
Learning Process Models in IoT Edge
Long Cheng†, Cong Liu∗, Qingzhi Liu∗, Yucong Duan‡, and John Murphy†

†School of Computer Science, University College Dublin, Ireland
∗Department of Mathematics and Computer Science, Eindhoven University of Technology, The Netherlands

‡College of Information Science and Technology, Hainan University, China
long.cheng@ucd.ie, c.liu.3@tue.nl, q.liu.1@tue.nl, duanyucong@hotmail.com, j.murphy@ucd.ie

Abstract—Process models as knowledge graph representation
have been widely used in various domains to create products
and deliver services. Although different process model discovery
approaches have been proposed in recent years, few of them are
designed for distributed computing environments. Specifically,
none of them has been studied in the emerging edge computing
application scenarios. In this paper, based on the requirements
of some real-time process services, we propose a system design
for learning process models in IoT edge. We present the details
of our solution and our preliminary results on a simulated IoT
network show that our method can discover real-time process
models in less than a second.

Index Terms—process mining; model discovery; edge comput-
ing; IoT; service computing

I. INTRODUCTION

Process mining is an active research discipline aiming
at extracting non-trivial knowledge and interesting insights
about processes from event logs. As one of its core tasks,
process discovery takes an event log as input and produces a
process model without using any prior information [1]. Such
a discovered model can be seen as a knowledge graph, which
abstracts the behavior of all the events in the event log and
also represents all their possible execution semantics. Process
models have been widely used in various domains, such as to
create products and deliver services.

We focus on learning process models from event data
generated from Internet of Things (IoT). Specifically, we are
interested in discovering and delivering process models as a
service in IoT enviroments in real-time where possible. In this
case, data consumers will be able to conduct online deviation
analysis and abnormal detection. The commonly used discov-
ery algorithms such as the Inductive Miner [2] can not be
applied in such scenarios directly. The reason is that these
approaches focus on processing event logs in a centralized
way. Within such a scheme, aggregating event data from large
IoT networks to a standalone machine is costly. Moreover,
model discovery will be also time consuming when the number
of events is large. We can deploy a distributed process model
discovery algorithm like the one using MapReduce [3] in a
cloud to speed up the data aggregation and computing process.
However, such kind of cloud-based computing has been shown
to be not efficient enough for many data applications, e.g., the
ones require very short response time [4].

To meet the real-time service requirements on process
model discovery and delivery in IoT, we propose a design by
leveraging the emerging edge computing paradigm. In fact,

edge computing has been shown to be a better solution for
processing time-sensitive events on supporting instantaneous
response and subsequent decision making, compared to cloud
computing. The main reason is that edge computing brings
memory and computing power closer to the location where
it is needed. Instead of sending data to a centralized cloud
repository or a central data center, data processing happens at
a local gateway device (i.e., edge server) in edge computing.
In this case, the network pressure can be greatly reduced and
consequently the service response time can be improved.

In general, we focus on efficient process model discovery
in IoT edge for real-time services. This is the first time on
how to apply process mining technique in edge computing.
Our main contributions can be summarize as follows.
• We introduce a system design for learning process models

in edge computing, aiming at discovering and delivering
process models as a service to data consumers in real-
time.

• Based on the cluster-based structure of IoT networks, we
propose an efficient discovery approach supporting both
intra-cluster and inter-cluster process model discovery on
edge servers.

• We conduct an experimental evaluation of our method in
a simulated IoT network and the results demonstrate our
approach is efficient on process model discovery.

The paper is organized as follows. Section II defines some
terminologies and basic notations. Related work are introduced
in Section III. The proposed system architecture and discovery
approaches are presented in Section IV. We present our
preliminary experimental results in Section V and conclude
the paper in Section VI.

II. PRELIMINARY

To obtain process models, we rely on event logs. An event
log can be considered as a multi-set of traces [5]. Each trace is
a finite sequence of events where an event refers to an activity.
An event log can be considered as a multiset of traces because
there can be multiple cases having the same trace.

Definition 1. (Trace, Event Log) Let A be a set of activity
labels. A trace is a sequence of activities, i.e., σ ∈ A∗. An
event log is a multiset of traces, i.e., L∈B(A∗).

Given an example log L1 = [〈a, b, c, d, e〉20, 〈a, c, b, d, e〉10].
It contains 30 traces with 20 traces following 〈a, b, c, d, e〉 and
10 traces 〈a, c, b, d, e〉.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/288473317?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


As Petri nets [5] are capable of combining a graphical
representation and a formal foundation, they have been widely
used to model, analyze and verify business processes. In this
work, we use Petri nets to represent process models. Some
of the essential terminology and notations regarding Petri nets
are presented as follows.

Definition 2. (Petri net) A Petri net is a 3-tuple PN =
(P, T, F ), satisfying (1) P ∩ T = ∅, P ∪ T 6= ∅ where
P is the place set and T is the transition set; and (2)
F ⊆ (P × T ) ∪ (T × P ) is the flow relation.

b

c

a d e
source sink

p1

p2

p3

p4

p5

Fig. 1. An Example Petri Net

A marking M is a multiset of places, i.e., M ∈ B(P ).
The state of Petri net, called marking, is a multiset of places
indicating how many tokens each place contains. Fig. 1 shows
an example Petri net where [source] is its initial marking. A
transition t ∈ T is enabled in marking M , denoted as M [t> if
each of its input places •t contains at least one token. Consider
the example Petri net in Fig. 1 with M = [p3, p4], M [d >
because both input places (p3 and p4) are marked. An enabled
transition t may fire, i.e., one token is removed from each of
its preset •t and one token is added for each of its postset t•.
Additionally, we consider execution sequences of a PN from
an initial marking and a final marking.

Definition 3. (Process Discovery Algorithm) Let UP be the
universe of all process models. A process discovery algorithm
is a function γ that maps an event log L ⊆ A∗ to a process
model pm ∈ UP , i.e., γ(L) = pm.

Generally speaking, a process discovery algorithm γ is capa-
ble of converting an event log to any form of process models,
such as Petri net, Business Process Modeling Notation, Event-
driven Process Chain, etc. Whatever representation is used,
each trace in the input event log corresponds to a possible
execution sequence in the discovered process model. Consider
for example, by taking as input L1, one can discover a Petri
net that looks like the one in Fig. 1. All traces in L1 can be
replayed by the Petri net in Fig. 1, i.e., each trace corresponds
to an execution sequence in the net.

III. RELATED WORK

Process discovery is one of the most important tasks in
process mining. The problem on how to discover a good
process model and how to learn the model in an efficient
way are still challenging current discovery approaches. Many
disovery algorithms such as the α-miner [6] and Inductive
Miner [2] can learn process models from event logs in which
each process instance is recorded as a case with ordered events.
However, all the methods are on the basis of a standalone

IoT Network

Cluster 1
Cluster 2

Edge 

Servers

Cloud

Server

Dynamic object

Real-time 

Process 

Model 

Requests

Fig. 2. The system architecture of process model discovery in edge comput-
ing. The data aggregation is based on the partitioned clusters in IoT networks.
The discovered models in edge servers are delivered to terminals in real-time
based on service requirements.

implementation and thus they can not be applied in distributed
computing environments directly.

With the growth of IoT networks, the quantity of generated
event data has posed great challenges for current process
mining techniques [7]. For the purpose of efficient process
model disovery over large event logs, the state-of-the-art ap-
proach [3] uses MapReduce leveraging distributed computing
platforms. Its core idea is to distribute logs over computing
nodes, so that the discovery tasks can be efficiently computed
in parallel. Experimental results have shown that the method
can achieve obvious speedups compared to a standalone imple-
mentation. From a service computing aspect, the alogrithm can
be deployed in cloud to improve service efficiency. However,
transmission of the data to a cloud will bring in obvious
overhead for real-time services. Moreover, a process model in
a specified area is more interesting sometimes, and computing
such a model over the data collected from the whole IoT
netowrk in a cloud scenario will be costly in terms of both
computing resouces and time. Recently, a hybrid process
model discovery method has been proposed for handling large
event logs [8]. Similar to [3], the method is designed for cloud
computing, and thus it can not be applied to the case presented
in this work.

IV. PROCESS MODEL DISCOVERY IN EDGE COMPUTING

In this section, we describe our system design and approach
for learning process models in edge computing.

A. System Architecture

The system architecture includes an IoT network and edge
computing servers as shown in Fig. 2. The IoT network
consists of heterogeneous nodes (e.g., sensors) with different
functions (in different colors). Event data is produced by
each node either periodically or triggered by dynamic objects
around the node, and the generated events are transferred to



edge servers by multi-hop communication. The edge servers
can make either parallel or distributed computing for the
aggregated event data from the IoT network. These servers can
re-allocate the data to multiple servers through high bandwidth
network, such as WiFi, 5G or wired network, which can
easily achieve Gigabit communication speed. In a general
case, we utilize a cluster-based data collection solution in the
IoT network [9]. The IoT network has been partitioned into
clusters, e.g., each cluster means the sub-network deployed
in a large organization or a city. For the simplicity of the
presentation, we assume there is only one edge server in each
cluster, which is responsible for collecting the data from the
IoT nodes in the cluster.

B. Process Model Discovery

The data operations for model discovery in our system
mainly contain two layers as follows.

1) Trace Construction: The event data generated by each
IoT node is transferred to the assigned edge server in real-
time, and the server constructs traces based on the events in
a dynamic way. To focus on process model discovery, we
assume that each generated event is associated with a case
id. For a specified condition where there is no case id, we
can use relevant techniques such as event correlation [7] to
discover a case id. To provide a real-time model for consumers,
the constructed traces will be updated batch by batch and
only the ones in a specified time window will be used for
model discovery. The events which are not in the window
will be considered as historical data and transferred to cloud
if required, for storage or global analysis.

2) Model Discovery: For a service requirement on a single
real-time process model, our discovery will perform on the
events from either a single edge server or multiple ones. We
call the former case as intra-cluster discovery, because its
discovered model can only describe the event behavior in
a specified IoT cluster. Similarly, we name the latter case
as inter-cluster discovery, for the purpose of discovering a
model to represent the behavior of dynamic objects, which
could move cross different clusters and trigger the relevant
IoT nodes, as demonstrated in Fig. 2. As these two discovery
implementations are the most basic tasks for model discovery
in edge computing, we will focus on these two cases in this
work. For many other complex service requests, for example,
concurrent service requests on different models (either intra
or inter-cluster) from multiple users in different locations, we
can adopt advanced task scheduling strategies over the edge
servers to achieve the best possible performance on discovery
and to meet the service level agreements.

a) Intra-cluster discovery: For the intra-cluster discov-
ery, all the required events will be on a single edge server.
Therefore, we can use existing process model discovery al-
gorithms on the server to discover a process model. In this
paper, we use the inductive miner [2], as it is currently one
of the leading process discovery techniques that can guarantee
correctness of discovered process models.

The inductive miner discovers process models using a
divide and conquer approach. Given an input event log, it
searches for possible log splits repeatedly such that the original
log is split into smaller sub-logs. The split is built on top
of the so-called directly-follows graph that captures direct
succession information of the activities in an event log. The
cut found from the directly-follows graph is used to split the
corresponding log into smaller ones. This step iterates until a
log contains only a single activity or no cut can be found. Four
types of cuts that correspond to four basic process patterns,
sequence, concurrency, choice and loop, are defined. More
explanations of inductive miner are referred to [2].

b) Inter-cluster discovery: Because of the dynamics of
objects, triggered events with a same case id could be dis-
tributed over different clusters in an IoT network. To discover
an inter-cluster model, we need to collect all the relevant
cross-cluster events on a single edge server and then use
the inductive miner on model discovery. To identify these
events for a given service request, we use an additional
table on each server to record its local case ids in real-time.
Once receiving an inter-cluster discovery request, the edge
server will communicate with the relevant servers to (1) check
whether its recorded case ids appear on the servers, and (2)
retrieve the relevant constructed sub-traces if the ids appear.

For example, we have a request on the edge server X (or
cluster X), which aims to get an inter-cluster model with its
neighbored cluster Y . Assume that at such a time point there is
a trace 〈a, b〉 with case id 3 on X and a trace 〈c, d, e〉 with case
id 3 on Y , then the edge server X will retrieve its required
data 〈c, d, e〉 from Y to construct a local trace 〈a, b, c, d, e〉
with case id 3 for model discovery.

C. Comparison to Current Solutions

Taking a high level comparison with the standalone algo-
rithms and the state-of-the-art cloud-based implementation [3],
there are two main advantages to our design in providing real-
time process model services: (1) From a system performance
aspect, we do not need to aggregate all the event data to either
a single machine or a centralized cloud repository for process
model discovery. In our system, each edge server collects data
independently and they only need to share part of their data for
cross-cluster objects when performing inter-cluster discovery.
This makes computing (i.e., model discovery) closer to the
data sources and thus can greatly reduce the network pressure
and consequently improve real-time performance; (2) From a
service angle, our distributed architecture has also put services
closer to data consumers, which can also improve real-time
efficiency. Moreover, for concurrent requests on local models
(either based on the data from a cluster or multiple clusters),
the model discovery in our system will perform in a more
distributed way rather than a parallel way. Namely, each
edge server is responsible to discover an independent model
in parallel rather than all the edge severs compute a single
model in parallel at a time. This can remove the overhead of
starting parallel programs and communication synchronization
in a cloud-based system.



Fig. 3. The simulated IoT network with edge servers. The network is
partitioned into two clusters as demonstrated by the dashed line.

V. PRELIMINARY EXPERIMENTAL RESULTS

We evaluate the performance of the proposed discovery
approaches in a simulated IoT network. As demonstrated
in Fig. 3, the network is deployed in a square area of
100m×100m. As a preliminary experiment, we test our solu-
tion using 11 sensor nodes. The nodes are randomly scattered
in the area. The network is partitioned into two clusters. Each
IoT node sends data to the edge server of its residing cluster.
We suppose the IoT nodes transmit data to the edge servers
by multi-hop communication, and use the shortest path as the
route from each IoT node to the edge server. We set 100
dynamic objects (e.g., robots) in the IoT area, and each object
moves following some specified patterns. When an object
reaches an ending point, it will move back to its start point
to start a new moving pattern. We set the node 0 and 1 in
Fig. 3 as the two edge servers, and the other nodes with
numbers {2, 3, ..., 13} are IoT nodes, which are responsible
to the activities {A,B, ..., L} respectively. The speed of each
object is 20m/s and the communication speed between IoT
nodes is 1Kb/s. To simplify the simulation, we ignore the
interference in wireless communication.

We assume that we have a service request on the edge server
0 for an intra-cluster and an inter-cluster process model every
30 seconds. We report the experimental results at the time
point that the system has run for 90 seconds. Namely, our
model discovery will be based on the received (and retrieved)
events on the edge server 0 between the time points 60 and
90 second. Fig. 4 shows the discovered intra-cluster process
model, and Fig. 5 demonstrates the discovered inter-cluster
process model. Both the discovery executions are done in
0.3 second including remote data retrieving. In this light, we
believe that our edge based solution has the potential capability
to deliver high-quality process models as a service in real-time.

VI. CONCLUSION AND FUTURE WORK

This paper presents a solution for learning process models
in IoT networks with edge servers, which aims to deliver
process model services in real-time. We give the detailed
system architecture design and describe the intra-cluster and
inter-cluster process model discovery approaches in our solu-
tion. Our preliminary experiments based on a simulated IoT
environment show that our approach can discover both intra
and inter-cluster process models in less than a second.

Fig. 4. The discovered intra-cluster process model on edge server 0 at the
time point 90 sec.

Fig. 5. The discovered inter-cluster process model on edge server 0 at the
time point 90 sec.

Our future work mainly lies in extending our method to
handle more complex service requests, e.g., concurrent service
requests, and more IoT-related business processes, e.g., cross-
organization transportation business processes [10]. Moreover,
we plan to use more advanced strategies to further improve
the real-time efficiency of our method. For the inter-cluster
model discovery, instead of aggregating events, we will try to
aggregate the directly-follows relationships of all the relevant
cross-cluster events. In this case, the computation on directly-
follows relationships will be able to be done in parallel by the
involved edge servers. Finally, we will evaluate the real-time
performance of our solution in large IoT networks.

ACKNOWLEDGMENTS

This work is supported by the European Union’s Horizon
2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement No 799066.

REFERENCES

[1] C. Liu, Y. Pei, Q. Zeng, and H. Duan, “LogRank: An approach to sample
business process event log for efficient discovery,” in Proc. 11th Int.
Conf. Knowl. Science, Eng. Mgmt., 2018, pp. 415–425.

[2] S. J. Leemans, D. Fahland, and W. M. van der Aalst, “Discovering block-
structured process models from event logs-a constructive approach,” in
Int. Conf. Applications and Theory of Petri Nets and Concurrency, 2013,
pp. 311–329.

[3] J. Evermann, “Scalable process discovery using Map-Reduce,” IEEE
Trans. Serv. Comput., vol. 9, no. 3, pp. 469–481, 2016.

[4] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[5] W. van der Aalst, Process Mining: Data Science in Action, 2016.
[6] W. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining:

Discovering process models from event logs,” IEEE Trans. Knowl. Data
Eng., vol. 16, no. 9, pp. 1128–1142, 2004.

[7] L. Cheng, B. van Dongen, and W. van der Aalst., “Efficient event
correlation over distributed systems,” in Proc. 17th IEEE/ACM Int. Symp.
Cluster, Cloud and Grid Comput., 2017, pp. 1–10.

[8] L. Cheng, B. van Dongen, and W. van der Aalst, “Scalable discovery of
hybrid process models in a cloud computing environment,” IEEE Trans.
Serv. Comput., pp. 1–1, 2019.

[9] Q. Liu, T. Ozcelebi, L. Cheng, F. Kuipers, and J. Lukkien, “Cluflow:
Cluster-based flow management in software-defined wireless sensor
networks,” in IEEE Wireless Comm. and Networking Conf., 2019.

[10] C. Liu, H. Duan, Z. Qingtian, M. Zhou, F. Lu, and J. Cheng, “Towards
comprehensive support for privacy preservation cross-organization busi-
ness process mining,” IEEE Trans. Serv. Comput., no. 1, pp. 1–1, 2016.


