the treatment pattern.

Treatment pattern
Max temp

(mean value)
Cell death

(%)
Treatment time in sec.

(mean value)
Temperature in °C

(mean value)

B1 34.1 93.9% 00 : 18 28.0

B2 40.8 94.5% 00 : 30 31.2

B1p1 34.4 90.4% 00 : 59 29.4

B2p1 34.2 92.9% 00 : 59 30.1

B1p2 28.7 94.3% 01 : 30 26.8

B2p2 31.7 94.6% 01 : 39 28.4

Emery treated only 0 25.0% 0 0

(a)
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Figure 4: (a) Representative photomicrograph of live/dead stained articular cartilage treated with emery paper showing that cell death
occurs in the superficial layer of cartilage. (b) Quantification of cell death rate in emery-treated cartilage samples. Box plot representing
median ± I:Q:R. of n = 6.
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were further validated by the apoptosis-specific caspase
staining (Figure 5). In sum, our results demonstrated that
all implemented RFE patterns and application modes caused
profound cell death in the cartilage layer.

3.2. Quantitative Topographical Analysis. The surface rough-
ness was expressed through the Root-Mean-Square Sq, which
for native healthy cartilage is Sq = 3:8 ± 1:1 μm (n = 24).
Untreated osteoarthritic cartilage outerbridge grade III had
a Sq = 42:6 ± 7:2 μm (n = 27). The continuous treatment with
one pass B1 showed a reduction of the roughness to Sq =
33:1 ± 8:5 μm (n = 19) and with a second pass B2 to Sq =
31:3 ± 7:4 μm (n = 21). The pulsed treatment B1p1 pattern
with a 1-second pause and 1 pass reached a Sq = 34:1 ±
7:9 μm (n = 18) and on the second pass B1p2 Sq = 28:0 ±
8:1 μm (n = 15). A similar roughness was reached with a
pulsed treatment pattern with a 2-second pause in the first
pass B2p1 with Sq = 30:2 ± 8:6 μm (n = 28), and the best
result had this pattern on the second pass, B2p2 Sq =
27:3 ± 4:9 μm (n = 26). We could find in all RFE treatment
groups a statistically significant reduction of the cartilage
surface roughness compared to the untreated osteoarthritic
cartilage (p < 0:001). There was no statistical difference
between the treatment patterns. Altogether, based on the
Sq parameter, the best result was the B2p2 RFE-pulsed

pattern with a 2-second pause and 2 passes. Figure 6 shows
representative three-dimensional images obtained by CSLM
for native, OA, B1, and B2 treatment groups.

3.3. Time and Temperature Relationship. Regarding time-
dependent temperature changes, for the B1 pattern, the max-
imum temperature was 34.1°C (n = 6) within a mean treat-
ment time of 18 seconds. In the B2 group, an increased
maximum temperature of 40.8°C (n = 6) was detected at an
interval of 30 seconds.

Figure 7 shows that for both continuous RFE modes, a
steep rise in the temperature, when compared to a steadier
increase with a plateau-like phase for the RFE-pulsed mode.
For this mode, the maximum temperature in the B1p1group
was 34.4°C (n=6), B1p2 28.7°C (n = 6), B2p1 34.2°C (n = 6),
and B2p2 31.7°C (n = 6) (Table 1). In sum, apart from the B2
group, the maximum temperatures reached for the other
groups were reasonable, suggesting that another parameter,
independent of temperature, may trigger the increased cell
death observed. It can be speculated that the cell death was
not trigged by the produced heat but rather by the melting
of the cartilage matrix and cells embedded within its struc-
ture. However, the exact mechanisms responsible for the cell
death are to be clarified in future experiments.

(a)

(b)

Figure 5: Photomicrographs of live/dead staining within the cartilage and underlying subchondral bone describing the (a) thermal
penetration produced during treatment with B2 pattern and resultant cell viability with green dots indicating live chondrocytes, whilst red
dots are dead chondrocytes. Representative image of caspase staining at (b) 24 hours post RFE treatment with blue dots showing nuclei of
live chondrocytes whilst green dots labelled caspase-positive dead chondrocytes. Microscope magnification: 10x.
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4. Discussion

In our study, we investigated the smoothing effect of the car-
tilage surface with a bipolar RFE device. With quantitative
topographical analysis, we found that the smoothing effect
was dependent on the number of RFE passes over the carti-
lage surface. However, with increased smoothing, an aug-
mentation in chondrocyte death up to 95% was detected.

In a previous study that evaluated different RFE devices,
different grades of smoothness were achieved for the surface
of the cartilage with variable chondrocyte cell death [3]. In
another study, just 30 seconds of treatment was sufficient to

achieve a smooth cartilage surface with cell death restricted
to the subchondral layer. Here, a customized holder was used
with very standardized RFE passes (weight, velocity). The
authors applied one RFE pass of 5 seconds and already after
3 consecutive passes, a melting of the fibrillated cartilage was
detected [13]. In our study, for the manual treatment of a
cartilage area of 1 cm2, at least 17 seconds were needed to
perform one continuous pattern with one pass (B1 pattern).
Macroscopically, a smoothing of the cartilage surface was
only visible after a second pass. Furthermore, in our experi-
ments, already after one pass, the melting of the fibrillated
cartilage was demonstrated by a decrease in the Sq value.

(a) (b)

(c) (d)

Figure 6: Three-dimensional CLMS images of (a) chondromalacic cartilage generated by emery paper (Sq = 58:4 μm); (b) after continuous
treatment B1, one pass (Sq = 37:7 μm); (c) continuous treatment B2, two passes (Sq = 32:0 μm); and (d) native cartilage (Sq = 2:7 μm).
Sq means surface roughness.
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Kosy et al. postulated to move the RFE continuously and
that only one pass should be enough to reach surface
smoothening but with minimal thermal damage of the cells
[18]. In contrast, our findings suggest that the continuous
treatment with just one pass already triggers massive cell
death (approx. 94%). Interestingly, only the pattern B1p1,
had a lesser chondrocyte death than the other ones, although
approximately only 10% of the cells in the cartilage layer sur-
vived. Moreover, our data suggests that the application time
has a lesser impact than hypothesized [19], as well as the tem-
perature increase being independent of the treatment pat-
tern. In our experiment, the maximum temperature varied
between 28.7 and 40.8 C°, which was measured in the sub-
chondral bone in the middle of the section. It is hypothesized
that the temperature affecting the above chondrocytes must
be higher as shown in further experiments [4].

We also noted a tendency for the pulsed mode to have a
lesser negative effect onto the chondrocytes. One explana-
tion for the discrepancy is that Lu et al. conducted their
experiment on osteochondral samples from knee replace-
ments, where the cartilage layer has a thickness of 2-3mm
[13]. Our experiments were conducted on a thin cartilage
layer similar to the small joint surface of the human wrist.
We suggest that, in this case, the resident chondrocytes have
a lower amount of surrounding territorial and interterrito-
rial matrices that can protect them during RFE treatment.
Thus, this approach is unsuitable for the regeneration of
small joints.

In our study, the smoothing of the surface was also inde-
pendent of the treatment pattern. However, a tendency
towards roughness decreases after two RFE passes was
detected. Still, the reached smoothing was far behind the
values of native healthy cartilage. In sum, our findings are
in line with two studies [13, 20] where following smoothing
of the cartilage surface, a profound cell death was observed.
Altogether, the postulation that RFE is a safe method for car-
tilage treatment [6] both in this study and by others means

that this technique should be used with precautions for joints
with a thin cartilage layer.

4.1. Limitation. One drawback of our study is that we tested
only one bipolar RFE device. It has been suggested that there
is a difference between device manufacturers, particularly in
the metal used for ligation of the electrode tip and the insula-
tion materials of the electrode wand that enable better chon-
drocyte survival [7, 21]. Furthermore, it has be shown that
chondromalacic cartilage is more sensitive to higher temper-
atures than intact, healthy cartilage [22]. However, in our
application modes, apart from the B2 group, the maximum
temperatures reached for the other groups were reasonable,
suggesting that a factor independent of the temperature
could trigger the observed massive cell death.

5. Conclusion

All in all, there are multiple factors, which should be taken
into account, when smoothing diseased cartilage with RFE
in a clinical setting. In our study, based on the survival rate
and apoptosis monitoring, a recommendation to use RFE
for cartilage therapy cannot be given. We suggest that the
baseline state of the cartilage subjected to treatment, RFE
application mode, and duration, as well as the quality of the
implemented RFE device, are critical but difficult to control
in RFE regenerative therapy of small joints. Further research
efforts are needed to standardize and control the technique,
as well as to identify strategies to minimize the cell death rate
to acceptable levels.

Data Availability

Most of the data used to support the findings of this study are
included in the article, further data´s are available from the
corresponding author upon request.
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