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Abstract 

In future optical networks that employ wavelength division multiplexing (WDM), the 

use of optical switching technologies on a burst or packet level, combined with 

advanced modulation formats would achieve greater spectral efficiency and utilize the 

existing bandwidth more efficiently. All-optical wavelength converters are expected to 

be one of the key components in these broadband networks. They can be used at the 

network nodes to avoid contention and to dynamically allocate wavelengths to ensure 

optimum use of fiber bandwidth. 

In this work, a reconfigurable wavelength converter comprising of a Semiconductor 

Optical Amplifier (SOA) as the nonlinear element and a fast-switching sampled grating 

distributed Bragg reflector (SG-DBR) tunable laser as one of the pumps is developed. 

The wavelength conversion of 12.5-Gbaud quadrature phase shift keying (QPSK) and 

Pol-Mul QPSK signals with switching time of tens of nanoseconds is experimentally 

achieved. Although the tunable DBR lasers can achieve ns tuning time, they present 

relatively large phase noise. The phase noise transfer from the pump to the converted 

signal can have a deleterious effect on signal quality and cause a performance penalty 

with phase modulated signals. To overcome the phase noise transfer issue, a wavelength 

converter using tunable dual-correlated pumps provided by the combination of a single-

section quantum dash passively mode-locked laser (QD-PMLL) and a programmable 

tunable optical filter is designed and the wavelength conversion of QPSK and 16-

quadrature amplitude modulation (16-QAM) signals at 12.5 GBaud is experimentally 

investigated. Nonlinear distortion of the wavelength converted signal caused by gain 

saturation effects in the SOA can significantly degrade the signal quality and cause 

difficulties for the practical wavelength conversion of signal data with advanced 

modulation formats. In this work, the machine learning clustering based nonlinearity 

compensation method is proposed to improve the tolerance to nonlinear distortion in an 

SOA-based wavelength conversion system with 16-QAM and 64-QAM signals.   
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Introduction 

The desire for multi-media content and richly interactive data services is shaping a 

new era for telecommunications networks. Future networks will need to be capable of 

offering Triple Play, IPTV, Video-on-Demand, Voice-over-IP and High-Speed Internet 

Access, combined with guaranteed Quality of Service. These networks will employ 

wavelength division multiplexing (WDM) technology, and advanced modulation 

formats, in order to achieve the high capacities required [1]. In addition, given the 

bursty nature of this data it is expected that dynamic allocation of the bandwidth will 

be implemented to efficiently use the available capacity. The key components in these 

networks will be the tunable laser transmitters that generate the different wavelength 

packets, and also all-optical wavelength convertors (comprising tunable lasers) that 

allow optical information packets on a certain wavelength to be converted to a different 

wavelength. A semiconductor optical amplifier (SOA) with high non-linearity and short 

carrier lifetime has the potential to achieve all-optical wavelength conversion.  

The clear trend in order to increase the bit rate in modern optical communication 

systems that use WDM is the use of advanced modulation formats that exploit a mix of 

intensity and phase modulation, such as quadrature phase shift keying (QPSK) and 16-

quadrature amplitude modulation (16-QAM). In addition, there is also a drive to 

develop WDM networks that can reconfigure quickly to make the most efficient use of 

the available capacity of WDM channels. These optically switched networks require 

wavelength conversion devices at the network nodes to resolve contention for access to 

a given channel at a node. These contentions occur in packet/burst switched WDM 

networks whenever two or more packets are trying to leave the switch from the same 

output port on the same wavelength channel [2]. One approach to perform all-optical 

wavelength conversion (WC) is to employ the four-wave mixing (FWM) process within 

semiconductor optical amplifiers or other nonlinear media [3-4]. Using this approach 

the data signal and a pump signal (or signals) at a different wavelength are injected into 

the SOA. Through the FWM process a replica of the data signal at a different 

wavelength is generated and can be filtered out after the SOA. The wavelength of the 
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converted signal can be altered by tuning the wavelength of the pump lasers. 

This work will investigate the use of SOA-based wavelength converters using 

tunable laser pump sources, for use in practical reconfigurable optical networks. The 

thesis will investigate how the tunable lasers can be controlled precisely and quickly to 

ensure that the incoming data packets can be converted to the required wavelength 

channel at the right time, and without degradation in signal performance. The main aim 

of this work is be to demonstrate the successful all-optical wavelength conversion of 

data, employing QPSK or 16-QAM modulation formats, using four-wave mixing in 

SOAs.  

The main contributions of this work can be summarized as follows: 

 First implementation of fast reconfigurable WC system for advanced 

modulation formats using a sampled-grating distributed Bragg reflector 

(SGDBR) laser as the pump.  The wavelength conversion of QPSK and 

Pol-Mul-QPSK signals at 12.5-Gbaud are experimentally investigated. 

Reconfiguration times below 50 ns and 160 ns are achieved for the 

reconfigurable wavelength conversion system for 12.5 Gbaud QPSK and 

PM-QPSK signals, respectively.  

 Demonstration of all-optical SOA-based WC system using lines from a 

single-section quantum dash passively mode-locked laser and detailed 

investigation of how the correlation between comb lines effects WC 

performance. The tunable pumps are generated by the combination of the 

mode locked laser and a tunable optical filter. Wavelength conversion of 

12.5 Gbaud QPSK and 16-QAM data over a range of pump spacing 

exceeding 300 GHz using the proposed scheme is demonstrated.  

 First demonstration of clustering based machine learning algorithms to 

reduce the nonlinear distortion effect in SOA-based WC system for the 

wavelength conversion of 16-QAM and 64-QAM signals. Machine 

learning clustering based nonlinearity compensation (NLC) is performed 

using K-means and Density-based spatial clustering of applications with 
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noise (DBSCAN). Results reveal that the machine learning clustering based 

NLC has a clear benefit due to its ability of tackling the combination of 

non-circularly-symmetric Gaussian noise and nonlinearity. 

 Detailed characterization of a novel tunable laser based on silicon nitride 

micro ring resonators structure. The tunable laser is employed in coherent 

transmission systems using advanced modulation formats such as QPSK, 

16-QAM and 64-QAM, and shows similar performance compare to 

commercial external cavity lasers (ECLs). The laser can be potentially 

integrated with SOA and micro ring resonators based optical tunable filters, 

make it suitable for a photonics integrated WC chip. 

The structure of the thesis is as follows: 

In Chapter 1, a short review of the evolution of optical networks trend is presented, 

followed by an introduction to tunable lasers, the all-optical wavelength conversion, 

and main techniques in coherent optical communications system is given. It can be seen 

that an all-optical wavelength converter with rapid re-configurability is highly desirable 

in the next generation optical networks such as optical packet switching (OPS) and 

optical burst switching (OBS) networks. The different wavelength conversion 

techniques are then explained and the concept of a fast reconfigurable all-optical 

wavelength conversion scheme employing switching tunable pump lasers is introduced. 

The chapter continues by taking a look at the applications and solutions of tunable lasers. 

Finally, techniques for coherent transmission systems such as modulation formats, 

coherent homodyne detection, and the necessary digital signal processing (DSP) 

algorithms are discussed.  

In Chapter 2, a dynamic theoretical model for a SOA-based FWM wavelength 

conversion system using a fast switching tunable SGDBR laser as the pump is 

demonstrated. The time-resolved BER is introduced, and the results show that the 

wavelength conversion system can achieve a BER of <10-5 in several nanoseconds after 

the switching event. The primary characteristics (the tuning map, the phase noise, and 
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the switching performance) of different types of tunable lasers including the SGDBR 

laser, and the Modulated-Grating Y-branch (MGY) laser are investigated. After laser 

characterization, an SOA-based FWM wavelength conversion system using a fast 

switching tunable SGDBR laser and a narrow linewidth ECL as the pumps is 

demonstrated. The wavelength conversion of QPSK and Pol-Mul (PM) -QPSK signals 

at 12.5-Gbaud with total data rates of 25 Gbps and 50 Gbps, respectively, are 

experimentally studied, using the proposed scheme. Under 50 ns and 160 ns 

reconfiguration time is achieved for the proposed reconfigurable wavelength 

conversion system for QPSK and PM-QPSK signals, respectively.  

An all-optical SOA-based coherent wavelength conversion system with QPSK and 

16-QAM signals using tunable dual-correlated pumps provided by the combination of 

a quantum dash passively mode-locked laser (QD-PMLL) and a programmable tunable 

optical filter (TOF) is demonstrated in chapter 3. The effects of additional phase noise 

transfer to the wavelength converted idler due to non-ideal correlation between the 

comb lines of the QD-PMLL is investigated. The properties of the QD-PMLL are 

analyzed by characterizing the phase noise and the relative intensity noise (RIN). Then 

the performance of wavelength conversion of QPSK and 16-QAM signals at 12.5 

GBaud using the proposed scheme is investigated, with total data rates of 25 Gbps and 

50 Gbps, respectively. The experimental results show that the bit error rate (BER) 

performance is below the 7% forward error correction (FEC) limit over a range of pump 

spacing exceeding 300 GHz for QPSK signals, and conversion of 16-QAM signals is 

limited by the wavelength conversion scheme though is nonetheless below the 20% 

FEC limit. 

In Chapter 4, the nonlinear distortion effect in the SOA-based wavelength 

conversion system is discussed. Two unsupervised machine learning clustering based 

algorithms, K-means method and DBSCAN method are proposed to improve the 

tolerance to nonlinear distortion. The wavelength conversion of 10 GBaud 16-QAM 

and 5 GBaud 64-QAM signals in an SOA-based single pump configuration that 
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incorporates the proposed machine learning clustering based blind NLC algorithms is 

presented.  

Chapter 5 presents a hybrid InP-TriPleX integrated tunable laser based on silicon 

nitride micro ring resonators. This narrow linewidth tunable laser can be potentially 

used in all-optical wavelength convertors based on FWM in SOA’s, in which the 

wavelength conversion of the advanced modulation formats will require very narrow 

linewidth tunable lasers. Detailed characterization of the laser is presented, including 

the wavelength tuning map, side mode suppression ratio (SMSR) tuning map, the 

relative intensity noise, phase noise, and switching speed. The performance of the micro 

ring resonators (MRR)-ECL laser is also investigated in the coherent transmission 

system for 12.5 Gbaud 16-QAM and 5 Gbaud 64-QAM signals, and the presented laser 

exhibits comparable performance with a commercial ECL laser.  

Chapter 6 presents a brief conclusion and proposes the future research plan for this 

work.   
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Chapter 1  

Tunable lasers and reconfigurable all-optical wavelength 

conversion 

1.1 Introduction  

Future optical networks will need to be agile and reconfigurable in order to achieve 

the high capacities and low latencies required for mission-critical Internet of things 

applications such as autonomous vehicles, automated manufacturing and augmented or 

virtual reality. Wavelength conversion is a key technology in reconfigurable optical 

networks due to the potential to increase the capacity of a communication system by 

assigning dynamic links between channels. All-optical wavelength converters typically 

comprise the tunable pump laser, the nonlinear media and the tunable optical filter. The 

wavelength converter allows optical information packets on a certain wavelength to be 

converted to a different wavelength precisely and quickly, and is highly desirable in 

order to reduce the number of power-hungry high-speed optical-electronic-optical 

conversions at networks nodes.  

In this chapter, a simple review of the evolution of optical networks is presented. 

Different wavelength conversion mechanisms such as four-wave mixing and cross-

modulation are then studied, and a fast reconfigurable all-optical wavelength 

conversion scheme employing switching tunable pump lasers is introduced. The 

chapter will subsequently explore different applications and solutions for wavelength 

tunable lasers. Finally, some of main technologies required for optical coherent 

transmission systems including the advanced modulation formats and digital signal 

processing algorithms are discussed.  

 

1.2 Optical networks evolution trend 

Modern lightwave communications had its origin in the first demonstration of the 

semiconductor laser in 1960 [1], then the development of the low loss fibers in the early 
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1970s made the first fiber optic communication system possible in 1978 [2]. Over the 

years, tremendous technical progress has been made since the days of short distance 

multimode transmission at 0.8 μm [3]. Single-channel transmission at 10 Gb/s across 

over 8000 km was achieved with the advent of erbium-doped fiber amplifiers (EDFAs) 

[4].  

 

Fig.1-1 Evolution of optical Internetworking from (a) first-generation optical networking involving 

point-to-point static optical networking, (b) second-generation optical networking involving wavelength 

routed optical cross-connects (OXCs), and (c) third-generation optical networking involving OPS 

and OBS routers interfacing with other network elements. 

Fig.1-1 shows the network evolution trend from the first-generation optical 

networking to the second- and the third-generation optical networking employing 

reconfigurable optical network elements such as reconfigurable optical add drop 

multiplexers (ROADMs), optical cross-connects (OXCs) and optical routers. In the 

first-generation optical networking system, although single-channel point-to-point link 

deployment can provide various solutions to the rapidly growing network capacity 

demands, they have disadvantages such as the use of a small fraction of the enormous 

bandwidth available in an optical fiber, and not allowing for a multiuser environment. 

Reconfigurations must take place using electronic switches or routers because the 

optical networking supports only point-to-point connectivity. By employing the WDM 
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technology, a simple multiuser system may be a point-to-point link with many 

simultaneous channels, and a more complicated system can take the form of a local, 

metropolitan, or wide-area network with either high bidirectional connectivity or 

simple unidirectional distribution [5]. In the WDM system, each end-user’s equipment 

will operate at the electronic rate, however, multiple WDM channels from different end-

users can be multiplexed on the same fiber. Second-generation optical networking 

systems can achieve reconfigurations of optical wavelength circuit paths by properly 

configuring the optical devices in the optical networking elements such as ROADMs 

and OXCs. 

Third-generation optical networking systems will be capable of switching data 

packets or bursts directly in the optical layer. The optical packet switching (OPS) and 

optical burst switching (OBS) technologies are particularly attractive from the 

viewpoint of a true IP-over-WDM architecture, where the IP packets are switched or 

forwarded over the all-optical WDM network without excessive electronic processing 

in the data plane [6]. The optical network is currently evolving from traditional point-

to-point static WDM networking to dynamically reconfigurable optical networking. Its 

continuing evolution is likely to lead to optical networking capable of dynamic 

switching of optical bursts and packets.  

1.3 Wavelength conversion 

The desire for multi-media content and richly interactive data services is shaping a 

new era for telecommunications networks. Future networks will need to be capable of 

offering IPTV, Voice-over-IP, Video-on-Demand and High-Speed Internet Access, 

combined with guaranteed Quality of Service [7]. These networks will employ WDM 

technology and advanced modulation formats, in order to achieve the high capacities 

required. In addition, given the bursty nature of this data it is expected that dynamic 

allocation of the bandwidth will be implemented to efficiently use the available capacity 

by employing the OPS and OBS technologies.  

To solve the wavelength contention problems at the connecting nodes, it is 

necessary to be able to perform wavelength conversion. All-optical wavelength 
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conversion is required to reduce significant power consumption associated with 

multiple optical-to-electrical-to-optical (OEO) conversions [8]. The level of power 

consumption required by OEO convertors becomes significant as we move to advanced 

modulation formats (due to the required DSP), making all-optical wavelength 

conversion a vital technology for future optical networks. All-optical wavelength 

converters will be key components in OPS and OBS networks due to their potential to 

increase the capacity of a communication system by assigning dynamic links between 

channels [9]. The wavelength converters will be required in network nodes to avoid 

contention and to dynamically allocate wavelengths to ensure optimum use of fiber 

bandwidth [10]. One key component in the wavelength converters will be the tunable 

laser transmitters that generate the different wavelength packets.  

There are two different techniques that have primarily been used for wavelength 

conversion. One is optoelectronic conversion, in which the signal has to be converted 

from optical to electrical format before being transmitted at a new optical wavelength. 

This technique is presently good up to bit rates of 10 Gbit/s [11], however as discussed 

earlier the move to DSP intensive advanced modulation formats will make OEO 

conversion techniques impractical due to the large power consumption required. The 

second method is all-optical, and it can be further be divided into two different 

approaches: nonlinear optical parametric processes and cross-modulation using a 

nonlinear media.  

1.3.1 Four-wave mixing 

The most common nonlinear optical technique that can be used for all-optical 

wavelength conversion is four-wave mixing (FWM) [12]. FWM is a third-order optical 

nonlinearity that can be achieved in optical fibers, and is also achievable in other 

passive waveguides such as semiconductor waveguides and in an active medium such 

as semiconductor optical amplifier (SOA). FWM in SOA is attracting a lot of interest 

for all optical wavelength conversion of advanced modulation formats due to the 

transparency of FWM in SOA’s to modulation format and baud rate. Fig.1-2 shows the 

basic principle of all-optical wavelength conversion using four-wave mixing in a 
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semiconductor optical amplifier. When the signal beam is mixed with a pump beam, if 

we have a signal at frequency sF  and a pump at frequency at 
pF , two frequencies are 

generated at frequencies 2 p sF F  and 2 s pF F  according to the phase-matching 

condition. An optical tunable filter used at the output, filters out the converted idler, as 

shown in Fig. 1-2. The FWM process is polarization sensitive and generates additional 

frequencies, which reduces the conversion efficiency and contributes to inter-channel 

crosstalk. Another drawback of the FWM-based wavelength conversion system is that 

there is phase noise transfer effect between the pump(s) and the converted idlers. The 

issue is of crucial importance when advanced modulation formats are used in the 

wavelength conversion system because the increased phase uncertainty at the receiver 

degrades the overall system performance. 

 

Fig.1-2. FWM in a semiconductor optical amplifier, sF  represents the signal frequency, pF  

represents the pump frequency. 

1.3.2 Cross-modulation 

Another promising method for wavelength conversion is cross-modulation in an 

SOA in which either the gain or the phase can be modulated (XGM and XPM, 

respectively) [13]. A basic XGM converter is shown in Fig. 1-3(a). The idea behind 

XGM is to mix the input signal with a CW beam at the new desired wavelength in the 

SOA. Due to gain saturation, the CW beam will be intensity modulated so that after the 

SOA it carries the same information as the input signal. A filter is placed after the SOA 

to eliminate the original wavelength λs. The signal and the CW beam can be either co- 

or counter propagating. A counter propagation approach has the advantage of not 

requiring the filter. A typical XGM based converter is polarization independent but 
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suffers from an inverted output signal and low extinction ratio. Using an SOA in XPM 

mode for wavelength conversion makes it possible to generate a non-inverted output 

signal with improved extinction ratio. The XPM relies on the fact that the refractive 

index in the active region of an SOA depends on the carrier density. Therefore, when 

an intensity-modulated signal propagates through the active region of an SOA it 

depletes the carrier density, thereby modulating the refractive index, which results in 

phase modulation of a CW beam propagating through the SOA simultaneously [14]. 

The converted signal can be either inverted or non-inverted in the XPM-based 

wavelength conversion scheme. The XPM-based conversion converter is more power 

efficient than XGM-based converter. Fig. 1-3(b) shows a Mach-Zehnder interferometer 

setup. Two SOAs are used in the asymmetric configuration setup, the splitters are used 

to make sure the phase change in two SOAs is different, so that the phase modulation 

can be transformed into an intensity modulated signal. The XPM converter can also be 

setup by using one SOA in one of the interferometer arms, but it is less power efficient 

and polarization sensitive to the input CW signal [15]. 

 

Fig.1-3 Different types of wavelength converters (a) Cross gain modulation (XGM) (b) Cross 

phase modulation (XPM) 
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 1.4 Fast reconfigurable all-optical wavelength converter  

An optical wavelength converter for next generation optical networks should have 

the following characteristics [16]: 

• Fast setup time of output wavelength 

• Transparency to bit rates and coding schemes 

• Conversion to both shorter and longer wavelengths 

• Moderate input power levels 

• Possibility for no wavelength conversion 

• Polarization independence 

• Small chirp 

• High extinction ratio  

• Large ratio of signal power to the noise power (SNR) 

 
Fig.1-4 A simple schematic of wavelength converter with tunable lasers. 

 

Fig.1-4 shows a simple schematic of a wavelength converter with tunable lasers 

used to control the wavelength that the incoming signal is converted to. The described 

all-optical wavelength converter consists of an SOA as the nonlinear media, a tunable 

laser as the pump and an array waveguide grating (AWG) used for filtering out the 

wavelength converted idler. The optical label of the incoming packet is first recovered 

by the receiver (detection followed by electrical header processing), then the control 

signals are generated and used to switch the fast-tunable lasers. After the nonlinear 
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wavelength conversion process in the SOA, the converted signal is then filtered out 

using an AWG and sent to the next network node.  

SOA TOF

Tunable laser

Tunable laser

Tunable optical filter

Control signals

Control signals

Input signal

SOA TOF
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Tunable optical filter
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Fig. 1-5 (a) A single pump SOA-based wavelength converter employing one fast tunable pump laser. 

(b) A dual-pump SOA-based wavelength converter employing fast tunable pump lasers where the 

output wavelengths can be chosen by appropriately selecting the wavelength of the tunable lasers. The 

wavelengths of the tunable lasers are adjusted by the control signals to the tunable lasers (c) Schematic 

of an all-optical packet-switched network. 

An example of a typical all-optical packet-switched network which employs 

wavelength conversion is illustrated in Fig. 1-5. The structure of the single pump and 

dual-pump SOA-based wavelength converter employing fast tunable pump lasers are 

shown in Fig. 1-5 (a) and Fig. 1-5 (b), respectively.  Fig. 1-5(c) shows the schematic 

of an all-optical packet-switched network. IP packets enter the network through the 

edge router where they are retransmitted on a new wavelength to avoid contention. By 

employing the all-optical wavelength converter in this network, it can enable rapid 

routing of the same wavelength channel from any direction to any direction, and easily 

avoid the contention in which different packets with the same wavelengths are trying 

to leave the edge router. The wavelength converter consists of fast tuning tunable lasers 

as the pumps, an SOA and a tunable optical filter. The wavelength of the wavelength 

converted signal through FWM can be precisely altered by tuning the wavelength of 

the pump sources, and after the nonlinear wavelength conversion process in the SOA, 

the converted signal is then filtered out by using a tunable optical filter and sent to the 

next network node. The switching speed of this SOA-based wavelength converter 
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mainly depends on the tunable pump lasers and the tunable optical filter. All the 

components in the wavelength converter (lasers and SOA) can be integrated and these 

results motivate the construction of a compact, optically-integrated, and rapidly 

reconfigurable all-optical wavelength converter. 

As previously discussed, fast switching widely tunable semiconductor lasers will 

be used as the pump lasers in the wavelength converters to provide the re-

configurability. There are a number of tunable lasers technolgies that can be employed: 

(a) External cavity lasers (ECLs) 

ECLs are very suitable to be used as optical sources in coherent communication 

system as they provide wide range wavelength tuning (>35 nm), high power (> 10 dBm), 

narrow linewidth (<100 kHz), and high stability. ECLs have a resonant cavity external 

to the active semiconductor section. The active section is a simple Fabry-Perot structure. 

The wavelength can be tuned by mechanically changing the length of the laser cavity. 

However, it is not impossible to use them in OPS/OBS networks due to their slow 

tuning speed of several milliseconds. Fig.1-6 shows the simple structure of a Littman-

cavity based ECL [17,18]. A grating and a reflector are used to achieve high level of 

side mode suppression (>50 dB). 

 

Fig.1-6 Littman Cavity based ECL 

(b) Distributed Bragg Reflector (DBR) lasers 

 

Fig.1-7 Three-section DBR laser 
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Fig.1-7 shows the structure of a 3-section distributed Bragg reflector (DBR) laser. 

It consists of the gain section, the phase section and the grating section. The laser 

structure is fabricated with surface features that define a monolithic, single mode ridge 

waveguide that runs the entire length of the device. A resonant cavity is defined by a 

highly reflective DBR mirror on one end, and a low reflectivity cleaved exit facet on 

the other end. Within the cavity is a gain ridge portion, where current is injected to 

produce a single spatial lasing mode. The DBR mirror is designed to reflect only a 

single longitudinal mode. As a result, the laser operates on a single spatial and 

longitudinal mode. The laser emits from the exit facet opposite the DBR end. The DBR 

is continuously tunable over approximately a 2 nm range by changing current or 

temperature.  

 

Fig. 1-8 Different kinds of widely tunable lasers 

The application of three section DBR lasers is limited by their narrow wavelength 

tuning range. In order to extend the tuning range of DBR lasers, the Vernier effect has 

been used and many new DBR-based tunable lasers with different structures have been 

reported. Fig. 1-8 shows the structures of different kinds of tunable lasers including (a) 

the sampled grating distributed Bragg reflector (SG-DBR) lasers [19-20], (b) the 
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grating assisted co-directional coupler with sampled reflector (GCSR) lasers [21], (c) 

the super structure grating DBR (SSG-DBR) lasers [22], (d) the digital super-mode 

distributed Bragg grating (DS-DBR) lasers [23], and (e) the modulated grating Y-

branch (MGY) lasers [24]. These tunable lasers can achieve large wavelength tuning 

range (>40 nm) owing to the Vernier effect. And they can be tuned quickly on the 

nanosecond timescale.  

1.5 Coherent transmission system  

 Coherent transmission techniques have been widely investigated and discussed 

since the 1980’s [25-29]. The motivation for using the coherent transmission techniques 

is that they can increase the spectral efficienecy (SE) of the WDM system and make 

more efficient use of the available fiber. In comparison to the intensity modulation with 

direct detection (IM/DD) system, the coherent transmission techniques can greatly 

improve the receiver sensitivity, restore the amplitude, frequency, and phase 

information from the carrier, thus can achieve higher capacity. Another advantage of 

using the coherent transmission system is that the DSP algorithms can be used to 

compensate the chromatic and polarization mode dispersion due to optical fibers.  

1.5.1 Digital modulation formats  

In coherent transmission systems, the information can be sent by modulating the 

amplitude, the phase or the frequency of an optical carrier. The optical signal field can 

be expressed by, 

cos( )s p mE E A wt                       (1.1) 

Where , , ,p mE A w    represent the polarizaion coefficient, the signal amplitude, 

the optical angular frequency and the phase. Depending on the modulation item of the 

optical carrier, different modulation formats can be categorized as follows: 

(a) Amplitude-shift keying (ASK) 

The amplitude mA  is modulated while other values such as the angular 

frequency and the phase are kept unchanged for one-bit duration. The binary 
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symbol 1 represents transmitting a waveform with a fixed amplitude signal and 

fixed frequency for a but duratuon of T seconds. If 0mA  , a signal value of 0 

will be transmitted. The ASK format is also called on–off keying (OOK) which 

is normally employed in IM/DD system. 

(b) Phase-shift keying (PSK) 

In the case of PSK, the phase   is modulated while other values , ,p mE A w  

are kept unchanged. For binary PSK format, there are two phase states, and the 

phase values can be assigned to 0 and π. As the phase states increase, the values 

of the phase will be changed accordingly. To implement PSK, an external 

modulator which is capable of changing the optical phase by changing the 

applied voltages is needed. A LiNbO3-based phase modulator is a common 

option as a Mach-zehnder interferometer (MZI) design is not needed for pure 

phase modulation. The number of phase states for PSK format cannot be very 

high, as the requirement for the linewidths of the laser sources and the local 

oscillator is stringent in order to recovery the phase information at the receiver 

side without ambiguity. 

(c) Frequency-shift keying (FSK) 

FSK is a frequency modulation scheme in which signal waveform is 

transmitted through discrete frequency changes of a carrier wave. Only the 

frequency w  is modulated while the values , ,p mE A   remain unchanged. 

(d) Polarization-shift keying (PolarSK) 

For the case of PolarSK, the polarization field 
pE  takes one polarization for 

the binary symbol 1 and the other for the symbol 0. By using the PolarSK 

scheme in conjunction with other modulation formats, the transmission 

capacity of the modulated signal can be doubled. 

The M-ary QAM formats are widely used in today’s commercial 

telecommunications system to transmit information. In order to increase the 

transmission capacity, the use of the M-ary QAM such as 16-QAM or 64-QAM can 
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increase the number of bits per symbol. However, as the value of M increases, the 

requirement for the optical signal to noise ratio (OSNR) would be more stringent.  

 

Fig. 1-9 Theoretical BER versus OSNR curves for 10 Gbaud optical signals with QPSK, 16-QAM, 

32QAM, 64-QAM and DP-QPSK. 

Fig.1-9 shows the theoretical BER versus OSNR curves for optical signals at 10 

Gbaud with different M-ary QAM formats including QPSK, 16-QAM, 32-QAM, 64-

QAM and dual-polarization QPSK. The relation between OSNR and BER can be 

calculated by 
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   [30]. Where M is the 

order of the QAM modulation formats, WrefB is 12.5 GHz that OSNR is usually 

measured against, B  is the bandwidth of signal. It can be observed that at a BER of 

1e-3, the required OSNR of 16-QAM is about 6.8 dB above that required for QPSK. 

For 64-QAM, an extra 6 dB OSNR is needed compared to 16-QAM to achieve a BER 

of 1e-3. It also shows that the dual-polarization QPSK would require 3 dB more OSNR 

to achieve the same BER performance compared to single-polarization QPSK. Clearly, 

more carrier signal power would be required to get enough OSNR for higher level 

modulation formats, however this could hit the threshold of nonlinear distortion effects. 

Therefore, there is a trade-off between the fiber nonlinearity at high launch power levels 

and the Amplified spontaneous emission (ASE) noise at low launch power levels [31]. 
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Therefore the optimum launch power of the optical transmission system with different 

modulation formats would be different. 

1.5.2 I-Q modulator  

Although I-Q modulators can be used to generate many different modulation 

formats, they are commonly designed for QAM signal generation and single side-band 

suppressed carrier (SSB-SC) transmission [32]. A typical I-Q modulator consists of two 

parallel MZIs for intensity modulation and a phase modulator to control the phase of 

the optical signal as shown in Fig.1-10. There are DC bias controls designed for the 

parallel MZIs to allow the users to change the bias conditions. This provides the ability 

to generate different QAM signals by using different operation conditions. 

  

Fig.1-10 I-Q modulator 

The common operation processes to generate QAM signals by using I-Q modulators 

are summarized as follows: 

(a) Select one MZI from the two parallel MZIs, and change the bias voltage 

between 
2

V  and 
2

V  to make the modulator operate at the null point. The 

RF signals should be off during optimization. 

(b) The RF signals which are the I (in-phase) and Q (quadrature-phase) signals are 

then applied to the two MZI’s. It should be noted that the amplitude of the 

applied RF signals should be operated at appropriate levels to make sure that 

the modulator works in the linear region. Otherwise, the signal waveforms could 

be strongly distorted that would degrade the signal quality at the output.  

(c) Change the bias voltage on the phase section. The optical sampling oscilloscope 

can be used to monitor the eye-diagram of the QAM signals from the output 
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while optimizing the bias on the phase section. 

The method demonstrated above can be used to generate different QAM signals 

such as QPSK, 16-QAM and 64-QAM.  

1.5.3 Coherent detection 

In order to extract the full information including the amplitude, the phase, and the 

state of the polarization from the received signals, the coherent receiver can be used. In 

this section, the discussion is focus on the homodyne receiver where the frequency 

offset between the signal and local oscillator is zero [33]. A schematic of a phase diverse 

coherent homodyne receiver is shown in Fig. 1-11. 

 

Fig. 1-11 A schematic of a phase diverse coherent homodyne receiver. 

The receiver consists of a 90-degree optical hybrid coupler which mixes the 

received data signal ( ( )sE t ) and the local oscillator ( LOE ). A π/2 optical delay is used 

in the optical hybrid coupler to recovery the quadrature part of the signal. The obtained 

optical outputs are sent to two balanced photo-detectors and can be given by, 

1

1
( )

2
s LOE E E                        (1.2)                                                 

2

1
( )

2
s LOE E E                        (1.3) 

3

1
( )

2
s LOE E jE                        (1.4) 
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4

1
( )

2
s LOE E jE                        (1.5) 

The output current from the balanced photo-detectors can then be given by [34], 

1 2( ) ( ) ( ) cos{ ( ) ( )}I I I s LO s LOI t I t I t R P P t t                (1.6) 

 1 2( ) ( ) ( ) sin{ ( ) ( )}Q Q Q s LO s LOI t I t I t R P P t t                (1.7) 

Where R represents the photodiode responsitivity, sP  the power of signal, LOP  the 

power of local oscillator (LO), ( )s t and ( )LO t  are the phase of the signal and LO. 

By using the equation (1.6) and equation (1.7), the amplitude information of the optical 

signal can be restored directly. However, digital signal processing (DSP) is needed to 

estimate the phase noise of the optical signal and restore the phase information. More 

details on DSP will be discussed in the next section.  

In order to restore the state of the polarization of the optical signal, the coherent 

receiver with polarization diversity can be used. Fig. 1-12 shows the configuration of a 

polarization diverse coherent receiver which consists of polarization beam splitters 

(PBS) and two phase diverse homodyne receivers. The input signal and the LO are both 

divided into x and y polarization components by using the PBSs. The output after the 

PBSs can be written by, 

( )s sjw t j tj

sx sE P e e e
                        (1.8)                                        

( )
(1 ) s sjw t j t

sx sE P e e
                        (1.9) 

( )

,
2

LO LOjw t j tLO
LO x

P
E e e


                       (1.10) 

, ,LO y LO xE E                           (1.11) 

Where   is the proportion of the optical power going into x and y polarization and 

  is the phase variation between them.  



23 
 

 

Fig. 1-12 A schematic of polarization diverse coherent receiver [34] 

The electric fields of the 8 outputs from the 90-degree optical hybird can be written by 

[34], 
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1 1
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The output current from the balanced photo-detectors can then be given by, 
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                 (1.19) 

It can be observed from equation (1.16) to equation (1.19) that the polarization 

diverse coherent receiver can be used to restore the full signal information including 

the amplitude, the phase, and the state of the polarization.  

1.5.4 Digital signal processing for back-to-back system 

Most of the DSP algorithms for the optical coherent systems are derived from the 

wireless telecommunication systems. However, these algorithms need to be modified 

to cope with the nature of the fiber transmission system. The real-time or off-line DSP 

processes need to be more advanced as the modulation formats evolve from QPSK to 

multilevel QAM (M-QAM). QPSK data format will be taken as an example in this 

section to explain the principle of the DSP alogrithms such as the frequency offset 

compensation, the constant modulus algorithm (CMA), and the carrier phase recovery 

(CPR) algorithm. DSP algorithms such as chromatic dispersion (CD), polarisation 

mode dispersion (PMD) [35] and digital backpropagation (DBP) [36] will not be 

discussed, as they are only required for the long-haul transmission system. This thesis 

will focus on back-to-back transmission and coherent wavelength conversion system.  

A generic flow diagram of the DSP for a back-to-back optical system employing 

polarization division multiplexed QPSK (PDM-QPSK) or other M-QAM formats is 

shown in Fig. 1-13. The signals from the coherent receiver are amplified by 

transimpedance amplifiers (TIAs) and then captured by using the real-time digital scope. 

Due to the optical and electronic propagation in the back-to-back system, there are 

different delay times between the four-channel signals (I and Q signals from both x and 

y polarizations) which need to be compensated. The skew estimation can be undertaken 

before the transmission experiments. Otherwise, deskew needs to be done after the 

capture to align the I and Q signals from both polarizations. 
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Fig. 1-13 A flow diagram of the DSP for a back-to-back optical system 

 

Fig. 1-14 Configuration of the CMA filter 

After the I-Q deskew and the amplitude normalization, the next step is to resample 

the signals to 2 samples per symbol. The CMA can be considered as an adaptive N tap 

FIR filter and can be used for polarization demultiplexing and channel equalization for 

PDM-QPSK. Fig 1-14 shows the configuration of the CMA filter. xxH ,
xyH ,

yxH and

yyH represent the tap weights and each has N coefficients. For simplicity, we consider 

that ( ) [ ( ); ( )]x yE n E n E n , ( ) [ ( ); ( )]x xx xyH n H n H n  and ( ) [ ( ); ( )]y yx yyH n H n H n . 

Thus, the outputs from the fulters can be written by,  

_ ( ) ( ) ( )T

x cma xE n H n E n                       (1.20) 
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_ ( ) ( ) ( )T

y cma yE n H n E n                       (1.21) 

The cost function can be given by [37], 

2

_( ) 1 ( )x x cman E n                          (1.22) 

2

_( ) 1 ( )y y cman E n                          (1.23)                                            

Correspondingly, the update equations can be given by [38], 

*

_( 1) ( ) ( ) ( ) ( )x x x x cmaH n H n n E n E n                   (1.24) 

*

_( 1) ( ) ( ) ( ) ( )y y y y cmaH n H n n E n E n                  (1.25) 

Where   is the step size coefficient. The CMA can perform well for QPSK signals, 

however, as the modulation formats evolve to more advanced modulation formats such 

as PDM-16QAM, the cost function of CMA can never converge. In this case, multi-

modulus algorithm (MMA) can be employed [39].  

In a coherent receiver, the free running local oscillator and the transmitter lasers 

are not frequency locked. This results in some residual frequency offset in the received 

signal that needs to be estimated and compensated for. The widely used method to 

compensate the frequency offset is called the 4th power method [40]. Consider cmaE  as 

the frequency offset between the received signal and LO. Since the spectrum of 4

cmaE  

exhibits a peak at the frequency of four times of the frequency offset, f  is then 

estimated from the spectrum. The implementation complexity of this method increases 

for high-order modulation formats. Note that the complexity is for high order square 

QAM by considering only outmost four constellation points combined with the use of 

linear interpolation and down sampling-based methods [41].  

  

Fig. 1-15 Mth power phase estimation 
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After frequency offset compensation, it is necessary to perform phase estimation. 

This is by performing Mth power phase estimation (Viterbi and Viterbi) [42] as shown 

in Fig.1-15. For QPSK the carrier phase is estimated using a fourth-order nonlinearity 

in order to remove the phase modulation, giving the estimate of the phase as follows, 

4

_

1 1
( ) arg{ ( )}

4 2 1

i N

est in phasei N
n E i n

N





 


               (1.26) 

_in phaseE  represents the input signal after frequency offset compensation. The phase 

estimation method is very similar to the frequency-offset estimation algorithm. And 

after the ( )est n  is obtained, it can be removed from 
_in phaseE  in order to mitigate the 

Wiener phase noise. After the carrier phase recovery process, the synchronization [43] 

should be carried out before calculating the Bit error rate (BER).  

1.6 Conclusion 

In this chapter, the optical network evolution has been presented. Optical networks 

are experiencing a shift towards greater re-configurability in order to increase the 

switching efficiency and reduce the network latency. Wavelength converters play an 

important role in the next generation optical networks, and wavelength conversion 

based four-wave mixing and cross-modulation are presented. Four-wave mixing in 

semiconductor optical amplifiers optical amplifiers is considered to be the key 

technology for all optical wavelength converting signals with advanced modulation 

formats due to the transparency of FWM to modulation format and baud rate. The 

wavelength tunable laser is the key component to build a wavelength converter. The 

different applications and solutions of tunable lasers were discussed. Initially deployed 

for sparing and inventory management in WDM networks, tunable lasers also enable 

functionality such as dynamic bandwidth provisioning, protection, restoration, OBS 

and OPS. Depending on the required application, the required switching time can range 

from seconds to nanoseconds. In this chapter, the main techniques for coherent 

transmission systems were also introduced, including the advanced modulation formats, 

QAM signals generation by using I-Q modulator, the principle of the polarization 

diverse coherent receiver and necessary DSP algorithms for a back-to-back system.  
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Chapter 2  

All-optical wavelength conversion system based on fast 

switching tunable lasers 

2.1 Introduction 

Optical networks are experiencing a shift towards greater re-configurability in 

order to increase the switching efficiency and reduce the network latency. Wavelength 

converters will play an important role in next generation optical networks. Four-wave 

mixing in semiconductor optical amplifiers is considered to be the key technology for 

all optical wavelength conversion of signals with advanced modulation formats due to 

the transparency of FWM in SOAs to modulation format and baud rate [1]. The 

semiconductor tunable laser is another key component to build a wavelength converter. 

Depending on the application, the required switching time of the tunable lasers can 

range from seconds to nanoseconds. The application of tunable lasers in wavelength 

conversion systems will be investigated in this chapter. 

λ6 λ2λ1λ5

  

Incoming packets

  Wavelength

 converter

SOA TOF

Tunable laser

Tunable laser

Tunable optical filter

Output 

Control signals

Control signals

 

Fig.2-1 A simple scheme to implement wavelength conversion employing fast tunable pump lasers. 

Incoming data packets need to be converted to new wavelengths, the output wavelengths can be 

achieved by appropriately selecting the wavelength of the tunable lasers. The wavelengths of the 

tunable lasers are adjusted by the control signals that can be imbedded in the data packets. 

Fig.2-1 displays a simple dual pumping scheme to implement wavelength 

conversion employing fast switching tunable pump lasers. All the components in the 
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wavelength converter (lasers and SOA) can be integrated, motivating the construction 

of a compact, optically-integrated, and rapidly reconfigurable all-optical wavelength 

converter. The wavelength converter consists of two tunable lasers as the pumps, an 

SOA and a tunable optical filter. The optical label of the incoming data packet is first 

recovered by the receiver [2], then the control signals are generated and used to switch 

the fast-tunable lasers to the required operating wavelengths to convert the incoming 

packet to the specified wavelength. After the nonlinear wavelength conversion process 

in the SOA, the converted signal is then filtered out by using a tunable optical filter and 

sent to the next network node. The switching speed of this wavelength converter mainly 

depends on the tunable pump lasers and the tunable optical filter, but in this work, we 

focus on the effect of the tunable laser.  

Even though FWM-based wavelength conversion of advanced modulation formats 

such as QPSK and M-QAM formats have already been demonstrated in a static scenario 

[3-14], the implementation of wavelength conversion of higher order modulation 

format in a SOA employing a fast switching tunable laser as the pump, to enable fast 

reconfigurable wavelength conversion, has not yet been investigated. This chapter will 

investigate how the tunable lasers can be controlled to ensure that the incoming data 

packets can be converted to the required wavelength channel, and without degradation 

in signal performance.  

 In this chapter, a wavelength converter comprised of an SOA as the nonlinear 

element and a fast-switching sampled-grating distributed Bragg reflector (SGDBR) 

tunable laser as one of the pump sources is demonstrated. The performance of the SOA-

based wavelength conversion of QPSK signal is investigated by simulation, and rapid 

wavelength conversion of single polarization QPSK and Pol-Mux-QPSK signals with 

switching time of 10’s of nanoseconds using a fast switching tunable laser as one of the 

pumps in a dual wavelength pumping scheme is demonstrated experimentally. The 

simulation and experimental results indicate that the incoming signal can be precisely 

and quickly converted to the required wavelength channel on a nanosecond timescale. 

It is found that tracking the frequency offset during the polarization de-multiplexing 
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digital signal processing stage increases the waiting time from 50 ns for single 

polarization QPSK to 160 ns for PM-QPSK.  

2.2 Simulation model and results for wavelength conversion system 

Fig. 2-2 depicts the simulation schematic of SOA-based wavelength conversion of 

QPSK signals using a four section SGDBR laser as a single pump source. The input 10 

Gbaud QPSK signal is created by initially generating a PRBS stream with every two 

consecutive bits being mapped to the QPSK symbols [1,j,–1,–j]. The generated optical 

QPSK signal is coupled with the optical output from the SGDBR laser and wavelength 

converted through degenerate FWM in the SOA. In [15, 16], the details of modelling 

wavelength conversion using SOAs based on interband carrier density pulsations, 

intraband carrier heating, and spectral hole burning effects are explained. The 

wavelength converted signal (idler) is then filtered out by using a Gaussian optical band 

pass filter and then the QPSK signal is detected using a coherent receiver. 

 

Fig.2-2 Schematic of SOA-based wavelength converter using SGDBR laser. The spectra at the 

top/bottom show the wavelength converter operating when the SG-DBR laser is at the wavelength of 

1534.39/1539.66 nm. OBPF: optical band pass filter, LO: local oscillator, Coh.Rx: coherent receiver. 
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In [14], the static performance and transient behavior of SGDBR lasers by using 

the transfer matrix method (TMM) in combination with multimode rate equations were 

investigated. By solving the multimode rate equations, we can investigate the transient 

and static characteristics of the SGDBR laser and then combine the dynamic TMM 

SGDBR laser model with the wavelength convertor model, and hence estimate the 

performance of the wavelength converter under dynamic wavelength switching 

conditions. The multimode rate equations used to analyze the dynamic behavior of 

SGDBR lasers are [14]: 

   , ] ( ) ,
( )

[m
g m a m m sp g m ath

tdS
v g N S t n v g N

dt
             (2.1) 

2 3( ) S ( )
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          (2.2) 

      
2 3

d ( ) ( )
( ) ( ) ( ), , ,

j j

j j j j j j

j

N t I t
A N t B N t C N t j f b p

dt eV
               (2.3) 

Where ( )mS t  is the photon density of the mth longitudinal mode with angular frequency 

m ,  m  is the total loss of each mode, spn  is the spontaneous emission coefficient ,

g  is the group velocity, aI  is the injection current on active section, aV  is the volume 

of the active section, , , ,a f b pN  are the carrier densities for different sections, , , ,a f b pA  ,

, , ,a f b pB , , , ,a f b pC  stand for the non-radiative linear，the radiative bimolecular, and non-

radiative auger recombination coefficient, respectively. The subscript a, f, b and p 

represent the active section, front grating , back grating and phase section respectively.  

( , )m ag N  is the gain spectrum,  is the optical confinement factor of the gain section. 

The details about the laser parameters used in this work can be found in [14]. 

The SOA-based wavelength conversion system simulation platform has already 

been described in [15, 16] and is applicable for use within a dynamic switching 

simulation scenario. The only modification needed is to specify the optical field for the 

tunable pump laser using equation (2.1)-(2.3). In order to significantly reduce the 
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simulation run-time, a lumped time-domain SOA model operating on the slowly-

varying envelope of the input optical field is implemented. The slowly varying envelope 

of the input optical field is: 

exp[ ( )] ( )exp( )in P P s s sE P t P E t t                  (2.4)  

Where PP  is the power of the pump (SGDBR laser), SP  is the average signal 

power and ( )P t  is the phase information of the pumps. The pump phase noise is 

modeled as a random Weiner process [17]. The detuning is defined as  2S S P      

where   is the optical frequency. The input optical field inE  is created using equation 

(2.4) and then the output field outE  is thus given by [18]: 

            
1

exp - 1 1
2

out loss cdp cdp ch ch shb inE t L j h t j h t h E t  
       

   (2.5)  

With loss  being the internal SOA losses, the gain phase coupling (linewidth-

enhancement) factors for the carrier density, pulsations and carrier heating are given by

cdp , ch . Further details about the simulator and parameters can be found in [15,16].  

 

Fig. 2-3 Static wavelength tuning curves of the SGDBR laser as a function of current on front section 
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Fig. 2-4 Static side mode suppression ratio (SMSR) of four sections SGDBR laser as a function of 

current on phase section  

 

In this simulation work, the switching signal applied to the front section or the phase 

section of the SGDBR laser was selected so that the laser was switched back and forth 

between two channels. The typical input and output spectra of the degenerate 

wavelength conversion scheme based on the fast switching tunable laser (SGDBR laser) 

at initial and destination wavelengths are shown in Fig.2-2. The input pump (SGDBR 

laser) power and linewidth are 10 mW and 5 MHz when the SGDBR laser is operating 

in static mode, and the average power of the QPSK signal is 100 µW at 10 Gbaud.  

The static characteristics of the SGDBR laser were initially investigated with the 

model described in the simulator. Wavelength (blue line) and SMSR (green line) tuning 

curves as a function of the current on the front section and phase section are shown in 

Fig.2-3 and Fig.2-4. The currents applied to other sections are given on the top of each 

figure. As shown in Fig. 2-3, the current on the front section was changed from 0 mA 

to 40 mA, the laser wavelength can be changed roughly and it can provide a large 

wavelength tuning range by changing the current on the front grating section. By 

changing the current on the phase section, the laser wavelength can be tuned finely and 

continuously in a small wavelength tuning range. The wavelength tuning range using 

the phase section is ~0.4 nm, as shown in Fig.2-4. 

In order to investigate the switching performance in the simulations, a square wave 
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with frequency of 5 MHz was applied to the front and phase sections. During the 

switching, the currents on the other sections were kept constant. The switching signal 

applied on the front section is shown in Fig. 2-5 by the green line. It switches the laser 

wavelength between 1534.39 nm and 1539.66 nm with current on the front section of 

If1=7.6 mA and If2=22 mA. Two super-modes (three different wavelength modes) can 

be observed from Fig.2-3 as the current on the front section increase from 7.6 mA to 22 

mA. The switching time will vary between switching different wavelength channels, 

it will take a longer period for the switching with more number of modes between the 

initial and destination wavelength. The backward switching usually takes a longer 

period compare to the forward switching. 

 

Fig.2-5 Time resolved bit error rate (TRBER) curves when switching signal applied to front section  

 

Fig.2-6 Time resolved bit error rate (TRBER) curves when switching signal applied to phase section 

Changing the current on the phase section can tune the laser wavelength 

continuously in a small range. The switching signal applied on the phase section is 
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shown in Fig. 2-6 by the green line. It switches the laser wavelength between 1561.32 

nm and 1560.96 nm with current on the phase section of Ip1=2 mA and Ip2=8.3 mA.  

To illustrate the time it takes for the wavelength conversion system (consisting of the 

tuneable SGDBR pump laser and SOA-based wavelength convertor) to transition from 

error free performance on the initial wavelength channel that the QPSK signal is 

converted to, to error free performance on the destination wavelength channel that the 

QPSK signal is converted to, we applied the time-resolved bit error rate (TRBER) 

measurement through simulation [19]. Fig.2-5 shows the TRBER when the switching 

signal was applied to the front section. Initially the TRBER measurement was 

characterized for the initial wavelength channel (1534.39 nm) that the input signal is 

switched to by fixing the center frequency of the optical filter at the initial wavelength. 

The optical tunable filter has a bandwidth of 0.1 nm. In this simulation result, each data 

point in the TRBER curves corresponds to the probability of receiving an error in the 

100 ps symbol period, with the data presented being recorded by receiving data for a 

large number of laser switching events. The process was then repeated for the 1539.66 

nm channel. It can be seen that the time taken for the initial and destination wavelength 

channels to have a BER of better than 10-5 is different with the 1534.39 nm and the 

1539.66 nm channels taking 2.8 ns and 4.2 ns, respectively. Fig.2-6 shows the TRBER 

when the switching signal was applied to the phase section. The time taken for the 

wavelength convertor to reconfigure in this case is 4 ns and 5.4 ns for the initial 

(1561.32 nm) and destination (1560.96 nm) wavelength channels, respectively. 

In this section, we demonstrated a dynamic theoretical model for a SOA-based 

FWM wavelength conversion system using a fast switching tunable SGDBR laser as 

the pump. The TRBER simulation results show that the wavelength conversion system 

can achieve a BER of <10-5 in several nanoseconds after the switching event which 

makes it possible to use the tunable lasers as the pump laser to build fast reconfigurable 

wavelength convertors for reconfigurable, and bandwidth efficient next generation 

optical networks. 
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2.3 Experimental demonstration of reconfigurable wavelength conversion 

employing tunable SGDBR lasers 

To investigate the use of tunable lasers in all-optical wavelength conversion system, 

static characteristics of the tunable laser including the wavelength tuning range, output 

power and SMSR will need to be taken into account. The switching speed of the tunable 

pump laser is also an important parameter, which would limit the reconfiguration time 

of the all-optical wavelength converter. The phase noise issue of the tunable lasers also 

needs to be studied in order to achieve the wavelength conversion of advanced 

modulation formats with the required system performance.  

 In this section, the characterization of different tunable lasers including the SGDBR 

laser, and MGY laser were studied. The wavelength change as a function of the current 

on each section of the tunable lasers was initially presented, and then the phase noise 

characterization was studied by using a coherent phase noise measurement technique. 

The linewidths of the MGY laser and SGDBR laser with different grating reflector and 

phase section currents are measured and presented in the same figures for comparison. 

Finally, the dynamic characterization results of the MGY laser and SGDBR lasers were 

presented. The results show that the SGDBR laser present better phase noise 

performance compare to MGY laser, which makes it more suitable to be used in the 

wavelength conversion system due to the phase noise transfer that occurs from the 

pump to the idler in the FWM process. 

 

2.3.1 Tunable laser characterization 

The SGDBR laser has four separate sections: gain, front grating, rear grating and 

phase as shown in Fig.2-7(a). The gain section produces light, whereas the front, rear 

and phase sections enable wavelength tuning. Course tuning of the wavelength can be 

realized by changing the current on the front section and back section. The lasing 

wavelength can be tuned continuously and precisely by changing the current on the 

phase section. Due to the period of the two gratings being sampled differently, each 

grating has a different period of reflection maxima as a function of wavelength. 
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Therefore, the Vernier effect is enabled and enhances the overall tuning range 

considerably. The function of the phase section is to allow the cavity modes to be shifted 

independently of the grating’s reflection peak, achieving continuous tuning. As the data 

is modulated on the phase of the laser in the transmission systems employing advanced 

modulation formats, the phase noise of the lasers becomes an important factor in 

determining the transmission performance [20]. For the SGDBR laser, both the gain 

section and the passive tuning sections can contribute to the overall phase noise of the 

laser [21]. In order to characterize the phase noise of the SGDBR laser, the frequency 

modulation (FM) noise spectrum, which has been proved to be a very suitable 

measurement of the phase noise of lasers to be employed in coherent systems [22], can 

be obtained by the technique using a coherent receiver with a narrow-linewidth LO [23]. 

Fig. 2-7(b) is the typical frequency modulation (FM) noise spectrum of the SGDBR 

laser. The phase noise result was measured by using a coherent setup [23], a 3 GHz 

bandwidth low pass filter was applied to reduce the Gaussian noise in the measurement 

setup at high frequency. The white noise from the gain section and low frequency carrier 

noise from the passive tuning sections are observed.  

Front BackPhaseGain

White noise

Carrier noise

(a) (b)

 

Fig. 2-7 (a) Structure of the SGDBR laser, (b) FM noise spectrum of the SGDBR laser 

Due to the advance in digital signal processing (DSP), the low frequency excess 

phase noise can be compensated. A 2nd-order PLL scheme has been used in the carrier 

phase estimation to track the excess phase noise [24], which presents the ability to 

employ fast tunable lasers for coherent communication system with higher order 

modulation formats.  
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Fig.2-8 shows the static tuning map of the wavelength and SMSR of the SGDBR 

laser. The phase current and the gain current are set to 0 mA and 90 mA respectively. 

The maximum currents on the front and back gratin sections are 30 mA and 40 mA 

respectively. It can be seen from Fig.2-8 that the SGDBR laser can offer >40 nm 

wavelength operating range, and the SMSR above 45 dB can be achieved easily. 

Fig.2-8 Measured static tuning map of SGDBR lasers versus front (If) and back (Ir) grating currents 

The tuning mechanism of the MGY is similar to an SG-DBR laser using the Vernier 

effect. Fig.2-9 shows the wavelength and SMSR tuning map of a five-section MGY 

laser consisting of gain, front, back, phase and SOA sections. The SOA section is used 

to amplify the light. The currents on the gain, phase and SOA sections are kept at 90 

mA, 0 mA and 100 mA, respectively. From Fig.2-9, it can be observed that similar 

performance in terms of the wavelength tuning range and SMSR is achieved compare 

to the SGDBR laser.  

 

Fig.2-9 Measured static tuning map of MGY lasers versus front (If) and back (Ir) grating currents 
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The phase noise of the MGY laser was measured and compared with the results of 

the SGDBR laser. The same amount of current (90 mA) was applied on the gain section 

of both lasers, and the same operating conditions were applied on both lasers with 7 

mA for one of the grating reflector and the other passive sections were terminated. The 

measurements were performed by using a coherent phase noise measurement technique. 

From the captured data, the FM-noise spectra of the MGY laser and the SGDBR laser 

were obtained and plotted in Fig.2-10. It should be noted that a 3 GHz low-pass filter 

was used in the analysis to suppress the additive white Gaussian noise (AWGN) from 

the receivers. It can be seen from Fig.2-10, the MGY laser presents an overall worse 

phase noise performance compare to the SGDBR. The high frequency (~1 GHz) white 

noise of the SGDBR is around several hundred KHz while the MGY laser shows over 

1MHz. The SGDBR laser also shows less 1/f noise at low frequency (< 100 MHz) 

which makes it more suitable for wavelength conversion systems.  

 

Fig.2-10 Measured FM-noise spectra of the MGY laser and SGDBR laser with the same injected 

condition: 7 mA for one of the grating reflector and other passive sections are terminated. 

The phase noise of the tunable laser is strongly dependent on the injection currents 

on each section, the linewidth varies between several 100’s kHz to several MHz with 

different injected currents. The output wavelength and phase noise of the SGDBR laser 

as a function of the injected currents in the front section were measured and shown in 

Fig.2-11, with 90 mA current on the gain section, 0 mA current on the phase and back 

section. The white noise and carrier noise are represented by the high frequency 

linewidth and low frequency linewidth, which are calculated from the FM-noise 
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spectrum by the simple equation: 0S     [25]. The high frequency linewidth is 

related to the FM noise level in the frequency range beyond 500 MHz, whereas the low 

frequency linewidth contributed by the passive tuning sections is extracted by the mean 

value of the FM-noise in the frequency range under 50MHz. It can be observed from 

Fig.2-11, by changing the currents into a grating section, the entire reflection comb of 

the grating section shifts in wavelength and the laser wavelength jumps not only to an 

adjacent longitudinal mode, but can also jump by several nm to another super-mode at 

a wavelength where the reflection peaks of the Vernier-tuned gratings have re-aligned. 

By increasing the currents on the grating section, the low frequency linewidth and high 

frequency linewidth were found to present an opposite trend. The low frequency 

linewidth usually increases until the wavelength jump occurs, while the high frequency 

linewidth increases until the mode jump occurs. As most low frequency phase noise 

can be compensated by the DSP, the operation points of the SGDBR laser with less high 

frequency noise are preferred to perform data transmission experiments. According to 

these linewidth measurements results, two wavelengths of the SGDBR laser were 

chosen to switch between for the later wavelength conversion experiment. The 1548.68 

nm wavelength of the SGDBR which is represented by the black point A shown in 

Fig.2-11, is chosen by applying 90 mA current on the gain section while the other 

passive tuning sections are terminated. The 1553.70 nm wavelength (point B) is chosen 

by increasing the current on the front section to 3.4 mA. 

A

B

 

Fig.2-11 Measured high frequency linewidth (green triangles), low frequency linewidth (red 

dots) and output wavelength (blue squares)with different currents on the front section of the 

SGDBR laser, with 90 mA current on the gain section, 0 mA current on the phase and back 

section. 



45 
 

 

The switching performance of the SGDBR laser and the MGY laser were also 

investigated. Throughout the measurements, the currents on the gain section of the 

SGDBR laser and the MGY laser were set to 90 mA. The same switching signal was 

applied to the front grating section of the SGDBR laser and to the left grating section 

of the MGY laser. The other sections of the SGDBR laser and the MGY laser were 

terminated. Fig.2-12 shows the frequency offset between the tunable laser and the local 

oscillator at the coherent receiver, as a function of time after a switch for the Y-branch 

(MGY) and SGDBR laser. Fig.2-13 shows the linewidth change as a function of time 

after a switch for the Y-branch (MGY) and SGDBR laser. The sampling rate of the 

digital scope was set at 50 GSa/s, which gave a time resolution of 20 ps. 

 
Fig.2-12 Frequency offset as a function of time after a switch for the Y-branch (MGY) and SGDBR 

laser 

 

Fig.2-13 Dynamic linewidth change as a function of time after a switch for the Y-branch (MGY) and 

SGDBR laser 

It can be seen from these figures that the reconfiguration time (defined as the time 
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it takes for the laser to be stable again after the switch) of both lasers is under 100 ns, 

and it takes longer time for the MGY laser to be stable compare with the SGDBR laser 

due to the impedance mismatch between the switching signal generator and the MGY 

section. It is also noted that the switching speed is limited by the rise time of the 

switching signal from the signal generator. Overall, the SGDBR outperforms MGY 

laser and is more suitable for use in the wavelength conversion experiments. 

2.3.2 Fast reconfigurable wavelength conversion experiment 

Fig. 2-14 depicts the schematic of the experimental setup of SOA-based 

wavelength conversion of QPSK and PM-QPSK (blue dashed) signals using a SGDBR 

laser as one of the pump sources. A narrow linewidth external cavity laser (ECL) was 

used as the signal source and it was modulated with QPSK data at 12.5-Gbaud using an 

IQ modulator. The optical QPSK signal was generated by programming the arbitrary 

waveform generator (AWG) with two uncorrelated pseudo-random bit sequences 

(PRBS) of 27-1 bits periodicity. The AWG operated at 25 GSa/s which gave 2 

Sa/Symbol for the 12.5-Gbaud signal. The two PRBS signals were amplified by using 

the radio frequency amplifiers (RF) to drive the IQ modulator.  
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Fig.2-14 Schematic of the reconfigurable SOA-based wavelength conversion of QPSK and PM-QPSK 

(blue dashed) signals employing a SGDBR pump laser. PC: polarization controller, PBS: polarization 

beam splitter, PBC: polarization beam combiner, OBPF: optical band-pass filter, ISO: isolator, ASE: 

noise source, VOA: variable optical attenuator, OSA: optical spectrum analyzer, LO: local oscillator, 

Coh.Rx: coherent receiver. 

For the wavelength conversion of QPSK signal, the generated optical QPSK signal 

was then coupled with two pumps (one SGDBR laser and one narrow linewidth ECL) 
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and sent into the SOA-based wavelength converter. For the wavelength conversion of 

PM-QPSK signal scheme, the PM-QPSK signal was generated by using a Pol-Mux 

emulator, consisting of a polarization beam splitter (PBS) at its input, a passive stage 

with a delay of 4.88 ns (61 symbols), two polarization controllers and a polarization 

beam combiner (PBC) to combine the polarization tributaries. The output of the two 

pumps were passed through polarization controllers, combined and polarization aligned 

using a 3 dB coupler and a PBS. For both schemes, the power of the signal and the 

pumps at the input of the SOA are -10 dBm and 0 dBm respectively for optimum 

conversion efficiency [26]. The signal wavelength underwent wavelength conversion 

through non-degenerate FWM in the SOA operating at 500 mA bias current.  

The wavelength converted idler was filtered out by using a tunable optical 

bandpass filter (OBPF). The optical signal to noise ratio (OSNR) of the idler was 

changed by adding amplified spontaneous emission (ASE) from an EDFA that passed 

through a 2 nm bandwidth tunable optical bandpass filter. The filtered idler was then 

passed through a 3 dB splitter with one arm sent to the OSA for measuring the OSNR, 

and the other arm was passed into the polarization diversity coherent optical receiver 

and captured by a real-time oscilloscope sampling at 50GSa/s for offline DSP 

processing. The received idler power at the input of the coherent receiver was 

maintained at -19 dBm.  The data captured from the real-time scope was first 

resampled to 2 samples per symbol using a priori knowledge of the clock frequency. 

Then the constant modulus algorithm (CMA) [27-29] was utilized to enable 

polarization de-multiplexing for PM-QPSK signal. An mth power frequency offset 

compensation method [30-32] was employed to compensate the frequency offset 

between the received signal and the local oscillator in the coherent receiver, with m=4 

being the number of distinct phases in the QPSK symbol set. In order to make this 

algorithm operate correctly, it was necessary to ensure that the value of the absolute 

frequency offset is always less than Rs/(2M), where Rs is the symbol rate. A second 

order PLL is employed for the phase noise estimation and a training symbol based 

synchronization [33] was employed in order to carry out the BER calculation. 
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2.3.3 Results and discussion 

The wavelength of the fast-tuning SGDBR pump laser was switched between two 

operating modes by applying a switching signal to the wavelength tuning sections. In 

order to benchmark the system performance, the BER performances when pump2 was 

tuned and fixed to the two wavelengths that pump2 would later be dynamically 

switched between, was initially measured. The wavelength and power of the signal and 

pump1 (ECL) were kept constant throughout. The input and output spectra of the SOA 

when the SGDBR laser was set at 1548.68 nm and 1553.70 nm are shown in Fig.2-15(a) 

and Fig.2-15(b), respectively, and it can be observed that the indicated idler of interest 

has changed wavelength position from Ch 1 (1541.395 nm) to Ch 2 (1538.684 nm). 

The conversion efficiency was about -17.6 dB as shown in Fig. 2-15 (a), and -24.2 dB 

in Fig.2-15 (b). 

 

 

Fig.2-15 Input and output spectra of SOA showing the spectral locations of the signal 

(ECL), pump1 (ECL), pump2 (SGDBR) and converted idlers. (a) SOA input and output 

spectra when SGDBR is set at 1548.68 nm. (b) SOA input and output spectra when SGDBR 

is set at 1553.70 nm. The detected idlers are indicated. 
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BER performance as a function of OSNR at the receiver for the original signal, the 

signal after SOA and converted signals (idlers) for the QPSK and PM-QPSK signals at 

12.5 GBaud are displayed in Fig. 2-16(a) and Fig. 2-16(b), respectively. It can be 

observed that the penalty between the original signal, the signal after SOA and 

wavelength converted idler is under 0.5 dB for both cases, indicating the quality of the 

wavelength conversion scheme and potential usefulness. The constellation diagrams of 

the wavelength converted idler for a received OSNR of 12 dB and 14.5 dB are also 

given in Fig. 2-16(a) and Fig. 2-16(b), respectively. The laser employed for the LO and 

pump1 have a linewidth of around 50 kHz and the linewidth of the 1548.68 nm and 

1553.70 nm wavelengths of the SGDBR laser (employed as the second pump for FWM  

 

  

Fig.2-16 (a) BER versus OSNR curves for the input original signal, the signal after SOA, 

and the converted idlers for 12.5 GBaud QPSK signal . (b) BER versus OSNR curves for the 

input original signal, the signal after SOA, and the converted idlers for 12.5 GBaud PM-

QPSK signal. 
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scheme) was measured to be 260 kHz and 210 kHz, respectively. The linewidth (from 

the high frequency phase noise region) of the idlers was measured to be around 370 

kHz and 300 kHz as expected when the SGDBR was set to the two operating modes 

since the idler linewidth is the sum of the linewidths of the pumps and signal, and in 

this case the linewidth of the SGDBR pump laser dominates.  

 

Fig.2-17 OSNR as a function of the wavelength of the converted idler. 

To calculate the limitations of the wavelength conversion scheme, the OSNR of 

the idler as a function of the detuning between the two pumps was studied. The different 

wavelength converted idlers were filtered out by using an optical tunable band-pass 

filter. The OSNR measurement was then undertaken by using the OSA. In order to 

estimate the signal power and the noise floor correctly, the solution is to take two 

consecutive sweeps of the OSA with different resolution bandwidth (RBW) settings 

[34]. For the first sweep, OSA 0.2 nm RBW was used for the measurement of the signal 

power, and the second sweep measured the noise power by using 0.1 nm RBW setting. 

The output OSNR of the idler wavelength for the case with signal fixed at 1542.5 nm, 

pump1 fixed at 1549.8 nm, and the pump2 (SGDBR) tuned from 1548.7 nm to 1564.7 

nm is displayed in Fig.2-17. Fig. 2-17 shows that a tuning range of around 14 nm can 

be achieved with more than 9 dB OSNR and ~11 nm tuning range can be achieved with 

more than 12 dB OSNR. By comparing the results in Fig. 2-16 and Fig. 2-17, we can 

find that ~14 nm tuning range can be achieved for the wavelength conversion of the 

QPSK data at 12.5Gbaud to get a BER value below the 7% FEC limit (3.8×10-3) [35]. 

Around 11 nm tuning range can be achieved for the wavelength conversion of PM-
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QPSK data to get a BER value below the 7% FEC limit. 

In order to investigate the time-resolved BER [36,37] performance of the fast-

reconfigurable wavelength converter, a square wave current with 500 kHz repetition 

rate was applied to the front section of the SGDBR to switch the wavelength converted 

idler between Ch1 (1541.395 nm) and Ch2 (1538.684 nm), with the other currents 

applied to the SGDBR laser held constant and the received OSNR set at 12 dB for the 

QPSK signal and 14.5 dB for the PM-QPSK signal. The time-resolved BER 

measurement was characterized for Ch1 by fixing the center frequency of the OBPF to 

Ch1 and adjusting the LO to the wavelength of Ch1. The process was then repeated for 

Ch 2. 

 

 
Fig.2-18 Time-resolved BER and frequency offset curves for (a) QPSK signal and (b) PM-

QPSK signal at 12.5-GBaud, when the wavelength of the received signal (idler) is set at Ch1. 

The results of wavelength conversion will be presented when pump2 is 

dynamically tuned between 1547.68 nm and 1553.7 nm. In order to accurately estimate 

the time-resolved BER performance after a switching event, a number of switching 

events were captured via multiple acquisitions using the real-time scope. Each data 
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point in the time-resolved BER curves corresponds to the probability of receiving an 

error in a 10 ns period. This means the BER is averaged over a block length of 125 

symbols (10 ns), and data captured from 200 switching events was used for the 

calculation, with a total of 5×104 bits and 105 bits used for calculating each BER point 

in the time-resolved BER curves for QPSK and PM-QPSK signal at 12.5 GBaud. It can 

be seen from Fig.2-18(a) and Fig.2-18(b) that the reconfiguration time (time to have a 

BER better than the 7% FEC limit) after a switch is approximately 50 ns and 160 ns for 

QPSK and PM-QPSK signal, respectively. The red curves in Fig.2-18(a) and Fig.2-18(b) 

show the temporal frequency offset between the idler and the local oscillator in the 

coherent receiver, after a switching event. It takes around 100 ns for the frequency of 

the wavelength converted idler to fully stabilize after a switch.  

 
Fig.2-19 BER measurement as a function of OSNR in a switching environment with different 

waiting time after wavelength conversion when using QPSK and PM-QPSK decoding. 

Fig.2-19 shows the BER measurement as a function of OSNR in a switching 

environment with different waiting time after the idler is switched to Ch1 and Ch2 when 

using QPSK and PM-QPSK decoding. The blue and red curves show the results for the 

data with a waiting time of 50 ns after switching when using QPSK decoding for Ch1 

and Ch2, respectively. The brown and green curves are for a 160 ns waiting time when 

using PM-QPSK decoding for Ch1 and Ch2, respectively. The pink and black curves 

show the bad performance with a 50 ns waiting time using PM-QPSK decoding for Ch1 

and Ch2, respectively. The required waiting time when using PM-QPSK decoding is 

longer than QPSK decoding mainly due to the longer convergence time associated with 

the CMA method used for de-multiplexing the dual-polarization packets.  
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It also can be seen that the BER versus OSNR performance in a switching scenario 

corresponds with the static performance shown in Fig.2-16(a) and Fig.2-16(b), which 

indicates that the incoming signal can be precisely and quickly converted to the required 

channel on a timescale of around 50 ns and 160 ns for the 12.5-GBaud QPSK and PM-

QPSK signal by using the wavelength converter we present. 

2.4 Conclusion 

In this chapter, an SOA-based FWM wavelength conversion system using a fast 

switching tunable SGDBR laser and a narrow linewidth ECL as the pumps was studied 

by simulation and experiments. Different types of tunable laser were characterized and 

the SGDBR proved to be the best option among the tunable lasers for the use in fast 

reconfigurable wavelength converters. According to phase noise and polarization 

studies, the efficient and impairment free SOA-based wavelength converter based on 

FWM was designed. A rapidly reconfigurable SOA-based FWM wavelength 

conversion system using a fast switching tunable SGDBR laser as one of the pumps 

was demonstrated and the wavelength conversion of QPSK and Pol-Mul QPSK signals 

at 12.5-Gbaud, with total data rates of 25 Gbps and 50 Gbps, respectively, using the 

proposed scheme was experimentally studied. Wide tuning range (> 10 nm) and fast 

wavelength conversion time under 50 ns and 160 ns were achieved for the proposed 

reconfigurable wavelength conversion system for QPSK and PM-QPSK signals, 

respectively. The reconfiguration time was mainly affected by the combination of the 

switching time of the tunable pump laser and the CMA convergence time in DSP. The 

performance under the switching environment after the required reconfiguration time 

was the same as the static case when the wavelengths were fixed. The results show that 

it is feasible to develop fast reconfigurable wavelength converters for dynamic, 

adaptive and bandwidth efficient optical networks by using rapid switching tunable 

pump lasers in conjunction with fast tuning optical filters. 
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Chapter 3  

Quantum Dash Passively Mode-Locked Lasers for Coherent 

Wavelength Conversion System 

3.1 Introduction 

In chapter 2, a fast reconfigurable SOA-based wavelength converter employing fast 

switching sampled-grating distributed Bragg reflector (SGDBR) lasers was 

demonstrated to achieve the wavelength conversion of a QPSK data signal with a 

reconfiguration time of 10’s of nanoseconds. Although the fast tunable DBR lasers can 

achieve ns tuning time, they present many disadvantages such as relatively large phase 

noise. When the FWM process is used for wavelength conversion of advanced 

modulation format signals, the phase noise transfer from the pump to the converted 

signal can have a deleterious effect on signal quality and cause a performance penalty 

[1]. One method to overcome the phase noise transfer issue is to use phase noise 

correlated pumps in a non-degenerate FWM scheme, as was demonstrated in [2-6], by 

using a frequency comb source based on a laser gain-switching technique. However, 

the optical frequency combs from gain-switched lasers have limited bandwidth. The 

mode-locked laser (MLL) based comb sources provide spectral flatness and excellent 

phase correlation between adjacent modes. With the potential for integration in 

photonic integrated circuits (PICs), MLL can be a suitable candidate for FWM-based 

wavelength conversion. A demonstration of wavelength conversion using pumps 

derived from a quantum dash passively mode-locked laser (QD-PMLL) was shown for 

direct detection signal in [7].  

 In this chapter, an all-optical wavelength conversion system based on FWM in 

semiconductor optical amplifiers for QPSK and 16-QAM signals using tunable dual-

correlated pumps provided by the combination of a QD-PMLL and a programmable 

tunable optical filter is demonstrated. Detailed characterization of a QD-PMLL is firstly 

demonstrated, including the optical spectrum, FM noise spectrum and RIN 
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measurements. Secondly, the phase noise transfer issue in a dual-pumping FWM-based 

wavelength conversion scheme is discussed. The effects of additional phase noise 

transfer to the wavelength converted idler due to non-ideal correlation between the 

comb lines of the QD-PMLL is investigated. Finally, studies of the wavelength 

conversion of QPSK and 16-QAM signals at 12.5 Gbaud using the proposed scheme 

find that the bit error rate (BER) performance is below the 7% forward error correction 

(FEC) limit (BER of 3.8×10-3) over a range of pump spacing exceeding 300 GHz for 

QPSK signals, and conversion of 16-QAM signals was limited by the wavelength 

conversion scheme though was nonetheless below the 20% FEC limit (BER of 2×10-2).  

3.2 Mode-locked lasers 

Mode locked lasers have attracted a lot of interest due to their applications in many 

fields such as Wavelength Division Multiplexing (WDM) optical communication 

systems [8],  radio over fiber (RoF) and superchannel transmission systems [9]. Mode 

locking is a technique for the generation of ultrashort optical pulses with picosecond or 

femtosecond durations. When a laser is mode locked or said to be phase locked, the 

longitudinal modes of the laser will constructively interfere with one another, producing 

a train of optical pulses. In the frequency domain, several axial resonator modes will 

oscillate with a fixed correlated phase. The frequency separation between the modes 

(FSR) can be given by FSR=c/2L, where c is the speed of light and L is the length of 

the laser cavity. Two common mode-locking mechanisms–active and passive mode 

locking are discussed here.  

The laser resonator of an actively mode-locked laser contains the gain medium and 

an active element (for example, electro-optic modulator), which periodically modulates 

the resonator losses causing the round trip phase changes to being synchronized with 

the resonator round-trips [10,11]. The pulse duration will finally achieve a balance 

between pulse shortening effect from the modulator and pulse broadening effects 

caused by the limited gain bandwidth.  

In passive mode-locked lasers, a nonlinear passive element, such as a saturable 

absorber is placed in the laser resonator. The saturable absorber behaves differently 
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depending on the intensity of the light passing through it [12]. It will selectively absorb 

low intensity light, and transmit high intensity light until it gets saturated. The passive 

mode locking method does not need an external driving signal and allows us to generate 

shorter optical pulse compare to active mode locking because by using the saturable 

absorber, we can modulate the resonator losses much faster than with an electro-optic 

modulator [11]. 

Passive mode locking can also be obtained using the Kerr effect within a laser 

cavity instead of using an absorber. The nonlinear interactions among the modes can be 

improved by using a quantum dash material for the laser [13]. Compared to quantum 

well structure, the quantum dash lasers (QD-PMLLs) [14-17] can achieve lower 

threshold, broader gain spectra, lower optical confinement factors, and lower linewidth 

enhancement factors. The QD-PMLL discussed in this chapter combines a broadened 

gain spectrum of the quantum dash material with passive mode-locking via FWM [14, 

18] and allows for the generation of flat optical frequency combs. 

3.3 Characterization of mode-locked lasers 

 

Fig.3-1 The optical spectrum of the QD-PMLL. 

The QD-PMLL used in this work was grown by a gas source molecular beam 

epitaxy on an S-doped <0 0 1> InP substrate. The laser chip was mounted on a 

temperature-controlled copper base maintained at 25℃ for probe testing. Fig. 3-1 

illustrates the spectrum of the QD-PMLL operating at a center wavelength around 1543 
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nm, with a free spectral range (FSR) of 33.6 GHz, under a bias current of 300 mA. The 

lasers exhibit the characteristic square-shaped emission spectrum with a spectral 3dB 

bandwidth larger than 10 nm. To employ a QD-PMLL to generate the pumps for a 

wavelength conversion system, its amplitude and phase noise properties are of 

paramount importance. Four modes of the QD-PMLL were selected randomly and 

individually filtered out and sent to the phase noise and relative intensity noise (RIN) 

measurement setups [19]. The spectral density of the frequency noise (FM-noise 

spectrum) of each of the selected modes is shown in Fig. 3-2. The FM-noise spectra 

exhibit a typical 1/f noise component at low frequencies and a dominant white FM noise 

at larger frequencies exceeding 100 MHz. The 1/f noise at low frequency is mainly 

came from the electronic devices connected to the laser. The increase of the noise at 

frequency above 1 GHz is mainly caused by the Gaussian noise from the measurement 

setup. The intrinsic optical linewidth can be obtained from the flat FM-noise component 

at large frequencies (> 100 MHz), which corresponds to 2~3 MHz. The FM noise 

spectra of each comb tone demonstrates similar levels of phase noise, though there is a 

slight increase when moving from Mode 1 to Mode 4 which is on the edge of the overall 

comb spectrum. 

 

Fig.3-2 The FM noise spectra of selected modes. 

 The RIN measurement setup is showed in Fig.3-3. The selected modes were 

filtered out by a tunable bandpass filter and sent into a 10 GHz bandwidth APD 

photodiode. A bias tee was used after the APD, the DC bias part of the bias tee was 
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connected to a multi-meter for the shot noise measurement, and the RF signal was 

amplified by a high bandwidth RF amplifier. The received signal was finally captured 

by the electrical spectrum analyzer (ESA). The RIN of each individual mode and the 

entire emission spectrum was characterized and illustrated in Fig. 3-4. All modes 

possess considerable intensity noise at frequencies below 2 GHz, but lower intensity 

noise at higher frequencies. However, the measured RIN of the entire emission 

spectrum is reasonably low (~ -130 dB/Hz). This disparity indicates the presence of 

mode-partition noise (MPN) in these devices and has been presented in previous works 

[20]. For wavelength conversion systems, the amplitude noise of the QD-PMLL may 

potentially induce nonlinear phase noise during FWM which will be transferred to the 

idler. 

 

Fig.3-3 RIN measurement setup 

 

Fig.3-4 RIN for selected modes and all modes 
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3.4 Phase noise and FWM 

Consider two pumps with electric field intensities given by, 1pE  and 2pE , 

mixing with a signal having an electrical field intensity of sE , generating an idler 

through FWM with a field iE . Let the phase of the mixing pumps and the signal be 

represented as, 
1 2,p p   and s  respectively. The frequency and the phase of the 

idler are related to the mixing frequencies by, 

2 1i p p s                              (3.1) 

2 1i p p s                               (3.2) 

Unless both pumps have correlated phase noise, the phase noise of the idler is related 

to the phase noise of the mixing frequencies by the following relationship when the 

phase noise of the mixing frequencies is uncorrelated [21-24], 

    
2 2 2 2

1 2i p p s                             (3.3) 

Where 2  represents the variance of the phase noise. For white frequency phase 

noise, the linewidth and the phase error variance are linearly related [22]. Thus it can 

be observed from equation (3.3) that the phase noise of the idler will be the sum of the 

phase noise of the mixing frequencies. 

When the two pumps have correlated phase noise, the phase error variances of the 

idler can be given by [2], 

2 2 2 2

1 2 2, 12cov( )i p p s p p                    (3.4) 

Where 
2, 1p p  represent the fluctuation in the phase of the pumps, and cov(x,y) 

represents the covariance of x and y.  

 When the dual pumps are correlated,  

2 2

2, 1 1 2cov( )p p p p                       (3.5) 

By using equation (3.4) and equation (3.5), the phase error variances of the idler 

can be given by, 
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2 2

i s                              (3.6) 

It can be seen that the phase noise of the idler will be the same as the phase noise 

of the signal. The dual-correlated pumping scheme can be used to eliminate the phase-

noise transfer from the pump to the converted signal in a wavelength conversion system. 

3.5 Wavelength conversion Experiment 
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Fig. 3-5 Schematic of the reconfigurable SOA-based wavelength conversion of QPSK and 16-QAM 

signals employing a QD-PMLL as the pump lasers. PC: polarization controller, PBS: polarization beam 

splitter, OBPF: optical band-pass filter, ISO: isolator, ASE: noise source, EDFA: erbium-doped fiber 

amplifier, VOA: variable optical attenuator, OSA: optical spectrum analyzer, LO: local oscillator, 

Coh.Rx: coherent receiver. 

Fig. 3-5 depicts the schematic of the experimental setup of SOA-based wavelength 

conversion of QPSK and 16-QAM signals using QD-PMLLs as the pump sources. A 

narrow linewidth external cavity laser (ECL) tuned to 1544.12 nm was used as the 

signal source and was modulated with QPSK and 16-QAM data at 12.5-Gbaud using 

an optical “I-Q” modulator. The optical modulator was driven by electrical signals 

generated within the arbitrary waveform generator (AWG) operated at 25 GSa/s which 

gave 2 samples per symbol for the 12.5-Gbaud signal. The generated optical QPSK (or 

16-QAM) signal was coupled with pumps derived by selecting two modes from the 

QD-PMLL using a programmable optical filter (Finisar WaveShaper 1000S). The 

pumps were amplified using an EDFA and then passed through a polarization controller 
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and polarization beam splitter to align the polarization state of the pump to that of the 

data signal. The signal and pumps were then sent into the SOA-based wavelength 

converter. For the wavelength conversion of the QPSK (16-QAM) signal, the power of 

the signal and the pumps at the input of the SOA were set at -10 (-12) dBm and 0 (+4) 

dBm. The signal wavelength undergoes wavelength conversion through non-

degenerate FWM in the SOA (CIP XN-OEC-1550) operating at 500 mA bias current. 

The nonlinear SOA is designed for large conversion efficiency (CE), and the 

wavelength converter system was optimized to yield a CE > 0 dB over a pump detuning 

range of several nm. The wavelength converted idler was filtered out by using a 0.1 nm 

bandwidth tunable optical bandpass filter (OBPF). The filtered idler was then passed 

through a 3 dB splitter with one arm sent to the OSA for measuring the OSNR, and the 

other arm was passed into the polarization diversity coherent optical receiver and 

captured by a real-time oscilloscope sampling at 50 GSa/s for offline DSP processing. 

The power of the local oscillator (LO) was set to be 16 dBm. The input power of the 

idler and the original signal to the coherent receiver was maintained at -19 dBm using 

a power monitor and an optical attenuator. In the DSP module, a timing deskew was 

first implemented to compensate for the timing mismatch between the four outputs of 

the coherent receiver. The data was then resampled to 2 samples per symbol using a 

priori knowledge of the clock frequency. An mth power frequency offset compensation 

method was employed to compensate the frequency offset between the received signal 

and the LO. For QPSK data, a constant modulus algorithm (CMA) with 21-taps was 

employed for equalization. The CMA learning parameter is µ=8×10-4. For 16-QAM 

data, the CMA was used for pre-convergence using 10000 samples of the data, then a 

multi-modulus algorithm (MMA) was employed for steady-state operation. The 2nd 

order decision-directed digital phase-locked loop (DD-PLL) was employed for the 

phase noise estimation [25] with ρ= 0.02 and γ= 0.005, as this has been proven to be a 

better technique to track the carrier phase of the lasers with excess FM noise such as 

the 1/f noise associated with the QD-PMLLs. A training symbol based synchronization 

was employed in order to carry out the BER calculation. 
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3.6 Results and discussion 

The two pumps were selected from the QD-PMLL by using the programmable 

optical filter. The wavelength of pump1 was fixed at 1544.70 nm as shown in Fig. 3-1, 

and the spacing between pump1 and pump2 was changed by selecting other modes of 

the QD-PMLL to tune the wavelength of the converted idler and achieve different 

wavelength detuning. Fig.3-6 shows a typical input (red color) and output (blue color) 

spectra of SOA for the wavelength conversion experiment showing the spectral 

locations of the signal, pump1, pump2 and converted idlers. The maximum OSNR for 

the original signal after SOA is about 30 dB, the maximum OSNR of the idler is ~ 25 

dB. In addition the conversion efficiency is better than 0 dB.  

 

Fig.3-6 Typical input and output spectra of SOA for the wavelength conversion system showing the 

spectral locations of the signal, pump1, pump2 and converted idlers. 

Fig. 3-7 shows the linewidths of the converted idlers as a function of the spacing 

of the two pumps. The intrinsic optical linewidth can be obtained from the flat FM-

noise component at large frequencies (> 100 MHz). Because FM-noise is obtained by 

using the delayed self-heterodyne method [26], the linewidths are calculated from the 

FM-noise spectrum by the simple equation:   / 2S f    . The lowest linewidth is 

around 350 kHz when using two adjacent modes (with 33.6 GHz pump spacing) from 

the QD-PMLL, and the largest linewidth is around 2.4 MHz when the pump spacing is 

302.4 GHz. The linewidths of the idlers are lower than the linewidths of the individual 

QD-PMLL modes (shown in Fig. 3-2) because of the phase noise cancellation when 
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pumps with correlated phase noise are used in the FWM process [6]. The linewidth of 

ECL is ~30 kHz and the increase in linewidth of the idler as the separation between 

comb lines from the QD-MLL increases is due to a loss in the correlation between the 

lines with increased spectral separation [19]. 

 

Fig. 3-7 Linewidth of converted idler as a function of pump spacing. 

The results of the wavelength conversion of the QPSK signal at 12.5 Gbaud are 

shown in Fig. 3-8 which presents the BER versus OSNR curves for the wavelength 

converted idlers when pumps with different spectral separation are used. Only three 

groups of data, with pump spacing of 33.6 GHz (1×FSR), 235.2 GHz (7×FSR) and 

302.4 GHz (9×FSR) are shown and compared with the original QPSK signal after SOA, 

which presents the same performance as the B2B QPSK signal (not shown).  

 

Fig. 3-8 BER as a function of OSNR at receiver for the signal after SOA and wavelength converted 

signal (idler) for 12.5 GBaud QPSK signal 
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Fig. 3-9 BER measurement as a function of pump spacing for wavelength conversion of 12.5 GBaud 

QPSK signal 

There is no penalty between the curves for the original QPSK signal after SOA and 

the converted idler when pump spacing is 33.6 GHz, and both OSNR penalty and BER 

increase with the pump spacing. The degradation in performance is because the phase 

noise correlation of the comb lines from the QD-PMLL will decrease with the increase 

of pump spacing, resulting in increased phase noise transfer from the pumps to the idler 

and hence increased OSNR penalties for the QPSK signal. Fig.3-9 shows the BER 

measurement for the wavelength conversion of 12.5 GBaud QPSK signal at different 

pump spacing when OSNR is kept at 10 dB. It can be observed that BER below 7 % 

FEC limit (BER = 3.8 × 10-3) can be achieved over the range of approximately ±300 

GHz pump spacing. The effect of the 1/f noise at low frequency from the mode-locked 

laser can be one of the reasons for the non-circular constellation diagram shown in 

Fig.3-9. Although the effect of the 1/f noise can be significantly suppressed by using 

2nd order PLL, it is difficult to fully compensate for it. In addition, the non-circular 

constellation can be also caused by the nonlinear phase noise generated during the four-

wave-mixing process in the SOA. 

Fig. 3-10 shows the BER versus OSNR curves for the wavelength conversion of 

12.5 Gbaud 16-QAM signals. The green line presents the performance of the B2B 

system. The blue line presents the BER versus OSNR for the wavelength converted 

idler when using QD-PMLL as the pumps with 33.6 GHz pump spacing. 
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Fig. 3-10 BER versus OSNR performance of the back-to-back system and wavelength converted signal 

(idler) for 12.5 GBaud 16-QAM signals.  

The performance of the wavelength conversion of 16-QAM signal when using two 

low linewidth ECLs as the pump lasers are displayed by the red line in Fig. 3-10 for 

comparison. A large OSNR penalty between the converted idler (employing ECL’s as 

pumps) and the B2B performance is observed in Fig. 3-10. This is due to the nonlinear 

distortions introduced by the SOA on the wavelength converted signal, and the ASE 

noise added by the SOA which will cause more degradation in the multi-level 16-QAM 

signals than for the QPSK system which has a single amplitude level. For the 

wavelength conversion of the 16-QAM signal, the pump to signal power ratio was 

increased to about 16 dB to saturate the SOA gain more strongly in order to overcome 

the nonlinear distortions on the 16-QAM idler introduced by the SOA, this in-turn 

reduces the OSNR of the idler. It can be observed that the BER for the converted idler 

when using the QD-PMLL as the pumps is larger than 3.8 × 10-3. However, with a 20% 

overhead FEC (BER = 2 × 10−2 threshold) employed, only a 17 dB OSNR is needed for 

the wavelength conversion of the 16-QAM signal. A 2 dB OSNR penalty can be 

observed between the curves when using QD-PMLL and ECL’s as the pumps at the 

BER of 2 × 10-2. The 2 dB penalty is mainly due to the larger phase noise of the 

converted idler when using the QD-PMLL as the pump lasers. 



70 
 

3.7 Conclusion 

In this Chapter, an all-optical SOA-based wavelength conversion system using 

tunable dual-correlated pumps derived from the combination of a QD-PMLL with a 

programmable tunable optical filter was demonstrated. The properties of the QD-PMLL 

were analyzed by characterizing the phase noise and the RIN. Then the performance of 

wavelength conversion of QPSK and 16-QAM signals at 12.5 GBaud using the 

proposed scheme was investigated, with total data rates of 25 Gbps and 50 Gbps, 

respectively. For the wavelength conversion of QPSK signal, BER below 3.8 × 10-3 was 

achieved at the OSNR of 10 dB with different pump spacing, tunable over a range of 

~±300 GHz.  For the wavelength conversion of 16-QAM system, BER below 2 × 10−2 

was achieved at the OSNR of 17 dB. These results show the potential use of a QD-

PMLL in a dual correlated pumping wavelength conversion system that employs 

advanced modulation formats.  

This work demonstrates that the phase noise of the laser modes is only partially 

correlated, with increasing de-correlation as the mode separation increases. This leads 

to additional phase noise transfer from the pumps to the idler during the FWM process 

and degradation of the BER performance of the wavelength conversion system. From 

a systems perspective the wavelength conversion system employing QD-PMLLs may 

thus only be suitable for use with QPSK at higher baud rates (e.g. > 20 Gbaud), and 

with a small wavelength conversion range (<1 nm). The jitter of the MLL can 

essentially be eliminated by using injection locking technique [19], thus ensuring no 

phase noise transfer to the idler, and successful wavelength conversion of higher order 

formats such as 16-QAM and above, with a large wavelength conversion range (several 

nm). The mode injection locking has been used to reduce the phase noise of a single 

frequency laser. Injection locking can be achieved by using the active mode locking 

solution, which a narrow linewidth laser will be used as a master laser and fed into the 

slave laser [27]. Another solution is to use the self injection locking technique that the 

output of the laser itself will be fed back to lock the laser. These methods can both 

significantly reduce the phase noise of the laser.  
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Chapter 4  

Reduction of nonlinear distortion in wavelength conversion 

system by post-compensation based on machine learning 

clustering 

4.1 Introduction 

A lot of work has been undertaken on four-wave mixing (FWM) based wavelength 

conversion with advanced signal modulation formats such as 16-QAM and 64-QAM 

by using nonlinear fibers, waveguides, and semiconductor optical amplifiers (SOAs) 

[1-4]. Nonlinear distortion of the wavelength converted signal caused by gain saturation 

effects in the SOA can significantly degrade the signal quality and cause difficulties for 

the practical wavelength conversion of signal data with advanced modulation formats. 

Variations of digital back-propagation (DBP) have been introduced to overcome the 

nonlinear effects in SOA-based WC systems. More specific, a numerical inverse SOA 

has been implemented in WC using DBP, where the dynamic gain equation is typically 

solved using the Runge-Kutta 4th-order method [5-6].  However, DBP is sensitive to 

SOA parameters and the performance can be affected by changes in the condition of 

the wavelength conversion system, and the computational complexity of DBP is quite 

high, forbidding its implementation in real-time signal processing. Recently, 

supervised/unsupervised machine learning for non-blind/blind nonlinear cancellation 

of fiber-induced nonlinearities have been implemented in long-haul coherent optical 

networks [7]. In particular, unsupervised machine learning clustering such as K-means 

and fuzzy-logic are attractive as they are completely blind and do not require training-

data that limits signal capacity [7].   

In this chapter, the wavelength conversion of 16-QAM and 64-QAM signals in an 

SOA-based wavelength converter using degenerate FWM that incorporates machine 

learning clustering based nonlinearity compensation (NLC) to improve the tolerance to 
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nonlinear distortion is demonstrated. Machine learning clustering based NLC is 

performed using K-means and Density-based spatial clustering of applications with 

noise (DBSCAN). Results reveal that the machine learning clustering based NLC has a 

clear benefit due to its ability of tackling the combination of non-circularly-symmetric 

Gaussian noise and nonlinearity. 

4.2 Machine learning clustering algorithms 

 4.2.1 k-means clustering 

The most well-known, K-means (exclusive/hard clustering) is based on an iterative, 

data-partitioning process, assigning n observations to exactly one of k clusters defined 

by centroids, where k is chosen before the algorithm starts. Using the minimum 

Euclidean distance, the centroids of the clusters (centers of constellation points) are 

moved to the densest points/symbols [8]. The Fig.4-1 shows the structure of the k-

means algorithm. Initially, the standard k-means algorithm selects k points at random 

as cluster centers and then proceeds by alternating between two steps: 

Step 1 (assignment): Assign objects to their closest cluster center according to the 

Euclidean distance function. 

Step 2 (centroids update): Calculate the centroid or mean of all objects in each cluster. 

 

Fig.4-1 K-means algorithm 
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Repeat steps 1 and 2 until the same points are assigned to each cluster in 

consecutive rounds. K-Means is relatively an efficient method, however, we need to 

specify the number of clusters, in advance and the final results are sensitive to 

initialization and often terminates at a local optimum. Unfortunately there is no global 

theoretical method to find the optimal number of clusters. A practical approach is to 

compare the outcomes of multiple runs with different k and choose the best one based 

on a predefined criterion. In general, a large k probably decreases the error but increases 

the risk of overfitting. 

 4.2.2 Density-based spatial clustering of applications with noise 

(DBSCAN)  

Two novel modified algorithms are developed, both using DBSCAN [9] to associate 

the received points into their respective clusters. Received constellation points that 

cannot be clustered are defined as “un-clustered” noisy points. However, instead of 

performing linear equalization on these points which leads to underestimating the 

system performance, here we propose to use K-means clustering (method-(1)), or the 

minimum distance between an un-labelled point and the clustered points (method-(2)).  

 

Fig. 4-2: Example of DBSCAN when the number of Min. Points is 4.  

In density-based clustering the algorithm makes an assumption that clusters are 

dense regions in space separated by regions of lower density [10, 11]. A dense cluster 
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is a region which is “density connected”, i.e. the density of points in that region is 

greater than a minimum [12]. Since these algorithms expand clusters based on dense 

connectivity, they can find clusters of arbitrary shapes [12]. DBSCAN is an example of 

a density-based clustering algorithm that deals with stochastic-noisy data. DBSCAN 

searches for dense areas and expands these recursively to find arbitrarily shaped clusters. 

The two main parameters of DBSCAN are the ε (‘Epsilon’) and the ‘minimum points’. 

The ε defines the radius of the “neighborhood region” while the ‘minimum points’ 

define the minimum number of constellation points (symbols) that should be contained 

within that neighbourhood. DBSCAN arbitrarily selects a point from our received 

coherent digital signal, until all points of the signal have been visited. If the predefined 

number of ‘minimum points’ is within the radius-ε, then we consider all these points to 

be part of the same cluster. The clusters are then expanded by recursively repeating the 

neighbourhood calculation for each neighbouring point. However, for the unallocated 

constellation points, if the number of points in the ε-neighbourhood is less than a 

predefined threshold, the points are designated to be “noisy” and not assigned to a 

particular cluster. These noisy data in conventional DBSCAN are not further processed. 

Here we propose to apply as a 2nd stage clustering only for these noisy points: method-

(1) K-means, and method-(2) the minimum distance between an unlabelled point and 

the clustered points. A schematic diagram for conventional DBSCAN is depicted in Fig. 

4-2 when the number of minimum points is 4. In Fig. 4-2 we make the following 

assumptions [13]: 

a. Epsilon neighbourhood (Nε): A set of all constellation points (symbols) within a 

distance ‘ε’.  

b. Core point: A constellation point whose Nε contains at least a ‘minimum point’ 

(including itself).  

c. Direct Density Reachable: A point q is directly density reachable from a point p, 

if p is core point and q ∈ Nε.  

d. Density Reachable: Two constellation points are density reachable if there is a 

chain of ‘direct density reachable’ points that link these two points.  
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e. Border Point: A constellation point that is ‘direct density reachable’ but not a core 

point.  

Noise: Constellations points not belonging to any point’s Nε.  

The steps related to the conventional and modified DBSCAN are listed below, where 

the algorithm converges until all symbols have been allocated to a cluster or labelled as 

‘noisy’ only if conventional DBSCAN is considered (i.e. step 5 below: 1st loop) [11,12]: 

1. Randomly select a constellation point p (referred to Fig. 4-2) in the constellation 

map. 

2. Retrieve all constellation points directly density-reachable from p that satisfy the 

condition of the radius ε limits. 

3. If the constellation point p is a core point, a cluster is formed. Search recursively 

and find all its density connected points and assign them to the same cluster as p. 

4. If p is not a core point, the DBSCAN algorithm “scans” for the rest of the unvisited 

constellation points. 

5. DBSCAN 1st loop: Points that are un-clustered are labelled as zero points (“noisy 

points”) where linear equalization is performed only for these points; and then the 

conventional DBSCAN algorithm stops. 

6. DBSCAN 2nd loop (the extra novel step): 

i. Method-(1): A K-means clustering algorithm is activated for the “noisy points” using 

the Lloyd's algorithm [8,9]: 

a. Assignment: Allocate each observation to the cluster whose mean has the least 

squared Euclidean distance (“nearest” mean).  

b. Update: Calculate the new means to be the centroids of the observations in the new 

clusters. K-means converges when assignments do not change. New selected symbols 

are located in the centroids of each cluster. 

ii. Method-(2): The minimum distance between the unlabelled “noisy points” and the 

clustered points is calculated where all updated symbols are located in the new centroids 

per cluster. 
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4.3 SOA-based wavelength conversion experiment setup 

Fig. 4-3 depicts the schematic diagram of the experimental setup of the SOA-based 

wavelength conversion of the 10 GBaud 16-QAM and 5 GBaud 64-QAM signals. A 

narrow linewidth (<100 kHz) external cavity laser (ECL) tuned to 1549.5 nm is used as 

the signal source and was modulated with data using an optical I-Q modulator. The 

optical modulator is driven by electrical signals generated by the arbitrary waveform 

generator (AWG), operating at 20 GSa/s, with two uncorrelated pseudo-random bit 

sequences (PRBS) of 215-1 bits periodicity. An ECL with linewidth under 100 kHz is 

used as the pump source and fixed at 1550 nm, the pump power is set at 10 dBm for 

both 16-QAM and 64-QAM experiments. The signal and pump are combined by using 

a 3 dB coupler and sent into the SOA-based wavelength converter. The signal undergoes 

wavelength conversion through degenerate FWM in the SOA operating at 450 mA bias 

current. The SOA device used in the experiment is a nonlinear SOA that operates over 

C-band with a typical small signal gain of 20 dB, a saturation power of +9 dBm, and 

noise figure of 10 dB.  After the FWM process in the SOA, the converted idler is then 

filtered out by using a tuneable optical bandpass filter (OBPF). For performance 

evaluation, the OSNR of the idler is changed by adding amplified spontaneous emission 

(ASE) from a fiber amplifier that is passed through a 2 nm bandwidth OBPF.  

 

Fig. 4-3 Experimental setup for the SOA-based wavelength conversion of the 10 GBaud16-QAM and 5 

GBaud 64-QAM signals. PC: polarization controller, VOA: variable optical attenuator, OBPF: optical 

band-pass filter, LO: local oscillator, CMA/MMA: constant/multi-modulus algorithm, CPR: carrier 

phase recovery, DDPLL: decision-directed phase-locked loop. 
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The filtered idler is then split in a 3 dB coupler with one arm sent to the optical 

spectrum analyser (OSA) for the OSNR measurement, and the other arm passed into 

the coherent receiver and captured by a real-time oscilloscope sampling at 50 GSa/s for 

offline DSP. The data is first resampled to 2 samples per symbol using a priori 

knowledge of the clock frequency. Then the constant modulus algorithm (CMA) 

combined with multi-modulus algorithm (MMA) is utilized for signal equalization. An 

Mth power frequency offset compensation method is employed to compensate the 

frequency offset between the signal and the LO in the coherent receiver. The decision-

directed phase-locked loop (PLL) method is employed for the carrier phase recovery, 

and the NLC using machine learning clustering algorithms are placed before the hard 

decision and bit-error-rate (BER) calculation. 

4.4 Results and discussion 

Fig. 4-4 shows the input and output spectra of the SOA showing the locations 

of the signal, pump and idler. Note that the conversion efficiency (CE) is changed 

from -7.5 dB to - 9 dB as we increase the signal power from -11 dBm to 1 dBm as 

shown in Fig.4-5. The CE is defined by the ratio of the power of the idler and the 

power of the input signal. The decrease of the CE with the increase of the input 

signal power shown in Fig. 4-5 is mainly due to the saturation of the gain in the 

SOA. It is ensured that the OSNR and the received power of the idler at the input 

to the coherent receiver is constant. The performance of the proposed machine 

learning clustering based NLC are compared by Q-factor measurement. The Q 

factor is related to BER by 
1

10log [ 2 (2 )]Q erfc BER . 

 

Fig.4-4 Input/output spectra of SOA showing spectral locations of signal, pump and converted idler. 
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Fig.4-5 Conversion efficiency (CE) changed as a function of input signal power. 

 

Fig. 4-6 Q factor vs. signal power for 10GBaud 16-QAM wavelength conversion without (w/o) NLC; 

with K-means and Fuzzy logic algorithms in different OSNR situations (25 dB and 15 dB). 

Fig. 4-6 shows the Q factor versus the input signal power curves for 10 GBaud 16-

QAM wavelength conversion without (w/o) NLC (circle-marked); with K-means 

(upward triangle-marked) algorithm when the OSNR at the receiver is set at 25 dB and 

15 dB. The B-Spline algorithm is used for the curve fitting. The OSNR is measured 

using the same method described in Chapter 2. For 16 QAM wavelength conversion, 

we do not observe significant improvement mainly because the nonlinearity issue is not 

significant due to the strong pump. It can be seen from Fig. 4-6 that for the case with 

an OSNR of 25 dB, K-means algorithm improves the Q-factor by ~0.8 dB when the 

signal power is 3 dBm. The Q factor begins to decrease when the input signal power is 
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under -9 dBm due to the effect of the ASE noise from the SOA. 

 

Fig. 4-7 Q factor versus input signal power curves for 5 GBaud 64-QAM wavelength conversion w/o 

NLC; with K-means and Fuzzy logic algorithms in different OSNR situations (30 dB and 20 dB).  

 

Fig.4-8 Received 64-QAM constellation diagrams with input signal power of 0 dBm and -9 dBm for K-

means and w/o using NLC (OSNR= 30 dB). 

For the case with an OSNR of 15 dB, in general the K-means can give ~0.5 dB Q-

factor improvement. The Q factor improvement for 64-QAM wavelength conversion is 

more significant than the 16-QAM, because the 64-QAM is more sensitive to 
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nonlinearities in the system. K-means algorithm can improve the Q-factor by ~1.8 dB 

(OSNR=30 dB) when the signal power is 0 dBm as shown in Fig.4-7. The constellation 

diagrams for the wavelength conversion of 64-QAM signals (OSNR =30 dB), with 

input signal power of 0 dBm and -9 dBm are shown in Fig.4-8. The nonlinear distortion 

is more serious with a 0 dBm input signal power, and the number of counting errors 

(red dotted) are shown and compared between the cases when K-means is used and w/o 

NLC algorithm is used. It is obvious that the number of errors has been reduced by 

using the K-means algorithm. For the case with -9 dBm signal input power, the 

nonlinear effect is not significant, the K-means can still slightly reduce the number of 

errors caused by the ASE noise from the SOA and the small effect from nonlinear 

distortion. 

(a)

(b)

 

Fig. 4-9: Example of evolution of the minimum constellation points with ε for DBSCAN method-(2) in 

terms of (a) Q-factor and (b) the output number of clusters for 16-QAM WC at optimum -5 dBm of 

input signal power at the SOA with 25 dB of OSNR. 

In order to test the DBSCAN algorithm, a 10 Gbaud 16-QAM signal is injected at 

the input of the SOA at -5 dBm of optical power. Two parameters are needed to optimize 

the DBSCAN algorithm to produce the highest Q-factor, namely ε and the minimum 
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number of constellation points (min. points). The calculated Q-factor while scanning 

for ε and the minimum points is shown in Fig. 4-9(a) for DBSCAN method-(2). The 

highest Q-factor can be found for 0.1 < ε < 0.22 and when the minimum number of 

points is less than 90. It should be noted however, that the optimization DBSCAN 

process is more time consuming for 64-QAM. In Fig. 4-9(b), we also demonstrate that 

the output number of clusters after using DBSCAN are highly affected by the 

aforementioned parameters. 

 

Fig. 4-10: Q-factor vs. input signal power at the SOA for DBSCAN in 16-QAM WC.  

In Fig. 4-10, the performance of the clustering algorithms is compared in 16-QAM 

WC at 15 and 25 dB of OSNR, while in Fig. 4-12 results are presented for 64-QAM 

WC at 30 and 20 dB of OSNR. DBSCAN optimization is performed for every power 

level in Fig. 4-10 and Fig.4-12. Fig. 4-11 depicts the received constellation diagrams 

clustered using DBSCAN method-(2) at 3 dBm of input signal power at the SOA 

(OSNR=25 dB). The left constellation diagram in Fig.4-11 presents the output from the 

1st loop of DBSCAN, in which the “noisy” constellation points are clearly indicated by 

the black circles. From Fig. 4-10, it is evident that the DBSCAN performance benefit 

is significant over linear equalization; up to 1.6 dB improvement in Q-factor, when 

the OSNR is high (25 dB). All clustering algorithms have similar Q-factor except at 1 

dBm of input signal power and low OSNR (15 dB), where DBSCAN method-(2) 
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slightly outperforms the other cases. However, in Fig. 4-12 DBSCAN shows better 

potential in compensating nonlinearities at high OSNR (30 dB). 

Q Q

I

Noise

DBSCAN 1st loop DBSCAN 2nd loop: method-2

I
 

Fig.4-11: Received constellation diagrams for DBSCAN 1st loop with noise (upper diagram) and 2nd 

loop with method-(2) (lower diagram) at 3 dBm of input signal power (OSNR=25 dB). 

 

Fig. 4-12: Q-factor vs. SOA input power for clustering in 64-QAM WC. 

The larger performance benefits in 64-QAM over 16-QAM signifies that DBSCAN 

is more effective for higher-order modulation formats (~0.8 dB Q-factor improvement 

over linear equalization at optimum power). On the other hand, DBSCAN method-(2) 

outperforms method-(1) only at high OSNR and high input powers. This occurs because 

nonlinear distortion is more severe at high input signal powers, causing more rotation 

of the outer-ring clusters and Gaussian-circular shapes are no longer maintained. This 

is justified in the received constellation diagrams of Fig. 4-13 at 0 dBm of input power: 

Method-(1) which involves K-means hard (exclusive) clustering cannot handle well the 



86 
 

rotated non-circular shaped outer-ring clusters, resulting in more errors compared to the 

soft-clustering ability of method-(2). It should also be noted that method-(1) is more 

effective for lower signal powers below -3 dBm. On the contrary, since at lower signal 

powers nonlinearity is not dominant, the clusters maintain their Gaussian-circular shape. 

This enables the hard clustering of K-means and DBSCAN method-1 to be more 

effective than soft-clustering (method-(2)).  

Overall, DBSCAN can reduce the nonlinearity and improve the Q-factor at 

optimum and higher powers/OSNR in 64-QAM, which is the key for future-proof WCs, 

requiring higher-order modulation formats. 

 

Fig. 4-13: Received constellation diagrams for DBSCAN (a) method-1 and (b) method-2 at 0 dBm 

SOA power (OSNR= 30 dB). 

4.5 Conclusion 

In this chapter, wavelength conversion of 10 GBaud 16-QAM and 5 GBaud 64-

QAM signals in an SOA-based single pump configuration that incorporates machine 

learning clustering based blind-NLC is presented to improve the tolerance to nonlinear 

distortion induced from wavelength conversion. The use of NLC can effectively 

improve the Q-factor performance by increasing the tolerance to the nonlinear 

distortion and ASE noise from the SOA. The best Q factor improvement we achieve 

with K-means is ~1.8 dB for the 64-QAM wavelength conversion with an OSNR of 

25dB. K-means can be used to tackle the combined effects of non-circularly-symmetric 
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Gaussian noise and nonlinearity, and be potentially employed in real-time systems due 

to its low complexity.  

The DBSCAN-based NLC for 10 Gbaud 16-QAM and 5 Gbaud 64-QAM SOA-

based WC systems using degenerate FWM was also demonstrated. Two novel modified 

DBSCAN algorithms were proposed, in which the “un-clustered” noisy constellation 

points (symbols) were processed using K-means (method-(1)) or the minimum distance 

between an unlabelled point and the clustered points (method-(2)). DBSCAN showed 

better potential in compensating SOA nonlinearities at high OSNR and for 64-QAM. 

However, at optimum -9 dBm of input signal power in 64-QAM, method-(1) had the 

best performance outperforming linear equalization by ~0.8 dB in Q-factor. The soft-

clustering ability (density-based) of DBSCAN method-(2) was useful at high OSNR 

and high input signal powers at the SOA because the high nonlinearity causes rotation 

of the outer-ring clusters. In such rotated non-circular shaped clusters, method-(1) was 

not effective because it involves K-means hard clustering (center-based). On the other 

hand, since at lower signal powers the impact of nonlinearity is relaxed and the clusters 

maintain a Gaussian-circular shape, method-(1) outperformed method-(2). DBSCAN 

might be sensitive to parameter change, however, results have indicated that it is a 

robust soft-clustering algorithm (method-(2)) for combating the nonlinear distortion 

induced from the SOA in WC systems.  
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Chapter 5  

Narrow Linewidth hybrid InP-TriPleX photonic integrated 

tunable lasers based on micro ring resonators  

5.1 Introduction  

Tunable semiconductor lasers, which can provide wide wavelength tuning range, 

high side-mode suppression ratio (SMSR), high output power, narrow linewidth and 

fast switching speeds are highly desirable for dense wavelength division multiplexing 

(DWDM) systems in current core networks and potentially in future optical access 

networks [1]. In DWDM networks, the use of coherent detection technology combined 

with advanced modulation formats is being employed to achieve higher spectral 

efficiencies to overcome the capacity limitations of current network implementations. 

While quadrature phase shift keying (QPSK) is now widely used in commercial optical 

networks, the use of more advanced modulation formats and constellation diagrams to 

increase the spectral efficiency are being investigated. Recent work has presented 256-

QAM and 1024-QAM optical systems for access and core network applications [2], 

however, as the modulation format is increased the laser linewidth requirements 

become extremely stringent [3]. As outlined in the previous chapters, narrow linewidth 

tunable lasers are also a key requirement for future all-optical wavelength convertors 

based on FWM in SOA’s, and the wavelength conversion of these advanced modulation 

formats will require very narrow linewidth tunable lasers. 

Among various types of tunable lasers, the external cavity lasers (ECL) can exhibit 

narrow linewidth due to their long cavity length and indeed recent work [4] has 

demonstrated an ECL with linewidths below 10 kHz that are suitable for higher order 

modulation in coherent optical systems. Due to the complexity and footprint of the 

ECL’s, distributed feedback (DFB) laser arrays and distributed Bragg reflector (DBR) 

type lasers are the preferred tunable laser options for commercial coherent transceivers 

employing QPSK transmission. However, the linewidth of these devices is typically 

several hundred kHz [5] which limits their use with higher order modulation formats. 
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A new structure of micro ring resonator external cavity laser (MRR-ECL) has recently 

been developed based on the TriPleX waveguide platform [6-8]. TriPleX technology is 

a photonic waveguide platform based on alternating silicon nitride (Si3N4) and silicon 

oxide (SiO2) layers, fabricated with CMOS compatible equipment. It has very low 

optical waveguide losses over a wide wavelength range (from 405 nm to 2350 nm) and 

has shown its potential for application in a number of fields [9]. Waveguide losses as 

low as 0.1dB/m have been measured. The waveguide platform is mature and 

functionality is also captured by verified basic building blocks. This allows the TriPleX 

platform to be one of the three main platforms (next to InP and SOI) to offer the 

corresponding library and associated design kit in Multi Project Wafer (MPW) runs. 

The range of applications can be enhanced by hybrid integration of TriPleX with 

different material platforms, to include increased optical functionality [10], which may 

make these devices suitable for future coherent transceivers in optical networking 

applications. 

In this chapter, the tuning map, the relative intensity noise (RIN), linewidth, and 

switching time of the MRR-ECL based on the TriPleX waveguide platform are 

characterized, before demonstrating its performance in a coherent transmission system. 

A detailed characterization of the laser linewidth was undertaken across the whole 

tuning range by using the delayed self-heterodyne (DSH) method. The results show that 

the device has a lowest linewidth of ~35 kHz and linewidth less than 80 kHz over the 

whole tuning range. This work demonstrates the switching time of the laser when it is 

switched between two adjacent modes and non-adjacent modes. Finally, the device is 

applied in coherent 16-QAM and 64-QAM transmission systems as the laser source, 

and achieves similar performance to a commercial external cavity laser source. 

5.2 Laser design 

The structure of the device is schematically shown in Fig. 5-1. The pigtailed hybrid 

laser assembly has two optimized optical interfaces: the InP coupled to the TriPleX 

photonic integrated circuit (PIC), forming the hybrid tunable laser cavity; and the 

TriPleX PIC coupled to the polarization maintaining (PM) fiber output. The 
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InP/InGaAsP seminconductor optical amplifier (SOA) chip is provided by the 

Fraunhofer Heinrich Hertz Institute (HHI).  

 

Fig. 5-1 Schematic diagram of a MRR-ECL [7].  

The InP based SOA has a high reflective (HR) coated back-facet to reduce cavity 

losses, and a low reflectivity front facet to impose lasing on the external TriPleX cavity. 

The TriPleX waveguide circuit consists of two cascaded MRRs with slightly different 

radii, exploiting the Vernier effect to achieve wavelength tuning. The radii as well as 

the power coupling coefficients of the MRRs are chosen such that the free spectral range 

(FSR) of the mirror exceeds the 3 dB gain bandwidth of the SOA thereby suppressing 

the spectral side peaks of the mirror response to avoid lasing at undesired side modes. 

The result is a highly frequency selective feedback mirror enforcing single-frequency 

operation. The low propagation loss of the TriPleX waveguides allows for high quality 

resonators, resulting in several cm’s of effective optical path length inside the cavity. In 

addition, by optimized on-chip spot-size convertors [9], very efficient coupling to a 

range of mode fields ranging from standard SM fiber (10 microns) to the modes of the 

InP gain section (3 microns) is achieved, resulting in low loss chip-to-chip coupling 

(<1dB) between the InP and the TriPleX. The resulting laser cavity has a large cavity 

photon lifetime enabling narrow spectral linewidth performance compared to typical 

DFB/DBR lasers. The phase section of the device can be used to tune the longitudinal 

mode to achieve fine tuning of the wavelengths, and the output power can be optimized 

by using the power tuning section. The device is subsequently packaged in a fiber 

pigtailed butterfly package (as shown in Fig 5-2) containing a thermistor and 

thermoelectric cooler (TEC) for accurate thermal control of the device. The footprint 
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of the MRR-ECL is comparable to conventional DFB and DBR lasers, but is smaller 

than conventional ECL. More details of the device including details on the radii of the 

rings and individual FSR can be found in [7, 9]. 

 

 Fig.5-2 Photograph of fiber pigtailed hybrid tunable laser in a butterfly package containing a TEC and 

NTC for thermal control of the narrow linewidth laser cavity. 

5.3 Laser characterization 

The packaged MRR-ECL was mounted on a circuit board and the temperature was 

set at room temperature (23 ℃) using the laser diode thermoelectric cooler (TEC). The 

threshold current of the device was measured to be around 13 mA. Fig. 5-3 and Fig. 5-

4 show the tuning map and side mode suppression ratio of the MRR-ECL as a function 

of the voltage applied at the two ring resonators. The current on the SOA was kept at 

70 mA throughout the tuning map measurements. In Fig.5-3 and Fig. 5-4, the voltage 

on the two ring sections was tuned from 0 to 10 V. Coarse tuning can be achieved by 

adjusting the voltage to either of the rings independently and more precise wavelength 

tuning can be achieved by using both rings together.  

 

Fig. 5-3 Wavelength tuning map  
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Fig. 5-4 Side mode suppression ratio (SMSR) of MRR-ECL versus voltage on the rings. 

It can be seen from Fig.5-3 and Fig.5-4, the device has a tuning range of more than 

50 nm (1530 nm~1580 nm) with a SMSR in excess of 50 dB across all wavelengths. 

High output power (~10 dBm) can be attained by increasing the current into the SOA 

to greater than 200 mA, and using the power tuning section to optimize output power. 

Fig. 5-5 shows the superimposed spectra of the laser covering the whole C-band from 

1530 nm to 1580 nm with an output power of ~10 dBm on each wavelength achieved 

with 200 mA current applied to the SOA. The spectral flatness of the laser is under 3 

dB. 

 

Fig.5-5 Superimposed laser spectra.       
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The relative intensity noise (RIN) was measured to be less -130 dB/Hz at 70mA 

current to the SOA as shown in Fig. 5-6 by using a basic RIN-measurement setup. The 

other sections of the laser were not used. The output of the laser was passed through an 

isolator and sent into a high speed (~40 GHz bandwidth) photodetector. A bias-tee was 

used to separate the DC and AC signal from the photodetector. The DC signal was 

measured to estimate the shot noise of the photodetector, and the AC signal was 

amplified and characterized by using an electrical spectrum analyzer.  

 

Fig. 5-6 RIN measurement 

 

 

Fig. 5-7 Delayed Self-Heterodyne (DSH) Linewidth and FM-noise measurement setup 

In order to characterize the phase noise of the laser, the delayed self-heterodyne 

method was used. The diagram of the measurement setup is shown in Fig. 5-7. The 

laser output was firstly divided into two parts, with one part of the light passed through 

a 12 km single mode fiber to introduce a sufficient time delay to de-correlate the signals 

in the two arms, while the other part was modulated by an optical phase modulator with 

a 2 GHz RF signal. A 10 GHz photodiode was used to detect the signal after the two 

optical signals were recombined by an optical coupler. Then the linewidth spectrum can 

be observed by using an electrical spectrum analyzer. To characterize the FM-noise of 
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the laser, a real-time scope operating at 10 GSa/s sampling rate was used to capture 

400,000 data samples from the detected signal for off-line digital signal processing 

(DSP). By analyzing the data using the technique in [12], the full information of the 

laser phase noise can be recovered and the FM-noise spectrum can be obtained. 

 

Fig. 5-8 Linewidth measurement  

 

Fig. 5-9 FM-noise measurement 

 The linewidth of the MRR-ECL was characterized and compared with another 

commercial ECL (Keysight N771AA ECL). As presented in Fig.5-8 the full spectral 

width of the MRR-ECL at 20 dB down from the peak is around 800 kHz, which 

corresponds to a laser 3 dB linewidth of 40 kHz at an injection current of 70 mA to the 

SOA and no voltage applied to the ring resonators. The 20 dB linewidth of the Keysight 

N771AA ECL is around 1.2 MHz, which corresponds to a 3 dB linewidth of 60 KHz. 

It is noted that the linewidths measured with the DSH technique include contributions 

from the white noise and 1/f noise of the lasers characterized. 

Fig.5-9 shows the phase noise measurement results for the MRR-ECL and two 
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commercial ECL’s (Keysight N771AA ECL, and ID Photonics ECL). The power of the 

lasers were kept the same at ~5 dBm in this phase noise measurements. It is clear from 

Fig.5-9 that the MRR-ECL has the lowest white noise (corresponding to an intrinsic 

linewidth of less than 10 kHz) among the three types of lasers and a low frequency 

phase noise (1/f noise) that is lower than the ID Photonics ECL and compares well with 

the Keysight ECL. The ID photonics tunable laser used in this measurement is the 

PureSpectrumTM tunable narrow-linewidth laser (PS-TNL) manufactured by Teraxion. 

The white noise optical filtering technology based on ultra-narrowband muti-

wavelength fiber Bragg grating (FBG) has been applied on this laser to reduce the white 

noise at high frequency (GHz). The white noise filtering system only shows its benefits 

at high frequency, however the worse phase noise performance of this PS-TNL at low 

frequency (1/f noise) is mainly caused by the filtering system.  

Fig. 5-10 shows the linewidth of the MRR-ECL measured using the DSH technique, 

as a function of wavelength, with linewidth under 80 kHz over the whole tuning range. 

The current on the SOA section was kept at about 80 mA in this measurement. The 

lowest linewidth can be achieved at around 35 kHz at 1554 nm wavelength, with 

slightly larger linewidths observed when the laser was operated at higher wavelengths.  

 
Fig. 5-10 Measured linewidth as a function of laser wavelength for MRR-ECL. 

The linewidth of the tunable laser as a function of biasing current on the SOA, with 

no voltage applied on the other sections is shown in Fig. 5-11. The laser operates at 

~1550 nm wavelength. The laser shows best linewidth performance (35 kHz) with a 

biasing current of 80 mA. And the highest linewidth (56 kHz) is observed with a biasing 

current of 190 mA. The linewidth measurements cannot be achieved when the SOA 
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current is kept at 100 mA, 150 mA, 160 mA and 170 mA due to the multi-wavelength 

operation of the laser. As stated before it should be noted that these linewidth values 

calculated from the DSH setup include frequency noise contributions from 1/f laser 

noise and the intrinsic white noise is lower than the values presented here. 

 

Fig. 5-11 Measured linewidth as a function of SOA injected current for MRR-ECL. 

 

Fig. 5-12 Laser switching times between two adjacent modes 

 

Fig. 5-13 Laser switching times between two non-adjacent modes 
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Finally, the tuning time of the laser was measured by applying a 100 Hz clock signal 

to one ring section to switch the laser between two adjacent modes and then non-

adjacent modes, filtering out each mode with a 0.2 nm bandwidth optical bandpass filter, 

and then measuring the detected power in each wavelength as a function of time with a 

10 GHz photodetector and a real time scope. In Fig. 5-12, the amplitude of the switching 

signal was switched from 3.3 V to 4.5V to tune the laser wavelength from initial mode 

(1553.51 nm) to destination mode (1555.23 nm). Fig. 5-12 shows the received power 

on the initial wavelength and the wavelength the laser is switched to, indicating it takes 

about 100 microseconds after the clock edge for the thermal tuning of the ring to induce 

the wavelength switch [13], but the actual switch between wavelengths occurs on a sub 

microsecond time scale. Fig. 5-13 shows the result when switching between two non-

adjacent modes by switching the signal amplitude from 4.6 V to 3.4 V. In this scenario, 

there is a middle mode (1550.22 nm) between the initial mode (1556.94 nm) and 

destination mode (1553.51 nm). The laser initially switches from the initial mode (blue 

line) to the middle mode which is represented by the black coloured line in Fig.5-13, 

and it takes totally ~250 microseconds after the applied electrical switching signal for 

the laser to reach the destination wavelength (red line).  

5.4 Coherent transmission experiment 

In order to evaluate the performance of the TriPleX based MRR-ECL in an optical 

coherent system, the laser was utilized in a coherent setup as the signal source tuned to 

1550 nm and was modulated with 16-QAM data at 12.5-Gbaud using an optical “I-Q” 

modulator. In order to further highlight the excellent linewidth and low phase noise 

properties of the device, the order of the modulation format was increased to 64-QAM 

and the baud rate was reduced to 5 Gbaud. For the coherent 64-QAM experiment, two 

wavelengths (1550.2 nm 1567.5 nm) of the MRR-ECL (with slight different linewidths) 

were used in the experiment. Fig. 5-14 shows the experimental setup used for the 

12.5Gbaud 16QAM and 5 Gbaud 64-QAM coherent transmission. A commercial ECL 

(Keysight N7711A) was also used in the transmission experiments in order to compare 

with the performance of the MRR-ECL. The optical I-Q modulator was driven by two 
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electrical signals generated from an arbitrary waveform generator (AWG) which 

operated at 25 GSa/s, with data streams consisting of two uncorrelated pseudo-random 

bit sequences (PRBS) of 215-1 bits periodicity. The modulated optical signal was then 

passed through a 3 dB splitter with one arm sent to the OSA for measuring the OSNR, 

and the other passed into the coherent optical receiver and captured by a real-time 

oscilloscope sampling at 50 GSa/s. The optical signal to noise ratio (OSNR) was 

changed by adding amplified spontaneous emission (ASE) from an Erbium-doped fiber 

amplifier (EDFA) that is passed through a 2 nm bandwidth tunable optical bandpass 

filter. The received signal power at the input of the coherent receiver was maintained at 

−19 dBm. The local oscillator (LO) used in the setup was a commercial ECL laser with 

a typical linewidth of ~50 kHz.  

 

Fig. 5-14 Schematic of the experimental setup for 64-QAM coherent transmission. 

  

Fig. 5-15 BER versus OSNR curve for 16 QAM data signal at 12.5 Gbaud with constellation diagram 

for 12.5 Gbaud16-QAM at OSNR of 19 dBm 

The required DSP functionality was performed offline. The data was first 
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resampled to 2 samples per symbol using a priori knowledge of the clock frequency. 

Then the constant modulus algorithm (CMA) combined with multi-modulus algorithm 

(MMA) was utilized for the equalization [14-16]. An Mth power frequency offset 

compensation method is employed to compensate the frequency offset between the 

signal and the LO in the coherent receiver [17]. The decision-directed phase-locked 

loop (DD-PLL) method was employed for the carrier phase recovery, and the 

synchronization is achieved by adding training symbols at the beginning of the data in 

order to carry out the BER calculation [18]. The performance of the MRR-ECL in terms 

of BER versus OSNR was verified to be comparable to a commercial ECL laser 

(Keysight N7711A) as shown in Fig.5-15, and the constellation diagram of the 12.5 

Gbaud 16-QAM signal at an OSNR of 19 dB is presented in Fig. 5-15. These results 

indicate the excellent performance of this tunable laser in a coherent optical 

communication system. 

 

Fig. 5-16 OSNR versus BER curve for 64-QAM at 5 Gbaud 

The results for the coherent 64-QAM system at 5 Gbaud when using the MRR-

ECL laser at two operating wavelengths, and the commercial laser, are presented in Fig. 

5-16. The BER is displayed as a function of received OSNR and the constellation 

diagram of the received 64-QAM signal when using MRR-ECL at 1550.2nm and an 

OSNR of 21 dB is presented in Fig. 5-16. It can be observed from Fig. 5-16 that the 



102 
 

OSNR penalty compared with the theoretical curve at a BER of 10−3 is about 5.5 dB, 

and the performance of the MRR-ECL in terms of BER versus OSNR in the case of 

coherent 64-QAM systems operating at 5 Gbaud was verified to be comparable to a 

commercial ECL laser. As the MRR-ECL is tuned from 1550.2 nm to 1567.5 nm, a 

small penalty in the BER performance (~0.5dB at a BER of 10−3) can be observed due 

to the slightly increased linewidth at this wavelength. Nevertheless, these results 

indicate the excellent performance of the presented MRR-ECL in a coherent optical 

communication system with higher order modulation formats. 

5.5 Conclusions  

 

In this chapter, detailed characterization of a hybrid InP-TriPleX integrated tunable 

laser based on silicon nitride micro ring resonators has been presented. The 

performance of the MRR-ECL laser was investigated in the coherent transmission 

system for 12.5 Gbaud 16-QAM and 5 Gbaud 64-QAM signals, and the presented laser 

exhibits comparable performance with a commercial ECL laser. A tuning range of 

around 50 nm with high output power (~10 dBm), high SMSR (>50 dB), and narrow 

linewidth of under 80 kHz across the whole tuning range makes this a promising device 

for use in coherent communication systems employing higher order modulation formats. 

 Furthermore, the laser presents narrow linewidth and the ability to be switched in 

several hundred µs level, which makes the device suitable for potential integrated 

wavelength conversion system, especially given the ease of integration of the PIC. The 

MRR-ECL can be potentially integrated with SOA and micro ring resonators based 

optical tunable filters on the same chip in order to build a compact, stable and practical 

reconfigurable wavelength convertor for the future optical networks. 
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Chapter 6 

Conclusions and Future work  

Future optical networks need to be more reconfigurable in order to increase the 

switching efficiency and reduce the network latency. Wavelength converters will 

potentially play an important role in network nodes to avoid contention and to 

dynamically allocate wavelengths to ensure optimum use of fiber bandwidth. All-

optical wavelength conversion can be employed to avoid the use of optical-to-electrical-

to-optical (OEO) convertors and significantly reduce the power consumption of the 

transmission system. In this thesis, the SOA-based wavelength conversion system with 

the use of different tunable lasers including a sampled-grating distributed Bragg 

reflector (SGDBR) laser, a quantum dash passively mode-locked laser (QD-PMLL) and 

narrow linewidth external cavity lasers (ECLs) as the pump sources is demonstrated 

and investigated. The thesis investigates how these tunable lasers can be controlled to 

ensure that the incoming data packets can be converted to the required wavelength 

channel without degradation in signal performance. Other issues such as the phase noise 

transfer and the nonlinear distortion effect during the wavelength conversion process 

are also studied.  

6.1 Main contributions of this thesis 

The contributions of this thesis can be described as follows: 

 Implementation of fast reconfigurable wavelength conversion system using a 

rapid switching SGDBR laser as the pump.  The tuning maps (wavelength 

and SMSR), the linewidth and tuning speed of the SGDBR laser are 

characterized before the demonstration of the wavelength conversion of QPSK 

and Pol-Mul-QPSK signals at 12.5-Gbaud using the proposed scheme. The 

time-resolved bit error rate (TR-BER) is used to estimate the reconfiguration 
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time of the wavelength conversion system in a switching scenario. Below 50 

ns and 160 ns reconfiguration time is achieved for the proposed wavelength 

conversion system for QPSK and PM-QPSK signals, respectively.  

 Demonstration of all-optical SOA-based wavelength conversion system using 

lines from a single-section quantum dash passively mode-locked laser and 

detailed investigation of how the correlation between comb lines effects system 

performance. The tunable pumps are generated by the combination of the mode 

locked laser and a tunable optical filter. The phase noise and relative intensity 

noise (RIN) of the mode locked laser are measured, and wavelength conversion 

of 12.5 Gbaud QPSK and 16-QAM data over a range of pump spacings 

exceeding 300 GHz using the proposed scheme is achieved.  

 Machine learning clustering based nonlinearity compensation is performed 

using K-means and Density-based spatial clustering of applications with noise 

(DBSCAN), to reduce the nonlinear distortion in SOA-based wavelength 

conversion system with 16-QAM and 64-QAM modulation format. Results 

show that the proposed novel machine learning algorithms can significantly 

improve the BER performance due to their ability to tackle the combination of 

non-circularly-symmetric Gaussian noise and nonlinearity. 

 A novel tunable laser design using micro ring resonators (MRRs) is investigated. 

The tuning map, the RIN, linewidth, and switching time of the MRR-ECL based 

on the TriPleX waveguide platform are characterized. The laser is employed in 

coherent transmission systems using advanced modulation formats such as 

QPSK, 16-QAM and 64-QAM, and shows similar performance compare to 

commercial ECLs. The laser presents narrow linewidth, rapid tuning speed at 

several hundred µs level and can be potentially integrated with SOA and micro 

ring resonators based optical tunable filters, which make it suitable for a 

photonic integrated wavelength conversion solution. 
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6.2 Future research directions 

 Firstly, the linewidth and stability of the quantum dash passively mode-locked 

laser can be improved by using the resonant external optical feedback [1]. The 

wavelength conversion of 64-QAM or more advanced modulation formats 

signals can thus be potentially achieved. 

 Secondly, two tunable MRR-ECL lasers can be integrated and be used as the 

pump sources in a reconfigurable dual-pumping scheme wavelength conversion 

system. The integrated two pump lasers can offer narrow linewidth, large 

wavelength tuning range, fast switching speed and high stability for the 

wavelength convertors, which might be a solution for the future practical 

wavelength conversion system. 

 Finally, real-time implementation of the K-means algorithms to compensate the 

nonlinear distortion in the wavelength conversion system. The real-time K-

means can also be used for long-haul transmission system to compensate the 

distortion caused by the Kerr effect. 
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