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Abstract
This article addresses the development and implementation of a test bed for applications of heterogeneous unmanned
vehicle systems. The test bed consists of unmanned aerial vehicles (Parrot AR.Drones versions 1 or 2, Parrot SA, Paris,
France, and Bebop Drones 1.0 and 2.0, Parrot SA, Paris, France), ground vehicles (WowWee Rovio, WowWee Group
Limited, Hong Kong, China), and the motion capture systems VICON and OptiTrack. Such test bed allows the user to
choose between two different options of development environments, to perform aerial and ground vehicles applications.
On the one hand, it is possible to select an environment based on the VICON system and LabVIEW (National Instru-
ments) or robotics operating system platforms, which make use the Parrot AR.Drone software development kit or the
Bebop_autonomy Driver to communicate with the unmanned vehicles. On the other hand, it is possible to employ a
platform that uses the OptiTrack system and that allows users to develop their own applications, replacing AR.Drone’s
original firmware with original code. We have developed four experimental setups to illustrate the use of the Parrot
software development kit, the Bebop Driver (AutonomyLab, Simon Fraser University, British Columbia, Canada), and the
original firmware replacement for performing a strategy that involves both ground and aerial vehicle tracking. Finally, in
order to illustrate the effectiveness of the developed test bed for the implementation of advanced controllers, we present
experimental results of the implementation of three consensus algorithms: static, adaptive, and neural network, in order
to accomplish that a team of multiagents systems move together to track a target.
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Introduction

Recently, unmanned aircraft systems (UASs) require

advanced features, in aerodynamic design and avionics sys-

tems, for performing different and complex tasks in places

considered too dangerous for the human being. These tasks,

which involve civilian and military applications, are most

of the time related to monitoring and search and rescue.

Some UAS applications require an effective guidance,

navigation, and control of heterogeneous unmanned sys-

tems, which consist of multiple, small underground vehicles
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and small unmanned aerial vehicles such as quad rotorcrafts.

Quad rotorcrafts can operate autonomously, receive missions

from a ground station, and execute collaborative flight which

demands a high computational cost from the onboard comput-

ers, communication devices, and actuators.

Diverse communication and control interfaces have

been developed for quad rotorcrafts in order to collaborate

and to execute complex missions. In the studies of Cavett

et al.1 and Visser et al.,2 the authors developed the com-

munication and control interfaces for the AR.Drone.

Gururaj et al.3 controlled the AR.Drone position and velo-

city through a Visual Cþþ interface whose communication

is implemented using the AT commands and the UDP pro-

tocol. A control interface was developed for a quad rotor-

craft with fire detection capabilities by using Visual C and

OpenGL in the study of Hernandez et al.4 In this sense, a

ground station for a quad rotorcraft, based on Java and

Visual Cþþ software, was developed by Yang et al.5 and

Xiao-yan et al.6 Mellado et al.,7 Zhekui et al.,8 and Garcia

Carrillo et al.9 developed an interface which uses computer

vision and trajectory tracking for complex systems.

Indoor experiments for UASs applications are based on

laboratory test beds which are used to implement control

algorithms and to communicate and coordinate aerial and

ground vehicles in a controlled environment. For instance,

in the study of Ferrari et al.,10 the authors presented an

approximate dynamic programing approach to cooperative

navigation for heterogeneous sensor networks. Saad et al.11

described a test bed that provides a cost-effective rapid

prototyping capability for integrating health-based adaptive

control of subsystems, vehicle, mission, and swarms to

guarantee top-level system-of-systems performance

metrics. A hardware test bed for multi-UASs that bridges

the gap between algorithm design and field deployment is

presented by Twu et al.12 Bi and Duan13 presented an

implementation of a hybrid system consisting of a low-

cost quad rotorcraft and a small pushcart.

In recent years, the formation control of multiagents

system (heterogeneous and homogeneous) has been a very

active research area.14 The formation problem can be

addressed, for example, by implementing consensus proto-

col strategies. This techniques enable a team of agents or

vehicles to reach an agreement on certain states or values of

interest, in such a way that the behavior of all the agents is

the same. Olfati-Saber and Murray15 presented a general

framework for the consensus problem of n integrator agents

with fixed and switching topologies. Zhang et al.16 pre-

sented a consensus for linear high-order systems using state

feedback and output feedback. Li and Duan17 introduce and

adaptive scheme in order to consider the effects of the

weights links between the agents in the communication

topology. In the study, Lv et al.18 designed a robust adap-

tive consensus protocol for linear multiagents with uncer-

tainties. In a more realistic scenario, the agents have

uncertainties in their dynamics; to overcome this situation,

Peng et al.19,20 presented a distributed neural network for

uncertain dynamical multiagent systems (MASs). In the

aforementioned work, the authors proposed different con-

sensus protocols like leader–follower, as well as different

control techniques, to reach consensus. The works previ-

ously listed were validate by means of numerical results;

however, a real-time implementation of these methods is

not presented. Our work presents a functional test bed for

implementation of this kind of consensus protocols, which

aims at filling this research gap.

The main contribution of this article is the development

of a laboratory test bed based on the Parrot AR.Drone and

the Bebop Drone that allows users to choose between four

different development environments for testing control

algorithms involving more than one vehicle, as well as

vehicles of different nature (heterogeneous systems). The

four development environments differ each other either in

the employed vehicles or in the software used for control-

ling them. The employed software includes LabVIEW (a

graphical programing software) and robotics operating sys-

tem (ROS, Open Source Robotics Foundation). Moreover,

the test bed allows users to choose different ways of con-

trolling vehicles based on the replacement of the original

firmware which reads the raw data from sensors and con-

trols directly the motors, or more intuitively, by using the

available Parrot software development kits (SDKs) or driv-

ers, which have been modified for accepting commands to

communicate and control multiples drones. Figures 1 and 2

sketch the developed test beds for applications of vehicle

tracking and multiagent application, respectively.

The rest of the article is organized as follows: ‘‘Test

bed description’’ section presents the description of the

main elements of the test bed. ‘‘Developed platforms’’

section describes the developed platforms by using the

LabVIEW software, the ROS, and the method which does

not use the Parrot SDK but uses a custom program.

‘‘MASs application’’ section presents the control law used

Figure 1. Test bed for applications of heterogeneous unmanned
vehicle systems. Vicon cameras, AR.Drone, and Rovio ground vehicle.
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to verify the effectiveness of the proposed test bed. Then,

‘‘Experimental results’’ section shows the numerical and

experimental results obtained by using the test bed in a

controlled laboratory environment. Finally, ‘‘Conclusion’’

section provides conclusions of this research work.

Test bed description

In this section, the components employed for the develop-

ment of the test bed are presented. These components are a

group of ground and aerial vehicles, a motion capture sys-

tem, computers, and three software platforms to implement

the heterogeneous unmanned vehicle system applications.

Motion capture systems

Two different motion capture systems were used in this

work in order to obtain the vehicle’s position and orienta-

tion. Both system can be configured to use the Virtual-

Reality Peripheral Network (VRPN) streaming protocol,

making them compatible from a software point of view.

VICON. A Vicon Motion Capture System (VICON, Oxford,

England, United Kingdom) composed of eight VICON

Bonita-10 cameras. These cameras have a capture speed

of up to 250 fps, which are transmitted through the VRPN

network protocol to a computer running any software being

able to establish a VRPN connection. Using this motion

capture system, it is possible to track an object with a pre-

cision down to 0.5 mm of translation and 0.5� of rotation in a

4� 4 m2 volume using 9-mm markers attached to the object.

OptiTrack. An OptiTrack Motion Capture System (Natural-

Point, Inc. Corvallis, Oregon, USA.) composed of 12 S250e

cameras. These cameras are capable of capture speeds of up

to 250 fps with the VRPN network protocol. Using this

motion capture system, it is possible to track an object with

a precision down to 1 mm of translation and 1� of rotation in a

9� 7 m2 volume using 19-mm markers attached to the object.

Unmanned Aircraft Vehicle (UAV) description

The UAVs employed for the implementation of algorithms

in the proposed test bed were the Parrot AR.Drone version 2,

which is a quad rotorcraft controlled through a Wi-Fi con-

nection. The technical characteristics of this vehicle, such as

the processor type and sensors, can be found in the studies of

Bristeau et al.21 and Montufar et al.22 We have selected the

AR.Drone to develop the proposed platform since it is a low-

cost platform, very resistant to damages from crashes.

In order to use the AR.Drone for custom applications,

two approaches are available: (i) an SDK and (ii) the orig-

inal program of the AR.Drone replacement. The SDK is

presented in the next subsection, as it is common to both

LabVIEW (see ‘‘LabVIEW platform’’ section) and ROS

(see ‘‘ROS platform’’ section) methods. Program replace-

ment is described in ‘‘Original firmware replacement plat-

form’’ section.

Parrot AR.Drone SDK

The AR.Drone creates its own Wi-Fi network, and, using the

user datagram protocol (UDP), it receives command signals

generated by a device connected to the network. Likewise,

by means of the UDP protocol, the AR.Drone shares its

navigation information (telemetry). The information

exchange is carried through three ports: 5554, 5555, and

5556, which are used for (i) navigation data reception, (ii)

video package reception, and (iii) command control trans-

mission and parameters configuration, respectively.

The SDK provided by Parrot is a set of libraries that

allow us to communicate with the AR.Drone by an external

device in order to get the navigation data and video package

allowing the host computer to configure and to control the

AR.Drone. The core of the SDK is the attention commands

(AT), which are composed by the string ‘‘AT*’’ plus the

command name followed by the equal sign, and finally by a

sequential number and an optional arguments list. Table 1

shows the more useful commands to manipulate the Parrot

Figure 2. Test bed for applications of multiple unmanned vehicle
systems. OptiTrack cameras and Bebop Drones.

Table 1. AR.Drone AT commands.

AT command Arguments Description

AT*REF Input Takeoff/landing
emergency

AT*PCMD Flag, roll, pitch
thrust, and yaw

Allow moving the drone

AT*FTRIM — Set the horizontal
reference

AT*COMWDG — Reset the
communication
Watchdog

Palacios et al. 3



AR.Drone by using the SDK. A detailed description of such

commands can be found in the work of Piskorsky et al.23

Bebop autonomy SDK for Bebop Drone

Bebop_autonomy is an ROS driver for controlling the quad

rotorcraft Parrot Bebop 1.0 and 2.0, based on Parrot’s offi-

cial ARDroneSDK3. The Bebop’s driver can run as a node

in an ROS environment. The executable node is called

bebop_driver_node which exists in the bebop_driver pack-

age. The core of the bebop_autonomy ROS driver is mes-

sages of type std_msgs/Empty, which are used to publish to

topics takeoff, land, and reset. Also, the message geome-

try_msgs/Twist is employed to publish to topic cmd_vel

while the Bebop is flying. Table 2 shows the topics used

to control the Bebop Drone and their syntax employed.

Developed platforms

LabVIEW platform

In order to develop algorithms for the AR.Drone by using

the software LabVIEW, it is necessary to download and

install the AR.Drone Toolkit LVH through the virtual

instrument (VI) Package Manager, provided by National

Instruments (Austin, Texas, USA). After installation, the

AR.Drone Toolkit palette will be available in LabVIEW. In

this palette, there are VIs that allow us to start and close the

communication with the vehicle, called Open VI and Close

VI, respectively. The Control Drone VI is used to control

operations such as the takeoff and landing, hover mode,

emergency landing, and movement commands. In order

to obtain the navigation data of the AR.Drone, the Initialize

NavData and Read NavData VIs are used. The provided

information consists of the Euler angles and angular velo-

cities, principally. Using these VIs, it is possible to develop

a graphical user interface (GUI) in LabVIEW to control and

visualize information of the PArrot AR.Drone.

Algorithm 1 summarizes all the required steps in order

to carry out the control and visualization of the parameters

of the AR.Drone in a GUI. In the study of Montufar et al.,22

an example of a GUI developed to control the drone in

LabVIEW is presented.

In order to establish a connection between LabVIEW

and the VICON system, it is necessary to download and

install the VICON DataStreamSDK, provided by the

VICON Company (Oxford, England, United Kingdom).

To use the SDK, the library ViconDataStreamSDK Dot-

NET.dll (DS-SDK) is needed, which is included in the

installation folder. Then, it is needed to use .NET con-

nectivity for adding a reference to .NET assembly.

Once the above steps are performed, it is possible to use

the functions included in the SDK, which allow to connect

with and to request data from the VICON DataStream.

Algorithm 2 summarizes the required steps to get the

object’s (in this case, a robot) position and orientation

from the Vicon Motion Capture System by using the

LabVIEW software.

Configuration of multiple AR.Drones in LabVIEW. In order to

design a LabVIEW program that allows us to manipulate

multiple AR.Drones connected to a single personal com-

puter (PC) at the same time, the PC and all the vehicles

must be connected to the same router. This section explains

how to develop the required procedure. On the one hand,

users have to modify the network configuration for each

drone. To configure the vehicle’s network, it is necessary to

Table 2. Bebop messages and topics.

Bebop
action Command Description

Takeoff rostopic pub –once /bebop/takeoff
std_msgs/Empty

Take off the
quadrotor

Land rostopic pub –once /bebop/land
std_msgs/Empty

Landing

Emergency rostopic pub –once /bebop/reset
std_msgs/Empty

Emergency
landing

Piloting rostopic pub –once /bebop/cmd_vel
geometry_msgs/Twist –
‘½2:0; 0:0; 0:0�’ ‘½0:0; 0:0; 1:8�’

Allow moving
the drone

Algorithm 1. Controlling the AR.Drone from LabVIEW

Require: Install the AR.Drone Toolkit LVH
1: Initialize PPM and AR.Drone communications, Open and

VISA VIs
2: while Stop Button ¼¼ false do
3: Obtain the desired roll and pitch angles and the yaw and

vertical speeds from the PPM decoder, from the GUI
buttons or from the user control law VI

4: Send the control commands to the drone by using the
Control drone VI

5: Read and display the navigation data with the Read
NavData VI

6: end while
7: Close communication ports of the PPM decoder and the

AR.Drone with the VISA Close and Close Vis

Algorithm 2. Obtaining object’s position and orientation in
LabVIEW

Require: Install the .NET 4.0 Framework
Require: Install Vicon DataStreamSDK.msi

1: Use a Constructor Node like client using DS-SDK
2: Insert an ‘‘Invoke Node’’ to connect LabVIEW with the

Vicon Motion Capture System and to enable the segment
data

3: if No error then
4: Get the segment global rotation and translation
5: Use an ‘‘Invoke Node’’ to obtain the object’s position and

orientation
6: end if
7: Disconnect the segment data

4 International Journal of Advanced Robotic Systems



make a connection to the drone’s IP address 192.168.1.1

through a telecommunication network (TelNet) protocol

and execute the next commands:

killall udhcpd
ifconfig ath0 down
iwconfig ath0 mode managed essid dronenet
ifconfig ath0 192.168.10.10

netmask 255.255.255.0 up

The previous configuration removes the AR.Drone

Wi-Fi network and establishes a connection between the

AR.Drone and the router specified by the network name

parameter (ESSID). The other parameters that the user

needs to modify are the IP address of the drones (a different

address for each drone) and the subnet mask according to

their own network configuration. It is also necessary to

modify some parameters of the Open VI provided in the

AR.Drone Toolkit LVH. The parameter to be modified is

the IP address, which must be assigned accordingly to the

configuration previously done for the drones. Furthermore,

it is necessary to modify the address of ports: Home Com-

mand Port, Home NavData Port, and Home Vid Stream

Port, which have to be different for each drone.

ROS platform

ROS is an open-source framework, metaoperating system

that is widely used in robotics, see, for example, the studies

of Mason and Marthi,24 Hornung et al.,25 Mellinger and

Kumar,26 Grabe et al.,27 and Martinez and Fernandez.28

The objective of ROS is to make a piece of software that

could work in diverse robots by making little changes in the

code. The ROS advantage is to provide standard operating

system facilities such as hardware abstraction, low-level

device control, implementation of commonly used func-

tionalities, messages passing among process, and package

management. ROS also provides tools and libraries in order

to obtain, build, write, and run code across multiple com-

puters. ROS is released under the terms of the Berkeley

Software Distribution license.

In this work, the package named ardrone_autonomy is

used, which employs the SDK 2.0.1 in order to command

the Parrot AR.Drone versions 1.0 and 2.0. The node created

from the ROS package is the ardrone_driver. This package

uses dependencies such as roscpp, image_transport, sen-

sor_msgs, camera_info_manager, and std_srvs (which are

employed for programing on Cþþ language) to transport

images in low-bandwidth compressed formats, to create

messages for sensors, and to calibrate the cameras, respec-

tively. Before running any package, it is necessary to exe-

cute the roscore command since it is a collection of nodes

and programs necessaries in an ROS-based system.

The package ardrone_autonomy consists of 4 input

topics and 28 output topics. The input topics include the /

ardrone/reset (emergency), /ardrone/land (landing), /

ardrone/takeoff (takeoff), and /cmd_vel (roll, pitch, yaw,

and thrust), while the output topics provide the navigation

and camera data.

If the navigation data (telemetry) is required, it is nec-

essary to create a node subscriber, which is the bridge

between the information of the ardrone_autonomy and the

user’s application. However, a simple way to visualize the

data is to read the topic in a terminal by using the com-

mand line rostopic list. The /ardrone/navdata topic dis-

plays the information of the battery level, the agent’s

position in x, y, and z axes, the angular position (roll,

pitch, and yaw), the altitude, the atmospheric pressure,

and other state variables, which, by setting the navdate_

demo parameter, can be configured to be transmitted at

frequencies between 15 Hz and 200 Hz.

Once all the parameters listed above have been config-

ured, it is possible to develop a program under the ROS

environment that allows us to control the Parrot AR.Drone.

This procedure provides a tool with the possibility of con-

trolling the takeoff, landing, emergency, and the four con-

trol signals (roll, pitch, yaw, and thrust), with values from

�1 to 1.

In order to get the vehicle’s x, y, and z positions, we use

the motion capture system which provides the position and

orientation of the vehicle through the communication pro-

tocol VRPN. This protocol is a set of classes within a

library, and a set of servers interface between application

programs and the set of physical devices use in a virtual-

reality system. In order to use this communication protocol,

ROS employs the package called ros_vrpn_client which is

a client for VRPN and publishes a transformation frame

and TransformStamped of the tracked vehicle. In this

sense, it is important to mention that this package was

developed to work using the OptiTrack cameras system,

but it could be modify to work using the Vicon cameras

system. To change the motion capture system platform, it is

necessary to arrange the position of the quaternions since

the Vicon cameras system gives a different arrangement

than the OptiTrack cameras system (see Table 3).

Once this procedure has been done, it is necessary to

create a new package to control the AR.Drone using the

ardrone_autonomy and ros_vrpn_client packages

and implementing the different algorithms (Algorithms 3

and 4). These packages read the information provided in a

Table 3. Differences between the OptiTrack system and the
VICON system when using the ros_vrpn_client package.

OptiTrack Vicon

Translation.x ¼ pos.x() Translation.x ¼ pos.x()
Translation.Y ¼ pos.y() Translation.Y ¼ pos.y()
Translation.Z ¼ pos.z() Translation.Z ¼ pos.z()
Rotation.x ¼ q.rot.x() Rotation.x ¼ q.rot.x()
Rotation.y ¼ q.rot.y() Rotation.y ¼ q.rot.z()
Rotation.z ¼ q.rot.z() Rotation.z ¼ -q.rot.y()
Rotation.w ¼ q.rot.w() Rotation.w ¼ q.rot.w()

Palacios et al. 5



file .msg created for the ros_vrpn_client package, which

contains the position of each vehicle. In addition, the infor-

mation of each vehicle, such as the battery percent, signals

of the package with the topics /ardrone/takeoff, /ardrone/

land, /ardrone/reset, and /cmd_vel are available to control

the vehicle. Additionally, this package converts from qua-

ternions to Euler angles using ROS commands.

Figure 3 depicts the test bed hardware and software

components required for the ROS environment. The pro-

gram has been tested at different frequencies such as 30, 50,

and 100 Hz. It is worth mentioning that some disconnection

problems were observed at 100 Hz.

Configuration of multiple AR.Drones. To employ multiple

drones, it is necessary to change the default network con-

figuration of the vehicle, since from factory the drone cre-

ates its own network to establish a connection with an

Android or iOS device. In order to change the default con-

figuration network of the AR.Drone, the TelNet protocol is

required, which enables to connect remotely to the

embedded operating system of the drone (based on Linux

version 2.6.32), as it was described in the previous section.

In this sense, the vehicles must be connected to a router in

order to control multiple drones with a single PC. Once the

vehicles are connected to the router, we need to change the

SDK 2.0.1, which is located inside the package of ardro-

ne_autonomy. This procedure is needed due to an issue that

does not allow the connection of two or more AR.Drones

using the same package. To solve this problem, we need to

access the file called vp_com_socket.c, which is located in

the path of ARDroneLib/VP_SDK/VP_Com, and to

replace the line of code 90, which is:

res ¼ VP\_COM\_ERROR;
with this code

res ¼ VP\_COM\_OK;
and then, to compile the package again.

Configuration of multiple Bebop Drones. To employ multiple

Bebop Drones (1.0 or 2.0), it is necessary to perform the

following steps:

� For each one of the Bebop platforms to use, a Bebop

Autonomy ROS package must be installed, changing

only the installation directory. All the instructions to

install and compile the Bebop Autonomy ROS pack-

age are found in the web page http://bebop-auton

omy.readthedocs.io/en/latest/index.html

� For each one of the Bebop platforms, change the

communication port in the Bebop ROS package. In

order to do this, change the file ARDISCOVERY_-

DEVICES_wifi.c located in =bebop=devel=src=
libARDiscovery=sources=wifi. The line of code to

change is the following:

� #define BEBOP_DEVICE_TO CONTROLLER_

PORT 43210

� Next, it is necessary to rebuild the package.

� Change the network configuration, converting

Bebop to client instead of access point. To make the

Bebop Drone join an access point instead of broad-

casting its own SSID, the following script must be

added in the file /bin/onoffbutton/longpress_0.sh.

When the power button is pressed for about 5 s, the

drone will then connect to the access point.

ESSID¼DroneAP
DEFAULT_WIFI_SETUP¼/sbin/

broadcom_setup.sh

Algorithm 3. VVICON node

Require: Run VRPN Package ROS
1: Include the address of the .msg file
2: while node.ok do
3: Get variable values of translational and angular position

(x; y; z; �; �;  ) from the Vicon System
4: Publish the variable values in the .msg file
5: end while

Figure 3. Nodes used in ROS. ROS: robotics operating system.

Algorithm 4. Main Package ROS

Require: Run VRPN Package
Require: Run ardron_autonomy package ROS
Require: Run Main Package ROS

1: Include the address of the file .msg
2: while node.ok do
3: Convert quaternions to Euler Angles
4: if Some operation command¼¼true then
5: Publish an ‘‘Empty ROS message’’ to the

corresponding topic (ardrone/takeoff, ardrone/
land or ardrone/reset)

6: end if
7: if flying¼¼true then
8: Publish the set points values in order to control the

force and moments in the /cmd_vel topic
9: end if

10: end while
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#Bring access point mode down
$DEFAULT_WIFI_SETUP

remove_net_interface

# Configure wifi to connect to given essid
ifconfig eth0 down
bcmwl down
bcmwl ap 0
bcmwl band b
bcmwl chanspec 9/20
bcmwl ssid $fESSIDg
bcmwl join $fESSIDg
bcmwl up
ifconfig eth0 192.168.1.5 netmask

255.255.255.0 up

#Set light back to green after 1 second
(sleep 1; BLCD_Test_Bench -G 0 1 0 > /dev/

null) &

Original firmware replacement platform

The last method presented in this article is to completely

turn off all original programs of the AR.Drone. By doing

this, it is possible to directly control the motors or read raw

data from all sensors.

The motors’ drivers (Brushless DC [BLDC]) of the plat-

forms are connected to the same serial port on the main

board of the UAV. By writing on this port, it is possible to

send a kind of broadcast with all four values, allowing to

control the speed of the motors. Note that BLDCs accept

values from 0 to 1023 and convert them in a rotation speed

reference. Note that the BLDCs of this platforms work in

speed regulation, not in power regulation like many other

platforms. The main board is connected to the navigation

board with a serial port. This navigation board includes a

programmable interface controller (PIC) microcontroller, a

three-axis accelerometer, a three-axis gyrometer, a three-

axis magnetometer, a barometer, and an ultrasonic sensor.

The PIC microcontroller delivers raw data for all sensors at

200 Hz, except for the ultrasonic sensors which runs at 25

Hz. The AR.Drone also includes two cameras, which are

connected to a dedicated bus and to an image signal pro-

cessor. These onboard cameras where not implemented in

this work. For more details on the protocols of the serial

ports, the interested reader is referred to ‘‘Work on Papar-

azzi from MAV Lab.’’29 Turning off original programs is

very simple and is done by commenting, in the startup

scripts, the call to program.elf. With this approach, the

SDK from Parrot is not used, and user-developed programs

run directly on the embedded computer.

By using the original SDK, we can only use Parrot’s

control laws. Therefore, the main advantage of the metho-

dology proposed here is that it allows the user to com-

pletely redefine the control laws for roll, pitch, yaw, and

thrust. For example, in this work, control laws based on

separated saturation functions were implemented.30 How-

ever, one possible limitation is that the user loses sensor

fusion capabilities executed by the original program. Indeed,

sensor fusion is performed between inertial sensors and cam-

eras, which provides an accurate estimation of the platform’s

attitude. In the proposed methodology, a complementary

filter was implemented using inertial sensors,31 which is

close but not as accurate as the filter developed by Parrot.

Protocols for writing to motors’ controllers and reading

from sensors were integrated in the framework available at

one of our laboratories. This framework, which is written in

Cþþ and includes libraries for all kind of filters and sen-

sors, allows to easily write applications for UAVs. Then,

integration of sensors, actuators, and filters is straightfor-

ward, and each of them can be linked to a different module

automatically. The framework also manages the ground

station, and then, the programmer does not have to worry

about how to exchange information between UAV and

ground station. The framework sends data to the ground

station (for plotting), and each item’s configuration (sensor,

filter, and other modules) can be modified from the ground.

Moreover, a simulation environment allows to analyze

previously the performance of the scripts executed onboard

the real UAV platforms, but in a ground station computer.

The aim is to test the programs of all UAVs in a single

computer, in order to verify that there are no bugs in the

code and that everything is working as expected. Therefore,

the simulation environment avoids unnecessary crashes on

real flights and saves time on the developments. The simu-

lator uses a three-dimensional world (see Figure 4), where

it is also possible to obtain virtual pictures of the embedded

cameras in order to test image processing algorithms.

In the developed framework, base classes are defined for

each kind of sensor, and then, small modifications are imple-

mented for specific sensors of each UAV. Thus, the use of a

particular sensor is transparent for the programmer, as it is

possible to use the application program interface for the gen-

eric sensor. In this way, programs are exactly the same, despite

the kind of platform being used (AR.Drone, homemade UAV,

or simulation). Note that the AR.Drone version 2 was used for

experiments of the proposed method, but it is possible to

reproduce the same tasks with AR.Drone version 1.

MASs application

The real-life applications for the proposed test bed are the

MASs, homogeneous or heterogeneous. MASs are com-

posed of multiple interacting elements known as agents.

Agents are equipped with computer systems having two

important capabilities. First, they are capable, at least to

some extent, of autonomous action. Second, they are

capable of interacting with other agents, in tasks such as

cooperation and coordination.

In order to realize coordination tasks, consensus is one

of the most employed frameworks in MASs. Consensus is

commonly needed in mobile robots, unmanned air vehicles,
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autonomous underwater vehicles, satellites, aircraft, space-

craft, and pay load transportation. Because of the impor-

tance of the consensus approach, this work demonstrates

the application of three different consensus strategies in the

laboratory test bed presented in the previous section.

This section starts with preliminary concepts related to

consensus theory. Additionally, the implemented MAS

mathematical model is introduced. Finally, the three con-

sensus strategies to be implement are presented.

Graph theory

In order to develop a consensus control protocol, it is nec-

essary to define the allowed information flow between the

agents. A communication graph is used to describe the

information exchange between the agents in the MAS as

well as with the MAS leader. For this reason, a brief

description of graph theory is presented below.

Let G ¼ ðV; EÞ be a graph with a set of nodes

V ¼ fv1; . . . ; vNg representing N agents and a set of

edges E � V � V. An edge of E is denoted by ði; jÞ, rep-

resenting that agent i and agent j can exchange informa-

tion between them. The graph is undirected if the edges

ði; jÞ and ðj; iÞ in E are considered to be the same; other-

wise, the graph is directed. The graph G is connected if

there is a path between every pair of nodes; otherwise, it is

disconnected.

The set of neighbors of node i is denoted by

Ni ¼ fj : ði; jÞ 2 Eg. We define an augmented graph
�G ¼ ð�V; �EÞ to model the interaction topology between

N followers and the leader (labeled as v0). To show

which followers are connected to the leader in �G, we

define a leader adjacency matrix D ¼ diagfd1; . . . ; dNg
where

di ¼
1

if follower vi is connected to the leader across

the communication link ðvi; v0Þ

0 otherwise

8><
>:

A new augmented Laplacian matrix �L for the graph �G is

defined as

�Lii ¼
X

j¼1;j6¼i

aij þ di

�Lij ¼ �aij 8 i 6¼ j

where the terms aij are the elements of an adjacency matrix

A ¼ ½aij� 2 RN�N and are defined as

aij ¼
0 if i ¼ j

1 if ði; jÞ 2 E
0 otherwise

8><
>:

The consensus control protocols implemented in this

work use the concepts of graph theory previously defined

and the mathematical model of the agents. In the next

Figure 4. Simulation environment. The program to be used in the real-time application (see ‘‘Experimental results’’ section) is tested
first here.
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subsection, the mathematical model of the dynamics of

each agent of the MAS is introduced.

Mathematical model of the MAS

Consider an MAS consisting of N agents and one leader. In

order to represent the agents’ heading angle ( ), the

dynamics of the i th agent can be described as

_xi ¼ Axi þ Bui

yi ¼ Cxi; i ¼ 1; . . . ;N
(1)

where xi 2 Rn is the state vector of agent i, ui 2 Rp is the

corresponding control input vector, yi 2 Rq is the agent’s

measurement output vector, and A, B, and C are constant

matrices with compatible dimensions. The dynamics of the

leader, labeled as i ¼ 0, are given as

_x0 ¼ Ax0 (2)

where x0 2 Rn is the state of the leader.

Definition 1. The leader-following consensus problem with a

desired formation of the MAS represented by equations (1)

and (2) is said to be solved if for each agent i 2 fi; . . . ;Ng,
there is a local state feedback ui such that the closed-loop

system satisfies

lim
t!1
k xiðtÞ � x0ðtÞ k¼ 0

for any initial condition xið0Þ, with i ¼ 0; 1; . . . ;N .

Once defined the mathematical model of the agents’

heading angle, a set of three different consensus protocols

(static leader–follower consensus, adaptive leader–fol-

lower consensus, and neural network leader–follower

consensus) are defined in the next subsection.

Leader–follower consensus MAS protocols

In this subsection, we describe the proposed protocols

employed to validate the effectiveness of the developed

test bed. The goal consists of a group of followers agents

tracking a leader while achieving a desired formation. In

this scenario, we have proposed three different control laws

which have been implemented by using Bebop Drones and

the motion capture system OptiTrack.

Static leader–follower consensus. In distributed controller

applications, the control law of each agent only uses local

neighborhood information according to the topology of

communication. In this sense, if the controller’s gains c and

K are fixed at all time, such controller is called as a static

leader–follower consensus controller and can be written as

follows16,32

ui ¼ cK
XN

j¼1

aijðxi � xjÞ þ diðxi � x0Þ
 !

(3)

The gain K in equation (3) is found as K ¼ �R�1BT P,

where P ¼ PT is the unique solution of the algebraic Ric-

cati equation

AT Pþ PAþ Q� PBR�1BT P ¼ 0

with Q ¼ QT and R ¼ RT being positive definite matrices.

Adaptive leader–follower consensus. Parameter c in equation

(3) is a global information; therefore, such protocol cannot

be implemented in a fully distributed framework. In order

to overcome this disadvantage, an adaptive scheme can be

proposed where the gains cij represent a time-varying cou-

pling weight for each edge (i.e. each communication link)

and are update dynamically. Equation (4) shown the adap-

tive leader–follower consensus protocol17

ui ¼ K
XN

j¼1

cijaijðxi � xjÞ þ ci0diðxi � x0Þ
 !

_ci0 ¼ gi0ðxi � x0ÞT �ðxi � x0Þ
_cij ¼ gijaijðxi � xjÞT �ðxi � xjÞ

(4)

In equation (4), gi0 and gij are scalar tuning positive para-

meters. The gains K and � are calculated as K ¼ �BT P�1

and � ¼ P�1BBT P�1, where P ¼ PT > 0 is a solution of the

linear matrix inequality APþ PAT � 2BBT < 0.

Neural network leader–follower consensus. On the other hand,

since the dynamical model given by equation (1) does not

considers unmodeled dynamics, a valid approach is to

employ a scheme that employees a neural network in order

to identify and to compensate such unmodeled dynamics.

Equation (5) shows the neural network leader–follower

consensus protocol19,20 used in this work

ui ¼ cK
XN

j¼1

cijaijðxi � xjÞ þ ci0diðxi � x0Þ
 !

� Ŵ
T

i ’ðxiÞ

_̂
W i ¼ UWi ’ðxiÞ

XN

j¼1

aijðxi � xjÞ þ diðxi � x0Þ
 !

PB� kW Ŵ i

" #

(5)

In equation (5), Ŵ i is an estimate of the unknown ideal

weight matrix Wi of the neural network, ’ðxiÞ is a radial

basis function, and UWi and kW are scalar tuning positive

parameters. The gain K is obtained as K ¼ �BT P, where

P ¼ PT > 0 is solution to the following Riccati inequality

AT Pþ PAþ Q� PBBT P � 0

where Q ¼ QT is a positive definite matrix. A detailed

analysis of this consensus protocol can be found in the

study of Peng et al.19,20

The development of the three consensus protocols pre-

sented in this section has been studied in previous works.

However, to the best of the authors’ knowledge, these three

protocols in particular have not been implemented in a real-

time setup. In the next section, a set of experiments
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performed in a team of UASs are presented, and the results

obtained are discussed.

Experimental results

In order to validate the effectiveness of the developed test

bed, a set of experiments were performed for both the Par-

rot AR.Drones as well as for the Bebop Drones. The first

set of experiments used the two AR.Drones aerial vehicles,

labeled UAV1 and UAV2, for performing the tracking of a

terrestrial or aerial vehicle, labeled Rovio or UAV0,

respectively. These experiments were implemented by

using the ROS, LabVIEW, and the original firmware plat-

forms previously described.

In the developed experiments, the target vehicle (Rovio

or UAV0) has to reach four waypoints arranged in a square

of 1 � 1 m2, while the drones UAV1 and UAV2 track the

target vehicle’s position and orientation (yaw angle) at 0�

(back) and 180� (front), respectively. When the target vehi-

cle reaches a waypoint, it turns 90� on its z-axis and con-

tinues to the next waypoint.

Algorithm 5 presents the steps to implement the above

experiment.

Figures 5 and 6 show the results obtained from the

implementation of the proposed algorithm in a scenario

where two aerial vehicles are tracking the orientation of a

ground vehicle. The yaw angle of the ground vehicle is

depicted as a red line, while the yaw angle of the drones

UAV1 and UAV2 is depicted as a green and red line,

respectively. It can be seen that the difference between the

orientation of the ground vehicle and the orientation of

vehicle UAV1 is kept near to � radians, because it is

desired that the UAV1 observes the front of the ground

vehicle at all time. The desired position for drone UAV2

is behind to the ground vehicle Rovio; for this reason, the

red line seems to be following the blue line, corresponding

to the yaw orientation of the ground vehicle.

Similarly, Figure 7 shows the yaw angle of three

AR.Drones obtained from the experimental results of the

program replacement approach. In this scenario, UAV0 is

the reference drone, and it also has to reach four waypoints

on a square of 1 � 1 m2. UAV1 and UAV2 are following

the UAV0 with a fixed offset in yaw angle. We can notice

from this figure that at time 7 s, 8 s, and 34 s, the motion

Algorithm 5. Procedure for the implementation of
Heterogeneous Unmanned Vehicle Systems application by using
two AR.Drones, one Rovio vehicle, and ROS and LabVIEW
platforms.

Require: Install all the necessary libraries, toolkits, SDKs,
etc . . . accordingly to the platform to be used.

1: Initialize the multi-AR.Drone communications by
modifying the network configuration and selecting a valid
range of TCP/UDP ports of all drones

2: Initialize the Motion Capture System (Vicon or
OptiTrack) by connecting to the server computer thought
the VRPN communication protocol

3: while No error do
4: Get the UAV0/Rovio, UAV1 and UAV2 positions and

orientations from the Motion Capture System
5: Define a desired set of waypoint for the UAV0/Rovio

vehicle
6: Calculate the control law for the UAV0/Rovio vehicle

to reach such waypoints
7: Calculate the desired positions (x and y positions) and

orientations (yaw angle) for UAV1 and UAV2 drones
8: Calculate the control laws for the UAV1 and UAV2

drones to follow the UAV0/Rovio vehicle’s
orientation an position

9: Send the command to change the roll and pitch angles,
and the yaw velocity for each vehicle based on the
previous control laws

10: end while
11: Close all communications
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capture system is giving a wrong estimation of UAV0’s

yaw angle. In fact, it always occurs when the UAV is flying

close to a wall, where some cameras (placed in this wall)

cannot track it. Moreover, some markers (the ones close to

the wall) are thus not well tracked by the other cameras.

Then, the detected pattern is ambiguous, leading to a

wrong estimation of the yaw angle by the motion capture

system. Indeed, the resulting pattern is not a random one,

and a rotation of �/2 in the z-axis leaves it unchanged.

This can be seen in the figure, as the yaw angle is going

from �/2 to 0. Moreover, since the wrong data is only a

few samples (only four samples of a total of 6000), it does

not affect considerably the UAV1 and UAV2

performance.

Finally, Figure 8 shows the paths of the vehicles when

performing the experiment by using the Vicon Motion Cap-

ture System and the ROS platform. The blue line represents

the ground vehicle’s path, which is trying to follow a square

of 1 � 1 m2. Green line and red line represent the UAV1

and UAV2 paths, respectively. From this figure, we can see

that the aerial vehicles move in a semicircular path when

the ground vehicle rotates 90�, which is the desired perfor-

mances, since the main goal of the experiment is to track

the ground vehicle’s position and orientation.

The following link directs to a video that shows the

implementation of the conducted experiments: http://you-

tu.be/2fGTtKEXsPY

The next subsection presents the experimental results of

the tests performed using the Bebop Drone for applications

of multiagents systems.

Consensus algorithm for controlling the heading angle
of four Bebop Drones

As previously described, one of the main advantages of

Bebop Drone is that it allows testing advanced control

algorithms at a low price at indoor environments. This

advantage is exploited by the fact that it is possible to

concentrate our attention on the stabilization and control

of the dynamics related to the UAS’s heading angle and

translational positions, leaving the embedded inner control

loop to take care of the vehicle’s attitude stabilization.

Toward this end, we used a modeling procedure which is

based on the step response methodology, and whose

detailed description can be found in our previous work.32

The dynamic model employed in this article to derive the

proposed control laws corresponds to the heading angle ( )

of a Bebop quadrotor and can be written as follows:

Dynamic model for heading angle ( )

_x ;i ¼
0 1 0

0 0 1

0 �156:25 �10:25

2
64

3
75x ;i þ

0

0

15; 625

2
64

3
75u ;i

(6)

Once the dynamic model has been obtained, it is neces-

sary to derive the gains values of the consensus control

algorithm presented in equations (3) to (5). In this sense,

the employed gains K and � are given by

K ¼ �½ 0:0258 0:0020 0:0002 �;

� ¼
1:0000 0:0791 0:0083

0:0791 0:0063 0:0007

0:0083 0:0007 0:0001

2
664

3
775 (7)

Finally, the communication topology employed in this

work is presented in Figure 9, from where it can be

observed the four follower agents and their corresponding

interaction; in this topology, the leader (labeled as 0) sends

its information only to agent 1.

Figures 10 to 13 show the results of the implementation

of the consensus strategies given by equations (3) to (5). As

can be seen, in the three experiments, the initial conditions
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Figure 7. Experimental results obtained from the firmware
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path (green line), and UAV2’s path (red line).
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for the agents were the same. In Figure 10, the result of the

static consensus algorithm given by equation (3) is shown,

where it can be observed that there exists a tracking error

between the agent followers and the leader agent. This error

is presented in all the experiment because the employed

gains are constants. The results of the adaptive consensus

presented in equation (4) are shown in Figure 11, and it can

be appreciated that the tracking error is bigger than in the

case of the static consensus; however, the tracking error

decreases with time because in this case the gains are being

adapted at every iteration. The implementation results of the

neural network consensus protocol given by equation (5) are

presented in Figure 12, and we can see that the neural net-

work consensus protocol presented the smallest tracking

error of the three protocols, tracking the reference in a better

way. Finally, the tracking error between the followers and

leader for each experiment is presented in Figure 13.
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Figure 9. Communication topology.
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Conclusion

In this article, the development of an experimental test bed

for applications involving heterogeneous unmanned vehi-

cle systems was presented. The test bed consists of four

different variations of a laboratory setup, which considers

the use of aerial vehicles (Parrot AR.Drone and Bebop

Drones) as well as ground vehicles (Rovio). The laboratory

platforms enable the end user to choose between using a

graphical programing software (LabVIEW), a Linux-based

operating system (ROS), or to replace the original software

of the AR.Drone for implementing novel control algo-

rithms in multiple vehicles. Diverse algorithms were

described for configuring both the vehicles as well as the

motion capture systems (VICON or OptiTrack), which

allowed a simple setup procedure to communicate with the

employed unmanned vehicles. Finally, a set of experimen-

tal results were included to show the effectiveness and the

usefulness of the proposed platforms.
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