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Abstract: Selenium is an element that must be considered in the nutrition of certain crops since its
use allows the obtaining of biofortified crops with a positive impact on human health. The objective
of this review is to present the information on the use of Se and S in the cultivation of plants of
the genus Allium. The main proposal is to use Allium as specialist plants for biofortification with
Se and S, considering the natural ability to accumulate both elements in different phytochemicals,
which promotes the functional value of Allium. In spite of this, in the agricultural production of these
species, the addition of sulfur is not realized to obtain functional foods and plants more resistant; it is
only sought to cover the necessary requirements for growth. On the other hand, selenium does not
appear in the agronomic management plans of most of the producers. Including S and Se fertilization
as part of agronomic management can substantially improve Allium crop production. Allium species
may be suitable to carry out biofortification with Se; this practice can be combined with the intensive
use of S to obtain crops with higher production and sensory, nutritional, and functional quality.

Keywords: nutritional quality; biofortification; phytochemicals of Allium; sulfur metabolism;
selenium metabolism

1. Introduction

It is known that cultivated terrestrial plants require at least 17 elements for their metabolism,
growth, and reproduction [1]. In the case of humans, the essential elements are at least 28 [2].
This difference has the consequence that, in practice, several elements that are important in human
nutrition are not considered in crop nutrition programs, especially in the case of crops cultivated in
soilless systems. The ideal number of elements to be considered for the nutrition of plants destined for
human consumption should be 20, that is, the 17 elements considered essential for plants, in addition
to selenium, silicon, and iodine.

However, not all species of crop plants have the same ability to absorb, metabolize, and accumulate
these three additional elements. For example, some species of Brassicaceae, Fabaceae, Asteraceae, and
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Alliaceae can absorb and accumulate selenium [3–6]; Poaceae, Fabaceae and Cucurbitaceae do the same
with silicon [7]; and Laminaria algae stand out with iodine [8].

Biofortification with one or more of the three elements mentioned would have different results
according to the taxonomic group or species of plants in which the process is carried out. Among
the groups of plants that may potentially be good alternatives for selenium biofortification are those
that by nature accumulate many sulfur compounds in their tissues, such as Brasicaceae and those of
the genus Allium. Climate change is expected to have an adverse effect on selenium availability in
agricultural soils [9]. Hence the importance of directing biofortification efforts towards crops like
Allium that have an exceptional ability to absorb, metabolize and store selenium.

The genus Allium includes more than 550 species distributed throughout the world in temperate,
tropical, and semi-arid regions. Some species are of great importance for their culinary, medicinal,
and ornamental use [10]. Some of the species that stand out are: garlic (A. sativum), wild garlic
(A. ursinum), elephant garlic (A. ampeloprasum L. var. ampeloprasum), white garlic (A. neapolitanum),
onion (A. cepa L.), chives (A. fistulosum), garlic onion or scallion (A. schoenoprasum L.), Chinese chives
(A. tuberosum L.), and leek (A. ampeloprasum L. var. porrum). All are of great importance for being
edible plants and for their use in medicine as antimicrobial, lipid-lowering, hypocholesterolemic,
antithrombotic, cardiovascular, hypoglycemic and antitumorigenic [11,12].

A large number of enzymes involved in the metabolism of assimilation and volatilization of S are
functional in the presence of Se. The ability to accumulate S and Se in a certain species will depend
on their ability to transform ionic forms into more stable organic forms that can be stored and fulfill
certain metabolic functions [13]. On the other hand, the concentration of S and Se in plant tissues also
depends on the balance between absorption, transport, and assimilation with the volatilization process;
such activities occur for both S and Se [14]. Many plant species and accompanying microbiomes
volatilize Se when this is highly available [15,16]; similarly, the rate of sulfur volatilization is inversely
related to the concentration of sulfate in the growth medium [17]. Allium plants do not show such a
great volatilization activity in the presence of high concentration of S and Se, allowing to obtain crops
enriched in both sulfur and selenium that can be an excellent dietary source of these elements [16].

The objective of this manuscript is to present an overview of the information on the use of Se and
S in the cultivation of plants of the genus Allium, mentioning the processes of absorption, transport
and assimilation, reviewing the forms and types of application of both elements, highlighting the
impact on quality and productivity, as well as the concentration of phytochemicals that determine the
nutraceutical value of the crops. The idea is, given the characteristics already mentioned, to propose to
Allium as a suitable model for biofortification with Se and S for human consumption purposes.

2. Absorption and Metabolism of Sulfur and Selenium in Allium

In every terrestrial plant species, the assimilation of selenium is carried out through the metabolic
absorption route of sulfur [18]. However, in species of the genus Allium, a greater capacity to absorb,
metabolize, and assimilate S and Se have been found. A characteristic that gives Alliaceae such capacity
is that they can methylate the seleno-amino acids, thus reducing the rate of incorporation of the
same in proteins and, on the other hand, increasing, if necessary, the rate of volatilization of Se.
That is why the concentration of S and Se and its metabolites in this group of plants is very high
compared to other groups [19]. Indeed, if the natural concentration of selenium in wheat grain in
the UK (0.0155–0.0438 mg·kg−1) [20] and rice in some regions of China (0.015–0.046 mg·kg−1) [21]
is compared to selenium levels of onion (0.024–0.5 mg·kg−1) and garlic (0.015–0.5 mg·kg−1) [22,23]
cultivated in low selenium soils, the highest levels for Allium sp. exceed ten times those of the
grasses. When biofortifying the grasses with Se, they reach 1.64 mg·kg−1 [24], while the onion shows
28–140 mg·kg−1 and the garlic 68–1355 mg·kg−1 [22,25]. In biofortified Allium tricoccum, the Se level
ranges from 48 to 784 mg·kg−1 [22,26]. Something similar is observed with sulfur: the ranges of
adequate concentration of total sulfur in wheat and maize range from 300 to 8900 mg·kg−1 [27], while
for garlic are 4600–6000 [28] and for onion are 1540–5350 [29].
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2.1. Absorption

In soil, selenium can be found as selenide (Se2−), elemental Se (Se0), trioxide diselenium (Se2O3
2−),

or selenate (SeO4
2−) [30–32]. Sulfur may be found in soils in the form of sulfide (H2S), elemental sulfur

(S◦), sulfate (SO4
2−), thiosulfate (S2O3

2−), tetrathionate (S4O6
2−), or as thiols, disulfides, sulfones,

and sulfonic acids [33–37]. The behavior of the different chemical species of Se and S as well as their
solubility are directly related to the characteristics of the soil, microbial activity, pH, oxidation-reduction
potential, and biological methylation processes in the case of Se [30,31,36–39].

Plants have preferences for certain chemical forms to absorb selenium and sulfur. Selenium is
taken from the soil solution mainly in the form of selenate (SeO4

2−) and in less quantity as selenite
(SeO3

2−) or organoselenium compounds (selenocysteine and selenomethionine) [38,40–42]. On the
other hand, the roots incorporate sulfur preferably as sulfate (SO4

2−), since it is a more stable compound
in the soil, and to a lesser extent as thiosulfate (S2O3

2−) [34,36] (Figure 1).
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present in the soil are absorbed in a higher proportion as selenate (SeO42−) and sulfate (SO42−) by H+ Figure 1. Estimated model of absorption and transport processes of S and Se in Allium. The Se and

S present in the soil are absorbed in a higher proportion as selenate (SeO4
2−) and sulfate (SO4

2−) by
H+ co-transport through the high-affinity sulfate transporters (HAST): Sultr1;1, Sultr1;2 and Sultr1;3
that are present in the plasmatic membrane of the root. Once absorbed, SeO4

2− and SO4
2− can

be immediately metabolized into the cytoplasm, enter the vacuole using the Sultr4;1 and Sultr4;2
transporters present in the tonoplast membrane to be stored, or mobilized into the plastids (probably by
the Sultr3;1 transporter) where they are metabolized, or they can be mobilized to the leaf tissues by
the low-affinity sulfate transporters (LATS) Sultr2;1 and Sultr2;2 by loading and unloading the leaf
xylem. Such transporters are regulated by Sultr1;3. In the leaf, SeO4

2− and SO4
2− can be metabolized

in the cytoplasm, enter the vacuole (by the transported Sultr4;1) or the chloroplast (by transporter
Sultr3;1) where they are metabolized, or remobilized towards the root via phloem through the Sultr1:3
transporters. Se may also be absorbed as SeO3

2− to a lesser extent by the phosphate (PT2) and silicon
(NIP2;1) transporters, being immediately metabolized in the cytoplasm.



Molecules 2017, 22, 558 4 of 22

Taking into account that the Se and S share very similar properties, Se is absorbed, translocated
and metabolized by mechanisms analogous to those of S [40]. As far as we know there are no reports
of the transporters of selenate or sulfate in Allium. However, considering the reported analogy for
sulfate transporters in various plant species [43], it can be assumed that the mechanisms described in
the Arabidopsis thaliana model plant are applicable in Allium. In A. thaliana selenate is captured through
active uptake by sulfate transporters present in root cells [38,40]; such transporters are encoded by at
least fourteen genes in Arabidopsis. These genes have been classified into five groups according to the
characteristics of the coding proteins, all of which are H+/sulfate co-transporters [44,45]. Transporters
Sultr1;1, Sultr1;2 and Sultr1;3 are high-affinity sulfate transporters (HAST) which are induced by low
sulfate concentration and the presence of selenate [46–48]. HAST mutants in arabidopsis show a
considerable reduction in selenate uptake [48]. Thus they are considered important for the selenate
uptake [13].

It should be noted that the absorption of selenate competes with the uptake of sulfate [42].
The contributions of Se as selenate, induce the decrease in the concentration of S metabolites, even
when there are high levels of available sulfate [49]; similarly, it reduces the concentration of S in the
bulbs of different onion cultivars by increasing the concentration of selenate applied [50]. This fact
indicates the need to ensure the adequate balance of S:Se for Allium when selenium biofortification
is pursued.

2.2. Transport

HAST are accompanied at the epidermis, cortex, and parenchyma by low-affinity sulfate
transporters (LAST) which function cooperatively with HAST, with the difference that LAST has
a lower response to selenate. It has been found a greater relative abundance of HAST in the epidermis
and cortex of the root, whereas the LAST appear with greater profusion in the parenchyma associated
to the xylem and phloem [51–53]. Once the sulfate is placed in the radical cells, one part is stored in
the vacuoles and redistributed later using the Sultr4;1 and Sultr4;2 transporters of the tonoplast [54].
Another part of the sulfate is translocated to the xylem, and thence to stems and leaves, by the
low-affinity transporters Sultr2;1, Sultr2;2 [52] and by the high-affinity Sultr1;3 [55].

According to the internal demand, another part of the absorbed sulfate can immediately be
assimilated into the radical tissues through the primary route (Figure 2) [56]. In the root pith
parenchyma, sulfate (like selenate) is loaded by the LAST (Sultr2;1 and Sultr2;2) into the xylem
and the dynamics of its transport and distribution partially follow the flow of transpiration, being able
to regulate the load of sulfate to the xylem (influx/efflux) in the radical cells, even in wide ranges of
sulfate concentration (10.4–20.8 mM) [57]. The distribution to other plant organs appears to heavily
depend on events associated with development [58], which indicates the importance of adequate
nutrition with N, P, K, Ca, and S as well as the consideration of external environmental factors such
as temperature and irradiance that determine the rate of growth [59], or internal factors as growth
regulators [60,61], since these can be determinants in the accumulation of S and Se in cultivated Allium.

From the xylem, the sulfate is discharged into the apoplast, or via the symplastic pathway in
the cytoplasm of the leaf cells by HAST and LAST Sultr1;3, Sultr2;1 and Sultr2;2. A fraction of the
sulfate is stored in the vacuole, and the rest is mobilized by Sultr3;1 to the chloroplasts where it
is assimilated into organic forms [62,63] (Figure 2). If necessary, leaf sulfate is remobilized from
the vacuole by Sultr4;1 [54]. Although plastids from non-photosynthetic tissues have the necessary
metabolic mechanisms for sulfate reduction and assimilation, this process of sulfate assimilation occurs
mainly in photosynthetic tissues [45].

The Se transport pathway appears to be very similar to that described for sulfate, even using the
same carriers previously mentioned [38]. The storage of selenium in ionic form has not been confirmed
in the vacuole, however selenium appears in significant concentration in inorganic form in A. fistulosum
when 100 mg·L−1 of selenite or SeMet is applied, which may indicate a storage of inorganic Se in
apoplast or vacuole or both, in cases of high availability of selenium [41].
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Figure 2. Comparing the assimilation pathways of: sulfur (left); and selenium (right), in plants of the
genus Allium. After absorption of the sulfate and the selenate in the roots, these are transported to
the leaves via apoplast (1); in the plastids are reduced to sulfide and selenide respectively. The first
step is the activation of the molecule 5′AMP, by the action of the enzyme ATP Sulfurylase (3), encoded
in Allium by the ATPS gene in the S pathway, and by the APS gene and isoforms in the Se pathway,
forming 5′-adenosinphosphosulfate (APS) and APSe respectively. From these compounds arise the
so-called primary route and secondary route or pathway of sulfation. In the primary route, APS (4)
is reduced to sulfite (SO3

2−) and APSe to selenite (SeO3
2−) by APS reductase, which is encoded by

the APSR gene in the S pathway and by the APS gene in the Se route. Subsequently, the sulfite and
selenite are converted to sulfide and selenide, by the action of sulfite reductase, encoded by the SiR
gene in the path of S. The gene encoding this enzyme in the Se pathway is not yet known. Subsequently,
sulfide and selenide will be incorporated into the skeleton of acetyl serine by the enzymatic complex
cysteine synthase (6), formed by the acetyl serine transferase and O-acetylserinatiolase, resulting in
the formation of cysteine or selenocysteine. In Allium, the genes encoding this enzymatic complex
are BASAS1 for the S and GCS pathway, along with their isoforms. For the Se path, it is thought
to be similar to that reported in arabidopsis, where the genes CS26, CYSC1, CYSD1, CYSD2, DES1,
OASA1, OASA2, OASB, and OASC participate. The amino acids cysteine and selenocysteine are
the starting point of various metabolic pathways such as the formation of dimethyldisulfide by the
methylation of Cys or dimethyl diselenide by the methylation of SeCys (7), incorporation into proteins
(8) and formation of glutathione (GSH) in the S pathway and the sulfoxide Se-allyl-L-cysteine in Se
(9). From the GSH the sulfoxides are synthesized, which originate thiosulfinates, volatile compounds
characteristic of Allium, as well as the formation of hydrogen sulfide by the enzyme desulfhydrase
and seleniuric acid (10), or the synthesis of the amino acid methionine, or its equivalent, selenium
methionine, by the action of the enzyme methionine synthase, encoded for both elements by the MS
gene in arabidopsis (11). From methionine, dimethylsulfide propionate (DMSP) or DMSeP can be
obtained using the enzyme methionine methyltransferase, which is encoded by the HMT gene for S
and by the MMT gene for Se, hence the synthesis of dimethyl sulfide DMS or DMSe which are volatile
compounds (13). In the secondary or sulfation route, phosphoadenosine phosphosulfate (PAPS) is
synthesized from APS, catalyzed by the enzyme sulfotransferase (2), resulting in sulfonated compounds
such as glucosinolates (2). This secondary route has not been observed for Se.
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In onion the transport mechanisms of Se differ as a function of whether the element is absorbed
as selenate or selenite [64]. Selenate is absorbed and moves via apoplast, which seems to reduce
the toxicity of selenate for the radical cells of onion. To transport selenate to other organs of the
plant, one part appears to be reduced to Se2−, which allows absorbing a large amount of selenium
without intoxication. On the other hand, when onion is exposed to selenite, transport seems to occur
in a symplastic way, since absorbed SeO3

2− is immediately metabolized to form Se-cysteine and
Se-methionine [42,64]. If available in the soil, certain organic forms of Se (such as selenomethionine)
may be actively absorbed by the roots [42]. As in other species, in A. ampeloprasum, the selenate uptake
is much more effective than selenite uptake [65].

2.3. Assimilation

Once in the leaf cells, both selenate and sulfate are assimilated in a similar way [13,49] (Figure 2).
Both compounds are initially activated by reacting with ATP in the presence of the ATP sulfurylase
enzyme to form APS (adenosine-5-phosphosulfate) or APSe (adenosine-5-phosphoselenate) [66];
subsequently, a reduction process is carried out to selenide (Se2−) or sulfide (S2−) [45], giving rise to
the organic incorporation that can take two paths, the first consists of the synthesis of the amino acid
cysteine (Cys) or Se cysteine (Secys), and is called the primary path which has been described for both
Se and S [67]. The second pathway is carried out for the synthesis of secondary metabolites, resulting in
the synthesis of PAPS (3-phosphoadenosine-5-phosphosulfate) from APS, has been confirmed only for
sulfur, and is called secondary or sulfation path. In the secondary pathway, a series of sulfotransferases
transfer sulfonate (RSO3

−) groups in the cytoplasm to a wide range of substrates and allow the
synthesis of glucosinolates and other compounds. The absence of a secondary assimilation pathway
for selenate is possibly related to the absence of selenate esters in plants, and the fact that selenoamino
acids, such as selenium-methyl selenocysteine, are the most common products of the assimilation of Se
in the species of the genus Allium [13].

In the primary pathway, following APS or APSe synthesis, these compounds are reduced to
sulfite (SO3

2−) or selenite (SeO3
2−) (Figure 2) by the enzyme APS reductase [66,68]. Subsequently,

the enzyme sulfite reductase reduces sulfite to sulfide (S2−) and selenite to selenide (Se2−) [68,69],
whose protonated forms (H2S and H2Se) are incorporated into the skeleton of acetyl serine by the
cysteine synthase complex (serine acetyltransferase + O-acetyl serine (thiol) lyase) to obtain the amino
acids cysteine or selenocysteine [70,71]. These amino acids are the starting point of various metabolic
pathways, some similar to both elements, such as the formation of methionine and selenomethionine,
cystathionine and homocysteine, protein synthesis and selenoproteins, as well as different volatile
molecules. On the other hand, from the sulfur amino acids are obtained another series of compounds
like methiin (C4H9NO3S, present in most alliums), alliin (C6H11NO3S, characteristic of garlic),
isoalliin (characteristic of onion) and propiin (C6H13NO3S, present on the onion) [72,73]. According to
Jones et al. [72], the chemical intermediates precursors of alliin in Allium are compartmentalized in
different organelles according to the species; for example, alliinase is observed in the vacuoles of all
cells in onion, whereas in garlic it is found only in the vacuole of the cells of the vascular bundle sheath.

Methylation of cysteine and selenocysteine produce methyl cysteine and methyl selenocysteine,
which, through oxygenation of sulfur, form compounds called methyl cysteine sulfoxide (DMDS)
and methyl selenocysteine sulfoxide (DMDSe), respectively. In Allium and in Brassicacea, these
compounds, apparently used as defense against biotic stress, are metabolized after mechanical damage
by the cysteine sulfoxide lyases, producing methanesulfonic acid, which in turn is transformed into
another series of compounds of possible defensive value such as methanethiol and dimethyl disulfide
sulfoxide [74].

On the other hand, the methylation of methionine, and its selenoequivalent produces
compounds called dimethylsulfoniopropionate (DMSP) and dimethylsulfonioselenate (DMSeP).
Although both compounds may be metabolized to the volatile compounds dimethylsulfide (DMS) and
dimethylselenide (DMSe), the amount of DMSP that is converted to DMS is very low, whereby these



Molecules 2017, 22, 558 7 of 22

compounds are believed to fulfill storage functions, osmoregulation, protection against herbivores
and oxidative damage. Another proposed role for DMSP and DMSeP is as metabolites produced for
the removal of the excess (detoxification) of S or Se [75]. The DMS has great ecological importance
since when it reaches the atmosphere, it is converted by photo-oxidation to other sulfur compounds
including oxyacids and inorganic sulfates which subsequently return to the earth in the form of acid
rain; this process has been found in terrestrial plants. However, the greatest contribution comes from
the ocean [76]. Such ecological effects are not known for DMSe molecules.

Another mechanism of detoxification of Se is through the formation of elemental selenium
(Se0) by the breakdown of SeCys through the catalysis of the enzyme SeCys lyase reported in
A. fistulosum [66,77]. For sulfur, the formation of the elemental form (S0) has been reported as a
defense against pathogens [78]; its biosynthetic pathway is not fully established but it is probably
released from glutathione [79].

The diversity of defense compounds or volatile compounds with selenium appears to be much
lower compared to that shown by sulfur compounds, perhaps because of the increased opportunity
for sulfur to form chemical variants with the propenyl groups (CH=CHCH3) (which form the nucleus
of sulfoxides, as the allicin C6H10OS2 characteristic of garlic). In selenium, preference is given to
methylated compounds, especially for Allium [41], and few natural analogs are known with Se of the
sulfuric propenyl compounds, characteristic of Allium.

3. Phytochemicals of Allium spp. Derived of Se and S

In Allium spp., the metabolism of sulfur, after cysteine synthesis, differs from other groups of
plants, since the synthesis of an extensive battery of sulfur compounds occurs. These compounds
are traditionally associated with the scents and flavors of Alliaceae [72], but fulfill other functions
such as sulfur storage, cellular redox balance, antioxidant protection and stress defense [80–82].
In the sulfur route, phytochemicals are mostly represented by glucosinolates, used in defense against
different types of stress [83]. In addition, specific secondary routes are used. In the case of sulfur,
the formation of a wide range of defense molecules, such as H2S and GHS, is included. From these
derives the synthesis of the sulfoxides precursors of the volatile molecules that give the smell and
characteristic organoleptic properties to the alliaceous. H2S is used by the plant as a defense against
pathogens [78]. However, it is also considered as part of a mechanism of regulation in the accumulation
of cysteine [84]. The functions of glutathione (GSH) are important for the maintenance of redox
status in the cell, as an antioxidant and precursor of S-alk(en)yl cysteine sulfoxides methiin, alliin,
propiin, isoalliin, ethiin, and butiin. These non-protein sulfur amino acids are hydrolyzed by the
enzyme alliinase to produce flavor and pungency imparting compounds in Allium [81]. Randle and
Lancaster [85] reviewed the sulfur’s compounds related with the flavor in Allium. Although most
of the enzymes involved in the biosynthesis of these compounds have not been identified in Allium,
the AsGGT1, AsGGT2, and AsGGT3 genes of garlic have been described. These genes encode the
enzyme γ-glutamyltranspeptidase (GGTs), which suggest that they may contribute in a different way
to the biosynthesis of alliin in garlic [86]. Recent findings have characterized a compound analog to
alliin, this is a precursor sulfoxide of allicin derived from selenium metabolism [87].

An alternative in the metabolism of sulfur amino acids leads to the synthesis of volatile
compounds, such as H2S, or volatile methylated compounds such as DMDS, DMSP, and DMS. These
compounds are produced by some living organisms, including anaerobic bacteria [88], seaweed [89]
and plants [90], and are widely associated with marine waters, wetlands, decomposition of organic
matter, and volcanic emissions [91]. The physiological function of these compounds is mainly
associated with sulfur dissipation [92,93] as regulator and signal in the stress response [94,95], and is
also involved in biogeochemical processes [96–98].

In the selenium route, analogous compounds are synthesized. However, the function and chemical
nature of these compounds are not entirely described. Se-methyl selenocysteine (SeMeSeCys) is
considered the most abundant Se compound in garlic, onion, and A. ampeloprasum when supplemented
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with Se [4,99]. It is thought that the synthesis of SeMeSeCys is part of a mechanism of tolerance to Se
in plants, allowing the conversion of potentially toxic selenoamino acids to non-protein derivatives
such as MeSeCys [100,101]. Likewise, compounds such as DMDSe, DMSeP, and DMSe are considered
part of a strategy to increase tolerance to Se, by producing volatile forms of Se [102].

Impact of Se and S on the Nutritional and Functional Quality of Allium spp.

The plants that integrate the genus Allium have been used since ancient times because of the
multiple beneficial effects on human health such as antiasthmatic, hypolipemic, antithrombotic,
anticarcinogenic, antimicrobial, and hypoglycemic actions [81]. The most studied phytochemicals of
Allium are sulfur compounds. As Figure 2 illustrates, some of these compounds may appear as forms
containing selenium instead of sulfur. Table 1 presents results on the biofortification of Allium with S
and Se and the impact on some phytochemicals.

Garlic is the species that has been shown by in vitro and in vivo studies to be the species with
the greatest number of beneficial effects on human health, due to its higher concentration of sulfur
compounds [103].

The biological activity of the sulfur compounds is linked to the level of unsaturation and
asymmetry in the molecules, the cepaenes, a class of structurally related α-sulfinyl disulfides [104],
having two double bonds (e.g., bis[2-methyl-1-(1-methylethenyl)-1-propenyl] disulfide) are more
active than those having a single, double bond (e.g., methyl (E)-1-(1-propenylthio)propyl
disulfide), and than thiosulfinates with lower level of unsaturation (e.g., methyl allyl-thiosulfinate).
In addition, thiosulfinates with aromatic and poly-substituted substituents (e.g., S-phenyl
2,2-dimethyl- propane-thiosulfinate) are more reactive than those lacking these chemical characteristics
(e.g., Dimethyl thiosulfinate) [105]. These compounds are usually extracted using organic solvents
(methanol, ethanol, etc.) while sulfoxides and some phenolic compounds such as quercetin or other
antioxidants are isolated by aqueous extraction. Therefore, the beneficial effects of extracts of Allium
species depend on the polarity of the extractant in conjunction with the chemical nature of the
extracted compounds.

In humans, the organosulfur compounds of Allium are associated with the modulation of
the activity of enzymes such as glutathione S-transferase (GST), quinone reductase (NQO1),
and UGT-glucuronosyltransferase (UGDT), which are important in the detoxification of carcinogenic
compounds [81,106,107]. Allium’s anticancer and antiproliferative activity, as well as antimicrobial
capacity against a broad spectrum of infectious agents, is attributed to the effect of allicin, which
is highly permeable through membranes [108], and undergoes a thiol-disulfide exchange reaction
with free thiol groups present in the proteins. It is believed that these properties are the basis of its
antimicrobial effect [109], having effects against different bacteria, fungi, and yeasts [110].

Similarly, the unsaturated trisulfide compounds (as diallyl trisulfide) have potent anticancer
activity, which has been tested in colon adenocarcinoma, prostate, and lung cancer [111–114].
The mechanisms of action described are the induction of apoptosis [115], inhibition of malignant
cell growth in vitro [116] and inhibition of adenomas [117]. Sulfur compounds containing more sulfur
atoms mitigate the damage caused by diabetes [118].

Aqueous extracts of garlic and A. ampeloprasum have been shown to be effective in reducing
N-nitrosorpholine (liver carcinogen). A. ampeloprasum is also effective against several types of
malignant cells inducing apoptosis and necrosis [119].

A. ampeloprasum has several antioxidant, anticancer, antimicrobial, hepatoprotective, antidiabetic,
anti-inflammatory and other anti-osteoporotic properties [120], showing immunomodulatory activity,
since the pectic polysaccharides of this species stimulate [121], platelet anti-aggregation [122] and
spasmolytic activity [123].

The functional components of A. schoenoprasum are valued for their healing, food, and
antimicrobial properties; this is perhaps related to their antioxidant activity [124]. In A. ampeloprasum,
antioxidant activity is an effect demonstrated by several authors [125–128]. These studies are
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carried out through alcoholic extractions of this species, demonstrating their effectiveness both as
hypolipidemic and antioxidant, however, as mentioned, the compounds involved in these mechanisms
are unknown.

The high content of allicin in leaf extracts of A. schoenoprasum may explain the anti-inflammatory
effect, in addition to compounds also present in this species such as β-sitosterol and campesterol [129].

Extracts from leaves of A. humile and A. hirtifolium are rich in sulfur compounds. A. humile has
cardio-protective effect related to metabolites such as ajoene, allicin, and alliin [130,131], decreasing
the risk factors of cardiovascular accidents [132].

Garlic can accumulate up to five times more selenium (110–150 mg·kg−1 vs. 28 mg·kg−1) and
constitutes a more potent anticarcinogen natural agent than onion [25]. Regarding selenium in
animal organisms, the MeSeCys ingested with food or administered in supplements is absorbed and
distributed more effectively than inorganic Se, and is metabolized to methyl selenol, the chemical
species to which anticarcinogenic and antioxidant properties are attributed [133].

In all cases, the potent anti-cancer effect is a result of the presence of Se [134], finding that the
selenium-analogs of the sulfur compounds of Allium, such as diallyl selenide vs. diallyl sulfide and
benzyl selenocyanate vs. benzyl thiocyanate, are often more effective as anticarcinogenic agents [135].

Table 1. The impact of the biofortification with Se and S on some phytochemicals of Allium plants.

Biofortification Phytochemical References

S in A. roseum Diallyl disulfide [136]
S in A. roseum Diallyl thiosulfinate (Allicin) [136]
S in A. roseum Methyl allyl disulfide [136]

Se in A. tricoccum Se-methylselenocysteine [137]
Se in garlic and A. ascalunicum γ-glutamyl-Se-methlyselenocysteine (γ-GluMeSeCys) [138]

Se in garlic and chives γ-glutamyl-Se-methlyselenocysteine (γ-GluMeSeCys) [139,140]
Se in garlic and chives Se-methylselenocysteine [140,141]

S in onion γ-glutamyl-1-propenyl cysteine sulfoxide (γGPECSO) [142]
S in onion Propyl cysteine sulfoxide (Propiin) [143]
S in onion S-methyl alkyl cysteine sulfoxides (Mettin) [143]
S in onion S-methyl-L-cysteine sulfoxide [144]
S in onion Trans-S-1-propenyl-L-cysteine sulfoxide (1-PRENCSO) [142]
Se in onion S-methyl-L-cysteine sulfoxide [50]

S in onion and garlic Propenyl cysteine sulfoxide (Isoalliin) [145,146]
S in onion and garlic S-allyl cysteine sulfoxide (Aliin) [145,147]

4. Use of Selenium and Sulfur in Allium Agricultural Production

As mentioned earlier, selenium consumption is of utmost importance for human health. It has
been proven that the consumption of this element by humans is mainly given by food since they
contribute up to 80% of Se intake [148]. In turn, the natural selenium content in food depends on the
geological variations of the surface of the Earth. In most atmospheric conditions, exposure to this
element is negligible, as air Se concentrations are <10 ng·m−3. In most cases, the content of Se in
water is <10 µg·L−1, a value considered extremely low, while in seawater the average concentration
is 0.09 µg·L−1. In the same way, the amount of Se in most soils is very low, ranging from 0.01 to
2 mg·kg−1, while the overall mean is 0.4 mg·kg−1 [149]. In some regions of Europe, Africa, China, and
Thailand, for example, most soils have low concentrations of Se, which results in low concentrations in
food crops [150–152].

Sulfur, on the other hand, is essential for plant and human metabolism, for example, forming
part of amino acids, proteins, and coenzymes [153]. However, in the last 30 years, the availability of
this element has declined due to the use of fertilizers with low S content, such as MAP or DAP [154],
the progression of intensive agriculture that decreases the major source of sulfur in soil: soil organic
matter, as well as the reduction of S in pesticides [155]. There is a need for additional sulfur applications
in crops, particularly in highly sulfur-demanding crops such as Allium sp. Sulfur fertilization can be
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carried out through different routes: elemental sulfur, sprinkled in leaves or soil applied, and calcium
sulfate incorporated in soil are inexpensive sources of S, which provides a long-term residual effect,
especially in clay soils [156].

The main proposal of this paper is to use Allium species as specialist plants for biofortification
with Se and S. The metabolism of these plants is adapted to this purpose considering the natural ability
to accumulate both elements in the form of different phytochemicals, which promotes the functional
value of Allium. In Allium crops grown in soils low in organic matter (< 1%) it is advisable to provide
elemental sulfur applied to the soil (30–60 kg·ha−1) in addition to the sulfate that fertilizers contain.
On the other hand, it is suggested to spray foliar sulfur (2 to 5 kg·ha−1 of potassium sulfate or 10 to
20 kg·ha−1 of micronized elemental sulfur) on two or three occasions during the growing season, thus
avoiding leaching and volatilization of S on the soil as well as bringing the element directly to the site
where it will be assimilated and accumulated in organic forms [157]. In the case of selenium, it has
also been found that leaf aspersion is the most effective way of biofortifying crops, thus being possible
to sprinkle nutrient solutions with sulfate and with selenate or selenite (5–15 g·ha−1).

In order to increase the final concentration of biotransformed Se in Allium crops, it is recommended
to apply selenite or SeMet in concentrations up to 10 mg·L−1 of selenium in the nutrient solution or 10
to 50 mg·L−1 per leaf (sprinkling a volume of 50 mL·m−2). When applied by the irrigation system,
it is preferably done once or twice during the growing season and at most once every 15 days [158].
Foliar application is done once when plants have 7–8 leaves [159]. In some species, foliar application
of selenite has been found to be the most effective way to obtain biotransformed selenium in plant
tissues [160] and would therefore be recommended for Allium. The application of Se as a pre-treatment
in seeds (using 10–50 g of selenium applied to the seeds needed for one hectare) is another effective
way to increase the concentration of Se in seedlings and adult plants. Although information on the use
of selenium applied to Allium seeds or bulbs is not available, it has been a simple and effective way to
apply it [161] and has favorable effects such as increasing the rate of germination under unfavorable
conditions [162]. The feasibility of using selenium-enriched substrates has been demonstrated in the
seedling stage, which avoids the disadvantages of the dosage in the nutrient solution [163].

Both Se and S are important determinants of the nutraceutical value of Allium [164]. However, in
many cases, selenium competes with sulfur for root absorption sites because the sulfur form that is
absorbed by the roots, SO4

2−, is taken by the same selenate-absorbing transporters (SeO4
2−), which is

the most common form of selenium in aerobic soils (low in organic matter, and pH in alkaline side).
In contrast, selenite will be the predominant form of selenium in aerobic soils with pH in acidic to
neutral side. Selenite does not compete with sulfate, since its absorption is partially mediated by
phosphate and silicon transporters [165–167] and phosphate-selenite antagonism is found to be much
smaller than sulfate-selenate antagonism [168].

Use of Se and S in Allium Production Systems

Regarding the agronomic management, the capacity of these plants to assimilate sulfur and
selenium can be promoted using an adequate level of organic matter in soil [154,169], and a proper
balance of S:P:Se; that is, using selenate when sulfate is not in high concentration or using selenite
if a large amount of sulfate is found, but providing an adequate amount of phosphates. Thus, the
competition for the sites of absorption and subsequent metabolism would not be significant, and both
sulfate and selenate or selenite will be rapidly metabolized and incorporated into various compounds
with nutraceutical value for humans and increasing the plant ability to tolerate environmental
stress [170], through the capacity of sulfur and selenium compounds to promote antioxidant activity
and a reduced cellular-redox environment, as well as to coordinate heavy metal and metalloid ions,
diminishing oxidative stress and damage to DNA [171,172].

Several studies highlight the benefits of Se in the production of Allium (Table 2). The application
of Se relates directly to the antioxidant capacity and functional value of Allium [173–175]. In addition to
increasing nutritional quality, increased antioxidant capacity would result in a potential increase in the
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plant’s ability to tolerate stress. The application of Se in plants increases biomass accumulation [176]
or yield [159]. However, high concentrations (10 and 100 mg·L−1 of selenate or selenite in the nutrient
solution) inhibit growth in garlic [177]. Growth inhibition in hydroponics was reported in onion with
selenate at 2 mg·L−1 [50,177], with 5–100 mg·L−1 of selenate or selenite in the nutrient solution [173],
or with 50 mg of selenate per kg of soil [178].

Positive effects of Se have been reported, such as Hg antagonism [179], and even the ability to
decrease Hg toxicity when the plants are simultaneously exposed to both elements [180]. Selenium also
presents antagonism with other nutrients such as Ca and K [175], and particularly with S [18,31,141,175].
In garlic it has been shown that the application of S can inhibit the uptake of Se [141], whereas the Se
at high concentration (50–100 mg·L−1 by leaf spraying) decreases the absorption of S [175]. However,
there is not always an antagonism between these elements. In different cultivars of onion it was
observed that the application of Na2SeO4 in nutrient solution (up to 2 mg·L−1) generated an increase
in S concentration [181] indicating the possibility of applying both elements, but with the adequate
concentration of each one of them. When comparing selenite and selenate application in Allium,
consistently higher selenite toxicity has been observed [177], and increased selenium accumulation
when applied as selenate [65,182]. More selenium was accumulated in A. schoenoprasum when selenate
was applied, in comparison to selenite and SeMet, whereas in A. fistulosum greater accumulation of the
element was observed when using SeMet compared to selenite. However, considering the objective of
applying S and Se together, the best way to use selenium in Allium plants would be selenite > SeMet
> selenate, specifically using a low concentration of Se (≤2 mg·L−1 or ≤5 mg·kg−1 of soil) (Table 2).
Selenium at low level results in positive effects on antioxidant capacity and growth, without negatively
affecting the assimilation of sulfur.

Sulfur exerts well-documented benefits in Allium (Table 3), mainly on biomass and
bulb size [142,183] as well as other related characteristics as leaf number, plant height, and
yield [184–186]. Another example is the positive relationship between sulfur availability and
pungency [31,142,183,184,187–191], whereas low levels of S decrease pungency [192,193]. However,
the effect of S on pungency may be variety dependent, as observed in onion [29].

Regarding the interaction of S with other elements, it is well known its antagonistic effect with
Se as previously discussed. However, the effect is not exclusive to Se. In onion, S antagonism has
been demonstrated with B, Fe, Mn and Zn [193], whereas in garlic with Cl and Na [194]. However,
a synergistic effect on other elements has also been reported. In garlic the foliar application of S
increased the content of N, P and K [194], whereas in A. fistulosum application in nutrient solution
increased the N content [184].

Table 2. Effects of selenium application on Allium species selenium content, growth, yield, and quality.

Species Chemical
Form

Application
Form Quantity Supplied Results Reference

Chives Na2SeO3
Nutrient
solution 30 mg·L−1 Accumulation of Se in root > leaf.

Antagonism with Hg. [179]

Chives Na2SeO3 Soil 1, 2, 3, 5 and
15 mg·kg−1 Se Increases Se content. [140]

Chives Se(IV), SeMet Nutrient
solution 10 and 100 mg·L−1 Higher stress tolerance and Se

accumulation with SeMet. [195]

Elephant garlic Na2SeO3,
Na2SeO4

Soil 0.2, 1.3, 2.6 y
3.8 mg·kg−1 Se

Accumulation of
selenate > selenite. [65]

Garlic K2SeO3 y
K2SeO4

Hydroponics 50 µmol·L−1 Increases Se content.
Antagonism with S. [141]

Garlic Na2SeO3 Hydroponics 3 and 6 µmol·L−1 Low dose increases biomass and
delays senescence. [176]

Garlic Na2SeO4 Leaf spray 10, 50 and 100 mg·L−1 Antagonism with S, K and Ca.
Increases antioxidant capacity. [175]

Garlic Na2SeO3,
Na2SeO4

Nutrient
solution

0.01, 0.1, 1, 10,
100 mg·L−1

Inhibition of growth in high doses.
Decreases Hg toxicity. [180]



Molecules 2017, 22, 558 12 of 22

Table 2. Cont.

Species Chemical
Form

Application
Form Quantity Supplied Results Reference

Onion Na2SeO3
Soil and foliar

spray

10, 20 and 40 kg·ha−1 on
soil. 0.5, 1, 1.5, 2, 2.5 and

3 mg·L−1 leaf spray
Antagonism with S. [31]

Onion Na2SeO4 Foliar spray 10, 50 and 100 mg·L−1 Antagonism with S.
50 µg·mL−1 increases Se content. [159]

Onion Na2SeO4 Hydroponics 1, 2, 4 and 8 mg·L−1 SeO4
Increases Se content.
Antagonism with S. [18]

Onion Na2SeO4 Hydroponics 2.0 mg L−1 Increases Se content. [50]

Onion Na2SeO4 Hydroponics 0.5, 1.0, 1.5 and
2.0 mg·L−1

High concentrations
decrease growth.

Low concentration
increases S content.

[181]

Onion Na2SeO3,
Na2SeO4

Nutrient
solution 5 mg·L−1 Affects growth.

Bulb accumulation > leaf > root. [173]

Onion Na2SeO3 and
Na2SeO4

Soil 2.5, 5.0 and 7.5 mg·kg−1

Increase the content of Se.
Decreases growth.

Selenite is more beneficial
than selenate.

[196]

Onion Se(VI) Soil 25 and 50 mg·kg−1 Accumulation of Se, high dose
decreases bulb size. [178]

Scallion Selenite,
selenate, SeMet

Nutrient
solution 10 mg·L−1

Higher concentration of Se with
selenate. 30% of the Se

is inorganic.
[182]

Table 3. Effects of sulfur application on Allium quality and functional value depending on the chemical
form, application form and quantity supplied.

Species Chemical
Form

Application
Form Quantity Supplied Results Reference

Chives K2SO4 Soil 60 mg·kg−1 soil Increased S content. [197]

Chives K2SO4, MgSO4
and H2SO4

Nutrient
solution

0.01 and
4.0 mmol·L−1 SO4

Increased biomass, N, S, and pungency. [184]

Chives MgSO4 and
K2SO4

Soil 0.1, 1.75 and 4.0 mM SO4
Increased content of pyruvate, S,

and dry weight. [191]

Onion CaSO4 Hydroponics 0.8, 4.8, 10.8 and
14.8 mol·m−3

Increased concentration of S.
Antagonism with Se. [18]

Onion CaSO4 Soil 22.4 kg·ha−1 S No effects. [198]

Onion CaSO4 Soil 200 kg·ha−1 S
Increased S, pungency, and pyruvic

acid concentration. [189]

Onion CaSO4 Soil 20, 40 and 60 kg·ha−1 S Up to 40 kg ha−1 increased growth
and yield.

[199]

Onion
Elemental

sulfur
(Sulfurgran®)

Soil 15, 30, 45, 60 and
90 kg·ha−1 Improves growth and yield. [200]

Onion H2SO4
Nutrient
solution 0.1 and 4.0 meq·L−1 Increased pungency and

concentration of S. [187]

Onion H2SO4
Nutrient
solution 0.1 and 4.0 meq·L−1 Increased pungency and

concentration of S. [188]

Onion K2Mg2(SO4)3 Soil 30 and 50 kg·ha−1 S Increased S and pyruvate content. [143]

Onion K2O3S2 Soil 80, 126, 172, 218 and
264 kg·ha−1 S No effect on growth and yield. [201]

Onion Liquid sulfur
(17%) Soil surface 13 and 26 kg·ha−1 No effect. [202]

Onion MgSO4
Nutrient
solution 0.1 and 4.0 meq·L−1 Increased pyruvic acid and S

concentration. [203]

Onion MgSO4
Nutrient
solution

0.1, 0.48, 0.85, 1.6, and
3.1 meq·L−1

Increased bulb fresh weight up to
1.6 meq L−1. [204]

Onion MgSO4
Nutrient
solution

5, 25, 50, 75 and
150 mg·L−1

Increased total S and sulfates.
Differences in varieties in pyruvic acid. [29]
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Table 3. Cont.

Species Chemical
Form

Application
Form Quantity Supplied Results Reference

Onion MgSO4
Nutrient
solution 5, 45 and 125 mg·L−1 S application increased bulb weight. [142]

Onion MgSO4
Nutrient
solution 1.7, 15 and 41.7 mg·L−1 Positive effect in pungency.

Antagonism with B, Fe, Mn, and Zn. [193]

Onion MgSO4 and
CaSO4

Nutrient
solution 2 and 123 mg·L−1 S in leaves, pungency, and yield

decreases with low S level. [192]

Onion Na2SO4 Soil 15, 30 and 45 kg·ha−1 S
Increased pyruvic acid.
Antagonism with Se. [31]

5. Conclusions

Allium crops are suitable models for the combined biofortification with sulfur and selenium
because these plants have a high capacity for absorption, transport, and biotransformation to obtain
phytochemicals that determine the nutraceutical value of the crops. The amounts to be applied and
the chemical forms for the application of sulfur and selenium were explained in the text, highlighting
the impact on quality and productivity.

Author Contributions: All authors were responsible for processing information and manuscript writing. S.G.-M.,
F.P.-L., A.J.-M. and A.B.-M. were responsible for manuscript drafting. All authors read and approved the
final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Benton Jones, J. Plant Nutrition and Soil Fertility Manual; CRC Press: Boca Raton, FL, USA, 2012; Volume 2,
p. 273.

2. Haraguchi, H. Metallomics as integrated biometal science. J. Anal. At. Spectrom. 2004, 19, 5–14. [CrossRef]
3. Koca, A.; Koca, I.; Tekguler, B. Two antoxidant elements of Allium vegetables: Germanium and Selenium.

Acta Hortic. 2016, 297–302. [CrossRef]
4. Reilly, K.; Valverde, J.; Finn, L.; Gaffney, M.; Rai, D.K.; Brunton, N. A note on the effectiveness of Selenium

supplementation of Irish-grown Allium crops. Irish J. Agric. Food Res. 2014, 53, 91–99.
5. Pilon-Smits, E.A.H.; Bañuelos, G.S.; Parker, D.R. Uptake, Metabolism, and Volatilization of Selenium by

Terrestrial Plants. In Salinity and Drainage in San Joaquin Valley, California: Science, Technology, and Policy;
Chang, A.C., Brawer Silva, D., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 147–164.

6. Slekovec, M.; Goessler, W. Accumulation of Selenium in natural plants and Selenium supplemented vegetable
and Selenium speciation by HPLC-ICPMS. Chem. Speciat. Bioavailab. 2005, 17, 63–73. [CrossRef]

7. Cooke, J.; DeGabriel, J.L. Editorial: Plant silicon interactions between organisms and the implications for
ecosystems. Front. Plant Sci. 2016, 7, 1001. [CrossRef] [PubMed]

8. Medrano-Macías, J.; Leija-Martínez, P.; González-Morales, S.; Juárez-Maldonado, A.; Benavides-Mendoza, A.
Use of iodine to biofortify and promote growth and stress tolerance in crops. Front. Plant Sci. 2016, 7, 1146.
[CrossRef] [PubMed]

9. Jones, G.D.; Droz, B.; Greve, P.; Gottschalk, P.; Poffet, D.; Mcgrath, S.P.; Seneviratne, S.I.; Smith, P.; Winkel, L.H.
Selenium deficiency risk predicted to increase under future climate change. Proc. Natl. Acad. Sci. USA 2017,
114, 2843–2853. [CrossRef] [PubMed]

10. O’Donnell, G.; Gibbons, S. Antibacterial activity of two canthin-6-one alkaloids from Allium neapolitanum.
Phyther. Res. 2007, 21, 653–657. [CrossRef] [PubMed]

11. Griffiths, G.; Trueman, L.; Crowther, T.; Thomas, B.; Smith, B. Onions—A global benefit to health. Phyther. Res.
2002, 16, 603–615. [CrossRef] [PubMed]

12. Lundegårdh, B.; Botek, P.; Schulzov, V.; Hajšlov, J.; Strömberg, A.; Andersson, H.C. Impact of different green
manures on the content of S-alk(en)yl-L-cysteine sulfoxides and L-ascorbic acid in leek (Allium porrum).
J. Agric. Food Chem. 2008, 56, 2102–2111. [CrossRef] [PubMed]

http://dx.doi.org/10.1039/b308213j
http://dx.doi.org/10.17660/ActaHortic.2016.1143.41
http://dx.doi.org/10.3184/095422905782774919
http://dx.doi.org/10.3389/fpls.2016.01001
http://www.ncbi.nlm.nih.gov/pubmed/27471507
http://dx.doi.org/10.3389/fpls.2016.01146
http://www.ncbi.nlm.nih.gov/pubmed/27602033
http://dx.doi.org/10.1073/pnas.1611576114
http://www.ncbi.nlm.nih.gov/pubmed/28223487
http://dx.doi.org/10.1002/ptr.2136
http://www.ncbi.nlm.nih.gov/pubmed/17421058
http://dx.doi.org/10.1002/ptr.1222
http://www.ncbi.nlm.nih.gov/pubmed/12410539
http://dx.doi.org/10.1021/jf071710s
http://www.ncbi.nlm.nih.gov/pubmed/18298070


Molecules 2017, 22, 558 14 of 22

13. Broadley, M.R.; White, P.J.; Bryson, R.J.; Meacham, M.C.; Bowen, H.C.; Johnson, S.E.; Hawkesford, M.J.;
McGrath, S.P.; Zhao, F.-J.; Breward, N.; et al. Biofortification of UK food crops with Selenium. Proc. Nutr. Soc.
2006, 65, 169–181. [CrossRef] [PubMed]

14. Meija, J.; Montes-Bayón, M.; Le Duc, D.L.; Terry, N.; Caruso, J.A. Simultaneous monitoring of volatile
selenium and sulfur species from Se accumulating plants (Wild type and genetically modified) by GC/MS
and GC/ICPMS using solid-phase microextraction for sample introduction. Anal. Chem. 2002, 74, 5837–5844.
[CrossRef] [PubMed]

15. De Souza, M.P.; Pilon-Smits, E.A.H.; Lytle, C.M.; Hwang, S.; Tai, J.; Honma, T.S.U.; Yeh, L.; Terry, N.
Rate-limiting steps in Selenium assimilation and volatilization by Indian mustard. Plant Physiol. 1998, 117,
1487–1494. [CrossRef] [PubMed]

16. Terry, N.; Carlson, C.; Raab, T.K.; Zayed, A.M. Rates of Selenium volatilization among crop species.
J. Environ. Qual. 1992, 21, 341–344. [CrossRef]

17. Zayed, A.M.; Terry, N. Selenium volatilization in broccoli as influenced by sulfate supply. J. Plant Physiol.
1992, 140, 646–652. [CrossRef]

18. Barak, P.; Goldman, I.L. Antagonistic relationship between selenate and sulfate uptake in onion (Allium cepa):
Implications for the production of organosulfur and organoselenium compounds in plants. J. Agric.
Food Chem. 1997, 45, 1290–1294. [CrossRef]

19. Pilon-Smits, E.A.; Quinn, C.F.; Tapken, W.; Malagoli, M.; Schiavon, M. Physiological functions of beneficial
elements. Curr. Opin. Plant Biol. 2009, 12, 267–274. [CrossRef] [PubMed]

20. Stroud, J.L.; Broadley, M.R.; Foot, I.; Fairweather-Tait, S.J.; Hart, D.J.; Hurst, R.; Knott, P.; Mowat, H.;
Norman, K.; Scott, P.; et al. Soil factors affecting Selenium concentration in wheat grain and the fate and
speciation of Se fertilisers applied to soil. Plant Soil 2010, 332, 19–30. [CrossRef]

21. Hu, Q.; Chen, L.; Xu, J.; Zhang, Y.; Pan, G. Determination of Selenium concentration in rice and the effect
of foliar application of Se-enriched fertiliser or sodium selenite on the Selenium content of rice. J. Sci. Food
Agric. 2002, 82, 869–872. [CrossRef]

22. Kotrebai, M.; Birringer, M.; Tyson, J.F.; Block, E.; Uden, P.C. Selenium speciation in enriched and natural
samples by HPLC-ICP-MS and HPLC-ESI-MS with perfluorinated carboxylic acid ion-pairing agents. Analyst
2000, 125, 71–78. [CrossRef] [PubMed]
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