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Abstract

Calculating the confidence interval is a common procedure in data analysis and is
readily obtained from normally distributed populations with the familiar
T+ (txs)//mn formula. However, when working with non-normally distributed
data, determining the confidence interval is not as obvious. For this type of data,
there are fewer references in the literature, and they are much less accessible.
We describe, in simple language, the percentile and bias-corrected and acceler-
ated variations of the bootstrap method to calculate confidence intervals. This
method can be applied to a wide variety of parameters (mean, median, slope of a
calibration curve, etc.) and is appropriate for normal and non-normal data sets.
As a worked example, the confidence interval around the median concentration
of cocaine in femoral blood is calculated using bootstrap techniques. The median
of the non-toxic concentrations was 46.7 ng/mL with a 95% confidence interval
of 23.9-85.8 ng/mL in the non-normally distributed set of 45 postmortem cases.
This method should be used to lead to more statistically sound and accurate
confidence intervals for non-normally distributed populations, such as reference
values of therapeutic and toxic drug concentration, as well as situations of trun-
cated concentration values near the limit of quantification or cutoff of a method.
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1. Introduction

Determination of population statistical parameters (e.g., p and o) are com-
mon goals in forensic toxicology calculations. Unfortunately, most often the tox-
icologist must settle for estimates of these parameters, such as confidence inter-
vals, based on sample measurements (e.g., p = T£({xs)/\/n). A fundamental
assumption of these parametric calculations is that the underlying population is
normally distributed. Parametric calculations (1 and o based on z and s) are
incorrect when the data are non-normally distributed [1]. However, there are sev-
eral situations in forensic toxicology where calculations with non-normal data are
required. For example, the distribution of blood concentrations of a given drug
in a population (e.g., blood concentrations of methamphetamine in driving under
influence cases) is often log-normal [2]. Quantification results might also yield
non-normal data at the lower limit of quantification (LOQ) or cutoff. Indeed,
all values below the LOQ/cutoff are reported as “not quantified”; the distribu-
tion of values is therefore truncated and non-symmetrical. In these situations,
resampling techniques provide a viable alternative to the traditional parametric
approaches by making no assumptions about the underlying population distri-
bution. This powerful statistical approach is widely accepted in the statistics
community and is gaining acceptance in other disciplines [3, 4]. Unfortunately,
the literature, and until recently the software, describing and performing these
calculations has not been readily accessible to the Chemistry and Bioanalysis
communities. In order to fill-in this gap, we will focus on one resampling tech-
nique called “the bootstrap” due to its simplicity, efficacy and appropriateness
to the task of calculating confidence intervals. The method is then applied in the
calculation of a confidence interval for the median concentration of the approxi-
mately log-normal distribution of cocaine concentrations in postmortem femoral
blood in the 2012-2013 cases in the province of Québec (Canada).

2. Materials and methods

2.1. Selection of cases

All 45 postmortem cases in Québec where non-toxic concentrations of cocaine
was found in the femoral blood in years 2012-2013 were selected for this analysis.
Six cases with cocaine concentrations ranging from 494 to 2 880 ng/mlL were
determined to be intoxications by the forensic toxicologist and were not included
in the analyzed data set. Femoral blood was collected by the forensic pathologist
in a BD Vacutainer storage tube containing 100 mg of sodium fluoride and 20 mg
of potassium oxalate from the femoral vein and stored at 4 °C.



2.2. LC-MS-MS quantification

Cocaine was spiked in bovine blood at concentrations of 5, 10, 50, 100, 500
and 1 000 ng/mL to determine the calibration function. Cocaine-Dg was used as
an internal standard and produced a quadratic, 1/z weighted, calibration model.
Solid phase extraction (SPE) of the analytes was performed using Oasis car-
tridges (HLB 3cc, product WAT094226; Waters, Mississauga, ON, Canada). A
volume of 2 mL of blood was extracted and reconstituted in 100 mL of 15:85
methanol:ammonium formate (10 mM) after evaporation of the eluate. An
aliquot (5 mL) was injected on an Agilent 1200 HPLC equipped with an AB Sciex
4000 QTrap mass detector. A 25-min step/ramp gradient from 10 mM ammo-
nium formate + 0.2% formic acid to methanol was run on an Agilent Zorbax
Eclipse C18 column (100 x 2.1 mm, 3.5 pwm). Quantitative analysis was per-
formed with m/z transition 305.1/183.0 (}3C mass was used in Q1 to reduce the
signal), whereas transition 304.1/91.0 was used to confirm the identity of the an-
alyte. The ratio of area of the analyte peak to the area of the internal standard
peak was used as the response to determine the calibration function.

2.8. Statistical calculations

2.8.1. Normality testing and distribution of concentration values

MATLAB (version 7.12.0 R2011a; The Mathworks, Natick, MA, USA) was
used to perform all calculations. The script used for the data analysis is available,
with extensive comments, in Supplementary Data S2. The reader is encouraged

to reproduce the results using it as a reference. Publication figures were produced
in Excel 2010 (Microsoft, Redmond, WA, USA).

Non-normal distribution of the cocaine blood concentrations was confirmed
using the Kolmogorov—Smirnov test (kstest function) on the standardized con-
centration data (zscore function). The zscore function applies the transfor-
mation Xy = (X =2)/s to every data point (X), where Xp is the corresponding
standardized data point, x is the original data average and s is the original data
standard deviation. The standardized data has a mean of 0 and a standard de-
viation of 1. The kstest function tests the standardized data against the null
hypothesis that the data follow a standard normal distribution, as illustrated in
Figure S3 of Supplementary Data S1. A P < 0.05 indicates that the data do not
follow a normal distribution (95% confidence level).

A histogram of the cocaine concentrations was obtained using 7 bins (hist
function) and plotted in Excel. A good rule of thumb for the production of his-

tograms is that the number of bins should be equal to the square root of the
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sample size, up to a number of 25 bins [5].

2.8.2. Percentile bootstrap and number of resamples

For readers unfamiliar with the resampling process, a detailed description is
given in the Section 3. The medians of 2 000 resamples were obtained using the
bootstrp(nboot, bootfun, di) function. The function’s arguments are nboot,
the number of bootstrap calculations (resamplings), bootfun, the name of the
function that will operate on each of the bootstrap resamples and d1, the (col-
umn) vector containing the cocaine concentration data (Coc_FB) from which each
resample is drawn. In this case, the median was calculated, therefore Gmedian
was used as the bootfun argument. The @ symbol instructs MATLAB to treat
the text (median) as a function call. Thus, the MATLAB command was written
as: result = bootstrp(2000, @median, Coc_FB). Thirty (30) different sets of
2 000 median values were obtained and used to produce a distribution histogram
of the medians.

To study the effect of the number of resamples on the calculated confidence
intervals, the bootci function was used as: bootci(mnboot, {bootfun, di},
‘type’, ‘mame’). This function can take a series of arguments that refine
the calculation, but here only the following were needed: nboot, bootfun and
d1, which were described previously and the ‘type’, ‘name’ pair which defines
the type of bootstrap variation and was set to ‘per’ (percentile; i.e., ‘type’,
‘per’). The number of resamples (nboot) was set sequentially at 50, 100, 500,
1 000 and 2 000. Thus, for a nboot of 2 000 the command was written as: CI
= bootci(2000, {@median, Coc FB}, ‘type’, ‘per’). Calculation of confi-
dence intervals was repeated 30 times for each nboot value. The « value was
kept at the default 0.05 (95% confidence level), but could be changed, if desired,
by adding an argument (‘alpha’, alpha value) to the bootci function argument
list.

2.8.8. Bootstrap variations

To study the effect of the variation of the bootstrap method used, confidence
intervals were obtained with the bootci function ‘type’ set to ‘per’ (percentile)
and ‘bca’ (bias corrected and accelerated) variations at 2 000 resamples. Cal-
culation of the confidence intervals was repeated 30 times for each bootstrap
method.



3. Results and discussion

8.1. Normality testing and distribution of concentration values

The original set of concentrations is available in Table 1. The 45 postmortem
cocaine cases follow a non-normal distribution as shown in Figure 1 and as con-
firmed by the Kolmogorov-Smirnov test (P = 0.0084). Visually, the distribution
of the concentration values is far from a normal distribution and seems to be
closer to a log-normal distribution, which is frequently encountered in this kind
of forensic bioanalysis [2] and is representative of a non-normal data distribution.
Expected histograms from a normal and a log-normal distribution are shown in
Supplementary Data S1 for reference.

Table 1: Cocaine concentration (ng/mL) in femoral blood of 45 suspicious death cases

7.67, 103, 10.8, 13.8, 14.0, 14.0, 14.9, 15.0, 15.1, 16.8, 17.5, 17.8, 18, 19.4, 21.6, 23.1, 23.9,
27.5, 2838, 36.0,37.2,40.5, 46.7, 49.3, 61.3, 79.0, 79.2, 82.0, 85.8, 88.6, 93.7, 95.1, 99.1, 118,
122,128, 177, 243, 256, 287, 340, 349, 398, 420, 437

Figure 1: Histogram of the concentrations of cocaine in femoral blood
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There are two widely used measures of central tendency. The mean is used
with symmetrical data distributions whereas the median is more appropriate with
skewed data distributions such as this data set. The median concentration of this
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data was 46.7 ng/mL.

3.2. The bootstrap

The rigorous method of determining population parameters (i.e., p, o, me-
dian) is to sample the entire population (e.g., the cocaine concentrations in
femoral blood) to allow direct calculation of the population parameter(s) and
their distributions. Unfortunately, this technique is usually not feasible due to
the size of the population. Instead, the population is sampled and the population
parameters (u, o) are inferred from the sampled observations. From this sample,
an estimator for each unknown parameter (e.g., T estimates p, o estimates s) is
computed. This expediency usually requires making an assumption about the un-
derlying distribution (i.e., normality). In cases where the underlying distribution
is misspecified the inferred population parameters can be dramatically in error [6].

Making normality assumptions is only required because it is too costly to
collect large sets of data from the population. In the bootstrap resampling sta-
tistical approach, the simple assumption is made that the collected sample data,
having being drawn from the population, are the best available representative
of the population. Since it is the best available representation of the popula-
tion, any new set of data drawn from the sample (i.e., resampled data), and any
parameter (B) calculated from the resampled data, is also characteristic of the
population. If the sample set is resampled with replacement nboot times then a
set of parameters (By to Bppoot) can be “collected” very inexpensively. In the
bootstrap method, each of the sets is collected using unbiased resampling where,
conceptually, a value is drawn out of the sample data set at random, noted and
replaced in the sample data set until a set equal in size to the original has been
collected. Clearly, the make-up of the resampled sets is governed by random
chance and consequently the calculated parameter set will take on a range of
values with a sampling distribution similar to that of the population provided
that nboot is large enough to allow the distribution to converge, that is, to reach
a stable profile [7]. Notably, the bootstrap approach reproduces the distribution
of the original population rather than making assumptions about it.

To utilize this set of parameters for confidence interval determination, the By
to Bnpoot parameter values are ordered in ascending order and the bottom and
top (¢/2) x nboot B values are determined [8]. For example, if 2 000 resamples are
taken and the resulting 2 000 median values are ordered and labeled By to Bsggo,
then the lower limit of the 95% confidence interval (o = 0.05) of the median sits
at Bsp (the first (0-05/2) x 2000 values are excluded) and the corresponding upper
limit is at Bigsg. The confidence interval thus includes 95% of the calculated
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medians. A confidence interval for the median is interpreted in the same way as
a confidence interval for the mean, i.e., 95% of the time the population median
value lies within the confidence interval boundaries.

Bootstrap resampling was applied to the femoral blood cocaine concentration
data. Thirty (30) sets of 2 000 resamples (nboot) were obtained, and the median
was calculated for each of the resamples. A distribution of the 2 000 medians
was obtained for each of the 30 sets; the overall distribution is summarized in
Figure 2. The error bars (% coefficient of variation) illustrate the variability of
the distributions of the 30 sets of medians. Notably, the relative standard devia-
tions in the first and the last three bins corresponding to 16-28, 94-105, 105-116
and 116-128 ng/mL are large and went up to a maximum of 84%, whereas in
the six central bins the relative standard deviation is always below 6%. This is a
result of the random sampling process, which produces quite variable individual
median values at the extremities of the median distribution. However, the values
found at the confidence interval boundaries, (¢/2) x nboot, are constant provided
that nboot is large enough to eliminate these unstable values.

Figure 2: Distribution of medians for 2 000 resamples. Error bars represent the standard
deviation of frequency over 30 bootstrap samples of 2 000 resamples each
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One point of debate is how many resamples are required to obtain reliable
confidence intervals. A potential of n™ different resamples exist in a sample set
of n values so the resampling process nearly always represents a very small frac-
tion of this number. Just as in sampling from any population, there are no hard

and fast rules. It takes relatively few measurements to establish the value of the
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parameter but additional measurements are required to establish the distribu-
tion. When calculating 90-95% confidence intervals, it is generally agreed that
the number of resamples should be between 1 000 and 2 000 [9]. By using many
resamples it is possible to consistently determine the confidence interval bound-
aries without undue influence from outlier values. The weight of the extreme
values is reduced by the sampling process, which is a big advantage of the boot-
strap technique. This is illustrated by calculating 30 replicates of the confidence
interval of the median for resample values of 50, 100, 500, 1 000 and 2 000 of the
femoral blood cocaine concentration data. The results (Table 2) illustrate that
with fewer resamples a larger range of values for confidence interval boundaries
are obtained. In this case, the lower and upper boundary values obtained with
50 resamples show a range of 7.8 and 15.2 ng/mL, respectively. This is reduced
to 0.8 and 2.8 ng/mL when 500 resamples or more are used. Values obtained for
the boundaries therefore stabilize for nboot > 500 to form a confidence interval of
23.9-85.8 ng/mL around the data set’s median, 46.7 ng/mL. The critical point
of stabilization will vary from one data set to another, but as suggested by most
practitioners [9], using 1 000 or 2 000 resamples to calculate the distribution of
the median insures that the boundaries are not greatly influenced by an aberra-
tion in the sampling process.

Table 2: 95% confidence interval boundaries for different number of resamples

Number of resamples Median of the lower boundary Median of the upper boundary
(Mpoot) (range) (range)

50 23.7 (7.8) 86.5 (15.2)

100 23.9 (4.4) 85.8 (11.7)

500 239 (0.8) 85.8 (2.8)

1,000 239 (0.8) 85.8 (2.8)

2,000 23.9 (0.8) 85.8 (2.8)

The median and range of the boundaries were obtained from 30 bootstrap replicates.

3.8. Bootstrap variations

The percentile bootstrap method described above is conceptually the simplest
but is appropriate only when the distribution of the estimator of a parameter
(median, mean, etc.) is normally distributed for the large sample size [8]. It
is important to note that the distribution of a calculated estimator for a given
parameter can be normal even though the underlying data set is not normal and
vice versa. The bootstrap variation (percentile or other) is chosen according to
the distribution of the calculated parameter. Typically, the samples means will

be normally distributed as it follows the central limit theorem [1]. However, the
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median distributions tend to be less symmetrical, as Figure 2 shows. If a notably
skewed distribution of parameter is obtained, calculation of the confidence inter-
val boundaries, namely the number of parameter values to remove at the tails of
the distribution, must be modified. This version of the bootstrap technique is
called the bias corrected and accelerated (BCA) method. It requires the calcu-
lation of a bias coefficient (zg), which reflects the skew of the distribution, and
an acceleration coefficient («v), which reflects the way variance changes across the
distribution [10]. Calculation of these coefficients is too involved to be carried out
manually but statistical programs such as MATLAB or R have confidence interval
functions that utilize the BCA variation of the bootstrap method. Both methods
were tested to estimate the confidence interval of cocaine in femoral blood. In
this case, no difference was observed between the results obtained from the two
variations. Both gave a 95% confidence interval of 23.9-85.8 ng/mL with ranges
of values obtained for the lower and upper boundaries of 0.8 and 2.8 ng/mL,
respectively. The more skewed the distribution of the parameters is, the larger
the difference between the two methods is expected. As a precautionary measure,
the use of the BCA bootstrap is encouraged, but the percentile method can often
be employed, as evidenced here.

3.4. Bootstrap execution and applications

While the bootstrap approach is conceptually simple, execution is numeri-
cally intensive and beyond simple manual calculation. Bootstrap resampling and
calculations can be performed using different software applications with varying
degrees of ease. Probably the most readily accessible to forensic toxicologists
is Excel, but its use is limited due to the lack of built-in bootstrap functions.
Instead a variety of Excel functions can be used to resample the original data
as extensively described, with examples, by Rochowicz [11]. A simpler option is
to use Minitab (State College, PA, USA). Minitab is a very user-friendly statis-
tics application with a suite of operations including some resampling functions,
which can be used to perform percentile bootstrap as described by Moshonov [12].
Unfortunately, BCA bootstrap cannot be performed simply with either Excel or
Minitab. Undoubtedly, the most efficient option is to use a powerful applica-
tion like MATLAB or its open-source counterpart R, as these applications have
bootstrap functions built-in and are full-fledged programing and data processing
environments with a wide community of users and experts. It is therefore feasi-
ble to perform sophisticated calculations with a single command line, as shown
in Section 2. In addition to the BCA and percentile methods used here, other
related methods are available and easily explored and utilized.

While we have used bootstrap calculations to calculate the median and its
9



confidence interval on non-normally distributed data, this method can be used
equally well on normally distributed data to produce results that are consistent
with parametric statistics. This approach can also be extended to calculate other
parameters, and their confidence intervals, such as the mean, standard devia-
tion, variance, regression parameters with/without homoscedastic data, process
capability, etc. [9]. As expected, to calculate these parameters, the sample data
are resampled multiple times and the desired parameter (and its distribution) is
calculated. Naturally, the bootstrap approach can also be extended to hypothesis
testing and yields tests that are akin to Student’s t-test, ANOVA, etc. that are
especially useful when samples have unequal variances and/or non-normal distri-
butions [13].

4. Conclusion

While this introduction has not been extensive, we hope that it is clear that
bootstrap methods can be a valuable tool for data analysis in forensic toxicology,
especially for non-normally distributed data where parametric methods fail. For
example, the bootstrap could be applied to obtain more accurate description of
drug use profiles, reference values for therapeutic and toxic concentrations and
measured concentrations near the LOQ or cutoff of an analytical method. We
would urge readers to investigate these methods so that they become more widely
known, and used, in the community.

5. Supplementary data

Supplementary data are available at Journal of Analytical Toxicology online.
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