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Chapter 7 
Statistical Modelling 

Statistical models provide an alternative approach to using dynamical models in 
seasonal climate forecasting. In statistical models relationships between one set of 
data, the predictors, and a second set, the predictands, are sought. Common pre-
dictands include seasonal mean temperatures and accumulated precipitation, and 
are typically predicted using antecedent sea surface temperatures primarily within 
the tropical oceans. Predictions are made on the assumption that historically ob-
served relationships are expected to apply in the future. There are many conditions 
for such an assumption to be valid, including the need for high-quality datasets to 
ensure that the historical relationships are robustly measured, and the need for 
relationships to have a sound theoretical basis. Because of the possibility of identi-
fying spurious relationships between the predictors and the predictands, the 
statistical model should be tested carefully on independent data. Most statistical 
models are based on linear regression, which provides a “best guess” forecast 
under the assumption that a given change in the value of a predictor results in a 
constant change in the expected value of the predictand regardless of the value of 
the predictor. Modifications to the linear model can be made or alternative statisti-
cal procedures used when there is good reason to expect a relationship to be non-
linear. However, other weaknesses of linear regression may also require these 
alternatives to be considered seriously. The primary problems with linear regres-
sion are multiplicity, multicolinearity, and non-normality of the predictands. 
Multiplicity refers to the effects of having a large number of candidate predictors: 
the danger of finding a spurious relationship increases. Multicolinearity arises 
when more than one predictor is used in the model and there are strong relation-
ships between the predictors which can result in large errors in calculating the 
parameters of the model. Finally, a linear regression model may not be ade-
quately constructed if the data being predicted have a strongly skewed or 
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otherwise non-Gaussian distribution; seasonally accumulated precipitation often 
exhibits such problems. Alternative forms of linear and non-linear statistical 
models can be applied to address such distributional problems. 

7.1 Introduction 

Whereas seasonal climate prediction using general circulation models is based 
upon successful modelling of the physics of the interactions between the atmos-
phere and the earth’s surface (primarily the sea surface) and of the dynamics of 
these components of the climate system (Chapters 3–6), the earliest scientific 
efforts at forecasting seasonal climate anomalies were based on empirical observa-
tions of the atmosphere alone. In the late-19th and early-20th centuries, Gilbert 
Walker, working on the problem of predicting the Indian monsoon, discovered 
that seasonal anomalies in different parts of the tropics were connected. For ex-
ample, droughts in India and Australia would often occur in the same year. In such 
cases where there is a lag between the observed climate of one region and that of 
another, prediction may be possible. The most important pattern of connected cli-
mate anomalies identified by Walker was the Southern Oscillation, which 
describes opposite changes in sea-level pressure between the western and eastern 
Pacific Ocean, and involves major disruptions to the trade winds across the south-
ern Pacific. Such relationships between climate anomalies in different areas are 
known as “teleconnections”, and constituted the basis for early empirical methods 
of seasonal climate forecasting. 

Teleconnections are suggestive of some large-scale forcing of the atmosphere, 
but it has only been since about the mid-1960s that forcing mechanisms have been 
identified and understood. The Southern Oscillation, for example, is closely  
related to the state of the sea surface temperatures (SSTs) in the equatorial Pacific 
Ocean: occasional large-scale warming and cooling of the equatorial Pacific 
Ocean, known as El Niño and La Niña respectively, simultaneously require and 
cause prolonged changes in the trade winds over the Pacific Ocean. These changes 
are associated with large-scale shifts in the location of areas of heavy rainfall, and, 
in turn, can affect climate conditions in other parts of the globe. Anomalous SSTs 
outside of the equatorial Pacific also can affect regional climate (for example, 
changes in the meridional SST gradient of the tropical Atlantic Ocean have import-
ant implications for rainfall over north-eastern Brazil and over much of West 
Africa). Most of the statistical prediction models used currently in operational 
forecasting attempt to model such relationships between observed climate and 
anomalous SSTs. 

In this chapter, the basic principles of statistical modelling for seasonal climate 
prediction are introduced in Section 7.2. Section 7.3 discusses in some detail the 
mathematics of linear regression, which is the most commonly used statistical 
prediction method used in practice. Linear regression forms the basic framework 
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for a range of more sophisticated statistical techniques, and these, and other statis-
tical techniques, are introduced in Section 7.4, after a discussion of some of the 
limitations of linear regression. 

7.2 Statistical Modelling for Climate Prediction 

Although some statistical seasonal climate prediction systems are built upon ob-
served atmospheric teleconnections, the most common approach is to model 
historical relationships between the climate anomalies to be predicted and the 
underlying forcing mechanisms – specifically, observed SST anomalies. Statistical 
methods have been used by centres such as the Met Office (United Kingdom), the 
Bureau of Meteorology (Australia), and the National Centers for Environmental 
Prediction (USA) for a number of decades, and supplement the dynamically based 
models that these centres also use. In the late 1990s, facilitated by extensive 
capacity building programs and an increasing availability of computing power, 
statistical methods of seasonal forecasting have been adopted by many national 
meteorological services throughout the world. These statistical models are con-
structed primarily to generate forecasts of seasonal precipitation totals, but air 
temperature forecasts are made also. 

7.2.1 Requirements for Applying Statistical Methods  
in Climate Prediction 

Statistical methods aim to identify relationships between two sets of variables 
through statistical analyses performed on the historical records of the data known 
as time series. The two sets of variables are: 

• A set of variables to be predicted (often denoted Y), and called predictands or 
response/dependent variables, such as seasonal total rainfall, and monthly aver-
age maximum and minimum temperatures 

• A set of variables used to make the predictions (often denoted X), and called 
predictors or explanatory/independent variables, such as SSTs or atmospheric 
indices (e.g. Southern Oscillation Index – SOI) 

The intention is to identify within the historical records a “significantly” con-
sistent relationship between observed values of the predictors and of the pre-
dictands. A “significantly” consistent relationship is one that is strong enough to 
be unlikely to have occurred by chance, and so provides a reasonable level of con-
fidence with which to make a prediction. Of course, for a prediction to be made, a 
lag between the observations on the predictors and on the predictands is implicit. 
The lag defines the lead-time of the forecast: by convention, the lead-time is defined 
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as the time period between the end of the recording time of the predictors and the 
beginning of the target period. For example, if the average SSTs for June are used 
to predict the total rainfall for the 3-month period August–October, the lag is 1-
month (the last observation of the SSTs is made on 30 June, and the target period 
starts on 01 August). For any significant (lagged) relationship between the predic-
tors and the predictands to be identified, there are some basic data requirements 
that must be met. These requirements are described in the following sections. 

7.2.1.1 Data Quality Issues 

If relationships between predictors and predictands are to be modelled reliably, 
both sets of data need to be of high quality. The quality of a dataset is determined 
by the accuracy of the recorded values, the spatial and temporal resolution of the 
data, and the length of available records. 

Apart from the problems of human and instrumental errors in recording climate 
variables, inaccuracies in historical records can arise from changes in instrumenta-
tion, relocation of recording sites, and/or changes in the recording environment. 
For example, the relocation of a thermometer even just a short way down slope 
could introduce an artificial jump in recorded temperatures because of adiabatic 
effects and changes in exposure. Any such changes in the recorded climate that are 
not a reflection of real changes are known as “inhomogeneities”. Statistical mod-
els are designed to “explain” the observed variability in the predictand data by 
reference to the observed variability in the predictor data. If part of the variability 

try to use this component of the variability to “explain” the variability in the pre-
dictands. Correction for inhomogeneities is therefore an important component of 
the statistical model-building procedure. There are a variety of checks for data 
inhomogeneities, the most reliable of which make use of metadata. Metadata are 
information about the data themselves, and include, for example, information about 
any changes in instrumentation or changes in the location of the recording site. 

Inhomogeneities in data can also be introduced by changes in the temporal 
resolution of the recordings. For example, the introduction of continuous tempera-
ture recordings has allowed a more accurate calculation of the daily mean 
temperature than was previously possible using only the average of the maximum 
and minimum temperatures. The average of the maximum and the minimum tends 
to be higher than the integrated average, and so a change in the way the daily 
average is calculated could introduce an artificial change in the computed tem-
perature. The temporal resolution of the data can also affect the quality of the 
information that can be communicated as part of a seasonal climate forecast. For 
example, although seasonal precipitation forecasts are usually communicated as 
some form of information about the total rainfall to be expected over a 3-month 

try to “explain” this component as if it were real. Similarly, if part of the variability
in the predictand dataset is a result of inhomogeneities, the statistical model will  

in the predictor dataset is a result of inhomogeneities, the statistical model will 
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period, if higher resolution data are available it may be possible to provide some 
information about the statistics of weather within the season. There are strong 
relationships between seasonal rainfall totals and rain-day frequencies and heavy 
rain-day frequencies in many parts of the world, and so a forecast of above-normal 
seasonal rainfall could be translated into statements about the numbers of days of 
rain (or heavy rain) that might be expected. However, these additional details are 
possible only if precipitation measurements are available at the daily timescale. 

In addition to the temporal resolution, the spatial resolution of the data is of 
direct relevance to data quality issues. Station-based data, for example, are site 
specific, and forecasts that have been derived from models using station data may 
not be applicable to neighbouring areas. For precipitation, the applicability of a 
forecast for a nearby site can decline much more rapidly over short distances com-
pared to that for temperature because of the highly localised nature of precipitation, 
especially in areas of convective rainfall. For precipitation forecasts, therefore, a 
relatively high density of stations would be advantageous. Sometimes forecasts 
are made for area-averaged precipitation or temperature. The area-averaging 
generally improves the forecast performance because the locally specific and un-
predictable component of variability is reduced by the averaging. A downside, 
however, is that the forecast loses its specificity for individual locations, and so 
some form of translation is required to make the forecast relevant for specific 
locations. This translation is known as “downscaling” (see Chapter 8). 

Other aspects of data quality, such as the presence of missing values and out-
liers, relate directly to sampling issues, and are discussed separately in the 
following section. 

7.2.1.2 Sampling Issues 

The extent to which a modelled relationship between predictors and predictands 
accurately represents the true relationship depends in part upon the number of re-
cords available. Inevitably there will be some errors in estimating the form and 
strength of this relationship because of the limited number of years for which cli-
mate observations are available, and such errors will contribute to inaccurate 
predictions. These errors typically are larger for short records than for long  
records. For most statistical models used in seasonal climate forecasting it is 
recommended that at least 30 years of data be available for constructing a model 
in order to reduce the effects of sampling errors to an acceptable level. 

There are three kinds of sampling errors that can occur when constructing a 
statistical model: 

• The wrong predictors are selected 
• The wrong forms of the individual relationships between each predictor and the 

predictands are selected 
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• The strength of the individual relationships between each predictor and the pre-
dictands is estimated incorrectly 

In practice, as the complexity of the model is increased each of the three forms 
of sampling error become more severe, and sample sizes need to be increased to 
compensate. To guard against the first two forms of error, statistical significance 
tests are performed as an attempt to estimate the probability that the error in ques-
tion has occurred (i.e. that a spurious relationship has been identified). Because 
these tests are not foolproof, and are subject to problems (Section 7.4.1), they should 
always be supplemented by theoretical considerations; a sound physical explana-
tion should accompany any relationship that is implied by a statistical model. The 
theoretical basis can be supplied by research using GCMs, and/or by more detailed 
statistical analyses, perhaps using other climate datasets to investigate moisture 
fluxes, for example. 

The poor availability of sufficient historical data to construct a robust statistical 
model is compounded by the presence of missing values. The simplest option is 
to omit the cases in which there are missing values from the analysis, but this 
approach easily can leave few or no cases with which to construct a model. Instead, 
attempts can be made to estimate the missing values. These procedures typically 
rely on relationships between various climatological variables. For example, if 
SSTs are to be used as predictors missing SST records could be estimated either 
from records for nearby locations and the spatial correlation structure of the tem-
peratures, and/or from records immediately prior to and subsequent to the missing 
values and the temporal correlation structure for that location. Alternatively, if 
rainfall data are to be used as predictands, missing rainfall values could be esti-
mated from the observed values for neighbouring stations, and/or from station 
values for variables that are not missing, such as temperature and humidity. 

An additional aspect of sampling problems that should be addressed is the 
presence of outliers. Outliers are values either that are extreme in their own right, 
lying well outside of the range of the majority of the other data records, or are 
values that are inconsistent with relationships with other variables. In either case, 
it has to be decided whether the outliers accurately represent what really happened 
because if they are retained they will have a large effect on most statistical mod-
els. If the outliers are considered accurate, it may still be desirable to reduce their 
impact on the model so that the data assumptions implicit in constructing the 
model are not violated (see further discussion in Sections 7.3.3 and 7.4.1). For 
example, seasonal precipitation data for many parts of the globe are positively 
skewed1; the largest seasonal totals therefore can have an undue influence on 
many statistical models, and this influence can be reduced by applying the model 

________________  
1 Positive skewness occurs fairly commonly in meteorological data, and is evident in seasonal 
precipitation totals for many parts of the globe, most notably in arid and semi-arid areas. Maxi-
mum air temperatures in continental interiors can be weakly negatively skewed. 
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to the logarithms of the precipitation totals. The logarithmic transformation is 
often effective in reducing the positive skewness of data. 

7.2.1.3 Trends 

Before attempting to build a statistical prediction model, it is common practice to 
remove any long-term trends in both the predictors and predictands. The argument 
for removing the trends is that if trends are present in the predictand(s) and any of 
the predictors the probability of identifying a spurious empirical relationship is 
increased. Effectively, the assumption of independent model errors is violated 
(Section 7.3.3) unless the trends are removed. However, there are two situations 
under which it would be unadvisable to remove the trends: if there are prior rea-
sons for expecting trends in the predictands to be caused by trends in any of the 
predictors; if trends are present in any of the predictands or of the predictors, but 
not in both. In the latter case, if there is a trend in a predictor, but not the predic-
tand, it seems unreasonable to expect the higher frequency variability of the 
predictor to provide predictive skill, but for the long-term trend to be unrelated to 
the predictand; if there is a trend in the predictand, then a good statistical model 
would seek a predictor for this trend. 

7.3 Building a Statistical Prediction Model 

In this section the primary steps in constructing a statistical model for climate pre-
diction are detailed. The focus is on using SSTs as predictors and seasonal rainfall 
totals as predictands, although the procedure is similar for other variables. Linear 
regression modelling is used as a statistical model, while alternative statistical 
procedures are considered in Section 7.4.2. 

7.3.1 Definition of Predictands 

Assuming that the necessary data quality control has been conducted, the first step 
in constructing a statistical model for seasonal climate prediction is to define the 
predictand. Seasonal rainfall totals are by far the most commonly used predictand, 
although increasing attention is being given to prediction of the intra-seasonal 
statistics of seasonal rainfall, such as the number of rain-days. Only one seasonal 
total per year is used in the model; other seasons are modelled separately because 
of the seasonally varying nature and influence of the forcing mechanisms that 
make seasonal climate prediction possible. The standard procedure is to define a 
season as a 3-month total or average, but care should be taken to ensure that the 
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season is defined appropriately; specifically, within a season the predictand should 
have a consistent response to the underlying forcing mechanisms. For example, in 
much of southern Africa, rainfall in November is positively associated with warm 
ENSO events, but the relationship in December and January is negative. It would 
therefore be inappropriate to forecast a November–January season. 

If forecasts are to be made for regional averages rather than individual stations, 
the regions need to be delimited. The regions should be defined on the basis of 
similar relationships with the forcing mechanisms (for example, similar correla-
tions with SSTs). There are numerous ways of defining the regions, and no single 
method has been identified as universally preferable. The most commonly used 
techniques include grouping stations with highest loadings on the same principal 
component (see Section 7.4.2 for further discussion of principal components), and 
cluster analysis. Once stations have been allocated to a region, a regional rainfall 
index, *

kr , is then calculated for each year, k, typically using the following equation: 

 ,*
1

r rm ik ir wik si i

−
= ∑
=

, (7.1) 

where wi is a weight applied to the ith of m stations, rk,i is the rainfall at this ith 
station during year k, and ir  and si are the average and standard deviation of the 
station’s rainfall, preferably calculated over a common reference period. The 
weights are defined to sum to unity, and can be set to avoid favouring unduly the 
contributions of clusters of stations to the regional index. In practice, if the station 
network is reasonably even, for the sake of simplicity the weights often are set 
equal for each station. The subtraction of the mean and division by the standard 
deviation standardises the data at each station and is designed to avoid giving 
stations with large mean and variance excessive weight (See Chapter 8, Section 
8.3.3, for further discussion about standardisation, including some of its limitations). 

7.3.2 Definition of Candidate Predictors 

The most commonly used predictors in statistical models for seasonal climate pre-
diction are SSTs. There are a number of global SST datasets available with 
varying spatial resolution (from 10° × 10° to 1° × 1°), and some extend as far back 
as the mid-19th century (although data quality is considerably improved from 
about the 1950s). Whichever dataset is used, there are a large number of grids 
from which to choose, and some kind of pre-selection of grids and area-averaging 
of SSTs should be performed. Some area-averages have been predefined, such as 
the NIÑO3 index (5°S–5°N, 150–90°W), but similar averages may be required for 
other areas if SSTs here are thought to have an important effect on rainfall vari-
ability in the region of interest. These area-averages should be defined based on 
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theoretical considerations and extensive supporting statistical research. Simple 
correlations between the rainfall index and global SSTs followed by delimitation 
of areas with high correlation should be avoided because of problems with fishing 
(section 7.4.1) and subsequent problems of potential overestimation of the per-
formance of the statistical model. 

The temporal resolution of the predictors is not necessarily the same as that of 
the predictands. Because SSTs change much more slowly than the atmosphere, a 
1-month average is less noisy than a 1-month average of some atmospheric vari-
able, and more faithfully highlights recent trends in temperatures compared to a 3-
month average. As a result, statistical models are frequently constructed using 
SSTs for the latest month available. Of course, for an operational forecast to be 
made, the predictor data must be available before the beginning of the target pe-
riod. The lag between the availability of the predictor data and the beginning of 
the target period defines the lead-time of the forecast (section 7.2.1). 

7.3.3 Statistical Model Construction 

7.3.3.1 Model Formulation – Simple Linear Regression 

The simplest statistical model consists of a single predictand and a single predic-
tor. In this case a regression model assumes a linear relationship between the 
predictor, x, and the predictand, y: 

 0 1y xβ β ε= + + , (7.2) 

where β0 and β1 are parameters to be estimated, and ε is an “error” term represent-
ing the unpredictable component of the predictand. The parameter β0 is often 
called the “regression constant” or the “intercept”, while β1 is referred to as the 
“regression coefficient” or the “slope”. The predictable component, ŷ , is given by: 

 0 1ŷ xβ β= + . (7.3) 

The objective in fitting a regression model is to estimate the parameters β0 and 
β1 so that the differences, or “residuals”, between the estimated2 values of the pre-
dictands, ŷ , and the observed values, y, are minimised. From Eqs. (7.2) and (7.3): 

________________  
2 In this chapter ŷ  is referred to as “estimates” or “fitted values” when applied to cases within 
the training period (i.e. to cases used to estimate the regression parameters), and to “predictions” 
only when new values of x are applied. See Sections 7.3.3.3 and 7.3.3.4 for a definition and dis-
cussion of the training period. 
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For a set of n years of data, the sum of the squares of these errors, SSE, is 
minimised,3 i.e.: 
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Equation (7.5) is minimised by setting its first partial derivatives to zero: 

 

( )[ ]

( )

2

0 1
1

0 0

0 1
1

0

2 0

n

k k
kE

n

k k
k

y x
SS

y x

β β

β β

β β

=

=

∂ − +
∂

= =
∂ ∂

= − − − =

∑

∑ , (7.6a) 

and: 
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From Eq. (7.6), the two regression parameters can be obtained as: 
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________________  
3 The minimisation of the sum of the squared errors is by far the most commonly used form of 
estimation in seasonal climate prediction. The only other minimization criterion that has been 
used to any notable degree is that of minimising the sum of the absolute errors, and is known as 
“least absolute deviation” (LAD) regression. See Section 7.4.2.2 for further discussion of LAD 
regression. 
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and 

 0 1b y b x= − , (7.7b) 

where b0 and b1 are estimates of the parameters β0 and β1, respectively. 
The regression coefficient is closely related to Pearson’s product moment 

correlation coefficient,4 r: 

 1
1 x yr b s s−= , (7.8) 

where sx and sy are the standard deviations of x and y, respectively. The correlation 
coefficient is a widely used measure of the strength of linear association between 
the predictor and the predictand. Although it can be estimated using Eq. (7.8), it is 
more commonly calculated using: 

 
( )( )

1

n

k k
k

x y

x x y y
r

s s
=

− −
=
∑

 (7.9) 

The numerator in Eq. (7.9) is related to the covariance by a factor of n, and will 
be positive if positive anomalies in both the predictor and the predictand tend to 
occur in corresponding cases, and will be negative if opposite anomalies tend to 
occur. Equation (7.9) defines the correlation as the standardised covariance. Fre-
quently the correlation is squared, and it can then be interpreted as the proportion 
of the variance of the predictand that can be ‘explained’ using the predictor.  

value of the NIÑO3.4 index. Lusaka is located in part of southern Africa where El 
Niño (La Niña) conditions are frequently associated with below-normal (above-
normal) rainfall. The correlation is −0.49, and is statistically significant at a 1% 
significance level, indicating that there is a strong statistical basis for making a 
prediction. The figure shows that rainfall tends to decrease over Lusaka as the 
equatorial Pacific becomes warmer. The relationship with October values of the 
NIÑO3.4 index implies that a prediction can be made with a lead-time of 1 month 
using the formula: 

 INOrainfall 607 81 October N 3.4= − × . (7.10) 

________________  
4 There are other correlation coefficients, but Pearson’s is by far the most widely used, and unless 
specified otherwise, the term “correlation” refers to Pearson’s correlation. 

Zambia, is shown as the y variable in Fig. 7.1, and is regressed against the October 
As an example, December–February 1961/62–2000/01 rainfall over Lusak a,
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Fig. 7.1 Example of a linear regression model in which October values of the Niño3.4 index 
are used to predict December–February 1961/62–2000/01 rainfall totals for Lusaka, Zambia. The 
solid line represents the regression model 

The negative regression coefficient in Eq. (7.9) means that the expected sea-
sonal rainfall decreases by more than 80 mm for every 1°C increase in 
temperature in the central equatorial Pacific. 

7.3.3.2 Model Formulation – Multiple Linear Regression 

When more than one predictor is used, a multiple regression model assumes the 
following form: 

 0 1 1 2 2 ...y x xβ β β ε= + + + + . (7.11) 

Given m predictors and n cases (years of data), the regression model becomes: 

 0 1 ,1 ,ˆ ...k k m k my x xβ β β= + + + . (7.12) 

Equation (7.12) has 1p m= +  parameters, and can be simplified in matrix 
notation to: 

 ˆ =y Xβ , (7.13) 
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where X is a n × p array in which the rows represent each year of data, and the 
columns represent each predictor, with the first column containing unity,5 and the i 
+ 1th column containing the ith predictor. 

As with simple linear regression, the objective is to estimate the parameters β 
so that the sum of squares of errors is minimised: 
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(7.14) 

Similarly, Eq. (7.14) can be minimised by taking the first derivatives: 

 2 2T TESS∂
= − + =

∂
X y X Xβ 0

β
, (7.15) 

which can be rearranged to give: 

 ( ) 1T T−
=β X X X y . (7.16) 

In practice, the inverse in Eq. (7.16) is difficult to calculate and can be prone to 
rounding errors if the predictors are inter-correlated, and so most statistical pack-
ages use alternative formulations and advanced linear algebra techniques, such as 
the singular value decomposition, to obtain the parameter estimates. 

7.3.3.3 Predictor Selection 

Unless the predictors to be used are predefined, the candidate predictors would 
normally be tested for inclusion in the final model that is to be used to make pre-
dictions. The standard approach is to include only those predictors in the final 
regression equation that contribute to a significant reduction in the size of the 
errors. Since the addition of any additional predictor into the model will always 
reduce the size of the errors, this reduction needs to be significantly large, i.e. the 
estimates need to improve sufficiently for us to be confident that the inclusion of 
the added predictor will effect an improvement in real-time predictions. 
________________  
5 This extra column is used for the regression constant, which is given as the first element of β. 
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A commonly used procedure for selecting predictors is stepwise regression. 
There are three main forms of stepwise regression: 

• Forward selection: Predictors are added one-by-one, with the remaining candi-
date predictor that reduces the size of the errors the most being added next, and 
continuing until the errors cannot be significantly reduced. 

• Backward elimination: All candidate predictors are initially included, and then 
predictors are removed one-by-one, with the predictor that increases the size of 
the errors the least being removed next, and continuing until the errors can only 
be increased significantly.; 

• Stepwise selection: Predictors are added one-by-one in the same way as for 
forward selection, but at each stage the included predictors are retested so that 
if the removal of any of these predictors results in an insignificant increase in 
the size of the errors they are removed. 

All of these stepwise procedures require a criterion for deciding whether the 
change in the size of the errors is significantly large. The approach generally used 
is based upon the F-statistic, and involves a decomposition of the total sum of 
squares about the mean of the predictand, SST: 
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where y has been centred around zero by subtraction of the mean. The SST is de-
composed into two components: the explained component as modelled by the 
regression model, SSR, and the unexplained component or sum of the squares of 
the errors, SSE, as defined in Eq. (7.14). The regression sum of squares is calcu-
lated as: 
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so that SST = SSR + SSE. The F-statistic tests whether the change in SSR for the pre-
dictor under consideration is significantly large compared to the mean of the 
squared errors, MSE, after including the predictor. The MSE is the SSE divided by 

1n p− − . Under the assumption that the predictor is unrelated to the predictand, 
the F-statistic is drawn from an F distribution with one and 1n p− −  degrees of 
freedom. A predefined value of this statistic can be defined for a given level of 
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significance (typically 0.05), and if the calculated F-statistic exceeds this value the 
predictor results in a significant improvement in the estimates of y. The procedure, 
however, is problematic, partly because of the sensitivity of the F-statistic to dis-
tributional assumptions (Section 7.3.3), and because of problems related to 
multiplicity (Section 7.4.1), which invalidate the significance tests. 

Nevertheless, given the definitions of SST and SSR in Eqs. (7.17) and (7.18), the 
ratio SSR/SST provides an indication of the proportion of the total variability in the 
predictor that can be explained by the regression model. This proportion, denoted 
R2, is known as the coefficient of determination, and is the multivariate equivalent 
of the squared correlation coefficient (Section 7.3.3). An adjusted R2 is sometimes 
calculated to correct for the number of parameters in the model.6 The procedure 
described above based on the F-statistic is equivalent to selecting which of the two 
models (the one with and the one without the predictor under question) has the 
larger adjusted R2. 

None of the stepwise procedures guarantees that the best possible set of predic-
tors (i.e. the one that minimises the errors) is selected, and so one option is to 
search through all possible combinations to find that subset that reduces the size of 
the errors most significantly. Since this search can be computationally prohibi-
tively expensive if the number of candidate predictors is large,7 an alternative is to 
modify the simpler forward selection and backward elimination procedures de-
scribed above by swapping out at each step any predictors that can effect an 
improvement in the model. The predictors are swapped one-by-one with the pre-
dictor that improves the model the most being introduced as replacement. The 
swapping continues until no further improvement is possible. 

A somewhat different approach is to identify a model that makes a good set of 
independent predictions, as opposed to one that minimises the errors in estimating 
the data used to construct the model. The problem with minimising Eqs. (7.5) and 
(7.14) is that the model is optimised only to describe the relationship between the 
predictors and predictand over a set period, known as the training or calibration 
period (the period of the data used to construct the model), but there is no guaran-
tee that this model will make good predictions when it is applied over a different 
period. Some procedures search for the set of predictors that make the best set of 
independent predictions by using only part of the data to construct the model and 
then examining the predictions for the data that was withheld. Techniques for per-
forming this independent assessment are discussed in further detail in Section 7.3.3. 

________________  
6 Note that the adjusted R2 cannot be interpreted as the proportion of variability explained. 
7 Given k candidate predictors the number of possible combinations is 2k – 1. 
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7.3.3.4 Model Assumptions 

Before assessing how well the regression model can predict the response variable, 
it is important to assess the validity of the model. If various assumptions about the 
data used in constructing the model cannot be upheld, the model parameters may 
be estimated incorrectly, and the predictions made in real-time will then be less 
accurate than expected. These assumptions are enumerated below. Alternative 
procedures for when these assumptions are invalid are discussed in Section 7.4. 

• Errors are identically and independently distributed (iid) 

The forecast errors (Eq. 7.4) should show no tendency to increase or decrease 
in size either in the long-term or for identifiable sub-periods of the data. Similarly, 
the variance of the errors should not be related to values of the predictors (“homo-
scedasticity”). This latter restriction is often a problem when constructing 
statistical models to predict precipitation because forecast errors typically increase 
as the forecasted precipitation increases simply because there is a lower bound to 
precipitation. 

In addition, the errors are assumed to be independent of each other. This as-
sumption means that the model should show no tendency to underestimate or 
overestimate the observed values over a string of years. In combination with the 
assumption of a zero mean-error, the independence of errors means that each time 
a new prediction is made, the probability of overestimating (or underestimating) 
the observed value is 0.5 in all cases.8 The Durbin-Watson test is recommended 
for testing independence of the errors, and works by identifying whether there is 
any autocorrelation in the errors (i.e. is it possible to “predict” the errors from pre-
vious errors?). 

• Predictand is normally distributed 

Although strictly it is only the model errors that need to be normally distrib-
uted, in practice, this distributional assumption about the errors is more often met 
when the predictand itself is normally distributed. In addition, if the predictand is 
not normally distributed, the regression parameters can be heavily influenced by 
the more extreme values. Since seasonal rainfall totals for many areas have a posi-
tively skewed distribution (see, for example, Fig. 7.1), it is often advisable to 
transform the data so that the transformed data are normally distributed. Com-
monly used transformation functions include the logarithm, and the square root 
and other power transformations. 

 
 

________________  
8 More generally, because of the assumption of fixed variance, the probability that the error will 
exceed any pre-defined value is a constant. 
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• Linear relationship 

If the relationship between (any of) the predictor(s) and the predictand is non-
linear, Eqs. (7.2) and (7.11) are of the wrong “form”. The true form of the rela-
tionship(s) may be unknown, but more complex relationships can be examined 
using alternative regression models (Section 7.4.2). Apart from testing for  
improvements in the predictions if a more complex model is used, it can be useful 
to reorder the predictions so that they are sorted by the value of (one of) the  
predictor(s) rather than chronologically, and then re-conducting the test for inde-
pendence. If the true form of the relationship is quadratic, for example, but is 
assumed to be linear, the residuals will be of a similar sign at the beginning and 
end of the re-ordered series, and of the opposite sign in the middle. 

• Uncorrelated predictors 

For multiple regression, the model parameters can be estimated inaccurately 
when there are strong correlations between the predictors. The presence of strong 
correlations between predictors is known as multicolinearity, and is discussed in 
further detail in Section 7.4.1. 

Since measures of the errors in estimating the y values (“goodness of fit” mea-
sures), are as much a function of the number of parameters included in the model 
as they are of the quality of the model’s ability to describe the variability in the 
predictand, they are not necessarily very informative. In order to estimate how 
well the model can predict new values, a separate set of data that was not used to 
construct the model is required. Two approaches are used, and in both cases the 
data is divided into a “training” or “calibration” period, and an “independent” or 
“verification” period: 

• Cross-validation: One year is withheld (together, optionally, with additional 
years immediately preceding and succeeding; this omitted period is known as 
the cross-validation window), and the remaining years are used to train the 
model. A prediction is made for the omitted year or the year in the middle of a 
window larger than one, and the procedure is repeated until a prediction has 
been made for each year (Fig. 7.2a and b). 

• Retroactive validation: The model is trained using only the first few years of 
the data, and a prediction is made for the year immediately after the end of the 
training period. The model is then updated, adding the year just predicted to the 
training period, and a prediction for the following year is made (Fig. 7.2c). This 
procedure is continued until a prediction for the last year has been made. 
(Sometimes the subsequent k years are predicted, where k > 1, and the model is 
only updated every k years). 

7.3.3.5   Model Evaluation 
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 Fig. 7.2 Schematic diagrams illustrating the procedure for (a) leave-one-out cross-validation, 
(b) leave-three-out cross-validation, and (c) retroactive validation 

In each case, the objective is to generate a set of “out-of-sample” predictions. 
These predictions need to be independent of the data used in the training set, but 
assuring complete independence is exceptionally difficult, particularly with cross-
validation. One of the main ways in which “leakage” of information from the 
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training to the verification sample is allowed to occur is through a failure to re-
select the predictors adequately at each step. It is important that the predictors are 
allowed to be reselected rather than only allowing the model’s parameters to be 
recalculated.9 Ideally each training period should be independent of each other, but 
since that is impractical because of limited sample sizes, some effort to ensure that 
at least some of the training periods differ should be made. In cross-validation this 
independence can only be achieved by using a fairly large window. 

Retroactive validation closely mimics the operational generation of predictions, 
and so should give a realistic estimate of how well the model would have per-
formed if it had been operational since the first year of the independent predictions 
(although selection of candidate predictors by using all the data can bias the  
results). The downside of retroactive validation is that predictions are made only 
for a subset of the data, and so the small sample size will contribute to large errors 
in the estimates of the quality of the predictions. 

In cases where the predictor(s) is (are) specified and the distributional assump-
tions described in the previous section do not hold, bootstrapping of the model 
parameters should be conducted. Bootstrapping involves randomly re-sampling 
pairs of predictor and predictand values, and then recalculating the regression 
using the resample. There are many ways of designing a bootstrap procedure, but 
the standard approach is to generate a sample that has the same number of cases as 
the original sample. The cases are drawn with replacement, for otherwise the boot-
strap sample would be identical to the original sample. A large number of 
bootstrap samples are generated, and regression models constructed for each one. 
The distribution of the regression parameters provides an indication of the uncer-
tainty in estimating the “correct” parameters.10 

7.3.3.6 Scoring Metrics 

Given a set of independent predictions, the most commonly used metric to calcu-
late how well these predictions match the observed outcomes is the correlation 
coefficient. The correlation coefficient was introduced in Section 7.3.3, where it 
was used to measure the strength of the linear association between the predictor(s) 
and predictand. To use the correlation for forecast verification, simply replace x 
 

________________  
9 By reselecting the predictors at each step it is quite possible that the actual set of predictors that 
are used to make an operational forecast are not actually selected in some or even any of the 
cross-validation steps. This failure to test using the operational predictors may seem problematic, 
but an essential part of the cross-validation procedure is to test the predictor selection process. 
10 Although not widely performed, one way of estimating the uncertainty in a prediction would 
be to make a suite of predictions using models constructed using the bootstrap samples. More 
widely used methods are discussed in the following section. 
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with ŷ  in Eq. (7.9). Note, however, that the correlation is not a measure of fore-
cast accuracy for two reasons: the subtraction of the means of x and y in the 
numerator eliminates any bias in the forecasts, and the division by the respective 
standard deviations eliminates any variance bias. (See Section 7.3.3 and Chapter 
8, for definitions of accuracy, bias, and variance bias.) As a result, predictions of 
rainfall, for example, that are consistently too wet or too dry, and vary too much or 
too little can still achieve a perfect verification score. In the context of statistical 
models, such problems are not usually very severe because the predictions should 
be reasonably well calibrated over the training period. As a result, the mean bias 
should be fairly small, although in most cases the variance will be underestimated, 
simply because in an imperfect model predictions err towards the climatological 
mean. 

The squared correlation coefficient is often quoted as the percentage of vari-
ance of the observed values that is successfully predicted. While technically 
correct, this percentage is often misinterpreted as some measure of how frequently 
the forecasts are “correct”. In the context of the deterministic predictions from 
regression models, “accuracy” is a more appropriate quality of the forecasts than 
correctness because the predicted and observed values will always differ if only by 
a very small amount, and so the predictions are never “correct” in a strict sense. 
Accuracy generally is indicated using an average of some measure of the errors. 
The mean squared error, introduced in Section 7.3.3, is a natural choice because it 
is a quantity that has been minimised when the model was constructed, but is not 
particularly intuitive otherwise. The root mean squared error resolves the concep-
tual problem of interpreting squared errors, but the mean absolute error is the 
simplest to understand: it indicates by how much, on average, the predictions dif-
fer from the observed outcomes. A still more informative approach would be to 
indicate in a contingency table or histogram how frequently errors of different 
magnitude occur. 

Other widely used metrics are based on the contingency table: it has become 

referring to the driest/coldest third of cases, and the other categories defined ac-
cordingly.11 The deterministic forecasts can be classified into one of these three 
categories, and a table comparing the forecast and observed categories can then be 
constructed. An example is shown in Table 7.1a for 30 years of cross-validated 
predictions of December–February Lusaka rainfall using only the NIÑO3.4 index 
as predictor. The “correct” predictions are shown in the diagonal cells from top 
left to bottom right. 

________________  
11 Categories do not have to be equiprobable, and more (or less) than three categories can be 
defined. The principles of verification remain the same, however. 

labelled “below-normal”, “normal”, and “above-normal”, with “below-normal 
popular to assign the observed values to one of three equiprobable categories, 
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Table 7.1 (a) Contingency table and (b) variance-adjusted contingency table of cross-validated 
predictions of December–February 1971/72–2000/01 rainfall totals for Lusaka, Zambia, using 
the October NIÑO3.4 index as sole predictor. The categories are equiprobable, and are marked B 
for below-normal, N for normal, and A for above-normal 

(a) 
PREDICTIONS  

 
A N B TOTAL 

A 3 7 0 10 
N 0 7 3 10 OBSERVATIONS 
B 1 5 4 10 

 TOTAL 4 19 7 30 

(b) 
PREDICTIONS  

 
A N B TOTAL 

A 5 4 1 10 
N 2 4 4 10 OBSERVATIONS 
B 3 2 5 10 

 TOTAL 10 10 10 30 

There is a wide range of summary measures of such contingency tables, but 
they are not discussed here because the loss of information as a result of the cate-
gorization of the observations and predictions, and deterministic nature of the 
predictions mean that such an interpretation of the climate prediction information 
is undesirable. The interested reader is referred to Jolliffe and Stephenson (2003) 
and Wilks (2005) for details. 

The number of predictions of the normal category is higher than for the other 
categories because of the lower variance of the predictions compared to the obser-
vations. As a result, the variance of the forecasts is sometimes increased 
artificially so that the number of predictions in each category is equal. The result-
ing contingency table is shown in Table 7.1b. Such variance adjustment is pro-
blematic because the squared errors are no longer minimised, and it can be seen 
from Table 7.1b that there is no improvement in the total number of correct predic-
tions (5 + 4 + 5 compared with 3 + 7 + 4), while there is an increase in the number 
of two-category misses (i.e. predictions of above-normal when below-normal 
occurred, or vice versa). Variance-adjustment should therefore be discouraged. 

Ideally, if the forecasts are categorised they should be expressed as probabili-
ties. Methods for generating probabilistic forecasts from the deterministic 
predictions of regression models are discussed in the following section. The veri-
fication of probabilistic forecasts is a complex issue, and is discussed in detail in 
Chapter 10. 
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7.3.3.7 Generating Probabilistic Forecasts 

Once the regression model has been constructed, predictions can be made using 
Eqs. (7.3) and (7.13) given new values of the predictor(s). However, these equa-
tions give only a “best-guess” of the outcome, and no indication of the uncertainty 
is provided. There are a number of ways in which this best-guess forecast can be 
converted to a probabilistic forecast, but the most reliable procedure is to use in-
formation about the variance of the errors in estimating previous known values. 
The error variance is widely used to define a prediction interval on the forecast, 
although it is possible to obtain probabilities for predefined categories as well. If 
the errors in the forecasts are assumed to be Gaussian, these probabilities can be 
calculated by integration of the t-distribution using the best-guess as the mean and 
the error variance as the variance. (See Chapter 8, Section 8.5.1 for discussions on 
different ways of communicating forecast uncertainty.) The error variance is nor-
mally calculated from the fitted values, although the errors in the cross-validated 
forecasts could be used instead, and may be more reliable. 

Alternative approaches include using contingency tables that compare the cate-
gory of the forecast with the observed category for a set of forecasts. Then if 60% 
of the times that the forecast has indicated below-normal rainfall the observation 
was also below-normal, for example, the forecast would specify a 60% probability 
of below-normal rainfall the next time the forecast indicates below-normal. There 
are two problems with this approach: very large samples are required to estimate 
the probabilities reliably, and; no distinction is made between the probabilities 
issued when the forecast indicates well below-normal rainfall, and when it indi-
cates marginally below-normal. The large differences in the amount of rainfall that 
can be classified as “below-normal”, for example, could be offset by increasing 
the number of categories, but only at the cost of requiring still larger samples. 
Given these problems, the use of contingency tables to obtain forecast probabili-
ties is not recommended. Instead there is a suite of statistical procedures that can 
be used to obtain these probabilities directly rather than estimating a best-guess 
and then trying to account for the uncertainty subsequently. These procedures are 
discussed in Section 7.4.2. 

7.4  Alternative Statistical Methods to Linear Regression 

Linear regression forms the basis for a number of more sophisticated statistical 
techniques that have been used in seasonal climate prediction. Some of these tech-
niques are discussed in Section 7.4.2, all of which have in common an attempt to 
estimate a “best-guess” forecast. Some alternative statistical techniques that esti-
mate forecast probabilities without providing a best-guess are considered in Section 
7.4.2. However, to understand the motivation for using any of these methods, it is 
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first helpful to consider some of the limitations and potential pitfalls of linear 
regression, and these issues are outlined in Section 7.4.1. 

7.4.1 Problems with Linear Regression 

The problems and potential pitfalls listed in this section are not exclusive to linear 
regression, but are listed to provide a context for understanding the more sophisti-
cated techniques described in Sections 7.4.2 and 7.4.3. In many cases the alter-
native techniques attempt to address only a subset of the problems listed below. 

7.4.1.1 Multiplicity 

One of the primary difficulties in using linear regression for seasonal climate 
forecasting is identifying the predictors to use in the model. Most frequently, pre-
dictors used are measurements of SSTs, but land-surface characteristics and 
atmospheric indices are also used for forecasting in countries such as India where 
the use of such variables has been supported by extensive research on seasonal 
predictability. Whether or not SSTs are used exclusively, the pool of candidate 
predictors is vast, and the problem arises of which subset of these predictors 
should be included in the regression model. The temptation is to choose the pre-
dictors that are best correlated with the predictands, but the probability of 
identifying highly, but spuriously, correlated predictors increases12 as the pool of 
candidate predictors is expanded. This problem is known as “multiplicity”, and the 
search for predictors by repeated testing of the strength of statistical relationships 
is known as “fishing”, and almost invariably results in the creation of a statistical 
model that performs worse than anticipated when used operationally. 

One reason why “fishing” results in models that perform poorly in operations is 
that standard tests of statistical significance used in constructing a statistical model 
assume that the predictors to be used in the regression model have already been 
selected, and these tests become invalid when only the models that give the best 
results are selected. If a number of regression models are tested with the aim of 
identifying those that work well, then problems of multiplicity arise. Standard 
significance tests require adjustment for multiplicity, otherwise there is an in-
creased danger of accepting predictors that should not be included in the model, 
and/or of overestimating the strength of the model’s predictive capability. This 
selection of spurious, or of too many, predictors is known as “over-fitting”. 

________________  
12 I.e. the probability of making a type-I error increases. 
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Cross-validation (Section 7.3.3) is used to test for over-fitting. Leave-one-out 
cross-validation appears to be the standard approach in the atmospheric sciences 
(leave-k-out is used if the data are autocorrelated, but k typically is set only to a 
maximum of twice the decorrelation time). However, it is not widely recognised in 
the atmospheric sciences literature that a substantial proportion of the data needs 
to be omitted to obtain unbiased results. How much data should be omitted re-
mains a question for further research, but there have been suggestions that it 
should be as much as 40–60% (Xu and Liang 2001). Frequently, therefore, the 
problems of multiplicity are not adequately addressed. 

An aspect of multiplicity is evident not just when constructing a model with a 
large pool of candidate predictors, but also when constructing a number of models, 
perhaps for different stations and/or seasons. If numerous models are constructed, 
the probability of finding at least one that gives spuriously “good” predictions 
increases, and so the statistical significance of the overall set of results needs to be 
assessed. Tests for “field significance” have been designed to address this ques-
tion. Multiplicity problems can apply to GCM forecasts as well since forecasts are 
made for a large number of locations, variables, lags, and target periods. 

7.4.1.2 Multicolinearity 

Multicolinearity is a problem that sometimes arises when more than one predictor 
is used in a regression model. If the predictors used are themselves highly cor-
related with each other, errors in estimating the model parameters can become 
substantial. The errors in these parameter estimates can give poor predictions 
when new values of the predictors are applied to the model, and can also create 
problems in interpreting the regression coefficients. Whereas multiplicity results 
in bad forecasts because of the inclusion of incorrect predictors in the model, multi-
colinearity can cause bad forecasts even when the correct predictors are included 
simply because the regression parameters may be poorly estimated. 

To illustrate the difficulty of interpreting regression parameters when predictors 
are correlated, consider a simple multiple regression model to predict the March 
values of the NIÑO3.4 index from the January and February values. Using data for 
1971–2000, the regression coefficients for January and February, respectively 
are −0.395 and 1.216, which seems to imply that the March value is negatively 
correlated with the January value, whereas one would expect a slightly weaker 
positive correlation than for February. However, when the January and February 
values are used in separate models as the only predictors, the coefficients change 
to 0.628 and 0.761, respectively, showing that the values in both months are posi-
tively correlated with that in March. 
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7.4.1.3 Non-linearity 

Linear regression assumes a linear relationship between the predictor(s) and the 
predictand. This assumption means that for a given change in the value of a pre-
dictor, (e.g. a 1°C increase in SST in a specified area), the expected change in the 
predictand (e.g. an increase in seasonal rainfall of 100°mm) is the same regardless 
of the actual sea temperature, and regardless of the values of the other predictors. 
Given the non-linear nature of the atmosphere the linearity assumption seems 
inherently unreasonable, and the flexibility to model non-linear relationships sta-
tistically may be desirable. In practice, however, the linearity assumption is often 
a reasonable approximation, and even where it is not, the degrees of freedom 
required to identify the correct form of the relationship are likely to be lacking. 

7.4.1.4 Assumptions About Data Distribution 

In addition to the linearity assumption, linear regression assumes that the predic-
tand (but not necessarily the predictors) is normally distributed. While this 
assumption may be quite reasonable for variables such as geopotential heights, for 
other variables the data may not be normally distributed, and fitting a linear 
regression then becomes problematic. Although the distribution of surface air 
temperatures is skewed, this can generally be ignored because the skewness is not 
usually severe. However, with precipitation, skewness can be marked (see exam-
ples in Chapter 8, Section 8.3.1), and there is the related problem that precipitation 
has a lower limit of zero. It makes no sense for a regression line on precipitation to 
extend below zero since negative precipitation is meaningless, but a linear regres-
sion model is unaware of such a constraint. The lower limit on precipitation also 
means that even if a regression model is fitted, the errors are usually larger for 
larger precipitation rates than for rates close to zero. This increase in the variance 
of the errors in estimating precipitation for larger precipitation amounts violates 
the homoscedasticity assumption of multiple linear regression. Although these 
problems could be addressed by using certain forms of generalised linear models 
(see Section 7.4.3), they are frequently ignored, or assumed not to be problematic. 

7.4.2 Regression-based Statistical Prediction Techniques 

7.4.2.1 Power and Non-linear Regression 

Even when the relationship between the predictor and predictand is non-linear, a 
transformation of the values of the predictors and/or predictand may make it pos-
sible to treat the problem as linear. The most commonly used transformations are 
power transformations (e.g. using the square or the square-root of the predictors), 
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and adding these to the pool of predictors. The resulting models, known as power 
regression models,13 have been used extensively in statistical predictions of the 
Indian monsoon, for example. However, caution has to be taken since the problem 
of multiplicity is exacerbated by expanding the number of candidate predictors, 
and theoretical justifications for the power transformations should be supplied. In 
addition, multicolinearity is introduced with most power transformations. Power 
regression is sometimes used in seasonal forecasts of climate impacts, where non-
linear relationships between climate variables and the application data in question 
have a theoretical basis (e.g. Chapters 12 and 13). Other examples of non-linear 
regression include exponential models, which are used more frequently in fore-
casting impacts than in forecasts of seasonal climate per se. 

Compared to power regression models, neural networks constitute a consider-
able increase in the complexity with which non-linear relationship can be modelled. 
Neural networks are a recent development in seasonal climate prediction, but have 
been applied successfully, and have been implemented as the statistical atmos-
pheric component in hybrid coupled models. The neural networks are constructed 
by optimizing sets of weights applied to the predictors, which are then transformed 
using a non-linear function (usually the hyperbolic tangent), and then further 
weighting functions are applied to provide estimates of the predictand values. The 
weights are optimised so that the squared errors in the estimates are minimised, 
as with linear regression. Because of the large numbers of model parameters 
involved, care has to be taken to avoid over-fitting. 

7.4.2.2 Regression Models for Non-normally Distributed Data 

Although linear regression assumes that the data being analysed are normally dis-
tributed, the procedure can be generalised to allow for predictands with alternative 
distributions. These generalised linear models (GLMs) are discussed in more de-
tail in Section 7.4.3, where versions of GLMs for estimating probabilities are 
considered. However, there are forms of GLMs for data with a Poisson distribu-
tion that are suitable for modelling data that are recorded as counts, and these have 
been applied in seasonal forecasting of tropical cyclones. Versions are also avail-
able for data with a gamma distribution that would be suitable for forecasts of 
rainfall, but these have not been widely used. 

A primary reason why linear regression becomes problematic when the predic-
tands are not normally distributed is that the more extreme observations (for 
example the very wet years) have an undue influence on the regression parameters. 
While GLMs address this problem by making it possible to assume distributions 

________________  
13 Polynomial regression models are special cases of power regression, allowing only integer 
powers to be used. 
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that are more representative of the data, another alternative is to use regression 
models that are less sensitive to extreme values. There are two ways in which this 
sensitivity can be reduced. In robust regression, one option is to reset all errors 
(i.e. squared differences between the observed and the fitted value) exceeding a 
maximum value to this threshold. The procedure is not widely used. The second 
approach is to redefine how the errors are calculated: specifically, instead of 
squaring the errors, which tends to exaggerate the magnitude of large errors, the 
absolute errors can be used. This procedure is known as least absolute deviation 
(LAD) regression, and has been used in tropical cyclone forecasting, for example. 

7.4.2.3 Ridge Regression 

Ridge regression constitutes an attempt to address the problem of multicolinearity 
by placing constraints on the model parameters. In effect the procedure artificially 
inflates the variances of the predictors relative to their covariances, and thus un-
derplays the effects of the inter-correlations when estimating the model regression 
coefficients. Ridging is used in the constructed analogue procedure, in which a 
least squares estimate of the spatial pattern of the most recently observed values of 
the predictands is obtained by weighting the patterns for all years in the historical 
data. As an example of a simple constructed analogue model, consider the problem 
of forecasting the December Niño3.4 index from the June value. Assume that the 
June and December values of the index are known for 1971–2000, and that the 
June 2001 value is available to make a forecast for December 2001. Weights 
would be assigned to the June values for 1971–2000 to estimate the June value for 
2001. These same weights would then be applied to the December 1971–2000 
values to construct a forecast for December 2001. Given that the number of 
weights to be calculated (30) is larger than the number of values being estimated 
(1), there is no unique solution to the weights, but the ridging helps to provide a 
stable solution. 

7.4.2.4 Principal Components Regression 

Principal components regression (PCR) improves on ridge regression by address-
ing some of the problems arising from both multicolinearity and multiplicity. The 
only difference between multiple regression and PCR is that in PCR the principal 
components of the predictors are used in the model instead of the original predic-
tors themselves. Principal components are optimal summaries of large sets of data, 
obtained by defining sets of weights, or “loadings”, that are applied to obtain a 
linear combination of the original data. They are ideally suited to the problem at 
hand, since they will reduce a large candidate pool of predictors to a much smaller 
number, while retaining much of the information in the original data. In addition, 
each of the principal components is uncorrelated with all the others, and so problems 
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of multicolinearity are avoided. More complex versions of principal component 
analysis can be used in PCR that represent, for example, modes of variability that 
have an evolutionary component, and are discussed further in the next section. 

In theory it is possible to expand a PCR equation into an equivalent multiple 
regression equation given the PCR coefficients and the loadings used to define the 
principal components. The coefficients of this expanded multiple regression have 
smaller error variance than if the coefficients had been estimated directly, because 
the negative effects of multicolinearity are usually associated with the higher order 
principal components that would generally be omitted from the analysis. However, 
the coefficients are biased, and so problems of interpretation remain. Despite these 
issues, and problems in determining the number of principal components to retain 
in the model, principal components regression is an attractive alternative to multi-
ple linear regression. 

7.4.2.5 Maximum Covariance Analysis, Canonical Correlation Analysis, 
and Redundancy Analysis 

When making predictions for a number of different stations or gridpoints, princi-
pal components regression can be an inefficient procedure since separate models 
have to be constructed and tested for each location. In addition, if the predictands 
are inter-correlated, it is possible for predictions at one or more of the locations to 
be somewhat inconsistent with those at others because of different sampling errors 
in the estimated regression coefficients, or even in the selection of predictors, for 
models at neighbouring sites. There are various techniques that can be used to 
make predictions at a set of locations. These techniques include canonical correlation 
analysis (CCA), redundancy analysis, and maximum covariance analysis14 (MCA). 
These techniques are widely used in spatial downscaling problems (Chapter 8). 

The basic principle behind all of these techniques involves forecasting modes 
or spatial patterns of variability spanning across the region of interest rather than 
making forecasts for individual locations. In this context, a mode is akin to a 
weighted average15 of the individual locations. More than one mode can be pre-
dicted, and the predictions for these modes are then superimposed to construct 
 

 

________________  
14 Maximum covariance analysis is frequently referred to as singular value decomposition (SVD) 
or SVD analysis. This nomenclature, however, is confusing because SVD is often used to per-
form other analyses, including multiple regression, principal components analysis, and CCA. 
Von Storch and Zwiers (1999) propose calling the technique maximum covariance analysis. 
15More strictly, because the sum of the squares of the weights rather than the sum of the weights 
per se, is required to be unity, the modes are a “weighted sum” or a “linear combination”. 
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forecasts for all locations. The modes are predicted using a second set of modes 
obtained from the predictors so that spatial patterns of variability in the predictors 
are used to predict spatial patterns in the predictands. If UX and UY are the weights 
for the predictors and predictands, respectively, the modes, or new variables, are: 

 =X XZ XU , (7.19a) 

 =Y YZ YU . (7.19b) 

As an example, the first coupled mode (obtained using CCA) of September SSTs 
for the Indian Ocean and October–December precipitation over part of East Africa 
is shown in Fig. 7.3. The mode suggests that warming in the western tropical 
Indian Ocean with cooling in the eastern tropical Indian Ocean and far western 
Pacific (Fig. 7.3a) can be used to predict anomalously wet conditions over the 
bulk of Tanzania and Kenya (Fig. 7.3b). The opposite precipitation pattern would 
be predicted given a reversal of the anomalous zonal temperature gradient in the 
tropical Indian Ocean. The temporal variability of these modes is shown in Fig. 
7.3c; the correlation between the modes is 0.706. 

The differences between MCA, CCA, and redundancy analysis are in the pro-
perties of the weights that define the modes: 

• In MCA each pair of modes has maximum covariance 
• In CCA each pair of modes has maximum correlation 
• In redundancy analysis the explained variance in the predictand modes is 

maximised 

weights for either the predictors or the predictands that generate new variables 
with maximum variance.) For MCA, the covariance between the modes is: 

 T= X YC Z Z . (7.20) 

The covariance matrix C is a diagonal matrix with the diagonal elements defin-
ing the covariances of the coupled modes of predictors and predictands. Equation 
(7.20) can be written in terms of X and Y by substituting from Eq. (7.19): 

 
( )T

T T

=

=

X Y

X Y

C XU YU

U X YU . (7.21) 

 

(Compare principal component analysis, in which the aim is to define a set of 

Maps of the weights are frequently plotted to indicate the coupled spatial patterns. 
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Example of the first coupled mode of (a) September 1951–2000 sea surface tempera-
tures for part of the Indian Ocean used to predict (b) October–December 1951–2000 precipitation 
over East Africa. Both datasets were pre-filtered by using only the first few principal com-
ponents. The maps show the correlations between the original gridded data and the respective 
temporal scores (c) for the predictor (black) and predictand (grey) components of the first 
canonical coupled mode 

Fig. 7.3 
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XTY is the covariance of X and Y (i.e. the covariance matrix of the original pre-
dictors and predictands) and so Eq. (7.21) can be rearranged to express this 
covariance matrix, CXY, in terms of the diagonal matrix C, and two orthogonal 
matrices: 

 T=XY X YC U CU . (7.22) 

In other words, the weights UX and UY that maximise the covariances between 
the spatial modes of predictors and predictands can be obtained from a singular 
value decomposition of the covariance matrix of the original predictors and pre-
dictands. Then, given a new set of predictors, x, forecasts, ŷ , can be generated: 

 1ˆ T−= X X Yy xU Σ CU , (7.23) 

where ΣX is a diagonal matrix containing the variances of the ZX. Only those cou-
pled modes that explain a large proportion of the total variance are used in the 
prediction, and so typically only the first few coupled modes are retained. Effec-
tively, the smaller diagonal elements of the matrix C effectively are set to zero. 

However, Eq. (7.23) does not provide least-squares estimates of the predict-
ands, and so MCA is not regularly used in seasonal climate forecasting. Instead 
MCA is more useful in identifying coupled modes of, for example, SST fields and 
rainfall that may provide a basis for seasonal forecasting. A much more commonly 
used variant of MCA in prediction problems is CCA, which aims to identify alter-
native sets of weights, VX and VY,16 that maximise the correlations rather than the 
covariances between the modes of variability. In CCA the modes defined in Eq. 
(7.19) are first standardised, replacing UX and UY by VX and VY, respectively, so 
that C in Eq. (7.20) becomes a squared correlation matrix, R. Predictions, given a 
new set of predictors, are then given by: 

 1ˆ −= X Yy xV RV . (7.24) 

In practical terms, CCA identifies linear combinations of predictors that can 
successfully predict linear combinations of the predictands, regardless of how 
much of the total variance either linear combination explains. Consequently, there 
is a danger of identifying well-correlated modes of variability that do not explain 
much of the total variability. Although the objective in MCA of maximising the 
covariances rather than the correlations between the modes may seem more perti-
nent, MCA is also problematic in that the covariances are maximised in part by 
the variances of the modes for the predictors, and so it is possible that the total 

________________  
16 Note that VX and VY are not orthogonal matrices, whereas UX and UY are. 
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explained variance of the predictands is low. Further, both methods are subject to 
interpretation problems, and neither approach is likely to identify robust and easily 
interpretable modes of variability. Redundancy analysis is a third option that de-
serves further attention. Redundancy analysis replaces ZX in Eq. (7.19a) with 
the standardised values, and thus seeks to maximise the explained variance in the 
predictands without necessarily using the largest modes of the variability in the 
predictors. Redundancy analysis can thus be seen as intermediate between CCA 
and MCA. In practice, differences in the results of the various techniques are 
usually minimal. 

In most applications of MCA and CCA in the climate literature, the observa-
tions and forecasts are pre-filtered by using a subset of the principal components 
of the data. While the pre-filtering simplifies the solution of the CCA or MCA, the 
computational gain is lost through having to calculate the principal components. 
Instead, the main advantage of the pre-filtering is that the noise levels in both the 
forecasts and the observations are reduced, and so the chances of finding spurious 
relationships are decreased. This advantage is likely to be greater for CCA than for 
MCA because the former does not require the coupled modes to represent large 
proportions of the total variance of the original data. 

7.4.2.6 Other Principal Component Analysis-related Techniques 

There is a hierarchy of sophisticated ways in which these components can be de-
fined. In the simplest formulation, the principal components are defined using a 
set of predictor variables all of which represent measurements synchronous with 
each other. Prediction using principal components of SSTs at various locations, 
but all measured at the same time, would be an example. This form of principal 

If the predictors are measured at a number of different lags, the principal 
components become “extended” empirical orthogonal functions (EOFs),17 whose 
computation is equivalent to that of multi-channel singular spectrum analysis. For 
example, SSTs for a set of locations measured at a number of different times of 
the year are sometimes used to predict future SSTs. If a single predictor is used in 
this context so that the principal components are calculated only from the auto-
correlation (or auto-covariance) of this series, the technique is known as singular 
spectrum analysis (SSA). Although SSA has not been used widely in seasonal 

________________  
17 Empirical orthogonal functions are the loadings that define the principal components. Although 
some authors have drawn a distinction between principal component analysis and empirical  
orthogonal function analysis based on the normalization of the eigenvectors (Richman 1986), 
this distinction is not widely adhered to and the two are in most cases synonymous (von Storch 
and Zwiers 1999; Joliffe 2007). 

As mentioned in Section 7.4.2.4, principal components can be useful as predictors. 

components regression is discussed in Section 7.4.2.4. 
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climate forecasting, it has been used in an attempt to identify the predictable com-
ponent of the Indian monsoon variability. Similarly, complex EOFs have been 
used in predictability studies, but have not been widely applied in seasonal climate 
forecasting. Complex EOF analysis, sometimes called Hilbert singular decomposi-
tion, involves advancing all oscillatory components of any wavelength in the data 
by 90°, and including these as imaginary components in a principal component 
analysis. The procedure allows lags to be identified in modes of variability. 

Principal oscillation pattern (POP) analysis is fundamentally different to the 
techniques described above. It performs an eigenvalue decomposition of the ma-
trix of first order autoregressive (AR-1) coefficients, and hence identifies optimal 
multivariate AR-1 models that can be used for prediction purposes. POP analysis 
has similar objectives to complex EOF analysis in seeking to identify evolutionary 
modes of variability, but has been more widely used than the latter in seasonal 
prediction. Linear inverse modelling is a version of POP analysis. 

7.4.2.7 Autoregressive Models and Optimal Climate Normals 

Linear inverse modelling and POP analysis are sophisticated versions of simpler 
models known as autoregressive models. Autoregressive models are mathemati-
cally the same as linear regression models except that the predictors are the same 
variable as the predictand, only measured at different lags. So, for example, if the 
NIÑO3.4 index is forecasted with a regression model using only earlier values of 
the index, then this model would be autoregressive. The best known example of 
such a model is the CLIPER (CLImatology and PERsistence) model that has been 
used to forecast the ENSO phase using lagged and autoregressive relationships. 
The basic principle involved is that some variables, such as SSTs, change slowly, 
and so recent evolution can be used as a guide to future values. The name CLIPER 
implies that future values are predicted using a combination of: the seasonal mean 
value (climatology) towards which the value of the predictand is expected to drift 
at increasingly long lead-times, and; the most recently observed anomalies, that 
are expected to decay18 only slowly (persist). 

A special case of using persistence and climatology as a forecast is that of 
optimal climate normals (OCNs). In most cases of seasonal climate forecasting, a 
forecast is made by projecting the most recently observed climate state into the 
future, i.e. from the previous day (or month or perhaps season) into a coming sea-
son. However, with OCN a forecast is made under the assumption that a good 
guide to the climate conditions for the target season are the conditions that have 
been observed for the same season over the last few years. The forecast for the 

________________  
18 It is possible, such as when forecasting ENSO anomalies at certain times of the year, for 
anomalies to grow in a CLIPER model (Knaff and Landsea 1997), but such cases are unusual. 
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coming season is then simply the average of the last few years, and the objective is 
to identify the number of years to average to give the best forecast. The idea is that 
the 30-year standard climatological period can be improved upon in some cases 
when there is low-frequency variability (e.g. inter-decadal variability or trend) in 
the climate. Using OCNs is sometimes a useful option in areas with inherently low 
seasonal predictability. 

7.4.3 Probabilistic Statistical Prediction Techniques 

Rather than trying to estimate a best-guess forecast value and then accounting for 
the uncertainty in this forecast, there are a number of statistical techniques that can 
be used to estimate forecast probabilities directly. Some of these methods are 
alternative versions of the regression models mentioned in Section 7.4.2, and are 

procedures that are similar to ensemble forecasting are described. 

7.4.3.1 Generalised Linear Models 

Although multiple regression can be used to estimate probabilities as the depend-
ent variable, this is not generally advised because there is no constraint that the 
estimated probability is between zero and one, and because the distributional as-
sumptions of the procedure are violated (Wilks 2005). Instead a variety of models 
that are ultimately based on linear regression are available. Although these gene-
ralised linear models are closely related to linear regression they are discussed 
separately in this section. 

Generalised linear models are based on the standard linear regression equation: 

 Tη = β x , (7.25) 

where β is the set of regression parameters, and x is the set of predictors. The 
linear predictor η is related to the predictand, which in this case is a Bernoulli 
variable with mean p̂ . via a link function. The three most commonly used link 
functions for Bernoulli variables are: 

 
ˆ

log
ˆ1

p
p

η =
−

⎡ ⎤
⎢ ⎥⎣ ⎦

, (7.26a) 

 [ ]1 p̂η −= Φ , (7.26b) 

described in further detail in Section 7.4.3.1, while others are based on classifica-
tion problems, and are discussed in Section 7.4.3.2. In Section 7.4.3.1 statistical 
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 [ ][ ]ˆlog log 1 pη = − − , (7.26c) 

where 1−Φ  is the inverse normal distribution function. These link functions are 
known as the logit, probit, and complementary log-log functions, respectively. In 
practice, the differences between the three are minimal, but the logistic link is the 
most widely used, and easiest to compute. 

Instead of training the model using observed rainfall or temperatures, for  
example, the predictand has to be categorised into one of two groups. For example, 
in Fig. 7.1a December 1950–2000 values of the NIÑO3.4 index are shown as 
anomalies and plotted against the June values. The regression line and the scatter 
of values imply a reasonably strong relationship between the phase of ENSO  
in June and that 6 months later. In Fig. 7.4b, all the values of the December 
NIÑO3.4 index that exceed the upper quartile are converted to a value of 1, and all 
the values less than the upper quartile to a value of 0. The values on the x-axis (the 
June NIÑO3.4 index) are left unchanged. Rather than trying to fit a straight line to 
the data points, an S-shaped curve is used. Eqs. (7.26a–c) are different ways of 
converting a straight line to an S-shaped curve that ranges between 0 as a mini-
mum, and 1 as a maximum. 

In this example of a generalised linear model, observations are listed either as 
0s and 1s, and the fitted curve is interpreted as providing an estimate of the 
probability that future values will exceed the threshold used to define the cate-
gories (i.e. the probability that the December NIÑO3.4 index will exceed the upper 

 

Fig. 7.4 Example of (a) a linear regression model and (b) a generalised linear regression model. 
June values of the Niño3.4 index are used to predict December 1971–2000 values. The dashed 
horizontal line represents the upper quartile of December values of the index 
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quartile). The limitation to only two categories can be too restrictive, but it is pos-
sible to further divide the categories either by nesting models, or by simultaneous 
fitting of parallel models. 

The forms of generalised linear models described above, resolve issues related 
to data distribution assumptions, of indicating forecast uncertainty, and, to some 
extent, that of linearity, but do not address the problems of multiplicity and multi-
colinearity. The latter two problems can be addressed in similar ways to that for 
linear regression, e.g. by using principal components as predictors. 

7.4.3.2 Classification Procedures 

Classification procedures have been used in seasonal climate forecasting more 
extensively than generalised linear models. As with generalised linear models, the 
observations are assigned to one of two or more categories, and then probabilities 
are calculated that a new observation will be within each of the categories given 
new values of the predictors. An important distinction, however, is that categories 
are nominal in classification procedures, so that if there are three or more, the pro-
cedures do not know, for example, that they are ordered as below-normal, near-
normal, and above-normal. In most cases of seasonal climate forecasting the fact 
that the categories are nominal in classification procedures is likely to be a disad-
vantage because relationships between predictors and predictands are most often 
likely to be monotonic. 

Discriminant analysis is the most widely used classification procedure in sea-
sonal climate forecasting. The values of the predictand are assigned to one of the 
categories, and the mean values of the predictors are then calculated for each 
category separately. If the predictors have good discriminatory power then the 
differences in the means of the predictors between the various categories will be 
large. For example, if seasonal rainfall is strongly influenced by the ENSO phe-
nomenon, then the difference in the average value of the NIÑO3.4 index when 
rainfall is above-normal compared to when rainfall is below-normal will be large. 
Given the covariances of the predictors in each category the probability that a new 
observation will be in each category can be calculated from the new values of the 
predictors, and from knowledge about the prior probabilities of each category. 
Mathematically, it is simpler to assume that the covariances are the same for each 
category, and a linear classification can be defined to identify the most likely cate-
gory. If this assumption of equal covariance is dropped, the classification function 
becomes quadratic. The quadratic function only performs noticeably better than 
the linear function when the differences in covariance are marked. 

Canonical variate analysis has had limited application in seasonal climate fore-
casting, but it has been used in predicting the phase of the ENSO phenomenon. 

identifies optimal linear combinations of the predictors to maximise correlations 
canonical correlation analysis as well. Just as canonical correlation analysis 
The technique is similar to discriminant analysis, but has some similarities to 
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with linear combinations of the predictands, canonical variate analysis seeks opti-
mal linear combinations of the predictors, but in this case to maximise the 
discrimination between the categories. The discrimination is defined by the ratio 
of between-group to total variance. 

using monthly NIÑO3.4 indices from January–November to predict the ENSO 
phase for the following December. Three phases are defined based on the outer 
quartiles of the December value of the index, and are represented by the different 
symbols: the open circles represent years in which the December NIÑO3.4 index 
was below the lower quartile (i.e. La Niña events), the open triangles years in 
which the index was above the upper quartile (i.e. El Niño events), and the open 
squares years in which the index was within the inter-quartile range (i.e. neutral 
events). The x-axis represents the first canonical variate (a linear combination of 
the NIÑO3.4 indices for January–November), which maximises the distances bet-
ween the mean values of canonical variate scores for the three categories, as 
represented by the solid symbols. This canonical variate therefore maximises the 
distances along the x-axis between the three solid symbols. The first canonical 
 

Fig. 7.5 Example of a canonical variate analysis model. The x-axis represents the first canonical 
variate of monthly NIÑO3.4 indices from January–November, and the y-axis the second. The 
hollow symbols represent observed scores on the canonical variates for 1971–2000, and the solid 
symbols the corresponding mean values. The circles represent years in which the December 
NIÑO3.4 index was below the lower quartile, the triangles years in which the index was above 
the upper quartile, and squares years in which the index was within the inter-quartile range. The 
large dashed circles represent distances of one standard deviation 

An example is provided in Fig. 7.5, where canonical variates are computed 
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variate successfully distinguishes the three categories, but is most effective in 
identifying the El Niño events (represented by the triangles). The second canonical 
variate maximises the distances between the categories along the y-axis, and helps 
to distinguish the La Niña events (circles) from the neutral events (squares). The 
dashed circles indicate distances in multiples of one standard deviation from the 
category means, (assuming that the variances in all three categories are equal), and 
can be used to visualise in which category a new observation is most likely to occur. 

Classification procedures address a number of the problems listed in Section 
7.4.1. Because the predictands are categorised in both discriminant analysis and 
canonical variate analysis, no assumptions are made about their distribution. 
However, it is assumed that the predictors are normally distributed, and linear 
discriminant analysis is sensitive to violations of this assumption. Quadratic ana-
lysis is more robust, except when the data are highly skewed. As with the forms of 

colinearity remain as problems, but can be addressed in similar ways to that for 
linear regression, e.g. by using principal components as predictors. 

7.4.3.3 Analogue Procedures 

Analogue procedures have some similarity to classification procedures, but are 
listed separately because of a number of important differences from discriminant 
analysis and canonical variate analysis, and because of a wide flexibility in how 
the analogues can be used to make a prediction. The essential step is to identify 
years from the historical records in which the states of the predictors were similar 
to the states for the current forecast. Some index of similarity (or of dissimilarity) 
is used to calculate how closely current conditions resemble previously observed 
conditions. A frequently used measure of similarity is the Mahalanobis distance, 
which is similar to the squared distance, but which compensates for correlations 
between the predictors. 

The distinction between this step of identifying similar years and classification 
is that the similarity of individual years, rather than of the mean of a predefined 
category of years, is investigated. However, in some of the simpler analogue pro-
cedures, often, but not exclusively, used when there is only one predictor, the 
predictor(s) is (are) classified into one of a set of predefined classes, and other 
years within this category are treated as analogues. A widely used example of this 
classification step in an analogue procedure is the Southern Oscillation phase 
system, in which the current state and recent evolution of the Southern Oscillation 
Index are classified into one of the five categories rapidly falling, rapidly rising, 
consistently positive, consistently negative, and consistently near-zero. 

Once analogue years have been identified, a forecast is constructed using the 
observed values for these selected years. The forecast can be constructed in 

normally the variability within the analogue years would also be considered to 
a number of ways, the simplest of which is to use the mean value, although 

generalised linear models discussed in Section 7.4.3.1, multiplicity and multi-
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provide some indication of the uncertainty in the forecast. If the forecast sample is 
sufficiently large, the probability that the predictand will exceed a threshold value 
could be obtained by counting the proportion of times it was exceeded in the ana-
logue sample (although errors in calculating this proportion are likely to be large). 
A more reliable approach would be to fit an appropriate distribution to the ana-
logue and to derive a forecast from this fitted distribution. The problem is 
essentially identical to that of constructing a forecast from an ensemble of GCM 

(Section 8.5.2). 
A special case of an analogue procedure is the constructed analogue, which 

combines all previous cases. The procedure is a form of ridge regression, which is 
discussed in further detail in Section 7.4.2. 

cedures for obtaining a forecast from an ensemble are discussed in Chapter 8 
predictions. Each analogue year can be treated as an ensemble member. Pro-
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